DERIVABLE NETS1 )
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(received February 23, 1965)

Up to a duality, the known finite projective planes which
are not translation planes all are equivalent to affine planes
which contain the type of structure defined below to be a
""derivable net''. (Insofar as the known finite planes are
concerned, this means that the intimate connection between
projective geometry and linear algebra still holds for non-
Desarguesian planes. )

An affine plane which contains a derivable net is called a
derivable plane. (The precise sense in which we are using the
word '""contain' will be explained below.) There has been no
complete determination of all derivable planes. A step in the
derivation of such a determination would be the determination
of all transversals of a derivable net. One of the consequences
of our results is that finding all of the transversals of a deriv-
able net is related to finding the dual translation planes which
contain the net and are of dimension two in the sense of

Andre' [1].

A collineation of a derivable plane which carries the
included derivable net into itself will induce a collineation of
the net. A large class of derivable planes has the property
that its members can admit no collineations which do not
induce ccllineations of the corresponding derivable nets. For
such planes, the collineation group of the plane is a subgroup
of the collineation group of the derivable net. We have deter-
mined the complete collineation group of a derivable net.

1
) This work was supported (in part) by grant No. GP 1623

from the National Science Foundation.
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Thus much of the theory of derivable planes depends upon
the theory of derivable nets and their transversals. Besides the
results already indicated (and related to them) we obtain repre-
sentations of derivable nets and their transversals in terms of
Andre''s congruence [1] and Bruck's spreads [2, 3].

In general, a net of order n and degree k is a set of n
points and kn Ilines with n points on each line. The lines fall
into k parallel classes, so that the two lines in the same
parallel class have no points in common, while lines in different
parallel classes have exactly one point in common. Each point
lies on exactly one line of each parallel class; two points lie on
at most one line. A net of order n and degree n+ 1 is an
affine plane.

2
Definition. A net of order q and degree g+ 1 is said
to be derivable if and only if it is isomorphic to the net N
described below.

Let F be a field of order q. ILet V be a two-dimensional

vector space over F. The points of N are ordered pairs
(x,y) where x and y belong to V. For each o in F and
each b in V, the set of points (x, y) such that y=xo+ b

is a line of N. (The indicated operations are vector addition
and multiplication by a scalar.) For each c in V, the set of
points such that x =c is a line of N. There are no other lines
of N.

It will be convenient to let t, 1 represent basis elements
of V, so that each element of V may be written in the form
to + B, where o,B belongto F and each point (x, y) may be

written (1:x1 + X5 ty'l + yz) where X0 X5 Yo Y, belong to F.

In general, we shall denote elements of F either by small

G k lett S b 3 3 ) -
reek letters or by x,, X,, v,. y,

We shall say that N 1is contained (or included) in an
affine plane w if (1) The points of N and 7 are identical and
(2) Every line of N is a line of .

2
A transversal of N is a set of q distinct points, no
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two of which lie on a line of N. Thus if 7 includes N, every
Iine of w 1is either a line of N or a transversal of N.

Definition. Let x—f(x) be a 1 - 1 correspondence
between the elements of V. Then we shall say that f(x) is a
transversal function if, for every distinct c,d in V the
vectors f(c) - f(d) and c - d are independent.

THEOREM 1. If T is any transversal of N, then there
is a transversal function f(x) such that T consists of the set
of points (x,y) for which y =f(x). Conversely, every trans-

versal function defines a transversal.

Proof. There is a natural 1 - 1 correspondence between
the lines x = constant and y = constant such that two lines cor-
respond if their point of intersection is on T. Thus we have a
1 - 1 mapping x-f(x) such that (x,y) is on T if and only if
y =f(x). Now two points (c,d) and (r,s) with c #r are on a
line y =xae+ b if and only if d - s =(c - r)a. Thus
f(c) - f(r) and c - r must be independent if y =f(x) is to be
a transversal. Conversely, if f(c) - f(r) and c - r are
independent for all choices of c,r c#r and f is 1 - 1,
then y =f£(x) must be a transversal.

LEMMA 1. If f(x) is a transversal function, then
f(x)a + X3 + b is a transversal function for each non-zero «
in F, each B in F, andeach b in V.

Proof. The proof is almost immediate from the definition
of a transversal function and the properties of a vector space.

THEOREM 2. If T is a transversal of N, then there
is an affine plane 7 which contains N and has T as one of
its lines.

Proof. The points of w will, of course, be the points
of N. The lines of 7 will be the lines of N together with
the transversals given by the transversal functions
f(x)e + xp + b.

Let us examine the intersections of two such transversals:

y = f(x)a+ xp+ b and y = f(x)y+ x5+ c .
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The x coordinate of any point of intersection must satisfy
f(x) (¢ - y)+ x(p-08)+(b-c) =0.

If a=y and P =6 there is no solution unless b=c -
i. e. the lines are parallel. If o #vy the left hand side of the
above equation is a transversal function and there must be
exactly one value of x for which this transversal function
takes on the value zero. If o=y but p #6, we obviously
get a unique solution for x.

Thus we get one parallel class for each choice of o #0
2
and B, which gives us q - q parallel classes. The q + 1

2
parallel classes in N give us a total of q + 1 parallel
classes. Lines in different parallel classes intersect in

exactly one point. The q2 distinct lines of any one given
parallel class contain all of the points of the plane, so each
point lies on exactly one line of each parallel class and each
pair of distinct points lies on exactly one line of . It follows
that we do indeed have an affine plane.

THEOREM 3. Let Z be the two-by-two matrix with

Yo Y, in the first row, Xi’ X, in the second row. Let A1

and A2 be non-singular two-by-two matrices and let A3 be

any two-by-two matrix. Let Z' :Aiz A2 + A3. Then there

is a collineation of N such that the general point (tx1 + Xy

ty1 + YZ) is carried into (’cx‘1 + x'2, ‘cy'1 + y'z) where y'i, Y"Z.’

x'1, x'2 are the elements of Z'.

Proof. The proof is a matter of direct calculation which
we will leave to the reader. It may be helpful to consider the

following cases:

(1) A1 and A_ are the identity

2

(2) AZ is the identity and A3 is the zero matrix

(3) A)1 is the identity and A3 is the zero matrix.
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In subsequent discussion the cases (1), (2), and (3) above
will be referred to as collineations of types (1), (2), or (3)
respectively. Note that the collineations of type (1) are trans-
lations, while the collineations of type (2) may be written in the
form (x,y) = (xa + yB, xy + yd).

The collineations of type (3) are of the general form
(x,v) - (xp, yp), where p isan automorphism of addition in V.

There is one more type of mapping which will give a col-
lineation of N and will be referred to as a collineation of type

(4):

b t - 2 t I’
(1:x1 + x, y1 + yz) (t(xio') + x20' (yio') + y2<r)

where o 1is an automorphism of F. The next series of
Lemmas lead up to the result that every collineation of N 1is
the product of collineations of types (1) - (4).

LEMMA 2. The set of points (tx1 + Xy ’cy1 + yz) for

which x =y, = 0 is the set of points in a Desarguesian sub-

plane of N. The lines of this subplane have equations of the
type y=xy+p y,pe F or x=0, a€kF.

Proof. Let m denote the set of points and lines in
o

Lemma 2, then w is the Desarguesian plane coordinatized
o

by F. Clearly, LA is a subplane of N.

LEMMA 3. Let p be any collineation of N which fixes
each point of m and also fixes one additional point. Then p
o

is the identity.

Proof. 1If m is pointwise fixed, each parallel class is
o
fixed. S that (ta, + B,, ta_ + d
ixe uppose that ( @, 61 ozZ BZ) (oz/1 an ozz not both
zero) is fixed. Then the lines x=te, + [31, y :taf2 + [32 and
1
their intersections with each of the lines y=xy+ f v,B€¢ F

are fixed. We soon get that all lines in the parallel classes
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x = constant and y = constant are fixed and finally that all points
are fixed.

LEMMA 4. Iet p be any collineation of N which carries
m into itself. Then p is the product of collineations of types
o

(1) - (4).

Proof. Note that all collineations of types (2) and (4)
carry w into itself and that the collineations of type (1) include
o

a subgroup transitive on the points of w . Furthermore, =
o o

is Desarguesian and the full collineation group on m 1is induced
o

by collineations of types (1), (2), and (4). Hence there is a
collineation o such that ¢ 1is the product of collineations of

-1 )
types (1), (2) and (4) and po fixes each point of LIS Since
-1 . . -1

po fixes the line x =1, the image of (1,t) under po
must be (1,te + ) for some o, . Furthermore (1,te + B)
cannot be in ™ , so o #0.

o

Now consider the collineations of type (3) of the following
special form:
(tx1+ x_, ty1+y2) »(txia + xiﬁ + XZ’ ty

a+yiﬁ+\/2).

2 1

Note that m 1is pointwise fixed, while (1,t) - (1, ta+ g). We
o

must have « #0 for the transformation to be non-singular.
Applying the previous LLemma, we conclude that there is a

-1
collineation T of type (3) such that po T is the identity.
This proves Lemma 4.

LEMMA 5. Let P be any point joined to (0,0) by a
line of N. Then there is a collineation of type (3) which car-
ries P into some point of = .

o

Proof. If P= (tx1 + x

, ty + YZ) is joined to the origin,

2 1
then either x =x_ =0 or there is some X in F such that

-

2
Y, =x1)\, yzzxz)\. Choose o and vy so that
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X, @ + X, v = 0 =y, @ + Y, V- Then choose the (non-singular)

matrix AZ so that o and vy are the elements of the first

column.

THEOREM 4. Every collineation of N is the product
of collineations of types (1) - (4).

Proof. Let p be any collineation of N. Let p carry
the origin into the point P, (0,1) into the point Q. Then
there is a collineation o which is the product of collineations

-1
of types (1) - (3) such that pc fixes (0,0) and (0,1).
Since w 1is the only subplane of order q which contains
o

-1 -
(0,0) and (0,1), po carries w into itself. Hence po
o

is the product of collineations of types (1) - (4). Finally, p
itself is the product of collineations of types (1) - (4).

Representation in Terms of Spreads and Congruences

The following representation is essentially due to Bruck.
We shall give what amounts to a restatement of some of the
material in his Saskatoon lectures [2] so as to clarify the
relations to the specific form of representation of derivable
nets as given earlier in this paper. As an example of the
advantages of looking at things in more than one way, we note
that Theorems 2 and 3 were discovered by the author in studying
the representation to follow.

Let V4 denote the vector space consisting of quadruples

of elements of F. ILet W be the two dimensional subspace of
V4 generated by (1. 0, 0, 0) and (0, 1, 0, 0). Let us set

up a 1 - 1 correspondence between the points of N and two
dimensional subspaces of V4 independent of W as follows:

The point (tx1 + Xy ty1 + yz) corresponds to the two-

space generated by (Xi’ x , 0,1) and (yi, YZ’ 1, 0). These

2
two-spaces independent of W will be called "point-spaces'.
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Consider the set of points on the line y =xy + b, where
= i 1 = R = + X
b tB1 + ﬁz. This amounts to having Yy T XY + ;31 Y, =X, [32

The point-spaces corresponding to points on y =xy + b are
precisely those which contain the one-dimensional subspace of
V4 generated by (ﬁi, (32, 1, -y). The set of points on the line
X = 1:(1/1 + @, corresponds to a set of point-spaces intersecting in

the one-space with basis (a1, a , 0, 1). Note that every one-

2

space independent of W has a basis of the form ((31, (32, 1, -vy)

, , 0, 1).
or (oz1 az )

We have established the following theorem:

THEOREM 5. Let W be a fixed two-dimensional sub-
space of V4. Let the two-spaces independent of W be called

point-spaces; let the one-spaces independent of W be called
line- spaces. Then there is a one-to-one correspondence between
the points of N and the point-spaces, between the lines of N
and the line spaces. The correspondence is such that the set

of points on a line corresponds to the set of point-spaces includ-
ing a line-space.

COROLLARY 1. Two points of N are not joined by a
line of N if and only if the corresponding point-spaces are

independent.

Proof. Two distinct two-dimensional subspaces of V

4
either are independent (i.e., have only the identity in common)
or intersect in a one-space. In the latter case, the one-space
must be independent of W (and thus a line-space) if the two-
spaces are independent of W.

COROLLARY 2. Corresponding to each transversal of N,
2
there is a set of q + 1 two-dimensional subspaces of V4 which

are pairwise independent.
. 2 .
Proof. A transversalto N is a set of n=q points of
N, no two of which are joined by a line of N. The correspond-

ing point-spaces, together with W, form a set of q2 + 1 two-
spaces which are pairwise independent.
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We now wish to look at Andre's '"congruence' [1] and
the ""spreads' of Bruck and Bose [2, 3].

Definition (Andre'). A congruence of a group G is a
class of subgroups of G (called the components of the congru-
ence) such that (1) Each element of G distinct from the identity
belongs to exactly one component and (2) Each pair of distinct
components generates the whole group.

Definition. (Bruck and Bose) [3]. Let X be a projective
space of dimension 2r - 1. Let S be a collection of (r-1)-
dimensional projective subspaces of . Then S is a spread
if each point of ¥ is contained in exactly one member of S.

Now for r>2, Z can be represented by a vector space
of dimension 2r. The points of ¥ are represented by one-
dimensional subspaces of the vector space, the (r-1)-dimensional
projective subspaces are represented by r-dimensional
vector spaces. Thus disjoint (r-1)-dimensional projective
spaces correspond to vector spaces having only the zero vector
in common. Two r-dimensional vector spaces which have only
the zero vector in common will be independent and will generate
the whole vector space. On the other hand, Andre' has shown
that any group which admits a congruence must be isomorphic
to a vector space of even dimension over some skew field.

Thus the concepts of spread and congruence are exactly equiv-
alent.

COROLLARY 3. The two-spaces of Corollary 2 are the
components of a congruence on V4. Each transversal of N

corresponds to a spread in three-dimensional projective space
over F.

THEOREM 6. Associated with each transversal T to N
is a translation plane w. The points of m are the elements of

V4. The lines of m consist of the subspace W, the point-

spaces corresponding to the points of T, and the cosets of
these subspaces.

Proof. Theorem 6 comes immediately from Andre''s
connection between translation planes and congruences [1].
We note in passing that the relation between spreads and trans-
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lation planes is essentially equivalent to the relation between
congruences and translation planes.

THEOREM 7. The translation plane of Theorem 6 is dual
to the plane of Theorem 2.

Proof. Let m be the plane of Theorem 2 and let

2
be the plane of Theorem 6. (Strictly speaking, what we have
is a duality between the projective versions of these two planes.)

4
We shall set upa 1 - 1 mapping between the q affine

4
points of m_ and a set of q lines of T We shall show that

2
this mapping preserves incidence in the sense that collinear
affine points map into concurrent (or parallel) lines. We shall
then be able to extend our mapping so that the points at infinity
of i are mapped into the remaining lines (including the line

at infinity) of L

First, however, we must obtain a more explicit repre-
sentation for the lines of 172. As in Theorem 2, let the trans-

versal T be represented by y =f£(x) and let £(x) :tfi(x) + fZ(X)’
where f1 and f2 belong to F. Let c :’cy1 + Y, Consider

the component of the congruence (line of 172) corresponding to

the point (c,f(c)) of ™ This is the two-space generated by

(\{1, Y, 0, 1) and (f1(c), fZ(C)’ 1, 0). It is readily established
that an element (a1, o, a_, 04) of V4 belongs to this component

2 3

» = coz4 + f(c)a3. For each fixed (61, 62,

0, 0) there will be a coset such that tar1 + ozz = ca4 + f(c)oz3 + d,

where d =1:<S1 + 62. Thus, for each ¢, d the set of vectors

if and only if tcv1 + o

(ai, a/z, @y a4) such that toz1 + @, =ca, + f(c)a3 + d 1is a line

of Ty For each fixed c, the q2 possible choices for d will

2
determine a complete set of q lines in a parallel class.

Besides this, we have the lines consisting of the component
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W and its cosets. W consists of those vectors in 'v'4 for

which @, = a4 =0. We will have a coset (parallel line) for each

fixed choice of a3 and a4‘.

We now look at the following mapping from the affine
points of m, to the lines of LVE

(o , @

y - =f + -
L 2 oz3 a4) y (x) a3 xa4 (toz}1 + ozz) .

The set of points of LN such that ta/1 + @, = ca/4 + f(c) 013 +d

thus maps into a set of lines of " having the general form

y = f(x) o, 4 @, - [ca4+f(c)a3+ d] .

These lines all go through the point (c, -d) in ™, With the

exception of W and its cosets, we have verified that collinear
points do indeed map into concurrent lines.

Each point (61, 62, 0, 0) in W maps into a line

y = -(t{S1 + 62). The set of points in W maps into the set of

parallel lines of the form y = constant, which may be thought
of as intersecting in a point at infinity.

f (6, 6., N , X d , A, N
If ( L 2 1 2) an (y1 Y, X 2) are two
points in the same coset of W, their images are the parallel
lines
= f N+ x N - (to, +
y () A+ xh, - (s, +6,)
and

= N - .
y f(x) 1 + x )\2 ('cy1 + yz)

Thus again, the set of points on any line represented by a coset
of W will map into a parallel class - i.e., the set of lines
intersecting in some point at infinity.
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In effect, we have shown that our mapping induces a
mapping from the affine lines of m, to the points of LR
Notice that the parallel class of the line of m given by
ta1 + @, =ca, + f(c) @, + d is determined by c. Thus we may

map the corresponding point at infinity into the line x =c in
T Finally, we map the line at infinity of i into the point

at infinity common to all of the lines x = constant in T and

the point at infinity common to W and its cosets into the line
at infinity of LR Our duality is then completely established.

COROLLARY. The plane of Theorem 2 is a dual trans-
lation plane.

Remarks: While we have shown that each transversal
to N can be embedded as a line in a dual translation plane
which contains N, it is by no means true that every plane
containing N is a dual translation plane. Indeed, it follows
from a construction due to the author [4] that every transversal
to N can also be embedded in a semi-translation plane which
contains N.

The translation plane of Theorem 6 is actually of dimen-
sion two over what Andre' [1] calls the kernel (Kern) and what
Bruck and Bose [3] call the left operator skewfield. We do
have, then, a complete equivalence between these two problems:
(1) Determine all transversals of a derivable net, (2) Determine
all translation planes which are of dimension two over their
respective kernels. The equivalence between transversals
arising out of the collineations of N may be more convenient
to handle than the related problem of different coordinate
systems for the same translation plane.
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