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Abstract

Sea Surface Height Anomaly (SLA) is a signature of the mesoscale dynamics of the upper ocean. Sea surface
temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In
this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning
(DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from
the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)° in the North Atlantic Ocean
(26.5–44.42°N, �64.25–41.83°E), covering the period from 1993 to 2019. Using a slightly modified image-to-
image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA
prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA
forecast at 5 days by using the SST fields as additional information.We obtained predictions of 12 cm (20 cm) error
of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days) respectively. Moreover,
the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the
trajectory.

Impact Statement

This study uses deep learning to enhance short-term predictions of sea surface height anomaly (SLA) by
incorporating sea surface temperature (SST) data. Using simulated data from the Mercator Global Analysis
and Forecasting System, our approach demonstrated that SST significantly improves SLA predictions.
With a modified image-to-image convolutional architecture and a teaching-forcing inspired learning
process, we achieved substantial error reductions in SLA forecasts over 5 and 20-day periods. These
findings highlight the potential of SST as a crucial variable in oceanographic models, offering improved
accuracy in forecasting mesoscale ocean dynamics. This advancement supports a better understanding and
prediction of ocean behavior, which is essential for navigation, climate studies, and marine resource
management.

The findings presented in this article have significant implications for understanding and predicting ocean
dynamics, especially in regions influenced by strong eddies and rapid variability. By employing a novel approach
that samples ocean eddies at multiple time steps and utilizing deep learning models, the study enhances our
ability to integrate information from sea level anomaly (SLA) and SST patterns.
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1. Introduction

Improving the knowledge of upper ocean dynamics is crucial for understanding the ocean’s role in climate
and for various applications such as enhancing navigation trajectory or marine engineering. To this end,
multi-satellite observations have provided a vast quantity of information on different oceanic parameters
such as sea level anomaly (SLA) that is the difference between themean Sea Surface Height and the height
measured by altimeter, sea surface temperature (SST), Chlorophylle-a, or Sea Surface Salinity. SLA allows
us to capture many oceanic features and learn about global ocean circulation. Using the geostrophic
balance, it can retrieve Sea Surface currents and capturemesoscale structures such as eddies or ocean fronts
(Moschos, 2020; Zeng, 2015). However, the altimetry products come from interpolation between different
satellites at different times (Pujol, 2016;Taburet et al., 2019; Dufau et al., 2016). Therefore, improving SLA
and surface currents resolution or predicting short-term surface evolution is an active research topic
(Immas, 2021; Manucharyan, 2021;Isern-Fontanet, 2017; González-Haro, 2020). To this end, other
satellite-measured parameters can be used, such as SST. SST is observed frommulti-sensor measurements
with high spatiotemporal resolution. Furthermore, SST is a good tracer for advection, a key phenomenon of
SLA evolution. Several studies have shown that SLA and SST are strongly associated with complex
functions (Isern-Fontanet, 2006; Martin et al., 2023). SLA observations are obtained with a delay of
15 days (Taburet et al., 2019; Dufau et al., 2016) due to the necessity of processing altimeter tracks, while
SST is acquired daily. How canwe ensure accurate estimates of SLAobservations during this delay period?
Mathematical methods based on physical knowledge have been built to improve the interpolation of SLA
fields (Rio, 2016) from physical knowledge. In contrast, data-driven approaches such as deep learning
(DL) algorithms can infer the underlying state of the system driving ocean surface parameters. Neural
networks can efficiently process this vast amount of ocean data. It has already been proved thatDLmethods
can improve SLA resolution using SST (Guan, 2023; Liu, 2020) but without using the temporal evolution
of SLA and SST. Besides, predictive neural networks have been built to forecast SLA at a small resolution
(¼°) without including other parameters like SST (Archambault, 2022; Thiria et al., 2023; Braakmann-
Folgmann, 2017; Liu, 2022). Our study considers the correlated temporal evolution of SLA and SST to
show that it is possible to refine SLA prediction using SST at high resolution (1/12°). To this end, a
convolutional network algorithm was implemented for its robustness and stability in processing images
and a specific training methodology has been designed as described in Section 2. Our article presents two
main results in Section 3: the forecast performancewe achieve thanks to our trainingmethodology, and the
performance in projecting SLA using SST as a control.

2. Material and methods

The CopernicusGlobal12 dataset (Global Ocean Physics Reanalysis, 2022) provides various daily
parameters located on a 1/12° grid from 26.5° to 44.42° latitude North and� 64.25° to�53.58° longitude
East. Ourmain study used the dynamic zone shown in Figure 1. SLA and SSTselected spanned from 1993
to 2019, corresponding to approximately 10,000 daily images.

TheGulf Stream traverses this region, resulting in amore pronounced dynamical evolution of SLA and
SST, particularly in the northern part of the area. In contrast, the southern region experiences less extreme
variations and smaller eddies. Therefore, we chose to study only the northern area of latitudes described
below. (See supplementary materials for generalization to the southern area.):

• lat N from 33.7 to 44.42° representing the dynamic area with the Gulf Stream flow

In Figure 3 (left panel of the second row), we present the standard deviation of the SLA estimated during
the 20 years of the study period for our domain.

2.1. Times series decomposition

Since the focus of our forecast study is on short-time predictions, it is crucial that the data used does not
exhibit periodicity due to seasonal variability. Additionally, since the data covers a large time period,
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we removed the underlying trend corresponding to the interannual variability to only keep the high-
frequency variability, the SLA residuals (Mann, 1945; Kendall, 1975) see supplementary materials). As
we got rid of the seasonal and multi-annual variability here, SLA dynamics will now refer to the sub-
seasonal spatial patterns and gradients of SLA variability across our ocean regions.

In Figure 2 we present the image of SLA residuals at time t (t = 05/09/1993 Figure 2a), its evolution for
two steps (t + 5 and t + 10 Figure 2bc); the difference SLA(t)�SLA (t + dt) (Figure 2ef) represents the
transformation of the SLA field due to the dynamic.

2.2. Methodology

We sought a neural approach that would enable us to predict SLA residuals given the knowledge of SLA
and SST residuals time series. To accomplish this, we separated our data into three independent datasets
for training, validation and testing. The same datasets were used for all experiments presented in this
study. Twenty days were removed from the learning dataset at the beginning of 1994 and at the end of
2017 to separate the test from the learning phase. The three datasets cover different periods and are
normalized separately:

• training set: 1994–2014 (7412 images)
• validation set: 2015–2017 (1275 images)
• test set: 1993 2018 2019 (873 images)

Deep convolutional networks are designed for image processing, using convolution operations to extract
spatial context. In this study, we have chosen theU-net architecture (Ronneberger, 2015) for its robustness
and flexibility, whichmake it suitable for a wide range of image processing problems. The aim is to reduce
the input spatial resolution by passing it through various layers to get image patterns. As the first part
reduces the input matrix size, it filters unnecessary information like noise to focus on patterns. The input
information is propagated through these layers without losses via skipping connections. Moreover, we
added Batch Normalization (Ioffe, 2015) to the convolution layers of the original U-net to limit the

Figure 1. Themap shows the sea surface temperature (SST) of the North Atlantic region under study, with
the black box indicating the dynamic area of focus.
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Figure 2. (a) SLA residuals (t = 24/10/1993) and its evolution 5 (b) and 10 (c) days after. SLA evolution at
5 (e) and 10 (f) days compared to the previous state: SLA t + kð Þ�SLA tð Þ,k = 5 10ð Þ. (d) Standard
deviation of the SLA over the Gulf Stream region estimated using the 20 years.

Figure 3. SLA-Res-U-net Architecture: A typical U-net architecture comprises two main components.
Initially, the encoder reduces spatial resolution to capture patterns and incorporates feature channels for
context propagation. Then, the decoder expands the resolution features from the encoder, and its output is
combined with the input image to act as a residual unit. Batch normalization is added between the 2D
convolutions during descent and after SiLU activation during ascent. Hyper-parameters like activation,
depth, and learning rate are determined via Bayesian optimization (S0).
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overflow issues. Finally, we have made a slight modification inspired by the residual connections process
(Goodfellow, 2016). Essentially, this involves an identity mapping of the input X, added to the output
F Xð Þ of U-net transformations, resulting in F Xð Þ+X (refer to Figure 3).

The nature of the task is changed such that instead of predicting an image, the network predicts an
additive transformation over the last time step. This method has already been successfully applied in
various domains, such as medical image processing (Guan, 2020). In the following, we denote this
architecture as SLA-Res-U-net. We tried different architectures, including the classical U-net and found
that SLA-Res-U-net outperforms them in every case (Zeng, 2015).

Due to the high correlation between SLA and SST (González-Haro, 2020), the SST images are
provided as inputs alongwith the associated SLA images. Thus, the inputs are the images of SLA and SST
residuals taken at successive times equally spaced, and the targets are the following SLA and SST residual
images1.

IM t + dtð Þ=G IM tð Þ, IM t�dtð Þ, IM t�2dtð Þ,…IM t�ndtð Þ½ � (1)

where IM represents the (SLA, SST) images and dt the time lag between two images, the function G is our
architecture (He, 2015).

Accurate predictions must provide sufficient information on the phenomenon under study and its
dynamic. We performed preliminary tests to determine the optimal number of time steps and the time lag
between two-time steps. These were selected based on various criteria, such as the accuracy of the
prediction, geophysical considerations, and computation time.

The time evolution of the SLA is driven by ocean eddies whose return time is approximately 20 days in
the Gulf Stream area (Kang and Enrique, 2013; Martin and Synthesizing, 2023; Chelton et al., 1998).
Therefore, we sampled the eddy at four time steps (t, t�dt, t�2dt, t�3dt) separated by a time lag dt of
dt = 5 days, resulting in a total sampling period of 20 days. These four-time step images of (SLA, SST)
were chosen as inputs of the U-net model 3. The objective was to predict the SLA and SST images at the
next time step forward (a time step corresponds to 5 days). We denote SLA-SST/SLA-SST the SLA-Res-
U-net model obtained at the end of the learning phase. To understand the contribution of each variable, we
trained two other SLA-Res-U-net by modifying the inputs and the outputs. The first model (called
SLA/SLA) uses as input the SLAs at four specific time steps backward and estimates SLA at the next time
step forward (5 days later). The second model (denoted SLA-SST/SLA) uses the two-time series (SLA,
SST) to estimate the next SLA only, the cost function minimizes only the prediction of the SLA.

We focused the study on the determination of the SLA only since SLA altimetric resolution is much
weaker than SST (Dufau et al., 2016). SST helps to retrieve SLA at high resolution. The second part of the
study analyzes the number of time steps for which the forecast is accurate (prediction horizon).

We first tested the prediction given by the three models (SLA/SLA, SLA-SST/SLA, SLA-SST/SLA-
SST,) by iterating each model in time. This involved introducing the estimated outputs at time t + ndt as
input to estimate the image (SLA, SST) at time t + (n + 1)dt without new learning. For the SLA-SST/SLA,
the true SSTwas introduced as input at each iteration since no prediction of SSTwas made. Therefore the
model SLA-SST/SLA is not a forecast but rather a model of SLA evolution driven by SST. The SLA
predicted by the model is reintroduced as an input to obtain the SLA values 10, 15, and 20 days later.

The second experiment consists in forcing the learning of the dynamics of the SLA fields with the
model. First, we computed the output of the model at time t + dt. The model then received the preceding
output as input and computed the output at the next step t + 2dt. This process was repeated, training the
network to build the outputs at time t + 2dt from inputs at time t.We only iterated this process oncemore to
estimate t + 3dt using the estimations at time t + 2dt, due to computation time constraints. In this way, the
network can learn input conditions not seen during normal training.

Theperformances of the predictionswere estimated at times t + dt, t + 2dt, t + 3dt, and t + 4dt (note that the
prediction at t + 4dt was not learned). The flow chart of the procedure is shown in Figure 4. We denote this
new architecture as DY-SLA-SST/SLA-SST. All the different configurations tested are shown in Table 1.

Moreover, to show the impact of SSTon the trajectory of SLA, we did the same procedure with SLA-
SST/SLA and trained the network by introducing the true SSTat each step.We denoteDY-SLA-SST/SLA
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in this model. In doing so, we learned the trajectory of the SLA image with the true SST information and
consequently improved the SLA prediction at t + 4dt. This procedure allowed us to estimate SLA, whose
observations are difficult to obtain in the near future, using SST which can be obtained almost
instantaneously. The method was inspired by teacher-forcing (Goodfellow, 2016).

The learning process is performed (as shown in Figure 4) using classic backpropagation. During
training, we randomly select whether to compute outputs at time t + dt, t + 2dt, or t + 3dt. The
backpropagation is performed over the loop, meaning that we update the weights for all time step
predictions. It is computationally heavier because for each time step the amount of calculation to run back
the propagation increases proportionally for each time step.

2.3. Evaluation metrics

We consider the following metric to evaluate SLA predictions: the root-mean-square error computed on
the test set (see Equation 2). Additionally, we use persistence performances as a threshold to assess our
model’s performances. Persistence refers to a prediction that assumes either zero uniform velocities or
velocities that cancel each other out. Additional metrics can be found in the supplementary materials.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σn ypred �ytarget
� �2

N

s
,n∈ testpixel½ � (2)

Figure 4. Training scheme: During the training phase, the network is fed with both SLA prediction and
SST observations which extends the horizon of SLA. By performing backpropagation over several time
steps, the model is forced to learn the dynamics of SLA.

Table 1. Input/output configurations and naming conventions for the various setups. Noted that for
each setup, there are four input fields spaced five days apart, used to generate the subsequent

five-day field

Name Inputs Outputs Training method

SLA/SLA SLA SLA Step-by-step iteration
DY SLA/SLA SLA SLA Multi-timesteps iteration
SLA-SST/SLA SLA-SST SLA Step-by-step iteration
DY SLA-SST/SLA SLA-SST SLA Multi-timesteps iteration
SLA-SST/SLA-SST SLA-SST SLA-SST Step-by-step iteration
DY SLA-SST/SLA-SST SLA-SST SLA-SST Multi-timesteps iteration
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3. Results

In this section, we examine the various performance statistics of the models (see Table 2). For the
prediction at t + 5, the RMSE computed on the entire image is worse than that of persistence, with only a
slight advantage on SLA-SST/SLA-SST. The RMSE values, while still large, are small in comparison to
the SLA standard deviation of approximately 0.2 m (see Figure 2 and supplementary).

Table 2. RMSE according to predictions in time estimated from the Test set

Inputs/predictions Evaluate n = 5 n = 10 n = 15 n = 20

SLA/SLA RMSE (cm) 13.27 17.86 21.73 23.66
SLA-SST/SLA RMSE (cm) 13.13 18.53 22.07 24.59
SLA-SST/SLA-SST RMSE (cm) 14.81 18.73 21.88 23.76
Persistence RMSE (cm) 13.00

Figure 5. RMSE for different time steps and models estimated on the whole test set. The red box is the
persistence RMSE, the blue box corresponds to the SLA-SST/SLA-SST model, the green one to the
DY-SLA-SST/SLA-SST, and the purple one to the DY-SLA-SST/SLA.

Environmental Data Science e42-7

https://doi.org/10.1017/eds.2024.33 Published online by Cambridge University Press

http://doi.org/10.1017/eds.2024.33
https://doi.org/10.1017/eds.2024.33


The training routine described in 4 was applied with different input and output configurations. Notice
that DY SLA-SST/SLA is not a forecast, but DY SLA-SST/SLA-SST is one because the SST predicted
can be reintroduced. Figure 5 provides a comprehensive comparison of SLA-SST/SLA and DY-SLA-
SST/SLA-SST in terms of RMSE and standard deviation.While the RMSE is comparable to persistence at
t + 5, the standard deviations are more reliable when the model is trained. This effect is even more
pronounced for subsequent time steps.

The performances of the DY-SLA-SST/SLA model improve and do not get deteriorated with time as
much as with the SLA-SST/SLA-SST model. By providing the model with the true SST at each step, the
DY-SLA-SST/SLA model is better able to keep close to the true SLA compared to the DY-SLA-SST/
SLA-SST. The most striking point is the improvement of the first step prediction with the DY-SLA-SST/
SLA and DY-SLA-SST/SLA-SST (see t + 5 in Figure 5). This suggests that forcing the network to make
consistent predictions across different steps allows for a deeper representation of the underlying dynamics
of SLA.

Figure 6. SLA image predictions at time t + 5 day; t + 10 days; t + 15 days; t + 20 days (t = 24/10/1993).
(a) correspond to the ground truth results, (b) to the SLA-SST/SLA-SST method, (c) correspond to the DY
SLA-SST/SLA-SST method, and (d) to the DY-SLA-SST/SLA method.
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4. Conclusions

The efficiency of the different methods we have developed is illustrated in Figure 6, with predictions
starting at t = 24/10/1993.

Figure 6b shows the predictions in time of SLA-SST/SLA-SST and compares them to the targets
(Figure 6a). Despite, the low RMSE (11.79 cm for t + 5), we can observe that the global dynamic is not
accurately reproduced. Figure 6c,d presents the predictions in time of respectively DY-SLA-SST/SLA-
SST and DY-SLA-SST/SLA models, respectively.

We note that SLA images given by the two teacher-forcing methods (DY SLA-SST/SLA-SSTand DY
SLA-SST/SLA, Figure 6cd) perform better than SLA images given by the SLA-SST/SLA-SST method
(Figure 6b). The RMSEs of the two DYmethods are much smaller than those of the SLA-SST/SLA-SST
method. Besides the SLA patterns of the two DYmethods well reproduce these of the target. The number
and position of troughs and bumps that characterize ocean circulation via the geostrophic relationship
(troughs are associated with a cyclonic circulation in the upper ocean and bumpswith an anticyclonic one)
are similar in both the DYpredictions and ocean model images. The two DY methods give a satisfactory
prediction up to t + 20 while the SLA-SST/SLA-SST method begins to degrade at t + 10 and gives a bad
prediction at t + 20 both in RMSE and in SLA patterns.

Our architecture builds the transformation over the image, trainedwith a teacher-forcingmethodwhich
helps the network to learn the trajectory of the SLA fields using the information provided by the SST
fields. Future research on temporal-oriented architecture such as LSTM or Attention-based method will
be conducted to enhance this first results on SST importance. Complementary results on the teacher-
forcingmethodwill be producedwith another tracer of the SLA advection, the Sea Surface Salinity (SSS).
It will allow us to assess the capability of the method of learning SLA trajectory using information from
other correlated fields.

Since the SLA observations are obtained with some delay (15 days) due to the need to process the
altimeter observations during the altimeter repeat period and the SSTs are obtained almost instantan-
eously, the DL algorithm we developed, can provide good estimates of the SLA observations during this
delay period.

This study is a proof of concept that DLmethods can effectivelymodel the state of the ocean surface for
the near future and hence the associated time-dependent PDEs. An interesting question would be to test
how well the DL model reproduces the ocean heat transport which is a key variable for climate studies.
This study will be useful to predict the generation of storms and cyclones which depend on the ocean
surface SST, and for ship routine to optimize ship trajectories.

Finally, the high-resolution SLA data provided by the SWOT (Surface Water and Ocean Topography)
mission offers unprecedented insights into ocean dynamics and variability. With its enhanced spatial
resolution, SWOTdata enablemore accuratemonitoring of oceanic phenomena such asmesoscale eddies,
coastal currents, and sea level rise. However, its return time is approximately 20 days (see (Rosemary
Morrow1, Denis Blumstein, and Gerald Dibarboure, 2018), Figure 8.1), which poses a challenge for
temporal resolution. Therefore, improved forecasting capabilities, as facilitated by our current and future
works, are essential for obtaining accurate real-time data.
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