
JFP 27, e15, 2 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000065

1

Special issue on
Programming with Dependent Types

Editorial

There has been sustained interest in functional programming languages with depen-

dent types in recent years. The foundations of dependently typed programming can

be traced back to Martin–Löf’s work in the 1970s. In the past decades, this vision

has given rise to the development of proof assistants and functional programming

languages based on dependent types. The increased popularity of systems such

as Agda, Coq, Idris, and many others, reflects the growing momentum in this

research area. After sending out our first call for papers in October 2015, we

are happy to accept six articles in this special issue covering a wide spectrum of

topics.

Despite their theoretical appeal, there are very few examples of programming

languages based on dependent types which have been used to construct applications

with a graphical user interface. Abel et al. show how to write such GUIs in Agda in

their article Interactive Programming in Agda – Objects and Graphical User Interfaces.

Programming languages with dependent types provide a rich design space for

describing data types that capture invariants precisely. One drawback, however,

is that there may be many subtle variations of the same data type, resulting

in duplicated functions for each such variation. Ornaments provide a language

for describing the relationship between data types. Ko and Gibbons’s article

Programming with Ornaments shows illustrative examples of ornaments in action;

Dagand’s article The Essence of Ornaments gives a novel description of ornaments

in terms of many-sorted signatures.

A higher order unification algorithm lies at the heart of many implementations

of dependently typed programming languages. Ziliani and Sozeau present a new

such algorithm for the Calculus of Inductive Constructions in their article A

Comprehensible Guide to a New Unifier for CIC Including Universe Polymorphism

and Overloading. This algorithm both provides useful heuristics and deals with

several of the features of the calculus specific to the Coq system.

Stump addresses another central concept of dependently typed programming

languages in his article The Calculus of Dependent Lambda Eliminations: the notion

of inductively defined data type. One of the motivations for the original Calculus

of Constructions was the use of impredicative quantification for compactly and

elegantly encoding data types. Such encodings, however, were soon discovered

to have several drawbacks. To remedy these the calculus was extended with a

system of primitive inductive data types in the Calculus of Inductive Constructions.

With his Calculus of Dependent Lambda Eliminations, Stump proposes another

alternative: a new strengthened system based on impredicative encodings, but with

https://doi.org/10.1017/S0956796817000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000065


2 Editorial

certain constructor constraints, aimed at eliminating the shortcomings of the original

impredicative encodings.

As mentioned above, dependently typed programming languages evolved from

Martin–Löf’s foundational theories for constructive mathematics. Perhaps surpris-

ingly, the definition of finiteness in such theories is quite subtle. For instance,

there are several definitions of the notion of finite set that are not equivalent.

Uustalu and Veltri’s article Finiteness and Rational Sequences, Constructively studies

the definition of the related notion of rational (or ultimately periodic) sequences and

presents several different implementations of this notion in Martin–Löf type theory.

We would like to thank the authors for submitting their work to JFP and their

patience with the reviewing process, the reviewers for their diligence, and finally, the

JFP editors, Jeremy Gibbons and Matthias Felleisen, who were incredibly supportive

and encouraging throughout the editorial process.

Wouter Swierstra

Department of Information and

Computing Science University of Utrecht

w.s.swierstra@uu.nl

Peter Dybjer

Department of Computing Science and

Engineering Chalmers University of Technology

peterd@chalmers.se

https://doi.org/10.1017/S0956796817000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000065

