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Abstract

We prove that spin groups act generically freely on various spinor modules, in the sense
of group schemes and in a way that does not depend on the characteristic of the base
field. As a consequence, we extend the surprising calculation of the essential dimension
of spin groups and half-spin groups in characteristic zero by Brosnan et al. [Essential
dimension, spinor groups, and quadratic forms, Ann. of Math. (2) 171 (2010), 533–544],
and Chernousov and Merkurjev [Essential dimension of spinor and Clifford groups,
Algebra Number Theory 8 (2014), 457–472] to fields of characteristic different from
two. We also complete the determination of generic stabilizers in spin and half-spin
groups of low rank.

1. Introduction

The essential dimension of an algebraic group G is, roughly speaking, the number of parameters
needed to specify a G-torsor. Since the notion was introduced in [BR97] and [RY00], there have
been many papers calculating the essential dimension of various groups, such as [KM03, CS06,
Flo08, KM08, GR09, Mer10, BM12, LMMR13], etc. (See [Mer16, Mer13] or [Rei10] for a survey
of the current state of the art.) For connected groups, the essential dimension of G tends to be
less than the dimension of G as a variety; for semisimple groups this is well known.1 Therefore,
the discovery by Brosnan et al. in [BRV10] that the essential dimension of the spinor group Spinn
grows exponentially as a function of n (whereas dim Spinn is quadratic in n), was startling. Their
results, together with refinements for n divisible by 4 in [Mer09] and [CM14], determined the
essential dimension of Spinn for n > 14 over algebraically closed fields of characteristic zero. One
goal of the present paper is to extend this result to all characteristics except 2.

Generically free actions
The source of the characteristic zero hypothesis in [BRV10] is that the upper bound relies on a
fact about the action of spin groups on spinors that is only available in the literature in case the
field k has characteristic zero. Recall that a group G acting on a vector space V is said to act
generically freely if there is a dense open subset U of V such that, for every K ⊇ k and every
u ∈ U(K), the stabilizer in G of u is the trivial group scheme. We prove the following theorem.
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Table 1. Stabilizer subgroup scheme in Spinn of a generic vector in an irreducible (half-)spin
representation for small n.

n char k 6= 2 char k = 2 n char k 6= 2 char k = 2

6 (SL3) · (Ga)3 Same 11 SL5 SL5 oZ/2
7 G2 Same 12 SL6 SL6 oZ/2
8 Spin7 Same 13 SL3×SL3 (SL3× SL3) o Z/2
9 Spin7 Same 14 G2 ×G2 (G2 ×G2) o Z/2

10 (Spin7) · (Ga)8 Same

Theorem 1.1. Suppose n > 14. Then Spinn acts generically freely on the spin representation
if n ≡ 1, 3 mod 4; a half-spin representation if n ≡ 2 mod 4; or a direct sum of the vector
representation and a half-spin representation if n ≡ 0 mod 4. Furthermore, if n ≡ 0 mod 4 and
n > 20, then HSpinn acts generically freely on a half-spin representation.

(We also compute the stabilizer of a generic vector for the values of n not covered by
Theorem 1.1. See below for precise statements.)

Throughout, we write Spinn for the split spinor group, which is the simply connected cover
(in the sense of linear algebraic groups) of the split group SOn. To be precise, the vector
representation is the map Spinn → SOn, which is uniquely defined up to equivalence unless
n = 8. For n not divisible by 4, the kernel µ2 of this representation is the unique central µ2
subgroup scheme of Spinn.

For n divisible by 4, the natural action of Spinn on the spinors is a direct sum of
two inequivalent representations, call them V1 and V2, each of which is called a half-spin
representation. The center of Spinn in this case contains two additional copies of µ2, namely
the kernels of the half-spin representations Spinn → GL(Vi), and we write HSpinn for the image
of Spinn (the isomorphism class of which does not depend on i). For n > 12, HSpinn is not
isomorphic to SOn.

Theorem 1.1 is known under the additional hypothesis that char k = 0, see [AP71, Theorem 1]
for n > 29 and [Pop88] for n > 15. The proof below is independent of the characteristic zero
results, and so gives an alternative proof.

To simplify some statements, we write ‘an irreducible (half-)spin representation of Spinn’ to
mean a fundamental minuscule (hence, irreducible) representation of dimension 2b(n−1)/2c which
is the spin representation for n odd, whereas for n even it is one of two inequivalent half-spin
representations, compare [Che97, II.4.3, II.5.1].

We note that Guerreiro proved that the generic stabilizer in the Lie algebra spinn, acting on
a (half-)spin representation, is central for n = 22 and n > 24, see [Gue97, Tables 6 and 9]. At
the level of group schemes, this gives the weaker result that the generic stabilizer is finite étale.
Regardless, we recover these cases quickly, see § 3; the longest part of the proof of Theorem 1.1
concerns the cases n = 18 and 20.

Generic stabilizer in Spinn for small n
For completeness, we list the stabilizer in Spinn of a generic vector for 6 6 n 6 14 in Table 1.
The entries for n 6 12 and char k 6= 2 are from [Igu70]; see §§ 7–9 for the remaining cases. The
case n = 14 is particularly important due to its relationship with the structure of 14-dimensional
quadratic forms with trivial discriminant and Clifford invariant (see [Ros99a, Ros99b, Gar09]
and [Mer17]), so we calculate the stabilizer in detail in that case.
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For completeness, we also record the following.

Theorem 1.2. Let k be an algebraically closed field. The stabilizer in HSpin16 of a generic vector
in a half-spin representation is isomorphic to (Z/2)4 × (µ2)

4.

The proof when char k 6= 2 is short, see Lemma 4.2. The case of char k = 2 is treated in an
appendix by Alexander Premet. (Eric Rains has independently proved this result.)

Essential dimension
We recall the definition of essential dimension. For an extension K of a field k and an element x
in the Galois cohomology set H1(K,G), we define ed(x) to be the minimum of the transcendence
degree of K0/k for k ⊆ K0 ⊆ K such that x is in the image of H1(K0, G) → H1(K,G). The
essential dimension of G, denoted ed(G), is defined to be max ed(x) as x varies over all extensions
K/k and all x ∈ H1(K,G). There is also a notion of essential p-dimension for a prime p. The
essential p-dimension edp(x) is the minimum of ed(resK′/K x) as K ′ varies over finite extensions
of K such that p does not divide [K ′ : K], where resK′/K : H1(K,G) → H1(K ′, G) is the natural
map. The essential p-dimension of G, edp(G), is defined to be the minimum of edp(x) as K and
x vary; trivially, edp(G) 6 ed(G) for all p and G, and edp(G) = 0 if for every K every element
of H1(K,G) is killed by some finite extension of K of degree not divisible by p.

Our Theorem 1.1 gives upper bounds on the essential dimension of Spinn and HSpinn
regardless of the characteristic of k. Combining these with the results of [BRV10, Mer09, CM14,
Lot13] quickly gives the following, see § 6 for details.

Corollary 1.3. For n > 14 and char k 6= 2,2

ed2(Spinn) = ed(Spinn) =


2(n−1)/2 − n(n− 1)

2
if n ≡ 1, 3 mod 4;

2(n−2)/2 − n(n− 1)

2
if n ≡ 2 mod 4; and

2(n−2)/2 − n(n− 1)

2
+ 2m if n ≡ 0 mod 4

where 2m is the largest power of 2 dividing n in the final case. For n > 20 and divisible by 4,

ed2(HSpinn) = ed(HSpinn) = 2(n−2)/2 − n(n− 1)

2
.

Although Corollary 1.3 is stated and proved for split groups, it quickly implies analogous
results for nonsplit forms of these groups, see [Lot13, § 4] for details.

Combining the corollary with the calculation of ed(Spinn) for n 6 14 by Markus Rost in
[Ros99a, Ros99b] (see also [Gar09]), we find for char k 6= 2:

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ed(Spinn) 0 0 4 5 5 4 5 6 6 7 23 24 120 103 341 326

Notation
Let G be an affine group scheme of finite type over a field k, which we assume is algebraically
closed. (If G is additionally smooth, then we say that G is an algebraic group.) If G acts on a
variety X, the stabilizer Gx of an element x ∈ X(k) is a subgroup scheme of G with R-points

Gx(R) = {g ∈ G(R) | gx = x}
for every k-algebra R.

2 Added in proof: Totaro has recently shown that the same result holds also in characteristic 2, see his paper
Essential dimension of the spin groups in characteristic 2, arXiv:1701.05959.
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If Lie(G) = 0, then G is finite and étale. If additionally G(k) = 1, then G is the trivial group
scheme Spec k.

For a representation ρ : G → GL(V ) and elements g ∈ G(k) and x ∈ Lie(G), we denote the
fixed spaces by V g := ker(ρ(g)− 1) and V x := ker(dρ(x)).

We use fraktur letters such as g, spinn, etc., for the Lie algebras Lie(G), Lie(Spinn), etc.

2. Fixed spaces of elements

The main purpose of this section is to prove the following.

Proposition 2.1. Let V be an irreducible (half-)spin representation for Spinn over an
algebraically closed field k. Then for n > 6:

(i) for all noncentral x ∈ spinn, dimV x 6 3
4 dimV ;

(ii) if n is divisible by 4, then for all noncentral x ∈ hspinn, dimV x 6 3
4 dimV ;

(iii) for all noncentral g ∈ Spinn(k), dimV g 6 3
4 dimV ;

(iv) if n > 8 and g ∈ Spinn(k) is noncentral semisimple, then dimV g 6 5
8 dimV .

Before we proceed with the proof, consider the general situation where G is a split semisimple
algebraic group with a representation ρ : G → GL(V ) over k. For x, y ∈ g, if y is in the
Zariski-closure of G(k) · x, then dimV x 6 dimV y. This is clear, because the set of z ∈ g with
dimV z > dimV y is Zariski-closed and stable under G(k). We refer to this substitution principle
as specializing x to y.

Recall that Lie(Z(G)) is the center of Lie(G) = g. The previous observation shows that,
among noncentral x ∈ g, the maximum of dimV x is achieved for a root element, i.e. a generator
of a one-dimensional root subalgebra. To see this, note that in the Jordan decomposition x= s+n
where s is semisimple, n is nilpotent, and [s, n] = 0, we have V x ⊆ V s∩V n, so it suffices to prove
the result when x is nonzero nilpotent and when x is noncentral semisimple. In the former case,
there is a root element y ∈ G(k) · x. If x is noncentral semisimple, choose a root subgroup Uα of
G belonging to a Borel subgroup B such that x lies in Lie(B) and does not commute with Uα.
Then for all y ∈ Lie(Uα) and all scalars λ, x + λy is in the same Ad(G) orbit as x and y is in
the closure of the set of such elements; replace x with y.

A similar analysis for elements of G(k) shows that it suffices to consider root elements and
semisimple elements g such that ρ(g) has prime order.

Lemma 2.2. Suppose g ∈ Spin8(k) is semisimple and x is a graph automorphism of order 3. If
gx is conjugate to g, then g is conjugate to an element of G2(k).

Proof. Some maximal torus T is normalized by x, and we may assume that T contains g. Let
W be a finite group inducing the Weyl group on T (so W/(T ∩W ) = 23S3). We can certainly
choose W so that 9 does not divide the order of W .

Since gx is conjugate to g, there is some w ∈ W with gx = gw and g centralizes y = xw−1.
Raising y to a power prime to 3, we see that g centralizes an element of order 3 in the coset xG.
The centralizer of any such element is contained in G2. (If char k 6= 3, the centralizers are A2 or
G2 and A2 < G2. If char k = 3, the centralizers are G2 and a nonreductive subgroup of G2.) 2

Lemma 2.3. Let 1 6= g ∈G2(k) be semisimple. For each of the three eight-dimensional irreducible
representations of Spin8, every eigenspace of g has dimension at most 4.
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Proof. The weights of the representation V are zero with multiplicity 2 and, with multiplicity 1,
six nonzero weights ±χi for i = 1, 2, 3 such that χ1 + χ2 + χ3 = 0.

Consider the eigenspace for g with eigenvalue λ ∈ k. If λ 6= ±1, then the claim is obvious
since V is self-dual. As g 6= 1, g cannot lie in the kernel of all three of the χi. If λ = 1, then g is
in the kernel of at most one of the χi, proving the claim. If λ = −1, then g is in the kernel of at
most two of the χi, again proving the claim. 2

Proof of Proposition 2.1. For (i), by the discussion above it suffices to check it in the case x is a
root element. If n = 6, then spinn

∼= sl4 and V is the natural representation of sl4, so we have the
desired equality. For n > 6, the module restricted to spinn−1 is either irreducible or the direct
sum of two half-spins and so the result follows.

For (ii), the natural map spinn → hspinn is a bijection on root subalgebras, so the claim
follows from (i).

For (iii), we may assume that g is unipotent or semisimple. If g is unipotent, then by taking
closures, we may pass to root elements and argue as for x in the Lie algebra.

If g is semisimple, we actually prove a slightly stronger result: all eigenspaces have dimension
at most 3

4 dimV . Note that this is the correct bound for n = 6, as Spin6
∼= SL4.

Suppose now that n is even. The image of g in SOn can be viewed as an element of
SOn−2 × SO2, where it has eigenvalues (a, a−1) in SO2. Replacing if necessary g with a multiple
by an element of the center of Spinn, we may assume that g is in the image of Spinn−2×Spin2.
Then V = V1⊕V2 where the Vi are distinct half-spin modules for Spinn−2 and the Spin2 acts on
each (since they are distinct and Spin2 commutes with Spinn−2). By induction, every eigenspace
of g has dimension at most 3

4 dimVi and the Spin2 component of g acts as a scalar, so this is
preserved.

If n is odd, then the image of g in SOn has eigenvalue 1 on the natural module, so is contained
in a SOn−1 subgroup. Replacing if necessary g with gz for some z in the center of G, we may
assume that g is in the image of Spinn−1 and the claim follows by induction.

For (iv), the crux case is where n = 10. As in the proof of (iii), we may assume that g is the
image of some (g8, a) ∈ Spin8×Spin2 for some a ∈ k×, so V = V1⊕V2 is a sum of two inequivalent
eight-dimensional representations of Spin8 and g acts on V as ρ(g) = (aρ1(g8), a

−1ρ2(g8)) and
ρi : Spin8 → GL(Vi).

We bound the dimension of the space ker(ρ(g)− b) = ker(ρ1(g8)− b/a)⊕ ker(ρ2(g8)− ba) for
b ∈ k×. If ρi(g8) is a scalar for some i, then ρ1(g8) = ρ2(g8) = ±1; as g is noncentral, a 6= ±1,
and this case is trivial.

Suppose b/a 6= ±1, so dim ker(ρ1(g8)− b/a) 6 4 because (Vi, ρi) is self-dual. As ρ2(g8) is not
a scalar, the dimension of its ba eigenspace is at most 6. The case ab 6= ±1 is similar, so we may
assume that ab, b/a = ±1, hence a4 = 1 and b = ±a. After replacing g by the image of (g28, 1) if
necessary, we are reduced to considering ±1 eigenspaces of g the image of (g8, 1) so that ρi(g8)
has order two.

If g8 is in a G2 subgroup, then this dimension is at most 8 (Lemma 2.3). If g8 has order 2
(necessarily char k 6= 2), then the conjugacy class of g8 is invariant under the full group of graph
automorphisms and so lives in G2 (Lemma 2.2).

If g8 has order 4 and has order 2 mod the center, then g8 has no fixed space in two of
the representations (since the square is −1) and at most a 6-space in one. Similarly for the −1
eigenspace. This completes the proof for n = 10.

The result for n = 9 follows, because Spin9 is contained in Spin10 and the module is the
same. For n > 10, up to multiplying g by an element of the center, it is the image of some
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(gn−2, a) ∈ Spinn−2×Spin2, and the restriction of V to Spinn−2 is a direct sum of irreducible
(half-)spin representations as in the n = 10 case. The claim follows by induction. 2

Example 2.4. The upper bound in Proposition 2.1(iv) is sharp. To see this, suppose char k 6= 2.
We can view SOn as the group of matrices

SOn(k) = {A ∈ SLn(k) | SA>S = A−1},
where S is the matrix of 1 on the ‘second diagonal’, i.e. Si,n+1−i = 1 and the other entries
of S are zero. The intersection of the diagonal matrices with SOn is a maximal torus. For n
even, one finds elements of the form (t1, t2, . . . , tn/2, t

−1
n/2, . . . , t

−1
1 ), and we abbreviate these as

(t1, t2, . . . , tn/2, . . .).
We may identify Spin8, via a direct sum of its three inequivalent eight-dimensional irreducible

representations, with a subgroup of SO8 × SO8 × SO8. In this sense, the triple g8 := (g0, g1, g2)
for

g0 = (a2, a2, a2, a−2, . . .), g1 = (a4, 1, 1, 1, . . .), and g2 = (a2, a2, a2, a2, . . .) (2.5)

belongs to Spin8, see [Gar98, Example 1.6]. In the notation of the proof of Proposition 2.1(iv),
take g ∈ Spin10(k) to be the image of (g8, a) ∈ Spin8×Spin2 such that ρi(g8) = gi for i = 1, 2
and a ∈ k× is not a root of unity. The a-eigenspace of g has dimension 10, six of which comes
from aρ1(g8) and four from a−1ρ2(g8). (Although the formulas in [Gar98] assume char k 6= 2,
the conclusion of this example holds also when char k = 2, because the conclusion concerns the
weights of the three representations ρi, which are independent of the characteristic.)

One can also find semisimple elements of Spin12 that have a 20-dimensional fixed space on a
(32-dimensional) half-spin representation.

The proposition will feed into the following elementary lemma, which resembles [AP71,
Lemma 4] and [Gue97, § 3.3].

Lemma 2.6. Let V be a representation of a semisimple algebraic group G over an algebraically
closed field k.

(i) If for every unipotent g ∈ G and every noncentral semisimple g ∈ G whose image in GL(V )
has prime order we have

dimV g + dim gG < dimV, (2.7)

then for generic v ∈ V , Gv(k) is central in G(k).

For the next two statements, suppose char k = p > 0 and let h be a G-invariant subspace
of g.

(ii) If, for every x ∈ g\h such that x[p] = x or x[p]
n

= 0 for some n, we have

dimV x + dim(Ad(G)x) < dimV, (2.8)

then for generic v ∈ V , gv ⊆ h.

(iii) If h consists of semisimple elements and equation (2.8) holds for every x ∈ g\h with
x[p] ∈ {0, x}, then for generic v in V , gv ⊆ h.

We will apply this to conclude that Gv is the trivial group scheme for generic v, using
that Lie(Gv) ⊆ gv. Note that the hypothesis that char k 6= 0 in (ii) and (iii) is harmless: when
char k = 0, the conclusion of (i) suffices.
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Proof. For (i), see [GG15, § 10] or adjust slightly the following proof of (ii). For x ∈ g, define

V (x) := {v ∈ V | there is g ∈ G(k) such that xgv = 0} =
⋃

g∈G(k)

gV x.

Define α : G× V x
→ V by α(g, w) = gw, so the image of α is precisely V (x). The fiber over gw

contains (gc−1, cw) for Ad(c) fixing x, and so dimV (x) 6 dim(Ad(G)x) + dimV x.
Let X ⊂ g be the set of x ∈ g\h such that x[p] = x or x[p]

n
= 0 for some n; it is a union

of finitely many G-orbits. (Every toral element, i.e. x with x[p] = x, belongs to Lie(T ) for a
maximal torus T in G by [BS66], and it is obvious that there are only finitely many G-orbits of
toral elements in Lie(T ).) Now V (x) depends only on the G-orbit of X (because V Ad(g)x = gV x),
so the union

⋃
x∈X V (x) is a finite union. As dimV (x) < dimV by the previous paragraph, the

union
⋃
V (x) is contained in a proper closed subvariety Z of V , and for every v in the (nonempty,

open) complement of Z, gv does not meet X.
For each v ∈ (V \Z)(k) and each y ∈ gv, we can write y as

y = yn +
r∑
i=1

αiyi, [yn, yi] = [yi, yj ] = 0 for all i, j (2.9)

such that y1, . . . , yr ∈ gv are toral, yn ∈ gv is nilpotent, and yn and the yi are in gv, see [SF88, p. 82,
Theorem 2.3.6(2)]. Thus, yn and the y1, . . . , yr are in h by the previous paragraph, completing
the proof of (ii).

For (iii), repeat the argument of (ii) above, changing X to be the set of x ∈ g\h such that
x[p] ∈ {0, x}. In (2.9), the yi belong to hv, hence we may assume that y = yn. If y[p] = 0, then y is
a nilpotent element of h, therefore zero, and we are done. Otherwise, there would exist q > p the
largest power of p with y[q] 6= 0, in which case y[q] ∈ gv and (y[q])[p] = 0, hence y[q] is a nonzero
nilpotent element of h, a contradiction. 2

Note that, in proving Theorem 1.1, we may assume that k is algebraically closed (and so
this hypothesis in Lemma 2.6 is harmless). Indeed, suppose G is an algebraic group acting on a
vector space V over a field k. Fix a basis v1, . . . , vn of V and consider the element η :=

∑
tivi ∈

V ⊗ k(t1, . . . , tn) = V ⊗ k(V ) for indeterminates t1, . . . , tn; it is a sort of generic point of V .
Certainly, G acts generically freely on V over k if and only if the stabilizer (G × k(V ))v is the
trivial group scheme, and this statement is unchanged by replacing k with an algebraic closure.
That is, G acts generically freely on V over k if and only if G × K acts generically freely on
V ⊗K for K an algebraic closure of k.

3. Proof of Theorem 1.1 for n > 20

Suppose n > 2, and put V for an irreducible (half-)spin representation of Spinn. Recall that

dim Spinn = r(2r − 1) and dimV = 2r−1 if n = 2r

whereas
dim Spinn = 2r2 + r and dimV = 2r if n = 2r + 1

and in both cases rank Spinn = r. Proposition 2.1 gives an upper bound on dimV g for noncentral
g, and certainly the conjugacy class of g has dimension at most (dim Spinn) − r. If we assume
n > 20 and apply these, we obtain (2.7) and consequently the stabilizer S of a generic v ∈ V has
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S(k) central in Spinn(k). Repeating this with the Lie algebra spinn (and h the center of spinn) we
find that Lie(S) is central in spinn. For n not divisible by 4, the representation Spinn → GL(V )
restricts to a closed embedding on the center of Spinn, so S is the trivial group scheme as claimed
in Theorem 1.1.

For n divisible by four, we conclude that HSpinn acts generically freely on V , using
Proposition 2.1(ii). As the kernel µ2 of Spinn → HSpinn acts faithfully on the vector
representation W , it follows that Spinn acts generically freely on V ⊕W , completing the proof
of Theorem 1.1 for n > 20.

4. Proof of Theorem 1.1 for n 6 20 and characteristic 6= 2

In this section we assume that char k 6= 2, and in particular the Lie algebra spinn (and hspinn in
case n is divisible by four) is naturally identified with son.

Case n = 18 or 20
Take V to be a half-spin representation of G = Spinn (if n = 18) or G = HSpinn (if n = 20). To
prove Theorem 1.1 for these n, it suffices to prove that G acts generically freely on V , which we
do by verifying the inequalities in Lemma 2.8(i) and (ii).

Nilpotents and unipotents. Let x ∈ g with x nilpotent. The argument for unipotent elements
of G is essentially identical (as we assume char k 6= 2) and we omit it.

If, for a particular x, we find that the centralizer of x has dimension greater than 89 (if n= 18)
or greater than 62 (if n = 20), then dim(Ad(G)x) < 1

4 dimV and we are done by Proposition 2.1.
The most interesting case is where the Jordan form of x has partition (22t, 1n−2t) for some t,

where exponents denote multiplicity. If n = 20, then such a class has centralizer of dimension at
least 100, and we are done. If n = 18, we may assume by similar reasoning that t = 3 or 4. The
centralizer of x has dimension at least 81, so dim(Ad(G)x) 6 72. We claim that dimV x 6 140;
it suffices to prove this for an element with t = 3, as the element with t = 4 specializes to it.
View it as an element in the image of so9× so9 → so18 where the first factor has partition (24, 1)
and the second has partition (22, 15). Now, triality on so8 sends elements with partition 24 to
elements with partition 24 and (3, 15) (see, for example, [CM93, p. 97]) consequently the (24, 1)
in so9 acts on the spin representation of so9 as a (3, 24, 15). Similarly, the (22, 15) acts on the
spin representation of so9 as (24, 18). The action of x on the half-spin representation of so18 is
the tensor product of these, and we find that dimV x 6 140 as claimed.

Suppose x is nilpotent and has a Jordan block of size at least five. An element with partition
(5, 1) in so6 is a regular nilpotent in sl4 with one-dimensional kernel. Using the tensor product
decomposition as in the proof of Proposition 2.1, we deduce that an element y ∈ son with
partition (5, 1n−5) has dimV y 6 1

4 dimV , and consequently by specialization dimV x 6 1
4 dimV .

As dim(Ad(G)x) 6 dimG− rankG < 3
4 dimV , the inequality is verified for this x.

Now suppose that x is nilpotent and the largest Jordan block for x has size 4. Thus, there are
at least two Jordan blocks of size 4. We claim that dimV x 6 1

4 dimV . This reduces to computing
in Spin8 where the result is clear for all three of the eight-dimensional representations. The largest
such class will have four Jordan blocks of size 4 (for n = 18 or 20) and it is straightforward to
compute that dim Ad(G)x < 3

4 dimV .
If x has at least two Jordan blocks of size at least 3, then x specializes to (32, 1n−6); as triality

sends elements with partition (32, 12) to elements with the same partition, we find dimV x 6
1
2 dimV . We are left with the case where x has partition (3, 22t, 1n−2t−3) for some t. If t = 0,
then the centralizer of x has dimension 121 or 154 and we are done. If t > 0, then x specializes
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to y with partition (3, 22, 1n−7). As triality on so8 leaves the partition (3, 22, 1) unchanged, we
find dimV x 6 dimV y 6 1

2 dimV , as desired, completing the verification of (2.8) for x nilpotent.

Semisimple elements in Lie(G). For x ∈ son semisimple, the most interesting case is when
x is diagonal with entries (at, (−a)t, 0n−2t) where exponents denote multiplicity and a ∈ k×.
The centralizer of x is GLt×SOn−2t, so dim(Ad(SOn)x) =

(
n
2

)
− t2 −

(
n−2t
2

)
. This is less than

1
4 dimV for n = 20, settling that case. For n = 18, if t = 1 or 2, x is in the image of an element
(a,−a, 0, 0) or (a/2, a/2,−a/2,−a/2) in sl4 ∼= so6, and the tensor product decomposition gives
that dimV x 6 1

2 dimV and again we are done. If t > 2, we consider a nilpotent y =
(
0 Y
0 0

)
not

commuting with x where Y is nine-by-nine and y specializes to a nilpotent y′ with partition
(24, 18). Such a y′ acts on V as 16 copies of (3, 24, 15), hence dimV y′ = 160. By specializing x to
y, we find dimV x 6 160 and again we are done.

Semisimple elements in G. Let g ∈ G(k) be semisimple, noncentral and of prime order. If
n = 20, then dim gG 6 180 < 3

8 dimV and we are done by Proposition 2.1(iv). So assume n = 18.
If we find that the centralizer of g has dimension greater than 57, then dim gG < 3

8 dimV and
again we are done.

If g2 is central but nontrivial, then g has no fixed points (and every eigenspace is at most
1
2 dimV ). If g2 = 1 but g is not central, then g maps to an involution in SO18 whose centralizer
is no smaller than SO8 × SO10 of dimension 73, and we are done. So assume g has odd prime
order. We divide into cases depending on the image g ∈ SO18 of g.

If g has at least five distinct eigenvalues, then either it has at least six distinct eigenvalues
a, a−1, b, b−1, c, c−1, or it has four distinct eigenvalues that are not equal to 1, and the remaining
eigenvalue is 1. In the latter case set c = 1. View g as the image of (g1, g2) ∈ Spin6×Spin12 where
g1 maps to a diagonal (a, b, c, c−1, b−1, a−1) in SO6, a regular semisimple element. Therefore, the
eigenspaces of the image of g1 under the isomorphism Spin6

∼= SL4 are all one-dimensional and
the tensor decomposition argument shows that dimV g 6 1

4 dimV . As dim gG 6 144 < 3
4 dimV ,

we are done in this case.
If g has exactly four eigenvalues, then the centralizer of g is at least as big as GL4×GL5 of

dimension 41, so dim gG 6 112 < 1
2 dimV . Viewing g as the image of (g1, g2) ∈ Spin8×Spin10

such that the image g1 of g1 in SO8 exhibits all four eigenvalues, then g1 has eigenspaces all
of dimension 2 or of dimensions 3, 3, 1, 1. The images of g1 in each of the eight-dimensional
representations are written in [Gar98, Example 1.6] and each has eigenspaces that are at most
four-dimensional, so dimV g 6 1

2 dimV and this case is settled.
In the remaining case, g has exactly two nontrivial (i.e. not 1) eigenvalues a, a−1. If 1 is

not an eigenvalue of g, then the centralizer of g is GL9 of dimension 81, and we are done.
If the eigenspaces for the nontrivial eigenvalues are at least four-dimensional, then we can
take g to be the image of (g1, g2) ∈ Spin10×Spin8 where g1 maps to (a, a, a, a, 1, . . .) ∈ SO10.
(See Example 2.4 for this notation.) The images of (a, a, a, a, . . .) ∈ SO8 as in (2.5) are
(a, a, a, a−1, . . .) and (a2, 1, 1, 1, . . .), so the largest eigenspace of g1 on a half-spin representation
is 6 and dimV g 6 3

8 dimV . As the conjugacy class of a regular element has dimension
144 < 5

8 dimV , this case is complete. Finally, if g has eigenspaces of dimension at most 2 for a,
a−1, then dim gG 6 58 < 3

8 dimV and the n = 18 case is complete.

Case n = 17 or 19
For n = 17 or 19, the spin representation of Spinn can be viewed as the restriction of a half-spin
representation of the overgroup HSpinn+1. We have already proved that this representation of
HSpinn+1 is generically free.
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Case n = 15 or 16
We use the following general fact.

Lemma 4.1. Let G be a quasi-simple algebraic group and H a proper closed subgroup of G and
X ⊂ G(k) finite. Then for generic g ∈ G(k), H(k) ∩ gXg−1 = H(k) ∩X ∩ Z(G)(k).

Proof. It suffices to check ⊇. For each x ∈ X\Z(G)(k), note that W (x) := {g ∈ G | xg ∈ H} is a
proper closed subvariety of G and, since X is finite,

⋃
W (x) is also proper closed. Thus, for an

open subset of g in G, g(X\Z(G)(k))g−1 does not meet H(k). 2

Lemma 4.2. Let G = HSpin16 and V a half-spin representation over an algebraically closed field
k of characteristic 6= 2. The stabilizer of a generic vector in V is isomorphic to (Z/2)8, as a group
scheme.

Proof. Consider Lie(E8) = Lie(G)⊕V where the summands are the eigenspaces of an involution
in E8. That involution inverts a maximal torus T of E8 and so there is maximal Cartan subalgebra
t = Lie(T ) on which the involution acts as −1. As E8 is smooth and adjoint, for a generic element
τ ∈ t, the centralizer CE8(τ) has identity component T by [DG70, XIII.6.1(d), XIV.3.18] and in
fact equals T by [GG16, Proposition 9.2]. Since t misses Lie(G), the annihilator of τ in Lie(G) is
0 as claimed. Furthermore, Gτ (k) = T (k) ∩ G(k), i.e. the elements of T (k) that commute with
the involution, so Gτ (k) ∼= µ2(k)8. 2

Corollary 4.3. If char k 6= 2, then Spin15 acts generically freely on V .

Proof. Of course the Lie algebra does because this is true for Lie(Spin16).
For the group, a generic stabilizer is Spin15(k)∩X where X is a generic stabilizer in Spin16(k).

Now X is finite and meets the center of Spin16 in the kernel of Spin16 → HSpin16, whereas
Spin15 injects into HSpin16. Therefore, by Lemma 4.1 a generic conjugate of X intersect Spin15

is trivial. 2

Corollary 4.4. If char k 6= 2, then Spin16 acts generically freely on V ⊕ W , where V is a
half-spin module and W is the natural (16-dimensional) module.

Proof. Now the generic stabilizer is already 0 for the Lie algebra on V whence on V ⊕W .
In the group Spin16, a generic stabilizer is conjugate to Xg ∩ Spin15 where X is the finite

stabilizer on V and as in the proof of the previous corollary, this is generically trivial. 2

5. Proof of Theorem 1.1 for n 6 20 and characteristic 2

To complete the proof of Theorem 1.1, it remains to prove, in case char k = 2, that the following
representations G → GL(V ) are generically free:

(i) G = Spin15, Spin17, Spin19 and V is a spin representation;

(ii) G = Spin18 and V is a half-spin representation;

(iii) G = Spin16 or Spin20 and V is a direct sum of the vector representation and a half-spin
representation;

(iv) G = HSpin20 and V is a half-spin representation.
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Since we are in bad characteristic, the class of unipotent and nilpotent elements are more
complicated. On the other hand, since we are in a fixed small characteristic and the dimensions
of the modules and Lie algebras are relatively small, one can actually do some computations.

In particular, we check that in each case that there exists a v ∈ V over the field of two
elements such that Lie(Gv) = 0. (This can be done easily in various computer algebra systems.)
It follows that the same is true over any field of characteristic 2. Since the set of w ∈ V where
Lie(Gw) = 0 is an open subvariety of V , this shows that Lie(Gw) is generically zero.

It remains to show that the group of k-points Gv(k) of the stabilizer of a generic v ∈ V is
the trivial group.

First consider G = Spin16. By Lemma 4.1, it suffices to show that, for generic w in a half-spin
representation W , Gw(k) is finite, which is true by the appendix. Alternatively, one can prove
the finiteness of Gw(k) by working in Lie(E8) = hspin16 ⊕W and exhibiting a regular nilpotent
of Lie(E8) in W whose stabilizer in hspin16 is trivial. Since the set of w where (Spin16)w(k) is
finite is open, the result follows.

Similarly, Spin15 acts generically freely on the spin representation.
As in the previous section, it suffices to show that for G one of HSpin20 and Spin18 and V a

half-spin representation, Gv(k) = 1 for generic v ∈ V .
We first consider involutions. We recall that an involution g ∈ SO2n = SO(W ) (in

characteristic 2) is essentially determined by the number r of nontrivial Jordan blocks of g
(equivalently r = dim(g − 1)W ) and whether the subspace (g − 1)W is totally singular or not
with r even (and r 6 n); see [AS76, LS12] or see [FGS16, §§ 5, 6] for a quick elementary treatment.
If r < n or (g− 1)V is not totally singular, there is one class for each possible pair of invariants.
If r = n (and so n is even) and (g − 1)V is totally singular, then there are two such classes
interchanged by a graph automorphism of order 2.

Lemma 5.1. Suppose char k = 2. Let G = Spin2n, n > 4 and let W be a half-spin representation.
If g ∈ G is an involution other than a long root element, then dimW g 6 (5/8) dimW .

Proof. By passing to closures, we may assume that r 6 4. Thus, g ∈ Spin8. By applying triality,
we may assume that g has precisely two nontrivial Jordan blocks, i.e. r = 2, for otherwise g has
a four-dimensional fixed space on each of the three eight-dimensional modules. There are two
such conjugacy classes of involutions. One of them is the class of long root elements. The other
is not invariant under the triality automorphism and it follows that g has a six-dimensional fixed
space on one representation and four-dimensional fixed spaces on the other two eight-dimensional
representations.

If 2n = 10, then W restricted to Spin8 is a direct sum of two distinct half-spin representations,
whence dimW g 6 10 and the result follows. For 2n > 10, the result follows by induction, since
W is a direct sum of the two half-spin representations of Spin2n−2. 2

Lemma 5.2. Suppose char k = 2. Let G = Spin18 or HSpin20 with V a half-spin representation
of dimension 256 or 512, respectively. Then Gv(k) = 1 for generic v ∈ V .

Proof. It suffices to show that dimV g + dim gG < dimV for every noncentral g ∈ G with g of
prime order.

The proof for semisimple elements is essentially identical to the case of odd characteristic
(except that we need not consider involutions). Alternatively, since we know the result in
characteristic zero, it follows that generic stabilizers have no nontrivial semisimple elements
as in the proof of [GG15, Lemma 10.3].
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Thus, it suffices to consider g of order 2. If g is not a long root element, then dimV g 6 5
8 dimV .

On the other hand, dim gG 6 99 for n = 10 and 79 for n = 9 by [AS76, LS12] or [FGS16]; in
either case dim gG < 3

8 dimV .
The remaining case to consider is when g is a long root element. Then dimV g = 3

4 dimV
while dim gG = 34 or 30, respectively, and again the inequality holds. 2

6. Proof of Corollary 1.3

For n not divisible by 4, the (half-)spin representation Spinn is generically free by Theorem 1.1,
so by, e.g., [Mer13, Theorem 3.13] we have

ed(Spinn) 6 dimV − dim Spinn.

This gives the upper bound on ed(Spinn) for n not divisible by 4. For n = 16, we use the
same calculation with V the direct sum of the vector representation of Spin16 and a half-spin
representation. For n > 20 and divisible by 4, Theorem 1.1 gives that ed(HSpinn) is at most the
value claimed; with this in hand, the argument in [CM14, Theorem 2.2] (referring now to [Lot13]
instead of [BRV10] for the stacky essential dimension inequality) establishes the upper bound
on ed(Spinn) for n > 20 and divisible by 4.

It is trivially true that ed2(Spinn) 6 ed(Spinn). Finally, that ed2(Spinn) is at least the
expression on the right-hand side of the display was proved in [BRV10, Theorem 3-3(a)] for
n not divisible by 4 and in [Mer09, Theorem 4.9] for n divisible by 4; the lower bound on
ed2(HSpinn) is from [BRV10, Remarks 3–10]. 2

7. Spinn for 6 6 n 6 12 and characteristic 2

Suppose now that 6 6 n 6 12 and char k = 2. Let us now calculate the stabilizer in Spinn of a
generic vector v in a (half-)spin representation, which will justify those entries in Table 1. For
n = 6, Spin6

∼= SL4 and the representation is the natural representation. For n = 8, the half-spin
representation is indistinguishable from the vector representation Spin8 → SO8 and again the
claim is clear.

For the remaining n, we verify that the k-points (Spinn)v(k) of the generic stabilizer are as
claimed, i.e. that the claimed group scheme is the reduced subgroup scheme of (Spinn)v. The
cases n = 9, 11, 12 are treated in [GLMS97, Lemma 2.11] and the case n = 10 is treated in
[Lie87, p. 496].

For n = 7, view Spin7 as the stabilizer of an anisotropic vector in the vector representation
of Spin8; it contains a copy of G2. As a G2 module, the half-spin representation of Spin8 is
self-dual and has composition factors of dimensions one, six, one, so G2 fixes a vector in V . As
G2 is a maximal closed connected subgroup of Spin7, it is the identity component of the reduced
subgroup of (Spin7)v.

We have verified that the reduced subgroup scheme of (Spinn)v agrees with the corresponding
entry, call it S, in Table 1. We now proceed as in § 5 and find a w such that dim(spinn)w = dimS,
which shows that (Spinn)v is smooth, completing the proof of Table 1 for n 6 12.

8. Spin13 and Spin14 and characteristic 6= 2

In this section, we determine the stabilizer in Spin14 and Spin13 of a generic vector in the
(half-)spin representation V of dimension 64. We assume that char k 6= 2 and k is algebraically
closed.
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Let C0 denote the trace zero subspace of an octonion algebra with quadratic norm N . We
may view the natural representation of SO14 as a sum C0⊕C0 endowed with the quadratic form
N ⊕ −N . This gives an inclusion G2 × G2 ⊂ SO14 that lifts to an inclusion G2 × G2 ⊂ Spin14.
There is an element of order 4 in SO14 such that conjugation by it interchanges the two copies
of G2, the element of order 2 in the orthogonal group with this property has determinant −1,
so the normalizer of G2 × G2 in SO14(k) is isomorphic to ((G2 × G2) o µ4)(k) and in Spin14 it
is ((G2 ×G2) o µ8)(k).

Viewing V as an internal Chevalley module for Spin14 (arising from the embedding of Spin14

in E8), it follows that Spin14 has an open orbit in P(V ), see for example [ABS90, Theorem 2f].
Moreover, the unique (G2×G2)-fixed line kv in V belongs to this open orbit, see [Pop80, Ros99a,
p. 225, Proposition 11] or [Gar09, § 21]. That is, for H the reduced subgroup scheme of (Spin14)v,
H◦ ⊇ G2 ×G2. By dimension count this is an equality. A computation analogous to that in the
preceding paragraph shows that the idealizer of Lie(G2×G2) in so14 is Lie(G2×G2) itself, hence
Lie((Spin14)v) = Lie(H◦), i.e. (Spin14)v is smooth. It follows from the construction above that
the stabilizer of kv in Spin14 is all of (G2×G2)oµ8 (as a group scheme). The element of order 2
in µ8 is in the center of Spin14 and acts as −1 on V , so the stabilizer of v is G2 ×G2 as claimed
in Table 1.

Now fix a vector (c, c′) ∈ C0⊕C0 so that N(c), N(c′) and N(c)−N(c′) are all nonzero. The
stabilizer of (c, c′) in Spin14 is a copy of Spin13, and the stabilizer of v in Spin13 is its intersection
with G2 × G2, i.e. the product (G2)c × (G2)c′ . Each term in the product is a copy of SL3 (see,
for example, [KMRT98, p. 507, Exercise 6]), as claimed in Table 1. (On the level of Lie algebras
and under the additional hypothesis that char k = 0, this was shown by Kac and Vinberg in
[GV78, § 3.2].)

9. Spin13 and Spin14 and characteristic 2

We will calculate the stabilizer in Spinn of a generic vector in an irreducible (half-)spin
representation for n = 13, 14 over a field k of characteristic 2.

Proposition 9.1. The stabilizer in Spin14 (over a field k of characteristic 2) of a generic vector
in a half-spin representation is the group scheme (G2 ×G2) o Z/2.

We use the following pushout construction. Let X, V1, V2 be vector spaces endowed with
quadratic forms qX , q1, q2 such that qX , q1 and q2 are nonsingular and there exist isometric
embeddings fi : (X, qX) ↪→ (Vi, qi). There is a natural quadratic form qV on the pushout V :=
(V1 ⊕ V2)/(f1 − f2)(X); if we write Vi ∼= V ′i ⊥ fi(X), then (V, qV ) is isomorphic to V ′1 ⊥ V ′2 ⊥ X
and f1 and f2 define the same embedding (X, qX) ↪→ (V, qV ).

Now pick a subspace R ⊂ X. Applying the same construction where the role of Vi is played
by the subspace fi(R)⊥ and the pushout is (f1(R)⊥⊕f2(R)⊥)/(f1−f2)(R), one obtains R⊥ ⊂ V .
In the case char k = 2, dimX = 2, and R is an anisotropic line, this gives a homomorphism of
algebraic groups B`1 ×B`2 → B`1+`2 where 2`i + 2 = dimVi. We apply this construction where
V1 and V2 are copies of an octonion algebra C, X is a quadratic étale subalgebra and R is the
span of the identity element of C.

Proof of Proposition 9.1. The seven-dimensional Weyl module of the splitG2 gives an embedding
G2 ↪→ SO7. Combining this with the construction in the previous paragraph gives maps

G2 ×G2 → SO7 × SO7 → SO13 → SO14

which lift to maps where every SO is replaced by Spin.
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Put V for a half-spin representation of Spin14. It restricts to the spin representation of Spin13.
Calculating the restriction of the weights of V to Spin7×Spin7 using the explicit description of
the embedding, we see that V is the tensor product of the eight-dimensional spin representations
of Spin7. By triality, the restriction of one of the spin representations to G2 is the action of
G2 on the octonions C, which is a uniserial module with one-dimensional socle S (spanned
by the identity element in C) and seven-dimensional radical, the Weyl module of trace zero
octonions. The restriction of V = C ⊗ C to the first copy of G2 is eight copies of C, so has an
eight-dimensional fixed space S ⊗C. As (S ⊗C)1×G2 = S ⊗ S, we find that S ⊗ S is the unique
line in V stabilized by G2 ×G2.

We now argue that the Spin14 orbit of S ⊗ S is open in P(V ). To see this, by [Roh93], it
suffices to verify that G2 × G2 is not contained in the Levi subgroup of a parabolic subgroup
of Spin14. This is easily verified; the most interesting case is where the Levi has type A6, and
G2×G2 cannot be contained in such because the restriction of V to A6 has composition factors
of dimension 1, 7, 21 and 35. We conclude that every nonzero v ∈ S ⊗S is a generic vector in V
and (Spin14)v has dimension 28.

If one constructs on a computer the representation V of the Lie algebra spin14 over a finite
field F of characteristic 2, then it is a matter of linear algebra to calculate the dimension of
the stabilizer (spin14)x of any given vector x ∈ V . One finds for some x that the stabilizer has
dimension 28, which is the minimum possible, so by semicontinuity of dimension dim((spin14)v) =
28 = dim(G2×G2). That is, (Spin14)v is smooth with identity component G2×G2. Consequently
we may compute (Spin14)v by determining its K-points for K an algebraic closure of k.

There is an element τ of order 2 in SO14(K) that interchanges the two copies of SO7(K),
hence of G2(K). As the centralizer of (G2×G2)(K) in SO14(K) is trivial (as can be seen from the
composition series for k14 as a representation of G2×G2) and Aut(G2×G2) = (G2×G2)o 〈τ〉,
it follows that (G2 ×G2)(K) o Z/2 is the normalizer of G2 in SO14(K).

As τ normalizes (G2 × G2)(K), it leaves the fixed subspace S ⊗ S ⊗ K = Kv invariant,
and we find a homomorphism χ : Z/2 → Gm given by τv = χ(τ)v which must be trivial because
charK = 2. That is, the normalizer of G2×G2, which contains the stabilizer of v, actually equals
the stabilizer of v. 2

The above proof, which is somewhat longer than some alternatives, was chosen because of
the details it provides on the embedding of G2 ×G2 in Spin14.

Proposition 9.2. The stabilizer in Spin13 (over a field of characteristic 2) of a generic vector
in the spin representation is the group scheme (SL2×SL2) o Z/2.

Proof. We imitate the argument used in § 8. View Spin13 as (Spin14)y for an anisotropic y in
the 14-dimensional vector representation of Spin14. That representation, as a representation of
Spin13, has socle ky and radical y⊥. Let v be a generic element of the spin representation V
of Spin13. Our task is to determine the group

(Spin13)v = (Spin14)y ∩ (Spin14)v. (9.3)

The stabilizer (Spin14)v described above is contained in a copy (Spin14)e of Spin13 where
ke is the radical of the 13-dimensional quadratic form given by the pushout construction. As v
is generic, y and e are in general position, so tracing through the pushout construction we see
that the intersection (9.3) contains the product of 2 copies of the stabilizer in G2 of a generic
octonion z. The quadratic étale subalgebra of C generated by z has normalizer SL3oZ/2 in G2,
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hence the stabilizer of z is SL3. We conclude that, for K an algebraic closure of k, the group
of K-points of (Spin13)v equals that of the claimed group, hence the stabilizer has dimension
16. Calculating with a computer as in the proof for Spin14, we find that dim(spin13)v 6 16, and
therefore the stabilizer of v is smooth as claimed. 2
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Appendix. Generic stabilizers associated with a peculiar
half-spin representation

Alexander Premet

A.1 The main theorem
Throughout this appendix we work over an algebraically closed field k of characteristic two.
Let G = HSpin16(k) and let V be the natural (half-spin) G-module. The theorem stated below
describes the generic stabilizers for the actions of G and g = Lie(G) on V .

Theorem A.1. The following are true.

(i) There exists a nonempty Zariski-open subset U in V such that for every x ∈ U the stabilizer
Gx is isomorphic to (Z/2Z)4.

(ii) For any x ∈ U the stabilizer gx is a four-dimensional toral subalgebra of g.

(iii) If x, x′ ∈ U , then the stabilizers Gx and Gx′ and the infinitesimal stabilizers gx and gx′ are
G-conjugate.

(iv) The scheme-theoretic stabilizer of any x ∈ U is isomorphic to (Z/2Z)4 × (µ2)
4.

A more precise description of Gx and gx with x ∈ U is given in §A.5. It should be mentioned
here that our Theorem A.1 can also be deduced from more general invariant-theoretic results
recently announced by Eric Rains.

A.2 Preliminary remarks and recollections

Let G̃ be a simple algebraic group of type E8 over k and g̃ = Lie(G̃). The Lie algebra g̃ is simple
and carries an (Ad G)-equivariant [p]th power map x 7→ x[p]. Since p = 2, Jacobson’s formula
for [p]th powers is surprisingly simple: we have that

(x+ y)[2] = x[2] + y[2] + [x, y] (∀x, y ∈ g̃).

Let T be a maximal torus of G̃ and t = Lie(T ). Write Φ̃ for the root system of G̃ with respect
to T . In what follows we will make essential use of Bourbaki’s description of roots in Φ̃; see
[Bou02, Planche VII]. More precisely, let E be an eight-dimensional Euclidean space over R with
orthonormal basis {ε1, . . . , ε8}. Then Φ̃ = Φ̃0 t Φ̃1 where

Φ̃0 = {±εi ± εj | 1 6 i < j 6 8}
and

Φ̃1 =

{
1

2

8∑
i=1

(−1)ν(i)εi

∣∣∣∣ 8∑
i=1

ν(i) ∈ 2Z
}
.
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The roots α1 = 1
2(ε1 + ε8 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7), α2 = ε1 + ε2, α3 = ε2 − ε1, α4 = ε3 − ε2,

α5 = ε4− ε3, α6 = ε5− ε4, α7 = ε6− ε5, α8 = ε7− ε6 form a basis of simple roots in Φ̃ which we
denote by Π̃. Let ( · | · ) be the scalar product of E. It is invariant under the action of the Weyl
group W (Φ̃) ⊂ GL(E).

Given α ∈ Φ̃ we denote by Uα and eα the unipotent root subgroup of G̃ and a root vector in
Lie(Uα). Let V be the k-span of all eα with α ∈ Φ̃1 and write G for the subgroup of G̃ generated
by T and all Uα with α ∈ Φ̃0. It is well known (and straightforward to see) that the algebraic
k-group G is isomorphic to HSpin16(k) and the G-stable subspace V of g̃ is isomorphic to the
natural (half-spin) G-module: one can choose a Borel subgroup B of G in such a way that the
fixed-point space V Ru(B) is spanned by e−α1 . We write W for the subgroup of W (Φ̃) generated
all orthogonal reflections sα with α ∈ Φ̃0. Clearly, W ∼= NG(T )/T is the Weyl group of G relative
to T . Since G has type D8 the group W is a semidirect product of its subgroup W0

∼= S8 acting
by permutations of the set {ε1, . . . , ε8} and its abelian normal subgroup A ∼= (Z/2Z)7 consisting
of all maps εi 7→ (±1)iεi with

∏8
i=1(±1)i = 1; see [Bou02, Planche IV].

We may (and will) assume further that the eα are obtained by base change from a Chevalley
Z-form, g̃Z, of a complex Lie algebra of type E8. Since the group G̃ is a simply connected
the nonzero elements hα : = [eα, e−α] ∈ t with α ∈ Φ̃ span t. They have the property that

[hα, e±α] = ±2e±α = 0 and hα = h−α for all α ∈ Φ̃. It is well known that e
[2]
α = 0 and h

[2]
α = hα

for all α ∈ Φ̃. The set {hα | α ∈ Π̃} is a k-basis of t. Since g̃ is a simple Lie algebra, for every
nonzero t ∈ t there is a simple root β ∈ Π̃ such that (dβ)e(t) 6= 0. This implies that t admits a
nondegenerate W (Φ̃)-invariant symplectic bilinear form 〈 · , · 〉 such that 〈hα, hβ〉 = (α|β) mod 2
for all α, β ∈ Φ̃.

A.3 Orthogonal half-spin roots and Hadamard–Sylvester matrices
Following the Wikipedia webpage on Hadamard matrices we define the matrices H2k of order
2k, where k ∈ Z>0, by setting H1 = [1] and

H2k+1 =

[
H2k H2k

H2k −H2k

]
= H2 ⊗H2k

for k > 0. These Hadamard matrices were first introduced by Sylvester in 1867 and they have
the property that H2k ·H>2k = 2k · I2k for all k. We are mostly interested in

H8 = H2 ⊗H2 ⊗H2 =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


.

To each row ri = (ri1, . . . , ri8) of H8 we assign the root γi = 1
2(ri1ε1 + · · · + ri8ε8). This way

we obtain 16 distinct roots ±γ1, . . . ,±γ8 in Φ̃1 with the property that (γi|γj) = 0 for all i 6= j.

As ±γi ± γj 6∈ Φ̃ for i 6= j, the semisimple regular subgroup S of G̃ generated by T and all

U±γi is connected and has type A8
1. It is immediate from the Bruhat decomposition in G̃ that

G ∩ S = NG(T ) ∩NS(T ).
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Using the explicit form of the simple roots α1, . . . , α8 it is routine to determine the matrix

M :=
[
(γi|αj)

]
16i,j68. It has the following form:

M =



−1 1 0 0 0 0 0 0

0 0 −1 1 −1 1 −1 1

0 1 0 −1 0 1 0 −1

1 0 −1 0 1 0 −1 0

0 1 0 0 0 −1 0 0

1 0 −1 1 −1 0 1 −1

1 1 0 −1 0 0 0 1

0 0 −1 0 1 −1 1 0


.

It is then straightforward to check that M is row-equivalent over the integers to a block-triangular

matrix M ′ =
[
M1 M2
O4 2M3

]
with M1,M2,M3 ∈ Mat4(Z) and det(M1) = det(M3) = 1. From this it

follows that γ1, . . . , γ8 span E over R and hγ1 , . . . , hγ8 span a maximal (four-dimensional) totally

isotropic subspace of the symplectic space t. We call it t0.

A.4 A dominant morphism

Put Γ = {γ1, . . . , γ8} and let r denote the subspace of V spanned by eγ with γ ∈ ±Γ.

If x =
∑8

i=1(λieγi + µie−γi) ∈ r, then Jacobson’s formula shows that x[2] =
∑8

i=1(λiµi)hγi ∈ t0.

It follows that

x[2]
k+1

=

8∑
i=1

(λiµi)
2khγi (∀ k > 0). (A.1)

Our discussion at the end of §A.3 shows that t0 has a basis t1, . . . , t4 contained in the F2-span

of {hγ | γ ∈ Γ}. Since h
[2]
α = hα for all roots α, we have that t

[2]
i = ti for 1 6 i 6 4. In view

of (A.1) this yields that the subset of r consisting of all x as above with the property that

{x[2]k | 1 6 k 6 4} spans t0, λiµi 6= 0 for all i, and λiµi 6= λjµj for i 6= j is nonempty and Zariski

open in r. We call this subset r◦ and consider the morphism

ψ : G× r −→ V, (g, x) 7→ (Ad g) · x.

Note that dim(G × r) = 120 + 16 = 136 and dimV = 128. By the theorem on fiber dimensions

of a morphism, in order to show that ψ is dominant it suffices to find a point (g, x) ∈ G× r such

that all components of ψ−1((Ad g) · x) containing (g, x) have dimension at most eight.

We take x ∈ r◦ and g = 1
G̃

. Clearly, ψ−1(x) ⊂ {(g, y) ∈ G × r | y ∈ (Ad G) · x}. If

(g, y) ∈ ψ−1(x), then y ∈ r and (Ad g)−1 maps the k-span, t(x), of {x[2]k | 1 6 k 6 4} onto

the k-span, t(y), of {y[2]k | 1 6 k 6 4}. As y[2] ∈ t0 and t0 is a restricted subalgebra of t, this

implies that t(x) = t(y) = t0. It follows that Ad g preserves the Lie subalgebra cg(t0) of g. The

centralizer cg̃(t0) is spanned by t and all root vectors eα such that 〈hα, hγi〉 = (dα)e(hγi) = 0 for

1 6 i 6 8. As t0 is a maximal totally isotropic subspace of the symplectic space t, our concluding

remark in §A.3 shows that cg̃(t0) = Lie(S). Since cg(t0) = g∩Lie(S) = t we obtain that g ∈NG(T ).

But then ψ−1(x) ⊆ {(g, (Ad g)−1 · x) ∈ G × r◦ | g ∈ NG(T )}. Since dimNG(T ) = dimT = 8,

all irreducible components of ψ−1(x) have dimension at most eight. We thus deduce that the

morphism ψ is dominant. As the set G× r◦ is Zariski open in G× r, the G-saturation of r◦ in V

contains a Zariski-open subset of V .
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A.5 Generic stabilizers

Let x =
∑8

i=1(λieγi +µie−γi) ∈ r◦. In view of our discussion in §A.4 we now need to determine the

stabilizer Gx. If g ∈ Gx then Ad g fixes t0 = span{x[2]i | 1 6 i 6 4} and hence preserves cg(t0) = t.

This yields Gx ⊆ NG(T ). Working over a field of characteristic two has some advantages: after

reduction modulo two we are no longer affected by the ambiguity in the choice of a Chevalley

basis in g̃Z and the torus T has no elements of order two. It follows that N
G̃

(T ) contains a

subgroup isomorphic to W (Φ̃) which intersects trivially with T . In the notation of [Ste68, § 3]

this group is generated by all elements ωα = wα(1) with α ∈ Φ̃. As a consequence, W embeds

into NG(T ) in such a way that NG(T ) = W n T .

Our discussion in §A.3 implies that for any α ∈ Π̃ the element 16α ∈ ZΦ̃ lies in the Z-span

of γ1, . . . , γ8. Since T has no elements of order two and G̃ is a group of adjoint type, it follows

that for any collection (t1, . . . , t8) ∈ (k×)8 there exists a unique element h = h(t1, . . . , t8) ∈ T
with γi(h) = ti for all 1 6 i 6 8. Conversely, any element of T has this form. As a consequence,

G̃x ∩ T = {1
G̃
}. For 1 6 i 6 8 we set hi := h(1, . . . , µi/λi, . . . , 1), an element of T , where the

entry µi/λi occupies the ith position. Since Ad sγi permutes e±γi and fixes e±γj with j 6= i, it

is straightforward to check that sγihi ∈ G̃x. If w0 is the longest element of W (Φ̃), then it acts

on ZΦ̃ as −Id and hence lies in A ⊂ W ↪→ NG(T ). (The abelian normal subgroup A of W was

introduced in §A.2.) Since w0 =
∏8
i=1 sγi we now deduce that n0 := w0(

∏8
i=1 hi) ∈ Gx.

Suppose G̃x∩NG̃
(T ) contains an element n= wh, where w ∈W (Φ̃) and h= h(a1, . . . , a8) ∈ T ,

such that w(γi) = γj for i 6= j. Then n(eγi) = aieγj and n(e−γi) = a−1i e−γj implying that λj = λiai
and µj = µia

−1
i . But then λj/λi = µi/µj forcing λiµi = λjµj for i 6= j. Since x ∈ r◦ this is false. As

n0 ∈ Gx and w0(±γi) = ∓γi for all i, this argument shows that G̃x ∩NG̃
(T ) = 〈sγihi | 1 6 i 6 8〉

is isomorphic to an elementary abelian 2-group of order 28.

Let A2k
∼= (Z/2Z)2

k
denote the direct product of 2k copies of {±1} ∼= Z/2Z. The group

operation in A2k is defined componentwise. We write u • v for the product of u, v ∈ A2k and

denote by 12k the identity element of A2k (all components of 12k are equal to 1). The set of

rows, R2k , of the Hadamard–Sylvester matrix H2k may be regarded as a subset A2k and easy

induction on k shows that ±R2k is a subgroup of A2k . In particular, ±R8 is a subgroup of A8.

As mentioned in §A.2 the subgroup W0
∼= S8 of the Weyl group W = W (Φ̃0) acts on A8 by

permuting components whereas the normal subgroup A ∼= (Z/2Z)7 of W embeds into A8 and

acts on it by translations.

If n ∈ Gx, then n = wh ∈ NG(T ) and w preserves ±R8 setwise. If w = aσ, where σ ∈ W0

and a ∈ A, then our discussion in the previous paragraph shows that w(u) = (aσ)(u) = ±u for

all u ∈ ±R8. Taking u = 18 we get σ(18) = 18 and ±18 = w(18) = a • σ(18) = a • 18 = a. This

yields a = ±18 implying that w ∈ W0 preserves ±R8. Also, Gx ∩ A is a cyclic group of order 2

generated by n0.

We now consider three commuting involutions

σ1 = (1, 5)(2, 6)(3, 7)(4, 8), σ2 = (1, 4)(2, 3)(5, 8)(6, 7) and σ3 = (1, 2)(3, 4)(5, 6)(7, 8)

in W ∼= S8. One can see by inspection that each of them maps every r ∈ R8 to ±r. Hence,

σi ∈ 〈sγi | 1 6 i 6 8〉. Since sγihi ∈ G̃x for 1 6 i 6 8, each σi admits a unique lift in Gx ⊂ NG(T )

which will be denoted by ni. The subgroup 〈ni | 0 6 i 6 3〉 of Gx is isomorphic to (Z/2Z)4.

Next we show that any element σh ∈ Gx with σ ∈ W0
∼= S8 lies in the subgroup generated

by the ni. Since σ maps 18 to ±18 and n0 ∈ Gx we may assume that σ(18) = 18. Since σ maps

(14,−14) to ±(14,−14) and n1 ∈ Gx we may also assume that σ fixes (14,−14). Since σ
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maps (12,−12,12,−12) to ±(12,−12,12,−12) and n2 ∈Gx we may assume that σ fixes (12,−12,
12,−12) as well. Finally, since σ maps (1,−1, 1,−1, 1,−1, 1,−1) to ±(1,−1, 1,−1, 1,−1, 1,−1)
and n3 ∈ Gx we may assume that σ fixes (1,−1, 1,−1, 1,−1, 1,−1). This entails that σ(i) = i
for i ∈ {1, 2, 3, 4}. As σ(r) = ±r for all r ∈ R8 the latter shows that σ = id proving statement
(i) of Theorem A.1.

Since gx contains the spanning set {x[2]i | 1 6 i 6 4} of t0, our remarks in §A.4 show
that gx ⊂ t. Since [t, x] = 0 for every t ∈ gx it must be that (dγ)e(t) = 0 for all γ ∈ Γ. Since
(dγ)e(t) = 〈hγ , t〉 and t0 is a maximal isotropic subspace of the symplectic space t, we obtain
that t ∈ t0. As a result, gx = t0 for every x ∈ r◦. Statement (ii) follows.

In proving statement (iii) we may assume that x =
∑8

i=1 (λieγi + µie−γi) and x′ =∑8
i=1 (λ′ieγi +µ

′
ie−γi) are two elements of r◦. Our discussion in the previous paragraph shows that

gx = gx′ = t0. Let h′i := h(1, . . . , µ′i/λ
′
i, . . . , 1), where the entry µ′i/λ

′
i occupies the ith position.

There is a unique element h = h(b1, . . . , b8) ∈ T such that

h · sγihi · h−1 = sγih
′
i (1 6 i 6 8).

(We need to take bi =
√

(λiµ′i)/(λ
′
iµi) ∈ k for all 1 6 i 6 8 which is possible since all λiµi and

λ′iµ
′
i are nonzero.) Our earlier remarks in this section now show that h · Gx · h−1 = Gx′ . This

proves statement (iii).

Remark. We stress that for an element x =
∑8

i=1 (λieγi + µie−γi) to be in r◦ it is necessary
that λiµi 6= λjµj for all i 6= j. If one removes this condition and only requires that the set

{x[2]i | 1 6 i 6 4} ⊂ t is linearly independent, then one obtains an a priori bigger Zariski-open
subset, r′, in r which still has the property that Gx is a finite group and gx = t0 for every x ∈ r′.
However, it is not immediately clear that the stabilizers in G of any two elements in r′ are
isomorphic. It would be interesting to investigate this situation in more detail.

A.6 Scheme-theoretic stabilizers

Let G̃ be a reductive group scheme over k with root system Φ̃ with respect to a maximal torus
T ⊂ G̃ and let G be the regular group subscheme of G̃ with root system Φ̃0. We may assume that
T(k) = T , G̃(k) = G̃ and G(k) = G. In this situation, we wish to describe the scheme-theoretic
stabilizer Gx of x ∈ r◦, an affine group subscheme of G defined over k.

Let F be any commutative associative k-algebra with 1. The subscheme NG(T) of G is
smooth and since p = 2 we have an isomorphism NG(T) = W ×T of affine group schemes over
k. Arguing as in §A.5 one observes that Gx(F ) is contained in the group of F -points of NG(T).
The latter contains Gx = Gx(k). Replacing k× by the multiplicative group of F and arguing as
in §A.5 one observes that the canonical projection NG(T)�W sends Gx(F ) into the subgroup
of W generated by σi with 0 6 i 6 3. Since ni ∈ Gx for all 0 6 i 6 3 it follows that the group
Gx(F ) is generated by Gx = (Gx)red and the scheme-theoretic stabilizer Tx. On the other hand,
our concluding remarks in §A.3 imply that the root lattice ZΦ̃ contains free Z-submodules Λ1

and Λ2 of rank 4 such that ZΦ̃ = Λ1 ⊕ Λ2 and ZΓ := Zγ1 ⊕ · · · ⊕ Zγ8 = Λ1 ⊕ 2Λ2. Since
T(F ) = HomZ(ZΦ̃, F×), we have a short exact sequence

1 → HomZ(Λ2/2Λ2, F
×) → T(F ) → HomZ(ZΓ, F×) → 1

which shows that the groups Tx(F ) and HomZ(Λ2/2Λ2, F
×) are isomorphic. Since Λ2/2Λ2

∼=
(Z/2Z)4 and HomZ(Z/2Z, F×) = µ2(F ) we have HomZ(Λ2/2Λ2, F

×) ∼= (µ2)
4(F ). Hence,

Tx
∼= (µ2)

4 as affine group schemes over k.
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Since σi(γj) = ±γj for all 0 6 i 6 3 and 1 6 j 6 8 we have that (σi(λ) − λ|γj) ∈ 2Z
for all λ ∈ ZΦ̃. Since (λ|λ′) ∈ 2Z for all λ, λ′ ∈ ZΓ, it follows that each σi acts trivially on
Λ2/2Λ2

∼= ZΦ̃/ZΓ. We thus deduce that the group scheme Gx is commutative. In view of the
above this implies that Gx

∼= (Gx)red ×Tx as affine group schemes over k. This completes the
proof of Theorem A.1. 2
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