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Abstract
It is a longstanding conjecture that given a subset E of a metric space, if E has unit ℋ𝛼�𝐸-density almost
everywhere, then E is an 𝛼-rectifiable set. We prove this conjecture under the assumption that the ambient metric
space is a homogeneous group with a smooth-box norm.
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1. Introduction

A subset E of a metric space (𝑋, 𝑑) is m-rectifiable if it can be covered up to an ℋ𝑚-null set, where
here, as usual,ℋ𝛼 denotes the 𝛼-dimensional Hausdorff measure, see [9, Section 2.10.2], by a countable
union of Lipschitz images of compact subsets of R𝑚. It was proved by Kirchheim in [13] that such a set
E has Hausdorff density equal to one at almost every point, that is:

Θ𝑚 (𝐸, 𝑥) := lim
𝑟→0

ℋ𝑚(𝐸 ∩ 𝐵(𝑥, 𝑟))
(2𝑟)𝑚 = 1,

for ℋ𝑚-almost all 𝑥 ∈ 𝐸 , where 𝐵(𝑥, 𝑟) denotes the closed unit ball in (𝑋, 𝑑) with centre x and radius r.
It is natural to ask whether the converse is true. Namely, does the unit Hausdorff density property imply
rectifiability of E? A positive answer, assuming that (𝑋, 𝑑) is Euclidean space, was given by Mattila in
the fundamental work [22], following partial results by Besicovitch [4] and Marstrand [20, 21]. More
precisely, the following holds:

Theorem 1.1 (Besicovitch, Marstrand, Mattila). Fix 𝛼 ≥ 0, and let 𝐸 ⊂ R𝑛 be a Borel subset of
Euclidean space, such that Θ𝛼 (𝐸, 𝑥) = 1 for ℋ𝛼-almost all 𝑥 ∈ 𝐸 . Then 𝛼 is an integer and E is
𝛼-rectifiable.

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.31 Published online by Cambridge University Press

doi:10.1017/fms.2023.31
https://orcid.org/0000-0002-6138-9991
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.31&domain=pdf
https://doi.org/10.1017/fms.2023.31


2 A. Julia and A. Merlo

This result is surprising, in that one is able to infer a strong geometric property (the existence of flat,
𝛼-dimensional tangents to E at almost all points) from an a priori much less geometric condition. Note
that the unit density condition can be relaxed, to bounds on the lower and upper densities of E, as was
shown by Preiss in [28, Corollary 5.4(3)].

In general metric spaces, and for sets of dimension 1, the question was answered by Preiss and
Tišer [29]. Their proof uses a variant of the argument by Besicovitch, which is specific to dimension 1 and
the fact that a continuum with finiteℋ1 measure is rectifiable. The extension to higher dimensions is still
widely open, even inR𝑛 with a non-Euclidean norm. A relevant partial result has been achieved by Lorent
in [19], where he proved that in 𝑙3

∞, locally uniform measures are rectifiable. More recently, the second
named author in [24, 25] has proved analogues of Preiss’s rectifiability theorem for 1-codimensional
measures in Heisenberg groups and parabolic spaces, see [26], using a notion of rectifiability specific
to those spaces. The result in [26] has been obtained in collaboration with Mourgoglou and Puliatti.
In this paper, we investigate the structure of Borel sets with unit density for the Hausdorff measure in
homogeneous groups (a class of groups that includes Carnot group, see Section 2 for definitions) and
we prove:

Theorem 1.2. Given a homogeneous group G, there is a homogeneous norm | | · | | on G, for which,
whenever 𝛼 ≥ 0 and 𝐸 ⊂ G is such that ℋ𝛼 (𝐸) < +∞, the following are equivalent

(i) 𝛼 ∈ N and E is covered up to an ℋ𝛼-null set by countably many Lipschitz images of compact
subsets of R𝛼;

(ii) Θ𝛼 (𝐸, 𝑥) = 1 for ℋ𝛼-almost all 𝑥 ∈ 𝐸 .

Let us briefly discuss the result and its connection with the existing literature. In the Heisenberg
groups and in the parabolic spaces [24, 25, 26], the objects that solve the 1-codimensional density
problem are not Euclidean rectifiable in general. In both cases, they are just 1/2-Hölder surfaces that can
be approximated in the 1/2-Hölder metric by smooth surfaces. Therefore, what our result is implicitly
stating is that the Hausdorff density for such high-dimensional intrinsically rectifiable sets, with respect
to the natural norm we construct, must be strictly smaller than 1, and that the sets having unit density
for the Hausdorff measure must be low-dimensional. Thus, a more precise assessment of what we prove
is the following:

Theorem 1.3. Given a homogeneous group G, there is a homogeneous norm | | · | | on G, for which,
whenever 𝛼 ≥ 0 and 𝐸 ⊂ G is a Borel set for which Θ𝛼 (𝐸, 𝑥) = 1 for ℋ𝛼-almost every 𝑥 ∈ 𝐸 , then
𝛼 is an integer and varies among the topological dimensions of the homogeneous subgroups of the first
layer 𝑉1 of G and E is 𝛼-rectifiable.

For instance, in the first Heisenberg group H1, the only possible values for 𝛼 are 0 and 1, while the
Hausdorff dimension ofH1 is 4. This means, in particular, that on high-dimensional (intrinsic) rectifiable
sets in Carnot groups, the Hausdorff measure and the spherical Hausdorff measure do not coincide,
which is in stark contrast with what happens in Euclidean space (see, for instance, [9, Theorem 3.2.26]).

Our proof relies on the following observations. First, the Carathéodory construction which yields
the measureℋ𝛼 is obtained by coverings with arbitrary closed sets. This roughly means that if theℋ𝛼-
measure of a set E is (𝜎-)finite, given a set S of very small diameter, say 2𝑟 , containing an 𝑥 ∈ 𝐸 , one must
have ℋ𝛼 (𝐸 ∩ 𝑆) � (2𝑟)𝛼 (see Theorem 2.5). On the other hand, item (ii) of Theorem 1.2 implies also
ℋ𝛼 (𝐵(𝑥, 𝑟) ∩𝐸) � (2𝑟)𝛼. Thus, if there exists a set G strictly containing the unit ball but with diameter
no larger than 2, then ℋ𝛼 (𝑥 ∗ 𝛿𝑟 (𝐺) \ 𝐵(𝑥, 𝑟)))/(2𝑟)𝛼 must be very small (this assumption implies,
in particular, that the unit ball is not isodiametric). The second observation is that for specific choices
of the metric, such a set G exists and can be chosen in a way that the above constraints force the set E
with unit Hausdorff density to be concentrated along the horizontal directions, namely, along 𝑉1. More
precisely, using the first observation at small scales, we prove that E can be covered by (1+ 𝜀)-Lipschitz
graphs above 𝑉1 for 𝜀 arbitrarily small. Together with the fact that the projection 𝜋1 of G onto the space
𝑉1 is 1-Lipschitz, this implies that the projection 𝜋1 (𝐸) has Hausdorff density 1. As the restriction of
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our metric to 𝑉1 is euclidean, we can apply Theorem 1.1 to show that 𝜋1 (𝐸) is euclidean rectifiable and,
using the graph maps above, that E is as well. For the details, see the proof of Theorem 1.3 on page 10.

In the bulk of the paper, we stick to the smooth-box distance, defined by equation (4.1), as it is
a natural metric which makes sense in every homogeneous group and makes the construction and
computations relatively easy. A similar construction can be achieved in many other cases, such as for
the Koranyi norm in the first Heisenberg group, see Proposition 6.1, and similarly to H-type groups
endowed with the gauge norm. On the other hand, we stress that our construction does not work for the
Carnot-Carathéodory distance in the Heisenberg group, even though the unit ball for this distance is
also far from being isodiametric.

The isodiametric problem in a homogeneous group consists in maximising the volume over all
compact sets with diameter at most 2. As discussed above, this problem is deeply connected to that of
characterising sets with unit Hausdorff density (see Theorem 3.4). In a finite dimensional vector space,
it is known that the unit ball is the unique maximiser, up to translations [23]. If G is a homogeneous
group which is not a Banach space, we expect that the unit ball is not isodiametric for any homogeneous
norm. Indeed, in homogeneous groups of step 2 or above, there always exists a distance for which
the unit ball is not isodiametric, see [30], and there are many examples of nonisodiametric balls in
homogeneous groups [18, 27]. The only groups in which we know of a general proof are those in which
the diameter of the unit ball is strictly smaller than 2, such as R with the snowflake distance | · |1/2.
The problem of checking whether in step higher than 2 every ball is not isodiametric is hard already in
the parabolic plane. One can prove that a vast array of metrics have a ball which is not isodiametric.
However, to provide an argument working for any norm, one soon finds technical obstructions. One of
the first obstacles is that there are norms in the parabolic plane for which every point of the boundary of
the unit ball lies at distance 2 from another, so that one cannot ‘add a small set’ to the ball, as one does
for more usual metrics. Examples of this phenomenon are the balls induced by the norms

‖(𝑥, 𝑡)‖1 := |𝑥 |+|𝑡 |1/2 (see Remark 3.20 in [27])

‖(𝑥, 𝑡)‖# := max{|𝑥 |, |𝑡 |1/2−sign(𝑡)𝑥}.

It is worth noting that our result is also relevant when passing from homogeneous groups to the more
general context of metric spaces. In [16] and [17, Theorem 1.6], it is proved that if a doubling metric
measure space has unique tangents at almost every point, then almost all these tangents are metric Lie
groups admitting dilations (and if the space is geodesic, then the Lie groups are Carnot groups). These
groups are thus ‘universal tangents’, and since density and rectifiability are infinitesimal properties of
metric spaces, one could expect that if the convergence to the tangent is ‘fast enough’, our result could
be used to prove by blowup the conjecture in a bigger class of metric spaces. The class of metric
groups with dilations is larger than that of homogeneous groups, but we prove in Section 5, that any
metric group with dilation is biLipschitz equivalent to a group with a slightly more general smooth-box
distance for which the unit ball is not isodiametric and the conclusion of Theorem 1.2 holds, meaning
that nothing too exotic is to be expected, even though as mentioned above, biLipschitz changes of norm
are notoriously difficult to handle for density questions.

The structure of this paper is the following: Section 2 contains notations and basic results on
homogeneous groups and measures. Section 3 is devoted to a comparison of the notions of surface
measures in Carnot groups. Section 4 contains the proof of Theorem 1.3. In section 5, we address the
more general notion of groups with dilations. Finally, in Section 6, we focus on the first Heisenberg
group with the Koranyi norm and discuss the full resolution of the density problem in that setting.

2. Preliminaries

We recall that a positive grading of a Lie algebra 𝔤 is a direct-sum decomposition 𝔤 = 𝑉1 ⊕ 𝑉2 ⊕· · ·⊕ 𝑉𝑠 ,
for some integer 𝑠 ≥ 1, where 𝑉𝑠 ≠ 0 and [𝑉1, 𝑉 𝑗 ] ⊆ 𝑉 𝑗+1 for all integers 𝑗 ∈ {1, . . . , 𝑠} and where we
set 𝑉𝑠+1 = 0. A positive grading is said to be a stratification, if [𝑉1, 𝑉 𝑗 ] = 𝑉 𝑗+1 for all 𝑗 ∈ {1, . . . , 𝑠}.
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We also recall that the first layer 𝑉1 of a stratification is usually referred to as the horizontal layer. A
homogeneous group G of step s is a connected and simply connected Lie group whose Lie algebra 𝔤
admits a positive grading 𝔤 = 𝑉1 ⊕ 𝑉2 ⊕ · · · ⊕ 𝑉𝑠 . See [15], for precise definitions, in particular, it can
be decomposed as a direct sum:

G = 𝑉1 ⊕ · · · ⊕ 𝑉𝜅 ,

where the finite dimensional vector spaces 𝑉ℓ are called layers and 𝜅 is the step of G. It will always
be assumed that 𝑉1 ≠ {0} (see Remark 2.6). Such a group can be endowed with a family of dilations
(𝛿𝜆)𝜆>0 defined by:

𝛿𝜆 (𝑥1, 𝑥2, . . . , 𝑥𝜅 ) = (𝜆𝑥1, 𝜆2𝑥2, . . . , 𝜆𝜅𝑥𝜅 ).

By the Baker-Campbell-Hausdorff formula, up to diffeomorphisms, the group operation can be
written as follows, for 𝑝, 𝑞 ∈ G and ℓ ∈ {1, . . . , 𝜅}:

𝑝 ∗ 𝑞 = 𝑝 + 𝑞 + 𝑄(𝑝, 𝑞) for all 𝑝, 𝑞 ∈ R𝑛,

where 𝑄 = (𝑄1, . . . , 𝑄𝑠) : R𝑛 × R𝑛 → 𝑉1 ⊕ . . . ⊕ 𝑉𝑠 , and the 𝑄𝑖s have the following properties. For
any 𝑖 = 1, . . . 𝑠 and any 𝑝, 𝑞 ∈ G, we have:

(i) 𝑄𝑖 (𝛿𝜆𝑝, 𝛿𝜆𝑞) = 𝜆𝑖𝑄𝑖 (𝑝, 𝑞),
(ii) 𝑄𝑖 (𝑝, 𝑞) = −𝑄𝑖 (−𝑞,−𝑝),

(iii) 𝑄1 = 0 and 𝑄𝑖 (𝑝, 𝑞) = 𝑄𝑖 (𝑝1, . . . , 𝑝𝑖−1, 𝑞1, . . . , 𝑞𝑖−1).
Definition 2.1 (Homogeneous norm, homogeneous distance). A distance 𝑑 : G × G → R is homoge-
neous and left-invariant if for any 𝑥, 𝑦 ∈ G, there holds
(i) 𝑑 (𝛿𝜆𝑥, 𝛿𝜆𝑦) = 𝜆𝑑 (𝑥, 𝑦) for any 𝜆 > 0,

(ii) 𝑑 (𝑧 ∗ 𝑥, 𝑧 ∗ 𝑦) = 𝑑 (𝑥, 𝑦) for any 𝑧 ∈ G.
It is equivalent to define a homogeneous distance d and a homogeneous norm | | · | |, as can be seen by
writing

| |𝑥 | | := 𝑑 (0, 𝑥), or conversely 𝑑 (𝑥, 𝑦) := | |𝑥−1 ∗ 𝑦 | |.

In the following, d is a left-invariant homogeneous metric on G and the corresponding closed ball
with centre 𝑥 ∈ G and radius 𝑟 > 0 is denoted by B𝑑 (𝑥, 𝑟). We will drop the subscript d when there is
no ambiguity. As the first layer 𝑉1 is assumed to be nondegenerate, the balls 𝐵𝑑 (𝑥, 𝑟) have diameter 2𝑟 .
The following result, the elementary proof of which we learned in Metelichenko’s thesis [27, Lemma
3.17], will be very useful.
Proposition 2.2. If | | · | | is a homogeneous norm on G, then its restriction | · | to 𝑉1 is a vector space
norm. Also, if 𝜋1 denotes the projection G→ 𝑉1, (𝑥1, . . . , 𝑥𝜅 ) ↦→ 𝑥1, then 𝜋1 is exactly 1-Lipschitz with
the norm | · | on 𝑉1.
Proof. As 𝜋1 (𝑥1, 0, . . . , 0) = 𝑥1, the projection 𝜋1 cannot have Lipschitz constant smaller than one.
In order to prove the opposite bound, note that 𝜋1 is a group morphism, thus, it suffices to show that
|𝜋1 (𝑥) | ≤ | |𝑥 | | for 𝑥 ∈ G. Fix 𝑥 = (𝑥1, . . . , 𝑥𝜅 ) ∈ G. On the one hand, there holds | |𝛿1/2 (𝑥 ∗ 𝑥) | | =
| |𝑥 ∗ 𝑥 | |/2 ≤ ||𝑥 | |, and on the other hand:

𝛿1/2 (𝑥 ∗ 𝑥) = (𝑥1, 2−1𝑥2, . . . , 21−𝜅𝑥𝜅 ).

Iterating this operation, and noting that 𝛿1/2𝑛 ((𝑥 ∗ 𝑥) ∗ · · · ∗ (𝑥 ∗ 𝑥)) → (𝑥1, 0, . . . , 0), one gets
| | (𝑥1, 0, . . . , 0) | | ≤ | |𝑥 | |. Finally, given 𝑥1 and 𝑦1 in 𝑉1, there holds

|𝑥1 + 𝑦1 | = | |𝜋1 ((𝑥1, 0, . . . , 0) ∗ (𝑦1, 0, . . . , 0)) | | ≤ | | (𝑥1, 0, . . . , 0) | | + | | (𝑦1, 0, . . . , 0) | | = |𝑥1 | + |𝑦1 |,

and thus, | · | is a (vector-space) norm on 𝑉1, since homogeneity and positivity are immediate. �
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Since one of the themes of the paper is the distinction between the various types of Hausdorff
measures, we introduce them here.

Definition 2.3 (Hausdorff and spherical measures). For 𝛼 ≥ 0, define the 𝛼-dimensional Hausdorff
measure relative to the left-invariant homogeneous distance d

ℋ𝛼
𝑑 (𝐸) = sup

𝛿>0
ℋ𝛼

𝑑, 𝛿 (𝐸) := sup
𝛿>0

inf
{ ∞∑

𝑗=1
(diam𝑆 𝑗 )𝛼 : 𝐸 ⊆

∞⋃
𝑗=1

𝑆 𝑗 , 𝑆 𝑗 closed, diam𝑆 𝑗 ≤ 𝛿

}
.

Along with the Hausdorff measure, it is useful to study other surface measures, we will focus on two
of them: the 𝛼-dimensional spherical measure:

𝒮𝛼 (𝐴) := sup
𝛿>0

inf
{ ∞∑

𝑗=1
(2𝑟 𝑗 )𝛼 : 𝐴 ⊆

∞⋃
𝑗=1

B𝑑 (𝑥 𝑗 , 𝑟 𝑗 ), 𝑟 𝑗 ≤ 𝛿

}

and the 𝛼-dimensional centred spherical measure:

𝒞𝛼 (𝐴) := sup
𝐸⊆𝐴

𝒞𝛼
0 (𝐸),

where

𝒞𝛼
0 (𝐸) := sup

𝛿>0
inf

{ ∞∑
𝑗=1

(2𝑟 𝑗 )𝛼 : 𝐸 ⊆
∞⋃
𝑗=1

𝐵𝑑 (𝑥 𝑗 , 𝑟 𝑗 ), 𝑥 𝑗 ∈ 𝐸, 𝑟 𝑗 ≤ 𝛿

}
.

These three measures are Borel regular outer measures and are mutually absolutely continuous, more
precisely, ℋ𝛼 ≤ 𝒮𝛼 ≤ 𝒞𝛼 ≤ 2𝛼ℋ𝛼.

Definition 2.4 (Lower and upper densities). If 𝜙 is a Radon measure on G, and 𝛼 > 0, define the lower
and upper 𝛼-densities of 𝜙 at x by

Θ𝛼
∗ (𝜙, 𝑥) := lim inf

𝑟→0

𝜙(𝐵(𝑥, 𝑟))
(2𝑟)𝛼 , and Θ𝛼,∗(𝜙, 𝑥) := lim sup

𝑟→0

𝜙(𝐵(𝑥, 𝑟))
(2𝑟)𝛼 .

If the upper and lower densities coincide, their value is called the density of 𝜙 at x. If 𝜙 = ℋ𝛼�𝐸 , where
E is a subset of G, its density (respectively, upper, lower densities) is also called Hausdorff density of
E and denoted Θ𝛼 (𝐸, 𝑥).

The following fundamental result on Hausdorff measures lies at the core of this paper. It is a
consequence of [9, Theorems 2.10.17 and 2.10.18] (see also Theorem 2.1 and Lemma 3.1 in [12]).

Proposition 2.5. Suppose that 𝐸 ⊂ G is a Borel set of ℋ𝛼-finite measure. Then for ℋ𝛼-almost every
𝑥 ∈ 𝐸 , there holds:

lim
𝛿→0

sup
{
ℋ𝛼 (𝐸 ∩ 𝑆)
(diam𝑆)𝛼 , 𝑥 ∈ 𝑆, diam𝑆 < 𝛿

}
≤ 1. (2.1)

Moreover, in the case 𝐸 = G, denoting by Q the homogeneous dimension of G, for 𝑥 ∈ G, there holds:

lim
𝛿→0

sup
{

ℋ𝑄 (𝑆)
(diam𝑆)𝑄

, 𝑥 ∈ 𝑆, diam𝑆 < 𝛿

}
= 1.

There is a degenerate case, which needs to be ruled out:

Proposition 2.6. If 𝑉1 = {0}, then sets with unit Hausdorff density are necessarily of dimension 0.
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Proof. First, let us show that a ball of radius r in such a group necessarily has diameter strictly less
than 2𝑟 .

In order to see this, let ℓ be the index of the first nontrivial layer and denote by G′ the homogeneous
group obtained from G by dividing by ℓ the homogeneity of each layer of G. It is immediate to see that
| | · | |ℓ is a norm on the homogeneous group G′. Since the unit ball 𝐵(0, 1) is the same in G and G′, on
the one hand, thanks to Proposition 2.2, we know that the diameter of 𝐵(0, 1) in G′ is 2 because the
group has nontrivial first layer, on the other, in G, its diameter is 21/ℓ < 2. By homogeneity, there exists
𝜀 > 0, such that diam(𝐵(𝑥, 𝑟)) ≤ (1 − 𝜀) (2𝑟) for all 𝑥 ∈ G and all 𝑟 > 0. Given 𝐸 ⊂ G with Hausdorff
𝛼-density 1ℋ𝛼-almost everywhere, using the first statement of Proposition 2.5 at a point where it holds,
for small enough 𝑟 > 0, one gets

ℋ𝛼 (𝐸 ∩ 𝐵(𝑥, 𝑟)) ≤ (1 + 𝜀)𝛼diam𝐵(𝑥, 𝑟)𝛼 < (1 + 𝜀)𝛼 (1 − 𝜀)𝛼 (2𝑟)𝛼 = (1 − 𝜀2)𝛼 (2𝑟)𝛼 .

Dividing by (2𝑟)𝛼 and letting r go to zero contradicts the Hausdorff density hypothesis if 𝛼 > 0. �

3. Comparison of surface measures in Carnot groups

Throughout this section, G will be a fixed Carnot group and d a fixed homogeneous left-invariant
distance on G.

Definition 3.1 (𝐶1
H(G,G′)-rectifiable sets). Let G′ be another Carnot group endowed with the left-

invariant homogeneous distance 𝑑 ′. Let Ω ⊆ G be open, and let 𝑓 : Ω → G′ be a map. We say that f is
Pansu differentiable at 𝑥 ∈ Ω if there exists a homogeneous homomorphism 𝐷 𝑓𝑥 : G→ G′, such that

lim
𝑦→𝑥

𝑑 ′( 𝑓 (𝑥)−1 · 𝑓 (𝑦), 𝐷 𝑓𝑥 (𝑥−1 · 𝑦))
𝑑 (𝑥, 𝑦) = 0.

Moreover, we say that f is of class 𝐶1
H in Ω if the map 𝑥 ↦→ 𝐷 𝑓𝑥 is continuous from Ω to the space of

homogeneous homomorphisms from G to G′. Given an arbitrary Carnot group G, we say that Γ ⊆ G
is a 𝐶1

H-submanifold of G if there exists a Carnot group G′, such that for every 𝑝 ∈ Γ, there exists an
open neighbourhood Ω of p and a function 𝑓 ∈ 𝐶1

H (Ω;G′), such that

Γ ∩Ω = {𝑔 ∈ Ω : 𝑓 (𝑔) = 0}, (3.1)

and 𝐷 𝑓𝑝 : G → G′ is surjective and K𝑒𝑟 (𝐷 𝑓𝑝) admits a complementary subgroup. In this case, we
say that Γ is a 𝐶1

H (G,G′)-submanifold. Finally, we say that Γ ⊆ G is a (G,G′)-rectifiable set if
ℋ𝑄−𝑄′ (Γ) < +∞ and there exist countably many subsets Γ𝑖 of G that are 𝐶1

H(G,G′)-submanifolds,
such that

ℋQ−Q′

(
Γ \

+∞⋃
𝑖=1

Γ𝑖

)
= 0.

At ℋ𝑄−𝑄′
�Γ-almost every point x, Γ admits a tangent V(𝑥), which is a homogeneous subgroup of G

with homogeneous dimension 𝑄 − 𝑄 ′.

Definition 3.2 (Tangent measures). Let 𝜙 be a Radon measure on G. For any 𝑥 ∈ G and any 𝑟 > 0, we
define the rescaled measure

𝑇𝑥,𝑟𝜙(𝐸) := 𝜙(𝑥 ∗ 𝛿𝑟 (𝐸)), for any Borel set 𝐸 ⊂ G.

The 𝛼-dimensional tangents to 𝜙 at x are the Radon measures 𝜈, which are weak* limits of a sequence
𝑟−𝛼𝑖 𝑇𝑥,𝑟𝑖 𝜙 for 𝑟𝑖 → 0. The set of these measures is denoted by Tan𝛼 (𝜙, 𝑥).
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Definition 3.3. Let 𝜙 be a Radon measure in G, and let ℎ ∈ N. We say that 𝜙 is 𝒫ℎ-rectifiable if

(i) 0 < Θℎ
∗ (𝜙, 𝑥) ≤ Θℎ,∗(𝜙, 𝑥) < ∞ for 𝜙-almost every 𝑥 ∈ G;

(ii) for 𝜙-almost every 𝑥 ∈ G, there exists a homogeneous subgroup V(𝑥) of G of Hausdorff dimension
ℎ ∈ N, such that Tanℎ (𝜙, 𝑥) ⊆ {𝜆ℋℎ�V(𝑥) : 𝜆 > 0}.

The various surface measures on (G,G′)-rectifiable sets are now well understood, as summed up in
the following statement which is a combination of [1, Theorem 1.1], [2, Proposition 5.2], as well as the
results of [12].

Theorem 3.4. Suppose that Γ ⊆ G is a Borel, (G,G′)-rectifiable set. Then ℋ𝑄−𝑄′
�Γ, 𝒮𝑄−𝑄′

�Γ and
𝒞𝑄−𝑄′

�Γ are 𝒫𝑄−𝑄′-rectifiable. Furthermore, at almost every point 𝑥 ∈ Γ

Θ𝑄−𝑄′ (𝒞𝑄−𝑄′
�Γ, 𝑥) = 1. (3.2)

Finally, letting V(𝑥) be the 𝑄 − 𝑄 ′ subgroup for which part (ii) of Definition 3.3 is satisfied

ℋ𝑄−𝑄′
�Γ = A(𝒞𝑄−𝑄′

�V(·))𝒞𝑄−𝑄′
�Γ, and ℋ𝑄−𝑄′

�Γ = A(𝒮𝑄−𝑄′
�V(·))𝒮𝑄−𝑄′

�Γ,

where for a homogeneous subgroupV ofGwith dimension 𝑄−𝑄 ′ and a Haar measure 𝜇 onV, we write:

A(𝜇) := sup{(diam𝑆)−(𝑄−𝑄′)𝜇(𝑆), 0 < diam𝑆 < +∞}.

The above result tells us that the coefficients that allow to express the Hausdorff measure on smooth
surfaces in terms of the centred Hausdorff measure or the spherical Hausdorff measure are almost
everywhere the volume of the isodiametric is set in the tangents. (with respect to the centred or the
spherical measures)

Corollary 3.5. Under the hypotheses of Theorem 3.4 and at a point x where its conclusions holds,
suppose that

Θ𝑄−𝑄′ (ℋ𝑄−𝑄′
�Γ, 𝑥) = 1. (3.3)

Then the intersection of 𝐵(0, 1) with V(𝑥) is an isodiametric shape in the homogeneous group V(𝑥)
with the metric given by the restriction of d.

Proof. Combining the Hausdorff density hypothesis (3.3) and the centred spherical density property
(3.2) yields

1 = A(𝒞𝑄−𝑄′
�V(𝑥)) = sup

{ (𝒞𝑄−𝑄′
�V(𝑥)) (𝑆)

(diam𝑆) (𝑄−𝑄′) , 0 < diam𝑆 < +∞
}
. (3.4)

However, since 𝒞𝑄−𝑄′
�Γ is 𝒫𝑄−𝑄′-rectifiable and thanks to (3.2), there also holds

(𝒞𝑄−𝑄′
�V(𝑥)) (𝐵(0, 1))
2(𝑄−𝑄′) = lim

𝑟→0

(𝒞𝑄−𝑄′
�Γ) (𝐵(𝑥, 𝑟))

(2𝑟) (𝑄−𝑄′) = 1,

which implies that 𝐵(0, 1) realises the supremum of the right-hand side of (3.4). Therefore, the restriction
of the unit ball 𝐵(0, 1) ∩ V(𝑥) is isodiametric in the group V(𝑥) endowed with the restriction of the
metric d. �

4. Sets with Hausdorff density 1 in homogeneous groups

One can endow a homogeneous group G as above with a smooth-box homogeneous norm of the form

| | (𝑥1, . . . , 𝑥𝜅 ) | | := max{𝜀ℓ |𝑥ℓ |1/ℓ , ℓ = 1, . . . , 𝜅}, (4.1)
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where |𝑥ℓ | stands for the euclidean norm of the vector 𝑥ℓ ∈ 𝑉ℓ and where 𝜀1 = 1. In all the following,
we suppose 𝜅 ≥ 2. Throughout the rest of this section, we will denote by 𝐵(𝑥, 𝑟) the ball of centre x and
radius 𝑟 > 0 relative to the metric induced by the norm in (4.1). For a proof of the following lemma, we
refer to the appendix of [11].

Lemma 4.1. Provided the 𝜀ℓ are small enough with respect to 𝜀1, . . . , 𝜀ℓ−1, then the function (4.1)
defines a homogeneous norm, and thus a metric, on G.

The unit ball of this homogeneous norm is not isodiametric, indeed, it is easy to find a strictly larger
set diameter 2. Fix 19/10 < 𝜉 < 2. Throughout the rest of the section, we choose 𝜀2, . . . , 𝜀𝜅 in such a
way that the conclusion of Lemma 4.1 holds and

2𝜉ℓ−1 + 16ℓ+1𝜀ℓℓ𝑐ℓ ≤ 2ℓ for any ℓ ≥ 2. (4.2)

Proposition 4.2. Let 𝜉 be the parameter chosen above, and define the set 𝐺 (0, 1) as the family of those
(𝑥1, 𝑥2, . . . , 𝑥𝜅 ) = 𝑥 ∈ G for which

|𝑥1 | ≤ 1 and 𝜀ℓℓ |𝑥ℓ | ≤ 𝜉ℓ−1 for ℓ ≥ 2.

If the 𝜀1, . . . , 𝜀𝜅 are chosen small enough with respect to the 𝑐ℓ , then the diameter of the set 𝐺 (0, 1) is
2 and 𝐵(0, 1) ⊆ 𝐺 (0, 1).

Proof. Checking layer by layer, one sees that 𝐵(0, 1) ⊂ 𝐺 (0, 1) ⊂ 𝐵(0, 2). It remains to prove that if
𝑥, 𝑦 are points in 𝐺 (0, 1), there holds | |𝑥−1 ∗ 𝑦 | | ≤ 2. This is also done layer by layer: for the first layer,
one immediately has |𝑦1 − 𝑥1 | ≤ 2. From the second layer onward, that is, for ℓ ≥ 2, we have

𝜀ℓℓ |𝜋ℓ (𝑥−1 ∗ 𝑦) | = 𝜀ℓℓ |−𝑥ℓ + 𝑦ℓ + 𝑄ℓ (−𝑥1, . . . ,−𝑥ℓ−1, 𝑦1, . . . , 𝑦ℓ−1) |
≤ 𝜀ℓℓ |𝑥ℓ | + 𝜀ℓℓ |𝑦ℓ | + 𝜀ℓℓ |𝑄ℓ (−𝑥1, . . . ,−𝑥ℓ−1, 𝑦1, . . . , 𝑦ℓ−1) | (4.3)
≤ 2𝜉ℓ−1 + 𝜀ℓℓ |𝑄ℓ (−𝑥1, . . . ,−𝑥ℓ−1, 𝑦1, . . . , 𝑦ℓ−1) |.

Recall that each entry of 𝑄ℓ : (𝑉1 ⊕ . . . ⊕ 𝑉ℓ−1) × (𝑉1 ⊕ . . . ⊕ 𝑉ℓ−1) → 𝑉ℓ is a polynomial in the
components of x and y of order lower than ℓ, and is ℓ homogeneous with respect to the group dilations.
Hence, following the footsteps of [11], we can find positive real numbers 𝑐ℓ > 0, such that

|𝑄ℓ (𝑥, 𝑦) | ≤
ℓ−1∑
𝑗=1

𝑐 𝑗 ,ℓ | |𝑥 | | 𝑗 | |𝑦 | |ℓ− 𝑗 ≤ 𝑐ℓ

ℓ−1∑
𝑗=1

(
ℓ

𝑗

)
| |𝑥 | | 𝑗 | |𝑦 | |ℓ− 𝑗

≤ 𝑐ℓ (| |𝑥 | | + | |𝑦 | |)ℓ ≤ 2ℓ−1𝑐ℓ (| |𝑥 | |ℓ + ||𝑦 | |ℓ ),

(4.4)

where the last inequality above comes from Jensen’s inequality. The above chain of inequalities together
with (4.2) and (4.3) implies

𝜀ℓℓ |𝜋ℓ (𝑥−1 ∗ 𝑦) | = 𝜀ℓℓ |−𝑥ℓ + 𝑦ℓ + 𝑄ℓ (−𝑥1, . . . ,−𝑥ℓ−1, 𝑦1, . . . , 𝑦ℓ−1) |
≤ 2𝜉ℓ−1 + 2ℓ−1𝜀ℓℓ𝑐ℓ (| |𝑥 | |ℓ + ||𝑦 | |ℓ )
≤ 2𝜉ℓ−1 + 2ℓ−1𝜀ℓℓ𝑐ℓ · 2 ≤ 2ℓ ,

which concludes the proof. �

Definition 4.3. For any 𝑥 ∈ G and any 𝑟 > 0, we define 𝐺 (𝑥, 𝑟) := 𝑥 ∗ 𝛿𝑟 (𝐺 (0, 1)).

Before passing to the proof of our main theorem, a technical result is needed: it quantifies how far
𝐺 (0, 1) is far from 𝐵(0, 1), in the sense that 𝐺 (0, 1)\𝐵(0, 1) contains large balls.
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Proposition 4.4. Define the functions 𝑟, 𝑠 : G→ (0, +∞) by

𝑟 (𝑥) := max
{ ‖𝑥‖+|𝑥1 |

2
, ‖𝑥‖

( (1 + 10−1) (1 + 2ℓ𝜀ℓℓ𝑐ℓ)
𝜉ℓ−1

)1/ℓ
for ℓ = 2, . . . , 𝜅

}
,

and

𝑠(𝑥) :=
‖𝑥‖ − 𝑟 (𝑥)

10
.

Then if 𝑥 ∈ G satisfies |𝑥1 | < | |𝑥 | |, there holds

𝐵(𝑥, 𝑠(𝑥)) ⊂ 𝐺 (0, 𝑟 (𝑥))\𝐵(0, 𝑟 (𝑥)).

Proof. By homogeneity of the statement, it suffices to handle the case ‖𝑥‖ = 1. Fix 𝑥 ∈ G with | |𝑥 | | = 1
and |𝑥1 | < 1. Notice that by (4.2), 𝑟 (𝑥) < ‖𝑥‖ and 0 < 𝑠(𝑥) < 10−1. For 𝑦 ∈ 𝐵(𝑥, 𝑠(𝑥)), there holds

‖𝑦‖ ≥ ‖𝑥‖−𝑠(𝑥) = (1 − 10−1)‖𝑥‖ + 10−1𝑟 (𝑥) > 𝑟,

so that 𝑦 ∉ 𝐵(0, 𝑟 (𝑥)). On the other hand, we claim that 𝑦 ∈ 𝐺 (0, 𝑟 (𝑥)), let us prove this layer by layer.
Clearly

|𝑦1 | ≤ |𝑥1 |+𝑠(𝑥) ≤ 10−1

2
‖𝑥‖+(1 − 10−1/2) |𝑥1 | <

‖𝑥‖+|𝑥1 |
2

≤ 𝑟.

Now consider a layer ℓ ≥ 2, there holds

𝜀ℓℓ |𝑦ℓ | ≤ 𝜖ℓℓ |𝑥ℓ |+𝑠(𝑥)ℓ + 2ℓ−1𝜀ℓℓ𝑐ℓ (| |𝑥 | |ℓ + 𝑠(𝑥)ℓ)
≤ 1 + 𝑠(𝑥)ℓ + 2ℓ−1𝜀ℓℓ𝑐ℓ (1 + 𝑠(𝑥)ℓ)
≤ (1 + 2ℓ−1𝜀ℓℓ𝑐ℓ) (1 + 𝑠(𝑥)ℓ).

Recalling the definition of 𝑟 (𝑥), we have

𝜀ℓℓ |𝑦ℓ |≤
𝜉ℓ−1𝑟 (𝑥)ℓ

1 + 10−1 (1 + 𝑠(𝑥)ℓ) ≤ 𝜉ℓ−1𝑟 (𝑥)ℓ .

�

Proposition 4.5. Let 0 < 𝜀 < 1. Assume E is a set in G, such that

𝐸 ∩ 𝑥 ∗ {𝑦 ∈ G : ‖𝑦‖ > (1 − 𝜀)−1 |𝑦1 |} = ∅ for any 𝑥 ∈ 𝐸. (4.5)

Then, there exists a continuous function 𝜑 : 𝜋1 (𝐸) → G, such that 𝜑(𝜋1 |𝐸 ) = Id on E and that for any
𝑎, 𝑏 ∈ 𝜋1 (𝐸), we have

‖𝜑(𝑎)−1𝜑(𝑏)‖ ≤ (1 − 𝜀)−1 |𝑏 − 𝑎 |. (4.6)

Proof. First, note that the projection 𝜋1 is injective on E. To see this, pick two points 𝑥, 𝑦 ∈ 𝐸 , thanks
to (4.5), there holds

0 < ‖𝑥−1 ∗ 𝑦‖ ≤ (1 − 𝜀)−1 |𝑦1 − 𝑥1 |. (4.7)

Thus, 𝜋1 has an inverse on its image, denote it by 𝜑. Estimate (4.6) follows from (4.7). �

Remark 4.6. By definition of r and s, it is clear that given positive parameters 𝜀 > 0 and 𝛼 > 0, there
exists a 𝑘 = 𝑘 (𝜀, 𝛼) ∈ N, such that if 𝑠(𝑥)𝛼 ≤ 2‖𝑥‖𝛼/(𝑘 − 1) for some 𝑥 ∈ G, then |𝑥1 | ≥ (1 − 𝜀)‖𝑥‖.
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With these tools at hand, we can now state and prove the main step in the proof of Theorem 1.3:

Proposition 4.7. Fix 𝛼, 𝜀 > 0, and choose 𝑘 = 𝑘 (𝜀, 𝛼) ≥ 2 as in Remark 4.6. Let E be a Borel set, such
that

lim
𝑟→0

ℋ𝛼�𝐸 (𝐵(𝑥, 𝑟))
(2𝑟)𝛼 = 1, for ℋ𝛼-almost every 𝑥 ∈ 𝐸.

For each 𝑗 ∈ N, let 𝐸 𝑗 ,𝑘 be the set of those 𝑥 ∈ 𝐸 , such that

1 − 1
𝑘
≤ ℋ𝛼 (𝐵(𝑥, 𝑟) ∩ 𝐸)

(2𝑟)𝛼 𝑎𝑛𝑑
ℋ𝛼 (𝐺 (𝑥, 𝑟) ∩ 𝐸)

(2𝑟)𝛼 ≤ 1 + 1
𝑘

, for all 0 < 𝑟 < 1/ 𝑗 . (4.8)

Then ℋ𝛼 (𝐸 \ ∪ 𝑗∈N𝐸 𝑗 ,𝑘 ) = 0 and the set 𝐸 𝑗 ,𝑘 can be covered by images of (1 − 𝜀)−1-biLipschitz maps
from a subset of 𝑉1 endowed with the euclidean metric to G.

Proof. By Propositions 2.5 and 4.2 and the properties of E for any 𝑘 ∈ N, we have
ℋ𝛼 (𝐸 \∪ 𝑗∈N𝐸 𝑗 ,𝑘 ) = 0. Fix two indices 𝑗 , 𝑘 ∈ N and cover 𝐸 𝑗 ,𝑘 by countably many balls 𝐵(𝑧𝑖 , 𝑟𝑖) with
𝑟𝑖 < (10 𝑗)−1. For 𝑖 ∈ N, we will show that 𝐸 𝑗 ,𝑘 ∩ 𝐵(𝑧𝑖 , 𝑟𝑖) is the image of a 1-bi-Lipschitz map from a
subset of the vector space 𝑉1 endowed with the Euclidean metric to G.

Let 𝑥, 𝑦 ∈ 𝐸 𝑗 ,𝑘∩𝐵(𝑧𝑖 , 𝑟𝑖) and without loss of generality, since left translations are isometries, suppose
that 𝑥 = 0. Suppose that |𝑦1 | < | |𝑦 | |. By Proposition 4.4, we know that 𝐵(𝑦, 𝑠(𝑦)) ⊂ 𝐺 (0, 𝑟)\𝐵(0, 𝑟)
for some 𝑟 ≤ ||𝑦 | | < (10 𝑗)−1. However, by definition of 𝐸 𝑗 ,𝑘 , there holds

ℋ𝛼 (𝐺 (0, 𝑟)\𝐵(0, 𝑟) ∩ 𝐸) ≤ ℋ𝛼 (𝐺 (0, 𝑟) ∩ 𝐸) −ℋ𝛼 (𝐵(0, 𝑟) ∩ 𝐸) ≤ 2𝑘−1 (2𝑟)𝛼, (4.9)

and

ℋ𝛼 (
𝐵(𝑦, 𝑠(𝑦)) ∩ 𝐸

)
≥

(
1 − 1

𝑘

)
(2𝑠(𝑦))𝛼, (4.10)

since 𝑠(𝑦) < | |𝑦 | | ≤ (10 𝑗)−1. In particular, combining (4.9) and (4.10) and the choice of r, we infer that

(
1 − 1

𝑘

) ( 𝑠(𝑦)
‖𝑦‖

)𝛼
≤ ℋ𝛼�𝐸 (𝐵(𝑦, 𝑠(𝑦)))

(2‖𝑦‖)𝛼

≤ ℋ𝛼�𝐸 (𝐺 (0, 𝑟)\𝐵(0, 𝑟))
(2‖𝑦‖)𝛼 ≤ 2𝑘−1 (2𝑟)𝛼

(2‖𝑦‖)𝛼 ≤ 2𝑘−1.

(4.11)

By the choice of k and Remark 4.6, we conclude that for 𝑖 ∈ N and 𝑥, 𝑦 ∈ 𝐵(𝑧𝑖 , 𝑟𝑖) ∩ 𝐸 𝑗 ,𝑘 , we have

| |𝑥−1 ∗ 𝑦 | | ≤ (1 − 𝜀)−1 | (𝑥−1 ∗ 𝑦)1 |

and Proposition 4.5 concludes the proof. �

Proof of Theorem 1.3. As 𝜋1 is 1-Lipschitz, 𝜋1 (𝐸) has 𝜎-finite Hausdorff measure, in particular, it has
upper Hausdorff density at most 1, ℋ𝛼-almost everywhere. Fix 𝜂 > 0, by Proposition 4.7, for every
𝜂 > 0, E can be covered up to an ℋ𝛼-null set by countably many images of (1+𝜂)-biLipschitz maps 𝑓

𝜂
𝑛

defined on subsets 𝐴
𝜂
𝑛 of 𝑉1. As E has unit Hausdorff density ℋ𝛼-almost everywhere, so do its subsets

𝑓
𝜂
𝑛 (𝐴𝜂

𝑛 ) at almost every point (see, for instance, [2, Proposition 2.2]). Pick such a point 𝑥 ∈ 𝑓
𝜂
𝑛 (𝐴𝜂

𝑛 ).
Writing 𝑓 := 𝑓

𝜂
𝑛 and 𝐴 := 𝐴

𝜂
𝑛 for simplicity, there holds

lim
𝑟→0

ℋ𝛼 ( 𝑓 (𝐴) ∩ 𝐵(𝑥, 𝑟))
(2𝑟)𝛼 = 1.
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On the one hand, since 𝜋1 is 1-Lipschitz, there holds

𝜋1 ( 𝑓 (𝐴) ∩ 𝐵(𝑥, 𝑟)) ⊂ 𝐴 ∩ 𝐵(𝜋1 (𝑥), 𝑟),

and on the other hand, as f is (1 + 𝜂)-Lipschitz, we have

ℋ𝛼 ( 𝑓 (𝐴) ∩ 𝐵(𝑥, 𝑟)) ≤ (1 + 𝜂)𝛼ℋ𝛼 (𝐴 ∩ 𝐵(𝜋1 (𝑥), 𝑟)).

This implies

ℋ𝛼 (𝜋1 (𝐸) ∩ 𝐵(𝑥, 𝑟))
(2𝑟)𝛼 ≥ ℋ𝛼 (𝜋1 (𝐴) ∩ 𝐵(𝜋1 (𝑥), 𝑟))

(2𝑟)𝛼 ≥ 1
(1 + 𝜂)𝛼

ℋ𝛼 ( 𝑓 (𝐴) ∩ 𝐵(𝑥, 𝑟))
(2𝑟)𝛼 .

Letting r go to 0, we obtain a bound on the lower density of 𝜋1 (𝐸):

Θ𝛼
∗ (𝜋1 (𝐸), 𝑥) ≥ (1 + 𝜂)−𝛼 .

Thus, for every 𝜂 > 0, there is a subset of 𝜋1 (𝐸) of full ℋ𝛼-measure with lower Hausdorff density
at least (1 + 𝜂)−𝛼. Taking a countable intersection for a sequence of parameters 𝜂 going to zero yields
a subset of 𝜋1 (𝐸) of full measure with unit Hausdorff density. Note that the Hausdorff measure and
the density on 𝑉1 are computed with respect to the euclidean norm. By Marstrand’s Theorem (see [8,
Theorem 3.1], we have 𝛼 ∈ {1, . . . , 𝑛1}. Therefore, the main result of [22] applies and 𝜋1 (𝐸) is euclidean
rectifiable. Using the biLipschitz maps of Proposition 4.7, one therefore sees that E itself is 𝛼-rectifiable
(in the metric sense of Federer, see [9, Section 3.2.14]). In addition, by the Pansu-Rademacher Theorem,
it is possible to show that the tangent measures of ℋ𝛼�𝐸 must be almost everywhere the Haar measure
of some subgroup of 𝑉1, and hence, 𝛼 must be the dimension of one of those horizontal subgroups. �

5. The case of metric Lie groups admitting dilations

In this section, we discuss metric Lie groups admitting dilations, and show that they are not too different
from homogeneous groups, in the sense that they admit biLipschitz equivalent ‘homogeneous’ distances
for which Theorem 1.2 holds, with the same proof as above.

Definition 5.1. If G is a Lie group with Lie algebra 𝔤, a linear map 𝐴 : 𝔤 → 𝔤 is a derivation if it obeys
the Leibniz law 𝐴([𝑥, 𝑦]) = [𝐴(𝑥), 𝑦] + [𝑥, 𝐴(𝑦)]. A derivation determines a one parameter family of
dilations (0, +∞) → Aut(G):

𝜆 ↦→ 𝛿𝜆 := 𝜆𝐴 = 𝑒 (log𝜆)𝐴.

A left-invariant distance d on G is A-homogeneous if for every 𝜆 ∈ (0,∞), we have 𝑑 (𝛿𝜆𝑥, 𝛿𝜆𝑦) =
𝜆𝑑 (𝑥, 𝑦).

Note that if A is diagonalisable in R with integer eigenvalues, then G admits an A-homogeneous
distance and is in fact a homogeneous group. If A is diagonalisable in R, but not all eigenvalues are
integers, we can construct an equivalent homogeneous distance onG, such that the results of the previous
section apply. This is relevant because combining Theorem 1.2, Corollary 2.6 and Lemma 6.1 from
[17], yields the following:

Proposition 5.2. A Lie group endowed with an A-homogeneous distance for some derivation A of its
Lie algebra is biLipschitz equivalent to a Lie group with an A-homogeneous distance, where A has real
spectrum 1 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝜅 < ∞. Moreover, denoting by 𝑉𝑡 𝑗 the eigenspaces of A, 𝐴|𝑉1 is diagonalisable.

The authors of [17] construct an A-homogeneous distance on such groups, which is similar to the
Koranyi norm. It is more convenient for us to define a smooth-box distance instead. The following
statement contains the properties of this distance, which suffice to prove an analogue of Theorem 1.2.
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Theorem 5.3. If (G, 𝐴) is a Lie group endowed with an A-homogeneous distance for some derivation
A of its Lie algebra, then

(i) for each j, there exists an A-homogeneous distance | | · | | on G defined by

| | (𝑥𝑡1 , . . . , 𝑥𝑡𝜅 ) | | := max{𝜀𝑡 𝑗 | |𝑥𝑡 𝑗 | |
1/𝑡 𝑗
𝑉𝑡 𝑗

, 𝑗 = 1, . . . , 𝜅}, (5.1)

where 𝜀𝑡1 = 1 if 𝑉𝑡1 ≠ {0} and the other 𝜀𝑡 𝑗 are chosen suitably small with respect to the coefficients
of the expression for the operation given by the Baker-Campbell-Hausdorff formula. Here, the
norms ‖·‖𝑉𝑡 𝑗

can be taken to be the euclidean norm on 𝑉𝑡 𝑗 .
(ii) The projection 𝜋1 : 𝑥 ↦→ 𝑥𝑡1 ∈ 𝑉𝑡1 is 1-Lipschitz continuous.

(iii) If 𝐵(𝑥, 𝑟) denotes the balls relative to the norm | | · | |, one can define 𝐺 (0, 1) in much the same way
as Proposition 4.2 and one has 𝐺 (0, 1) ⊃ 𝐵(0, 1) as in Definition 4.3, and 𝐺 (0, 1) has diameter 2.

Proof. The proof of (i) is a modification of that of [17, Theorem 1.2]. One first choses a basis of 𝔤 in
which A is in Jordan normal form. Considering the spaces 𝑉𝑡 𝑗 one by one and rescaling their bases yields
an euclidean norm on each 𝑉𝑡 𝑗 , such that for 𝜆 ∈ (0, 1 ], the operator norm of 𝜆𝐴|𝑉𝑡 𝑗

is bounded from
above by 𝜆𝑡 𝑗−𝜃 𝑗 for a 𝜃 𝑗 > 0, which can be chosen arbitrarily small. As 𝐴|𝑉1 is diagonalisable in R, with
eigenvalues at least 1, the operator norm of 𝜆𝐴|𝑉1 is necessarily 𝜆. Writing | | · | | as in (5.1), it suffices to
prove that the ‘unit ball’ 𝐵 := {𝑥, | |𝑥 | | ≤ 1} is A-convex1, that is, for 𝜆 ∈ (0, 1) and 𝑥, 𝑦 in B, there holds

| | (𝜆𝐴𝑥) · ((1 − 𝜆)𝐴𝑦) | | ≤ 1.

This is done iteratively over the subspaces 𝑉𝑡 𝑗 . For 𝑉1 it is clear. For 𝑉𝑡 𝑗 with 1 < 𝑡 𝑗 < 2, one proceeds
as in Lemma 6.5 of [17] (the key remark being that the components of all commutators vanish in the
layers of order less than 2). For 𝑡 𝑗 = 2, the reasoning of Lemma 6.7 in [17] works: for 𝑥, 𝑦 ∈ G and
𝜆 ∈ (0, 1), by the Baker-Campbell-Hausdorff formula, there holds

((𝜆𝐴𝑥) · ((1 − 𝜆)𝐴𝑦))2 = (𝜆𝐴𝑥)2 + ((1 − 𝜆)𝐴𝑦)2 +
𝜆(1 − 𝜆)

2
[𝑥1, 𝑦1],

So that

‖((𝜆𝐴𝑥) · ((1 − 𝜆)𝐴𝑦))2‖2 ≤
𝜆2(‖𝑥2‖2 + 𝑓 (𝜆)) + (1 − 𝜆)2(‖𝑦2‖2 + 𝑓 (1 − 𝜆)) + 𝐶𝜆(1 − 𝜆)‖𝑥1‖1‖𝑦1‖1,

where f is an error term coming from the dilations and is subpolynomial in | log 𝜆 |. The whole controlled
by a constant independent of 𝑥, 𝑦. It then suffices to take 𝜀2 small enough.

For 𝑡 𝑗 > 2, one needs to use the Baker-Campbell-Hausdorff formula, as in the proof that the smooth-
box norm on a Carnot group is a metric (see the appendix of [11]), but as for 𝑡 𝑗 = 2, it is slightly more
subtle (see Proposition 6.8 in [17]).

In order to prove (ii), pick 𝑥 = (𝑥1, 𝑥𝑡2 , . . . , 𝑥𝑡𝜅 ) ∈ G. It suffices to note that on the one hand

| | ((1/2)𝐴𝑥) · ((1/2)𝐴𝑦) | | ≤ 1,

which follows from convexity, and on the other hand, that iterating the procedure yields a sequence
which tends to (𝑥1, 0, . . . ) as in Proposition 2.2. The fact that the components of order 𝑡 𝑗 > 1 tend
to 0 is a consequence of 2(1/2)𝑡 𝑗 < 1. And the fact that the first component remains constant is clear
because 𝐴|𝑉1 is diagonalisable over R with eigenvalues 1 (in fact, it is the identity). The proof of (iii) is
straightforward using the properties of | | · | | and the method of the previous section. �

1This condition is the analogue of convexity in vector spaces, combining it with homogeneity, one can easily infer the triangle
inequality.
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Corollary 5.4. SupposeG is a Lie group endowed with an A-homogeneous distance for some derivation
A of its Lie algebra. Then, there exists a biLipschitz equivalent A-homogeneous distance ‖·‖ on G, such
that the following holds. Whenever 𝛼 ≥ 0 and 𝐸 ⊂ G is a Borel set for which Θ𝛼 (𝐸, 𝑥) = 1 for ℋ𝛼-
almost every 𝑥 ∈ 𝐸 , then 𝛼 is not larger than the dimension of the first layer of the Lie algebra of G, 𝛼
is an integer and E is 𝛼-rectifiable.

6. Discussion of the results in the first Heisenberg group

The point of this section is to compare the results of this work with the existing literature in the particular
case of the first Heisenberg group. The group law of H1 is given by

(𝑥1, 𝑥2) ∗ (𝑦1, 𝑦2) = (𝑥1 + 𝑦1, 𝑥2 + 𝑦2 + 2〈𝑥1, 𝐽𝑦1〉),

where J is the standard symplectic 2 × 2 matrix. Throughout this section, we will endow H1 with the
Koranyi metric, which is the following homogeneous left-invariant distance

𝑑𝒦 (𝑥, 𝑦) := (|𝑥1 − 𝑦1 |4 + |𝑥2 − 𝑦2 − 2〈𝑥1, 𝐽𝑦1〉|2)1/4. (6.1)

The fact that this formula defines a distance was first proved in [7].
Before delving into the discussion, we recall that whenever we endow H1 with a left-invariant

and homogeneous metric d, the metric space (H1, 𝑑) is a 2, 3, 4-purely unrectifiable metric space of
Hausdorff dimension 4 (see [14]). Another property of the Koranyi metric is that its ball, like that of the
smooth-box metric, is not isodiametric (see [30, Theorem 3.5] and [31, Theorem 38]).
Proposition 6.1. Let 𝐺 (0, 1) be the subset of those 𝑥 = (𝑥1, 𝑥2) ∈ H1, such that

|𝑥1 | ≤ 1 and |𝑥2 |2 ≤ 2(1 − |𝑥1 |4).

Then 𝐵(0, 1) � 𝐺 (0, 1) and diam(𝐺 (0, 1)) ≤ 2.
Remark 6.2. The proof follows the argument of Cygan’s proof of the subadditivity of the Koranyi
norm [7]. In particular, it works in any H-type group endowed with the gauge distance.
Proof. Let 𝑝 := (𝑥1, 𝑥2) and 𝑝′ := (𝑥 ′1, 𝑥 ′2) be points of 𝐺 (0, 1). Using the symmetry of G, and to avoid
annoying signs, we compute the distance between 𝑝−1 and 𝑝′, we can write

‖𝑝 ∗ 𝑝′‖4 = (|𝑥1 |2 + |𝑥 ′1 |
2 + 2〈𝑥1, 𝑥 ′1〉)

2 + (𝑥2 + 𝑥 ′2 + 2〈𝑥1, 𝐽𝑥 ′1〉)
2

= |𝑥1 |4 + |𝑥 ′1 |
4 + 4〈𝑥1, 𝑥 ′1〉

2 + 4(|𝑥1 |2 + |𝑥2 |2)〈𝑥1, 𝑥 ′1〉 + 2|𝑥1 |2 |𝑥 ′1 |
2

+ |𝑥2 |2 + |𝑥 ′2 |
2 + 4〈𝑥1, 𝐽𝑥 ′1〉

2 + 4(𝑥2 + 𝑥 ′2)〈𝑥1, 𝐽𝑥 ′1〉 + 2𝑥2𝑥 ′2

= (|𝑥1 |4 + |𝑥2 |2) + (|𝑥 ′1 |
4 + |𝑥 ′2 |

2)
+ 2|𝑥1 |2 |𝑥 ′1 |

2 + 2𝑥2𝑥 ′2

+ 4〈𝑥1, 𝑥 ′1〉
2 + 4〈𝑥1, 𝐽𝑥 ′1〉

2

+ 4|𝑥1 |2〈𝑥1, 𝑥 ′1〉 + 4𝑥2〈𝑥1, 𝐽𝑥 ′1〉
+ 4|𝑥 ′1 |

2〈𝑥1, 𝑥 ′1〉 + 4𝑥 ′2〈𝑥1, 𝐽𝑥 ′1〉.

Now we proceed as in [7], using Cauchy-Schwarz and the inequality 〈𝑧, 𝑧′〉2 + 〈𝑧, 𝐽𝑧′〉2 ≤ |𝑧 |2 |𝑧′ |2.
Noting that |𝑥2 |2 ≤ 2(1 − |𝑥1 |4), we obtain

‖𝑝 ∗ 𝑝′‖4 ≤ 4 − |𝑥1 |4 − |𝑥 ′1 |
4

+ 4|𝑥1 |2 |𝑥 ′1 |
2 + 2(2 − |𝑥1 |4)1/2(2 − |𝑥 ′1 |

4)1/2

+ 4
(
(2 − |𝑥1 |4)1/2 + (2 − |𝑥 ′1 |

4)1/2) |𝑥1 | |𝑥 ′1 |.
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Using Young’s inequality for the terms on the second line yields

‖𝑝 ∗ 𝑝′‖4 ≤ 8 + 4
(
(2 − |𝑥1 |4)1/2 + (2 − |𝑥 ′1 |

4)1/2) |𝑥1 | |𝑥 ′1 |.

We need to show that the whole is smaller than 16, so it suffices to show:

∀𝑎, 𝑏 ∈ [ 0, 1 ],
(
(2 − 𝑎4)1/2 + (2 − 𝑎4)1/2)𝑎𝑏 ≤ 2.

Since
√

1 + 𝑠 ≤ 1 + 𝑠/2, it suffices that there holds

∀𝑎, 𝑏 ∈ [ 0, 1 ],
(
3 − 𝑎4/2 − 𝑏4/2

)
𝑎𝑏 ≤ 2.

Freezing the variable a, and differentiating, we remark that the maximum is reached at 𝑏 = 1. So we
just need to check that (5/2 − 𝑎4/2)𝑎 ≤ 2 for 𝑎 ∈ [ 0, 1 ], which we leave to the reader. �

It is not hard to see that one can then obtain an analogue of Proposition 4.4, taking, for instance,
𝑟 (𝑥)4 := |𝑥1 |4 + 3

2 |𝑥2 |2 and 𝑠(𝑥)4 := 𝑐4 |𝑥2 |2, for some 𝑐 > 0 small enough. This, in turn, implies that the
proof of Theorem 1.3 can be adapted to this setting, and we get:

Theorem 6.3. Suppose E is a Borel subset of H1 for which there exists an 𝛼 > 0, such that

lim
𝑟→0

ℋ𝛼 (𝐵(𝑥, 𝑟) ∩ 𝐸)
(2𝑟)𝛼 = 1, for ℋ𝛼-almost all 𝑥 ∈ 𝐸, (6.2)

and where 𝐵(𝑥, 𝑟) is the ball relative to the Koranyi distance (see (6.1)). Then 𝛼 = 1 and E can be
covered with countably many Lipschitz images of compact subsets of R up to an ℋ1-null set.

Putting together [13] and Theorem 6.3, we obtain, as in Theorem 1.2, that rectifiable sets are
characterised by having unit density for the Hausdorff measure almost everywhere. Furthermore, thanks
to the work of Antonelli, Chousionis, Magnani, Tyson and the second named author, the density problem,
see [24] for a proper definition, has a complete and satisfactory solution inH1 endowed with the Koranyi
metric

Theorem 6.4 [3, 5, 6, 24, 25]. Let 𝜙 be a Radon measure on (H1, 𝑑), such that the limit

lim
𝑟→0

𝑟−𝛼𝜙(𝐵(𝑥, 𝑟))

exists and is positive and finite 𝜙-almost everywhere, then 𝜙 � ℋ𝛼, 𝛼 ∈ {0, 1, . . . , 4} and 𝜙 is
𝒫𝛼-rectifiable, or in other words

(i) if 𝛼 = 0, then 𝜙 is a sum of countably many multiples of Dirac masses;
(ii) if 𝛼 = 1, then H1 can be covered 𝜙-almost all by countably many Lipschitz images of R;

(iii) if 𝛼 = 2, then 𝜙-almost everywhere the blowups of the measure 𝜙 coincide with the vertical line
𝒱 := span{𝑒3}, for a precise statement, we refer to the introduction of [3];

(iv) if 𝛼 = 3, then H1 can be covered up to a 𝜙-null set by countably many 𝐶1
H1 surfaces (see

Definition 3.1).

For the last point, recall that 𝐶1
H1 -surfaces, introduced in [10], can be fractals from the euclidean

perspective and that at the present time, it is unknown if they are ‘parabolic rectifiable’. This would
mean that they can be covered up to a null set by countably many Lipschitz images of compact subsets
of the parabolic plane, which is the model for homogeneous 1-codimensional subgroups of H1.

The above result is the analogue of the celebrated Preiss’ rectifiability theorem, see [28], in the first
Heisenberg group H1. Theorems 6.3 and 6.4 show that there are both great similarities and differences
between the general homogeneous groups and euclidean space. On the one hand, the density problem
has a natural solution in the form of Theorem 6.4. On the other, Theorem 6.3 tells us that 𝐶1

H1 -regular
surfaces cannot have unit density for the Hausdorff measure. This phenomenon, however, should be
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expected in view of Theorem 3.4, which tells us that in order to have unit density for the Hausdorff
measure at a point for a 𝐶1

H1 -surface, we need the intersection of the ball with the tangent plane at that
point to be an isodiametric set.
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