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Abstract
This paper focuses on the fundamental aspects of super-resolution, particularly addressing the stability of super-
resolution and the estimation of two-point resolution. Our first major contribution is the introduction of two
location-amplitude identities that characterize the relationships between locations and amplitudes of true and
recovered sources in the one-dimensional super-resolution problem. These identities facilitate direct derivations
of the super-resolution capabilities for recovering the number, location, and amplitude of sources, significantly
advancing existing estimations to levels of practical relevance. As a natural extension, we establish the stability of
a specific 𝑙0 minimization algorithm in the super-resolution problem.

The second crucial contribution of this paper is the theoretical proof of a two-point resolution limit in multi-
dimensional spaces. The resolution limit is expressed as

ℛ =

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω

for 𝜎
𝑚min
� 1

2 , where 𝜎
𝑚min

represents the inverse of the signal-to-noise ratio (SNR) and Ω is the cutoff frequency. It
also demonstrates that for resolving two point sources, the resolution can exceed the Rayleigh limit 𝜋

Ω when the
signal-to-noise ratio (SNR) exceeds 2. Moreover, we find a tractable algorithm that achieves the resolution ℛ when
distinguishing two sources.
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1. Introduction

Since the first report of the use of microscopes for observation in the 17th century, optical microscopes
have played a central role in helping to untangle complex biological mysteries. Numerous scientific
advancements and manufacturing innovations over the past three centuries have led to advanced optical
microscope designs with significantly improved image quality. However, due to the physical nature of
wave propagation and diffraction, there is a fundamental diffraction barrier in optical imaging systems,
which is called the resolution limit. This resolution limit is one of the most important characteristics of
an imaging system. In the 19th century, Rayleigh [35] gave a well-known criterion for determining the
resolution limit (Rayleigh’s diffraction limit) for distinguishing two point sources, which is extensively
used in optical microscopes for analyzing the resolution. The problem to resolve point sources separated
below the Rayleigh diffraction limit is then called super-resolution and is commonly known to be very
challenging for single snapshot. However, Rayleigh’s criterion is based on intuitive notions and is more
applicable to observations with the human eye. It also neglects the effect of the noise in the measurements
and the aberrations in the modeling. Due to the rapid advancement of technologies, modern imaging
data is generally captured using intricate imaging techniques and sensitive cameras, and may also be
subject to analysis by complex processing algorithms. Thus, Rayleigh’s deterministic resolution criterion
is not well adapted to current quantitative imaging techniques, necessitating new and more rigorous
definitions of resolution limit with respect to the noise, model and imaging methods [34].

Our previous works [27, 26, 25, 22] have achieved certain success in this respect and enable us to
understand the performance of some super-resolution algorithms. Nevertheless, the derived estimates
are still lacking enough guiding significance in practice on the possibility of super-resolution.

In this paper, we introduce new and direct insights into the stability of super-resolution problems
and significantly enhance many estimates to have practical significance. Our findings reveal several new
facts; for example, we theoretically demonstrate that super-resolution from a single snapshot is indeed
feasible in practice.

1.1. Resolution limit, super-resolution and diffraction limit

1.1.1. Classical criteria for the resolution limit
The resolution of an optical microscope is usually defined as the shortest distance between two points
on a specimen that can still be distinguished by the observer or camera system as separate entities, but
it is in some sense ambiguous. In fact, it does not explicitly require that just the source number should
be detected or the source locations should be stably reconstructed. From the mathematical perspective,
recovering the source number and stably reconstructing the source locations are actually two different
tasks [26] demanding different separation distances.
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Figure 1. Rayleigh’s criterion and Rayleigh’s diffraction limit.

Figure 2. Different resolution limits.

Historically, the resolution of optical microscopy focuses mainly on correctly detecting the number
of sources, rather than on stably recovering the locations. This can be seen from the below discussions
for the classical and semi-classical results on the resolution.

In the 18th and 19th centuries, many classical criteria were proposed to determine the resolution
limit. For example, Rayleigh thought that two point sources observed are regarded as just resolved when
the principal diffraction maximum of one Airy disk coincides with the first minimum of the other, as is
shown by Figure 1. Since the separation of sources is still relatively large, not only the source number
can be detected, but also the source locations can be stably recovered.

However, Rayleigh’s choice of resolution limit is based on the presumed resolving ability of human
visual system, which at first glance seems arbitrary. In fact, Rayleigh said about his criterion that

‘This rule is convenient on account of its simplicity and it is sufficiently accurate in view of the
necessary uncertainty as to what exactly is meant by resolution.’

As is shown in Figure 1, the Rayleigh diffraction limit results in an∼ 20% dip in intensity between the two
peaks of Airy disks [9]. Schuster pointed out in 1904 [38] that the dip in intensity necessary to indicate
resolution is a physiological phenomenon and there are other forms of spectroscopic investigation
besides that of eye observation. Many alternative criteria were proposed by other physicists as illustrated
in Figure 2.

A more mathematically rigorous criterion was proposed by Sparrow [42], who advocates that the
resolution limit should be the distance between two point sources where the images no longer have a dip
between the central peaks of each Airy disk (as illustrated by Figure 2). Based on Sparrow’s criterion,
the two point sources are so close that the source locations may not be stably resolved although the
source number is detected. Indeed, the Sparrow resolution limit is less relevant with practical use [6, 9]
because it is very signal-to-noise dependent and has no easy comparison to a readily measured value
in real images. Therefore, these classical resolution criteria focus on the smallest distance between two
sources above which we can be sure that there are two sources, regardless of whether their locations can
be resolved stably or not.

The classical resolution criteria mentioned above deal with calculated images that are described by
a known and exact mathematical model of the intensity distribution. However, if one has perfect access
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to the intensity profile of the diffraction image of two point sources, one could locate the exact source
despite the diffraction. There would be no resolution limit for the reconstruction. This simple fact has
been noticed by many researchers in the field [12, 10, 6]. Moreover, an imaging system constructed
without any aberration or irregularity is not practical because the shape of the point-spread function
is never known exactly and the measurement noise is inevitable [36, 10]. Therefore, a rigorous and
practically meaningful resolution limit could only be set when taking into account the aberrations
and measurement noises [36, 16]. In this setting, the images (detected by detectors in practice) were
categorized as detected images by Ronchi [36], and their resolution was advocated to be more important
to investigate than the resolution defined by those classical criteria. Inspired by this, many researchers
have analyzed the two-point resolution from the perspective of statistical inference [18, 19, 29, 28,
16, 39, 40, 41]. For instance, in [19], Helstrom has shown that the resolution of two identical objects
depends on deciding whether they are both present in the field of view or only one of them is there,
and their resolvability is measured by the probability of making this decision correctly. In all the papers
mentioned above, the authors have derived quasi-explicit formulas or estimations for the minimum SNR
that is required to discriminate two point sources or for the possibility of a correct decision. Although the
resolutions (or the requirement) in this respect were thoroughly explored in these works which spanned
the course of several decades, these results are rarely (even never) utilized in practical applications due
to their complexity.

1.1.2. Concept of super-resolution
We next introduce the concept of super-resolution. Super-resolution microscopy is a series of techniques
in optical microscopy that allow such images to have resolutions higher than those imposed by the
diffraction limit (Rayleigh resolution limit). Due to the breakthrough in super-resolution techniques in
recent years, this topic becomes increasingly popular in various fields, and the concept of super-resolution
becomes very general. Some literature claims super-resolution, although theoretically, the sources
should be separated by a distance above the Rayleigh limit. Bounds on the recovery of the amplitudes
(or intensities) of the sources have been derived. Nevertheless, the original concept of super-resolution
actually focuses mainly on both detecting the source number and recovering the source locations.

To the best of our knowledge, there is no unique and mathematically rigorous definition of
super-resolution. As we have said, the number detection and location recovery are two inherently differ-
ent [26] but important tasks in the super-resolution; thus, we consider two different super-resolutions in
the current paper. One is achieving resolution better than the Rayleigh diffraction limit in detecting the
correct source number and is named ‘super-resolution in number detection’. The other is achieving res-
olution better than the Rayleigh diffraction limit in stably recovering the source locations and is named
‘super-resolution in location recovery’.

1.2. Previous mathematical contributions

Before introducing the mathematical contributions of this work, let us first introduce the mathematical
model for the imaging problem in k-dimensional space. We consider the collection of point sources as
a discrete measure 𝜇 =

∑𝑛
𝑗=1 𝑎 𝑗𝛿y 𝑗 , where y 𝑗 ∈ R𝑘 , 𝑗 = 1, · · · , 𝑛 represent the location of the point

sources and the 𝑎 𝑗 ’s their amplitudes. The imaging problem is to recover the sources 𝜇 from its noisy
Fourier data,

Y(𝝎) = ℱ [𝜇] (𝝎) + W(𝝎) =
𝑛∑
𝑗=1

𝑎 𝑗𝑒
𝑖y 𝑗 ·𝝎 + W(𝝎), 𝝎 ∈ R𝑘 , | |𝝎 | |2 � Ω, (1)

where ℱ[·] denotes the Fourier transform in the k-dimensional space, Ω is the cut-off frequency, and
W represents the total effect of noise and aberrations. We assume that

|W(𝝎) | < 𝜎, 𝝎 ∈ R𝑘 , | |𝝎 | |2 � Ω, (2)
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with 𝜎 being the noise level. We denote, respectively, the magnitude of the signal and the minimum
separation distance between sources by

𝑚min = min
𝑗=1, · · · ,𝑛

|𝑎 𝑗 |, 𝑑min = min
𝑗≠𝑝

����y 𝑗 − y𝑝
����2. (3)

As most of our analyses are on a one-dimensional space, throughout the paper, we use 𝑦 𝑗 , 𝜔 to denote
the one-dimensional source locations and frequencies and reserve y 𝑗 ,𝝎 for the problem in spaces of
general dimensionality. Especially, we denote the one-dimensional sources as 𝜇 =

∑𝑛
𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 and the

noisy measurement as

Y(𝜔) =
𝑛∑
𝑗=1

𝑎 𝑗𝑒
𝑖𝑦 𝑗𝜔 + W(𝜔), 𝜔 ∈ [−Ω,Ω] .

Model (1) is commonly used in the field of applied mathematics for theoretically analyzing the
imaging problem [13, 5, 3]. It is directly the model in the frequency domain for the imaging modalities
with sinc(| |x| |2) being the point spread function [10]. Its discrete form is also a standard model in array
signal processing. Moreover, even for imaging with general point spread functions or optical transfer
functions, some of the imaging enhancements such as inverse filtering method [15] will modify the
measurements in the frequency domain to (1). These ensure the generality of the model (1) in the fields
of imaging and array signal processing.

Based on Rayleigh’s criterion, the corresponding resolution limit for imaging with the point spread
function sinc(| |x| |2)2 is 𝜋

Ω . It was shown by many mathematical studies that 𝜋
Ω is also the critical

limit for the imaging model (1). To be more specific, in [13], Donoho demonstrated that for sources
on grid points spacing by Δ � 𝜋

Ω , the stable recovery is possible from (1) in dimension one, but
the stability becomes much worse in the case when Δ < 𝜋

Ω . Therefore, in the same way as [13], we
regard 𝜋

Ω as the Rayleigh limit in this paper, and super-resolution refers to obtaining a better resolution
than 𝜋

Ω .
For the mathematical theory of super-resolving n point sources or infinity point sources, to the best

of our knowledge, the first result was derived by Donoho in 1992 [13]. He developed a theory from the
optimal recovery point of view to explain the possibility and difficulties of super-resolution via sparsity
constraint. He considered discrete measures 𝜇 supported on a lattice {𝑘Δ}∞𝑘=−∞ and regularized by a
so-called ‘Rayleigh index’ R. The available measurement is the noisy Fourier data of 𝜇 like model (1) in
a one-dimensional space. He showed that the minimax error 𝐸∗ for the amplitude recovery with noise
level 𝜎 was bounded as

𝛽1 (𝑅,Ω)
(

1
Δ

)2𝑅−1
𝜎 � 𝐸∗ � 𝛽2 (𝑅,Ω)

(
1
Δ

)4𝑅+1
𝜎

for certain small Δ . His results emphasize the importance of sparsity in the super-resolution. In recent
years, due to the impressive development of super-resolution modalities in biological imaging [17, 47,
20, 4, 37] and super-resolution algorithms in applied mathematics [5, 14, 33, 45, 44, 32, 31, 11], the
inherent super-resolving capacity of the imaging problem becomes increasingly popular and the one-
dimensional case was well-studied. In [8], the authors considered resolving the amplitudes of n-sparse
point sources supported on a grid and improved the results of Donoho. Concretely, they showed that
the scaling of the noise level for the minimax error should be SRF2𝑛−1, where SRF := 1

ΔΩ is the super-
resolution factor. Similar results for multi-clumps cases were also derived in [2, 21]. Recently in [3],
the authors derived sharp minimax errors for the location and the amplitude recovery of off-the-grid
sources. They showed that for 𝜎 � (SRF)−2𝑝+1, where p is the number of nodes that form a cluster of
certain type, the minimax error rate for reconstruction of the clustered nodes is of the order (SRF)2𝑝−2 𝜎

Ω ,
while for recovering the corresponding amplitudes, the rate is of the order (SRF)2𝑝−1𝜎. Moreover, the
corresponding minimax rates for the recovery of the non-clustered nodes and amplitudes are 𝜎

Ω and 𝜎,
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respectively. This was generalized to the case of resolving positive sources in [23] recently. We also refer
the readers to [30, 6] for understanding the resolution limit from the perceptive of sample complexity
and to [43, 7] for the resolving limit of some algorithms.

In order to characterize the exact resolution rather than the minimax error in recovering mul-
tiple point sources, in the earlier works [27, 26, 25, 22, 24], we have defined the so-called
‘computational resolution limits’, which characterize the minimum required distance between point
sources so that their number and locations can be stably resolved under certain noise level. By develop-
ing a nonlinear approximation theory in so-called Vandermonde spaces, we have derived sharp bounds
for computational resolution limits in the one-dimensional super-resolution problem (1). In particular,
we have shown in [26] that the computational resolution limits for the number and location recover-

ies should be bounded above by, respectively, 4.4𝑒𝜋
Ω

(
𝜎

𝑚min

) 1
2𝑛−2 and 5.88𝑒𝜋

Ω

(
𝜎

𝑚min

) 1
2𝑛−1 , where the noise

level 𝜎 and signal magnitude 𝑚min are defined as in (2) and (3), respectively. In the present paper, we
substantially improve these estimates to have practical significance.

1.3. Our main contributions in this paper

Our first contribution is two location-amplitude identities characterizing the relations between locations
and amplitudes of true and recovered sources in the one-dimensional super-resolution problem. These
identities allow us to directly derive the super-resolution capability for number, location and amplitude
recovery in the super-resolution problem and improve state-of-the-art estimations to an unprecedented
level to have practical significance. Although these nonlinear inverse problems are known to be very
challenging, we now have a clear and simple picture of all of them, which allows us to solve them in a
unified way in just a few pages. To be more specific, we prove that, under model (1) in dimension one,
it is definitely possible to detect the correct source number when the sources are separated by

𝑑min �
2𝑒𝜋
Ω

( 𝜎

𝑚min

) 1
2𝑛−2

,

where 𝜎
𝑚min

represents the inverse of the signal-to-noise ratio (SNR). This substantially improves the
estimate in [26] and indicates that super-resolution in detecting correct source number (i.e., surpassing
the diffraction limit 𝜋

Ω ) is definitely possible when 𝑚min
𝜎 � (2𝑒)2𝑛−2. Moreover, for the case when

resolving two sources, the requirement for the separation is improved to

𝑑min �
2 arcsin

(
2
(

𝜎
𝑚min

) 1
2
)

Ω
,

indicating that surpassing the Rayleigh limit in distinguishing two sources is possible when SNR > 4.
This is the first time where it is demonstrated theoretically that super-resolution (‘in number detection’)
is actually possible in practice. For the stable location recovery, the estimate is improved to

𝑑min �
2.36𝑒𝜋

Ω

( 𝜎

𝑚min

) 1
2𝑛−1

as compared to the previous result in [26], indicating that the location recovery is stable when 𝑚min
𝜎 �

(2.36𝑒)2𝑛−1. Moreover, under the same separation condition, we also obtain stability results for amplitude
recovery and a certain 𝑙0 minimization algorithm in the super-resolution problem. These results provide
us with a quantitative understanding of the super-resolution of multiple sources. Since our method is
rather direct, it is very hard to substantially improve the estimates now, and we even roughly know to
what extent the constant factor in the estimates can be improved.
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Our second crucial result is the theoretical proof of a two-point resolution limit in multi-dimensional
spaces under only an assumption on the noise level. It is given by

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω
(4)

for 𝜎
𝑚min

� 1
2 . In the case when 𝜎

𝑚min
> 1

2 , there is no super-resolution under certain circumstances.
Our results show that, for resolving any two point sources, the resolution can exceed the Rayleigh limit
when SNR > 2. When SNR > 4, one can achieve 1.5 times improvement of the Rayleigh limit. This
finding indicates that obtaining a resolution far better than the Rayleigh limit in practical imaging and
direction-of-arrival problems is possible with refined sensors. As a comparison, former works for the
two-point resolution [18, 19, 29, 28, 16, 39, 40, 41] consider the model in the physical domain with the
imaging process or the noise being random. In addition, the derived estimate is relatively complicated
as the model considered is more complex than (1). For example, the SNR governing object detectability
in [19] is given by

SNR = (𝐸/𝑁) (𝑇𝑊)−
1
2

����∫
𝐴
𝜙𝑠 (r, r)𝑑2r

����−1 ×
[∫

𝐴

∫
𝐴
|𝜙𝑠 (r1, r2) |2𝑑2r1𝑑

2r2

] 1
2

,

where 𝜙𝑠 (·) denotes the autocovariance function of the field in the aperture plane and 𝐸, 𝑁,𝑇,𝑊, 𝐴
represent other factors.

The estimate of two-point resolution can be directly extended to the following more general setting:

Y(𝝎) = 𝜒(𝝎)ℱ[𝜇] (𝝎) + W(𝝎) =
𝑛∑
𝑗=1

𝑎 𝑗 𝜒(𝝎)𝑒𝑖y 𝑗 ·𝝎 + W(𝝎), 𝝎 ∈ R𝑘 , | |𝝎 | |2 � Ω, (5)

where 𝜒(𝝎) = 0 or 1, 𝜒(0) = 1 and 𝜒(𝝎) = 1, | |𝝎 | |2 = Ω. This enables the application of our results
to line spectral estimations and directional-of-arrival in signal processing. Moreover, our findings can
be applied to imaging systems with general optical transfer functions. A new fact revealed in this paper
is that the two-point resolution is actually determined by the boundary points of the transfer function
and is not that dependent on the interior frequency information. Also, as revealed in Section 5, the
measurements at 𝝎 = 0 and | |𝝎 | | = Ω are already enough for the algorithm which provably achieves
the resolution limit.

In the last part of the paper, we find an algorithm that achieves the optimal resolution when distin-
guishing two sources and conducts many numerical experiments to manifest its optimal performance
and phase transition. Although the noise and the aberration are inevitable and the point source is not
an exact delta point, our results still indicate that super-resolving two sources in practice is possible
for general imaging modalities, due to the excellent noise tolerance. We plan to examine the practical
feasibility of our method in the near future.

To summarize, by this paper, we have shed light on understanding quantitatively when super-
resolution is definitely possible and when it is not. It has been disclosed by our results that super-
resolution when distinguishing two sources is far more possible than what was commonly recognized.

1.4. Organization of the paper

The paper is organized in the following way. In Section 2, we present the theory of location-amplitude
identities. In Section 3, we derive stability results for recovering the number, locations and amplitudes
of sources in the one-dimensional super-resolution problem. In Section 4, we derive the exact formula
of the two-point resolution limit, and, in Section 5, we devise algorithms achieving exactly the optimal
resolution in distinguishing images from one and two sources. The Appendix consists of some useful
inequalities.
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2. Location-amplitude identities

In this section, we intend to derive two location-amplitude identities that characterize the relations
between source locations and amplitudes in the one-dimensional super-resolution problem. We start
from the following elementary model in dimension one:

ℱ[𝜇] (𝜔) = ℱ [𝜇] (𝜔) + w(𝜔), 𝜔 ∈ [0,Ω], (6)

where 𝜇, 𝜇 are discrete measures, ℱ[ 𝑓 ] =
∫
R
𝑒𝑖𝑦𝜔 𝑓 (𝑦)𝑑𝑦 denotes the Fourier transform, and w(𝜔) =

ℱ [𝜇] (𝜔) − ℱ[𝜇] (𝜔). To be more specific, we set 𝜇 =
∑𝑛

𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 and 𝜇 =
∑𝑑

𝑗=1 �̂� 𝑗𝛿 �̂� 𝑗 with 𝑎 𝑗 , �̂� 𝑗
being the source amplitudes and 𝑦 𝑗 , �̂� 𝑗 the source locations.

2.1. Statement of the identities

Based on the above model, we have the following location-amplitude identities.

Theorem 2.1 (Location-amplitude identities). Consider the model

ℱ[𝜇] (𝜔) = ℱ [𝜇] (𝜔) + w(𝜔), 𝜔 ∈ [0,Ω],

where 𝜇 =
∑𝑑

𝑗=1 𝑎 𝑗𝛿 �̂� 𝑗 and 𝜇 =
∑𝑛

𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 . For any fixed 𝑦𝑡 and �̂�𝑡′ , define the set 𝑆𝑡 containing all
𝑦 𝑗 ’s and �̂� 𝑗 ’s except 𝑦𝑡 , �̂�𝑡′ that

𝑆𝑡 := {𝑦1, · · · , 𝑦𝑡−1, 𝑦𝑡+1, · · · , 𝑦𝑛, �̂�1, · · · , �̂�𝑡′−1, �̂�𝑡′+1, · · · , �̂�𝑑}.

Let #𝑆𝑡 be the number of elements in 𝑆𝑡 (i.e., 𝑛+ 𝑑−2). Then, for any 0 < 𝜔∗� Ω
#𝑆𝑡 , we have the following

relations:

𝑎𝑡′
∏
𝑞∈𝑆𝑡

(
𝑒𝑖 �̂�𝑡′𝜔

∗ − 𝑒𝑖𝑞𝜔
∗
)
− 𝑎𝑡

∏
𝑞∈𝑆𝑡

(
𝑒𝑖𝑦𝑡𝜔

∗ − 𝑒𝑖𝑞𝜔
∗
)
= w�

1 v. (7)

Moreover, for any 0 < 𝜔∗ � Ω
#𝑆𝑡+1 , we have

𝑎𝑡
∏

𝑞∈𝑆𝑡∪{ �̂�𝑡′ }

(
𝑒𝑖𝑦𝑡𝜔

∗ − 𝑒𝑖𝑞𝜔
∗
)
=

(
𝑒𝑖 �̂�𝑡′𝜔

∗w1 − w2

)�
v. (8)

Here, w1 = (w(0),w(𝜔∗), · · · ,w(#𝑆𝑡𝜔∗))�, w2 = (w(1),w(𝜔∗), · · · ,w((#𝑆𝑡 +1)𝜔∗))� and the vector
v is given by

���(−1)#𝑆𝑡
∑

{𝑞1 , · · · ,𝑞#𝑆𝑡 }∈𝑆 𝑗,#𝑆𝑡

𝑒𝑖𝑞1𝜔
∗ · · · 𝑒𝑖𝑞#𝑆𝑡 𝜔

∗
, · · · , (−1)2

∑
{𝑞1 ,𝑞2 }∈𝑆𝑡,2

𝑒𝑖𝑞1𝜔
∗
𝑒𝑖𝑞2𝜔

∗
, (−1)

∑
{𝑞1 }∈𝑆𝑡,1

𝑒𝑖𝑞1𝜔
∗
, 1���

�

,

where 𝑆𝑡 , 𝑝 :=
{
{𝑞1, · · · , 𝑞𝑝}

����𝑞 𝑗 ∈ 𝑆𝑡 , 1 � 𝑗 � 𝑝, 𝑞 𝑗′ and 𝑞 𝑗′′ are different elements in 𝑆𝑡when 𝑗 ′ ≠ 𝑗 ′′
}
,

𝑝 = 1, · · · , #𝑆𝑡 .

For the convenience of the applications of our location-amplitude identities, we derive the following
corollary, as a direct consequence of Theorem 2.1.

Corollary 2.2. Consider the model

ℱ[𝜇] (𝜔) = ℱ [𝜇] (𝜔) + w(𝜔), 𝜔 ∈ [0,Ω],
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where 𝜇 =
∑𝑑

𝑗=1 �̂� 𝑗𝛿 �̂� 𝑗 and 𝜇 =
∑𝑛

𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 and assume that |w(𝜔) | < 𝜎, 𝜔 ∈ [0,Ω]. For any fixed 𝑦𝑡
and �̂�𝑡′ , define the set 𝑆𝑡 as

𝑆𝑡 := {𝑦1, · · · , 𝑦𝑡−1, 𝑦𝑡+1, · · · , 𝑦𝑛, �̂�1, · · · , �̂�𝑡′−1, �̂�𝑡′+1, · · · , �̂�𝑑}. (9)

Let #𝑆𝑡 be the number of elements in 𝑆𝑡 (i.e., 𝑛 + 𝑑 − 2). Then, for any 0 < 𝜔∗ � Ω
#𝑆𝑡 , we have������𝑎𝑡′ ∏

𝑞∈𝑆𝑡

(
𝑒𝑖 �̂�𝑡′𝜔

∗ − 𝑒𝑖𝑞𝜔
∗
)
− 𝑎𝑡

∏
𝑞∈𝑆𝑡

(
𝑒𝑖𝑦𝑡𝜔

∗ − 𝑒𝑖𝑞𝜔
∗
)������ < 2#𝑆𝑡𝜎. (10)

Moreover, for any 0 < 𝜔∗ � Ω
#𝑆𝑡+1 , we have������𝑎𝑡 ∏

𝑞∈𝑆𝑡∪{ �̂�𝑡′ }

(
𝑒𝑖𝑦𝑡𝜔

∗ − 𝑒𝑖𝑞𝜔
∗
)������ < 2#𝑆𝑡+1𝜎. (11)

Proof. This is a direct consequence of Theorem 2.1 in view of

|w�
1 v| < 2#𝑆𝑡𝜎, | (𝑒𝑖 �̂�𝑡′𝜔∗w1 − w2)�v| < 2#𝑆𝑡+1𝜎. �

2.2. Proof of Theorem 2.1

Before starting the proof, we first introduce some notation and lemmas. Denote by

𝜙𝑝,𝑞 (𝑡) =
(
𝑡 𝑝 , 𝑡 𝑝+1, · · · , 𝑡𝑞

)�
. (12)

The following lemma on the inverse of the Vandermonde matrix is standard.

Lemma 2.3. Let 𝑉𝑘 be the Vandermonde matrix
(
𝜙0,𝑘−1(𝑡1), · · · , 𝜙0,𝑘−1(𝑡𝑘 )

)
. Then its inverse 𝑉−1

𝑘 = 𝐵
can be specified as follows:

𝐵 𝑗𝑞 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(−1)𝑘−𝑞���

∑
1�𝑚1<...<𝑚𝑘−𝑞�𝑘
𝑚1 ,...,𝑚𝑘−𝑞≠ 𝑗

𝑡𝑚1 · · ·𝑡𝑚𝑘−𝑞∏
1�𝑚�𝑘
𝑚≠ 𝑗

(𝑡 𝑗−𝑡𝑚)
���, 1 � 𝑞 < 𝑘,

1∏
1�𝑚�𝑘
𝑚≠ 𝑗

(𝑡 𝑗−𝑡𝑚) , 𝑞 = 𝑘.

The following lemma can be deduced from the inverse of the Vandermonde matrix, and the readers
can check Lemma 5 in [26] for a simple proof, although the numbers there are real numbers.

Lemma 2.4. Let 𝑡1, · · · , 𝑡𝑘 be k different complex numbers. For 𝑡 ∈ C, we have(
𝑉−1
𝑘 𝜙0,𝑘−1(𝑡)

)
𝑗
=

∏
1�𝑞�𝑘,𝑞≠ 𝑗

𝑡 − 𝑡𝑞

𝑡 𝑗 − 𝑡𝑞
,

where 𝑉𝑘 :=
(
𝜙0,𝑘−1(𝑡1), · · · , 𝜙0,𝑘−1(𝑡𝑘 )

)
with 𝜙0,𝑘−1(·) being defined by (12).

Now we start the main proof.

Proof. We only prove the theorem for𝜔∗ � Ω
#𝑆𝑡+1 . The case when𝜔∗ � Ω

#𝑆𝑡 for (7) is obvious afterwards.
We fix 𝑡 ∈ {1, · · · , 𝑛} in the following derivations. From (6), we can write

𝐴�̂� = 𝐴𝑎 +𝑊, (13)

https://doi.org/10.1017/fms.2024.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.72


10 P. Liu and H. Ammari

where 𝑎 = (𝑎1, · · · , 𝑎𝑑)�, 𝑎 = (𝑎1, · · · , 𝑎𝑛)�,𝑊 = (w(0),w(𝜔∗), · · · ,w((#𝑆𝑡 + 1)𝜔∗))� and

𝐴 =
(
𝜙0,#𝑆𝑡+1(𝑒𝑖 �̂�1𝜔

∗ ), 𝜙0,#𝑆𝑡+1(𝑒𝑖 �̂�2𝜔
∗ ), · · · , 𝜙0,#𝑆𝑡+1(𝑒𝑖 �̂�𝑑𝜔

∗ )
)
,

𝐴 =
(
𝜙0,#𝑆𝑡+1(𝑒𝑖𝑦1𝜔

∗ ), 𝜙0,#𝑆𝑡+1(𝑒𝑖𝑦2𝜔
∗ ), · · · , 𝜙0,#𝑆𝑡+1(𝑒𝑖𝑦𝑛𝜔

∗ )
)
,

with 0 < 𝜔∗ � Ω
#𝑆𝑡+1 . We further decompose (13) into the following two equations:

�̂�𝑡′𝜙0,#𝑆𝑡 (𝑒𝑖 �̂�𝑡′𝜔
∗ ) = 𝐵1𝑏 + w1, 𝑎𝑡′𝜙1,#𝑆𝑡+1(𝑒𝑖 �̂�𝑡′𝜔

∗ ) = 𝐵2𝑏 + w2, (14)

where w1 = (w(0),w(𝜔∗), · · · ,w(#𝑆𝑡𝜔∗))�, w2 = (w(𝜔∗), · · · ,w((#𝑆𝑡 + 1)𝜔∗))� and

𝐵1 =
(
𝜙0,#𝑆𝑡 (𝑒𝑖𝑦1𝜔

∗ ), · · · , 𝜙0,#𝑆𝑡 (𝑒𝑖𝑦𝑛𝜔
∗ ), 𝜙0,#𝑆𝑡 (𝑒𝑖 �̂�1𝜔

∗ ), · · · , 𝜙0,#𝑆𝑡 (𝑒𝑖 �̂�𝑡′−1𝜔
∗ ),

𝜙0,#𝑆𝑡 (𝑒𝑖 �̂�𝑡′+1𝜔
∗ ), · · · , 𝜙0,#𝑆𝑡 (𝑒𝑖 �̂�𝑑𝜔

∗ )
)
,

𝐵2 =
(
𝜙1,#𝑆𝑡+1 (𝑒𝑖𝑦1𝜔

∗ ), · · · , 𝜙1,#𝑆𝑡+1 (𝑒𝑖𝑦𝑛𝜔
∗ ), 𝜙1,#𝑆𝑡+1(𝑒𝑖 �̂�1𝜔

∗ ), · · · , 𝜙1,#𝑆𝑡+1(𝑒𝑖 �̂�𝑡′−1𝜔
∗ ),

𝜙1,#𝑆𝑡+1(𝑒𝑖 �̂�𝑡′+1𝜔
∗ ), · · · , 𝜙1,#𝑆𝑡+1(𝑒𝑖 �̂�𝑑𝜔

∗ )
)
.

We first consider the case when all the 𝑒𝑦 𝑗𝜔
∗’s and 𝑒 �̂� 𝑗𝜔

∗’s are distinct. Thus, 𝑏 = (𝑏1, · · · , 𝑏#𝑆𝑡+1) in
(14) is such that

𝑏𝑙 =

⎧⎪⎪⎨⎪⎪⎩
𝑎𝑙 , 1 � 𝑙 � 𝑛,
−�̂�𝑙−𝑛, 𝑛 < 𝑙 � 𝑛 + 𝑡 ′ − 1,
−�̂�𝑙−𝑛+1, 𝑛 + 𝑡 ′ − 1 < 𝑙.

Observe that

𝐵2 = 𝐵1diag
(
𝑒𝑖𝑦1𝜔

∗
, · · · , 𝑒𝑖𝑦𝑛𝜔∗

, 𝑒𝑖 �̂�1𝜔
∗
, · · · , 𝑒𝑖 �̂�𝑡′−1𝜔

∗
, 𝑒𝑖 �̂�𝑡′+1𝜔

∗
, · · · , 𝑒𝑖 �̂�𝑑𝜔∗

)
,

𝜙1,#𝑆𝑡+1 (𝑒𝑖𝑦𝑙𝜔
∗ ) = 𝑒𝑖𝑦𝑙𝜔

∗
𝜙0,#𝑆𝑡 (𝑒𝑖𝑦𝑙𝜔

∗ ).

We rewrite (14) as

�̂�𝑡′𝜙0,#𝑆𝑡 (𝑒
𝑖 �̂�𝑡′𝜔

∗
) = 𝐵1𝑏 + w1,

𝑒𝑖 �̂�𝑡′𝜔
∗
�̂�𝑡′𝜙0,#𝑆𝑡 (𝑒

𝑖 �̂�𝑡′𝜔
∗
) = 𝐵1diag

(
𝑒𝑖𝑦1𝜔

∗
, · · · , 𝑒𝑖𝑦𝑛𝜔

∗
, 𝑒𝑖 �̂�1𝜔

∗
, · · · , 𝑒𝑖 �̂�𝑡′−1𝜔

∗
, 𝑒𝑖 �̂�𝑡′+1𝜔

∗
, · · · , 𝑒𝑖 �̂�𝑑𝜔

∗ )
𝑏 + w2.

(15)

Since all the 𝑒𝑖𝑦 𝑗𝜔
∗’s and 𝑒𝑖 �̂� 𝑗𝜔

∗’s are pairwise distinct, 𝐵1 is a regular matrix. We multiply both sides
of the above equations by the inverse of 𝐵1 to get from Lemma 2.4 that

𝑎𝑡′
∏
𝑞∈𝑆𝑡

𝑒𝑖 �̂�𝑡′𝜔
∗ − 𝑒𝑖𝑞𝜔

∗

𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖𝑞𝜔∗ = 𝑎𝑡 + (𝐵−1
1 )𝑡w1, (16)

𝑒𝑖 �̂�𝑡′𝜔
∗
�̂�𝑡′

∏
𝑞∈𝑆𝑡

𝑒𝑖 �̂�𝑡′𝜔
∗ − 𝑒𝑖𝑞𝜔

∗

𝑒𝑖𝑦𝑡𝜔
∗ − 𝑒𝑖𝑞𝜔

∗ = 𝑒𝑖𝑦𝑡𝜔
∗
𝑎𝑡 + (𝐵−1

1 )𝑡w2, (17)
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where (𝐵−1
1 )𝑡 is the t-th row of 𝐵−1

1 . By Lemma 2.3, it follows that

(𝐵−1
1 )𝑡w1 =

∑#𝑆𝑡−1
𝑝=0

(
w(𝑝𝜔∗)(−1)#𝑆𝑡−𝑝 ∑

{𝑞1 , · · · ,𝑞#𝑆𝑡−𝑝 }∈𝑆𝑡,#𝑆𝑡−𝑝 𝑒
𝑖𝑞1𝜔

∗ · · · 𝑒𝑖𝑞#𝑆𝑡−𝑝𝜔
∗
)
+ w(#𝑆𝑡𝜔∗)∏

𝑞∈𝑆𝑡 (𝑒𝑖𝑦𝑡𝜔
∗ − 𝑒𝑖𝑞𝜔∗ ) .

(18)

Thus, multiplying
∏

𝑞∈𝑆𝑡
(
𝑒𝑖𝑦𝑡𝜔

∗ − 𝑒𝑖𝑞𝜔
∗ ) in both sides of (16) proves (7) in the case when all the

𝑒𝑖𝑦 𝑗𝜔
∗’s and 𝑒𝑖 �̂� 𝑗𝜔

∗’s are pairwise distinct. Furthermore, equation (16) times 𝑒𝑖 �̂�𝑡′𝜔∗ minus (17) yields

(𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖 �̂�𝑡′𝜔
∗ )𝑎𝑡 = (𝐵−1

1 )𝑡
(
𝑒𝑖 �̂�𝑡′𝜔

∗w1 − w2

)
.

Similarly, further expanding (𝐵−1
1 )𝑡

(
𝑒𝑖 �̂�𝑡′𝜔

∗w1 − w2

)
explicitly by Lemma 2.3 and multiplying∏

𝑞∈𝑆𝑡
(
𝑒𝑖𝑦𝑡𝜔

∗ − 𝑒𝑖𝑞𝜔
∗ ) in both sides above yields (8).

Finally, we consider the case when the 𝑒𝑖𝑦 𝑗𝜔
∗’s and 𝑒𝑖 �̂� 𝑗𝜔

∗’s are not pairwise distinct. Since it is a
limiting case of the above cases, (7) and (8) still hold in this case. This completes the proof. �

3. Stability of super-resolution in dimension one

In this section, based on our location-amplitude identities, we analyze the super-resolution capability
of the reconstruction of the numbers, locations and amplitudes of off-the-grid sources in the one-
dimensional super-resolution problem. Note that these problems have been analyzed in [26, 3] from
different perspectives, but the proofs are over several tens of pages. Now, by our method, we have a
direct and clear picture of all these problems, which allows us to prove them in a unified way and in less
than ten pages.

We consider the imaging model (1) and focus on the one-dimensional case in this section. Since
the source locations y 𝑗 ’s are the supports of the Dirac masses in 𝜇, we use the support recovery for a
substitution of the location reconstruction throughout the paper.

Since we focus on the resolution limit case, we consider the case when the point sources are tightly
spaced and form a cluster. To be more specific, we denote the ball in the k-dimensional space by

𝐵𝑘
𝛿 (x) :=

{
y

����y ∈ R𝑘 , ‖y − x‖2 < 𝛿

}
, (19)

and assume y 𝑗 ∈ 𝐵𝑘
(𝑛−1) 𝜋

2Ω
(0), 𝑗 = 1, . . . , 𝑛, or equivalently

��y 𝑗

��
2 < (𝑛−1) 𝜋

2Ω . This assumption is a common
assumption for super-resolving the off-the-grid sources [26, 3] and is necessary for the analysis. Since
we are interested in resolving closely-spaced sources, it is also reasonable. We remark that our results
for sources in 𝐵𝑘

(𝑛−1) 𝜋
2Ω

(0) can be directly generalized to sources in 𝐵𝑘
(𝑛−1) 𝜋

2Ω
(x), x ∈ R𝑘 .

The reconstruction process is usually targeting at some specific solutions in a so-called admissible
set, which comprises discrete measures whose Fourier data are sufficiently close to Y. In general, every
admissible measure is possibly the ground truth, and it is impossible to distinguish which one is closer
to the ground truth without any additional prior information. In our problem, we introduce the following
concept of 𝜎-admissible discrete measures. For simplicity, we also call them 𝜎-admissible measures.

Definition 3.1. Given the measurement Y in (1), 𝜇 =
∑𝑑

𝑗=1 �̂� 𝑗𝛿ŷ 𝑗
is said to be a 𝜎-admissible discrete

measure of Y if

|ℱ [𝜇] (𝝎) − Y(𝝎) | < 𝜎, | |𝝎| |2 � Ω.

If further �̂� 𝑗 > 0, 𝑗 = 1, · · · , 𝑑, then 𝜇 is said to be a positive 𝜎-admissible discrete measure of Y.
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3.1. Stability of number detection

In this section, we estimate the super-resolving capability of number detection in the super-resolution
problem. We introduce the concept of computational resolution limit for number detection [27, 26, 25]
and present a sharp bound for it.

Note the set of𝜎-admissible measures of Y characterizes all possible solutions to our super-resolution
problem with the given measurement Y. Detecting the source number n is possible only if all of the
admissible measures have at least n supports; otherwise, it is impossible to detect the correct source
number without additional a priori information. Thus, following definitions similar to those in [26, 27,
25], we define the computational resolution limit for the number detection problem as follows.

Definition 3.2. The computational resolution limit to the number detection problem in the super-
resolution of sources in R𝑘 is defined as the smallest nonnegative number 𝒟𝑛𝑢𝑚(𝑘, 𝑛) such that for all
n-sparse measures

∑𝑛
𝑗=1 𝑎 𝑗𝛿y 𝑗 , 𝑎 𝑗 ∈ C, y 𝑗 ∈ 𝐵𝑘

(𝑛−1) 𝜋
2Ω

(0) and the associated measurement Y in (1), if

min
𝑝≠ 𝑗

����y 𝑗 − y𝑝
����2 � 𝒟𝑛𝑢𝑚(𝑘, 𝑛),

then there does not exist any 𝜎-admissible measure of Y with less than n supports. In particular, when
considering positive sources and positive 𝜎-admissible measures, the corresponding computational
resolution limit is denoted by 𝒟+

𝑛𝑢𝑚(𝑘, 𝑛).

The definition of ‘computational resolution limit’ emphasizes the impossibility of correctly detecting
the number of very close sources by any means. It depends crucially on the signal-to-noise ratio and the
sparsity of the sources, which is fundamentally different from all the classical resolution limits [1, 46,
35, 38, 42] that depend only on the cutoff frequency.

Our first result is a sharp estimate for the upper bound of the computational resolution limit in the one-
dimensional super-resolution problem. As we have said, we will use 𝑦 𝑗 ’s to denote the one-dimensional
source locations.

Theorem 3.3. Let the measurement Y in (1) be generated by any one-dimensional source 𝜇 =
∑𝑛

𝑗=1 𝑎 𝑗𝛿𝑦 𝑗
with 𝑦 𝑗 ∈ 𝐵1

(𝑛−1) 𝜋
2Ω

(0), 𝑗 = 1, · · · , 𝑛. Let 𝑛 � 2 and assume that the following separation condition is
satisfied:

min
𝑝≠ 𝑗

���𝑦𝑝 − 𝑦 𝑗

��� � 2𝑒𝜋
Ω

( 𝜎

𝑚min

) 1
2𝑛−2

, (20)

where 𝜎, 𝑚min are defined as in (2), (3), respectively. Then there does not exist any 𝜎-admissible
measures of Y with less than n supports. Moreover, for the cases when 𝑛 = 2 and 𝑛 = 3, if

min
𝑝≠ 𝑗

�����𝑦𝑝 − 𝑦 𝑗

����� � 2 arcsin
(
2
(

𝜎
𝑚min

) 1
2
)

Ω
, min

𝑝≠ 𝑗

�����𝑦𝑝 − 𝑦 𝑗

����� � 2𝜋
Ω

( 8𝜎
𝑚min

) 1
4
, respectively,

then there does not exist any 𝜎-admissible measures of Y with less than n supports.

Theorem 3.3 gives a sharper upper bound for the computational resolution limit𝒟𝑛𝑢𝑚 (1, 𝑛) compared
to the one in [26]. By the new estimate (3.3), it is already possible to surpass the Rayleigh limit 𝜋

Ω in
detecting source number when 𝑚min

𝜎 � (2𝑒)2𝑛−2. Moreover, this upper bound is shown to be sharp by a
lower bound provided in [24]. Thus, we can conclude that

2𝑒−1

Ω

( 𝜎

𝑚min

) 1
2𝑛−2

< 𝒟𝑛𝑢𝑚(1, 𝑛) �
2𝑒𝜋
Ω

( 𝜎

𝑚min

) 1
2𝑛−2

.
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It is also easy to generalize the estimates in Theorem 3.3 to high-dimensional spaces by methods in
[25, 22], whereby we can obtain that

2𝑒−1

Ω

( 𝜎

𝑚min

) 1
2𝑛−2

< 𝒟𝑛𝑢𝑚(𝑘, 𝑛) �
𝐶1 (𝑘, 𝑛)

Ω

( 𝜎

𝑚min

) 1
2𝑛−2

for a constant 𝐶1 (𝑘, 𝑛).
In particular, for the case when 𝑛 = 2, our estimate demonstrates that when the signal-to-noise ratio

SNR > 4, then the resolution is better than the Rayleigh limit and the ‘super-resolution in number
detection’ can be achieved thusly. This result is already practically important. As we will see later, our
estimate is very sharp and close to the true two-point resolution limit.

Remark. We remark that our new techniques also provide a way to analyze the stability of number
detection for sources with multi-cluster patterns. Our former method (also the only one we know of)
for analyzing the stability of number detection cannot handle such cases. The technique here is the
first known method that can tackle the issue. But since the current paper focuses on understanding the
resolution limits in the super-resolution, the multi-cluster case is out of scope and we leave it as a future
work.

We now present the proof of Theorem 3.3. The problem is essentially a nonlinear approximation
problem where we have to optimize the approximation over the coupled factors: source number d, source
locations �̂� 𝑗 ’s and amplitudes �̂� 𝑗 ’s. Here, by leveraging the location-amplitude identities, we prove it in
a rather simple and direct way.

We first denote for an integer 𝑘 � 1,

𝜁 (𝑘) =
{

( 𝑘−1
2 !)2, if 𝑘 is odd,

( 𝑘2 )!(
𝑘−2

2 )!, if 𝑘 is even, 𝜉 (𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 , if 𝑘 = 1,

( 𝑘−1
2 )!( 𝑘−3

2 )!
4 , if 𝑘 is odd, 𝑘 � 3,

( 𝑘−2
2 !)2

4 , if 𝑘 is even.
(21)

We also define for positive integers 𝑝, 𝑞, and 𝑧1, · · · , 𝑧𝑝 , �̂�1, · · · , �̂�𝑞 ∈ C, the following vector in R𝑝:

𝜂𝑝,𝑞 (𝑧1, · · · , 𝑧𝑝 , �̂�1, · · · , �̂�𝑞) =
������
| (𝑧1 − �̂�1) | · · · | (𝑧1 − �̂�𝑞) |
| (𝑧2 − �̂�1) | · · · | (𝑧2 − �̂�𝑞) |

...
| (𝑧𝑝 − �̂�1) | · · · | (𝑧𝑝 − �̂�𝑞) |

������
. (22)

We recall the following useful lemmas.

Lemma 3.4. Let − 𝜋
2 � 𝜃1 < 𝜃2 < · · · < 𝜃𝑘 � 𝜋

2 with min𝑝≠ 𝑗 |𝜃𝑝 − 𝜃 𝑗 | = 𝜃min. We have the estimate∏
1�𝑝�𝑘, 𝑝≠ 𝑗

��𝑒𝑖 𝜃 𝑗 − 𝑒𝑖 𝜃𝑝
�� � 𝜁 (𝑘)

(
2𝜃min
𝜋

) 𝑘−1
, 𝑗 = 1, · · · , 𝑘,

where 𝜁 (𝑘) is defined in (21).

Proof. Note that ��𝑒𝑖 𝜃 𝑗 − 𝑒𝑖 𝜃𝑝
�� � 2

𝜋

��𝜃 𝑗 − 𝜃𝑝
��, for all 𝜃 𝑗 , 𝜃𝑝 ∈

[
− 𝜋

2
,
𝜋

2

]
. (23)

Then we have ∏
1�𝑝�𝑘, 𝑝≠ 𝑗

��𝑒𝑖 𝜃 𝑗 − 𝑒𝑖 𝜃𝑝
�� � (

2
𝜋

) 𝑘−1 ∏
1�𝑝�𝑘, 𝑝≠ 𝑗

��𝜃 𝑗 − 𝜃𝑝
�� � 𝜁 (𝑘)

(
2𝜃min
𝜋

) 𝑘−1
.

�
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Lemma 3.5. Let − 𝜋
2 � 𝜃1 < 𝜃2 < · · · < 𝜃𝑘+1 � 𝜋

2 . Assume that min𝑝≠ 𝑗 |𝜃𝑝 − 𝜃 𝑗 | = 𝜃min. Then for any
�̂�1, · · · , �̂�𝑘 ∈ R, we have the following estimate:������𝜂𝑘+1,𝑘 (𝑒𝑖 𝜃1 , · · · , 𝑒𝑖 𝜃𝑘+1 , 𝑒𝑖 𝜃1 , · · · , 𝑒𝑖 𝜃𝑘 )

������∞ � 𝜉 (𝑘)
(

2𝜃min
𝜋

) 𝑘
,

where 𝜂𝑘+1,𝑘 is defined as in (22).

Proof. See Corollary 7 in [26]. �

Proof. We are now ready to prove Theorem 3.3. Suppose that 𝜇 =
∑𝑑

𝑗=1 𝑎 𝑗𝛿 �̂� 𝑗 , 𝑑 � 𝑛 − 1 is a
𝜎-admissible measure of Y. By the Definition 3.1 and the model (1), we have

ℱ [𝜇] (𝜔) = ℱ[𝜇] (𝜔) + W1 (𝜔), 𝜔 ∈ [−Ω,Ω]

for some W1 with |W1 (𝜔) | < 2𝜎. Note that by adding some point sources in 𝜇, from above we can
actually construct 𝜇 =

∑𝑛−1
𝑗=1 𝑎 𝑗𝛿 �̂� 𝑗 such that

ℱ [𝜇] (𝜔) = ℱ [𝜇] (𝜔) + W2(𝜔), 𝜔 ∈ [−Ω,Ω],

for some W2 with |W2 (𝜔) | < 2𝜎. For ease of exposition, we consider in the following that the
measure 𝜇 is with 𝑛 − 1 point sources. The above equation implies that �̂� =

∑𝑛−1
𝑗=1 𝑒−�̂� 𝑗Ω𝑎 𝑗𝛿 �̂� 𝑗 and

𝜌 =
∑𝑛

𝑗=1 𝑒
−𝑦 𝑗Ω𝑎 𝑗𝛿𝑦 𝑗 satisfy

ℱ[ �̂�] (𝜔) = ℱ[𝜌] (𝜔) + W3(𝜔), 𝜔 ∈ [0, 2Ω], (24)

for some W3 with |W3 (𝜔) | < 2𝜎, 𝜔 ∈ [0, 2Ω]. For any 𝑦𝑡 and �̂�𝑡′ , define 𝑆𝑡 as

𝑆𝑡 := {𝑦1, · · · , 𝑦𝑡−1, 𝑦𝑡+1, · · · , 𝑦𝑛, �̂�1, · · · , �̂�𝑡′−1, �̂�𝑡′+1, · · · , �̂�𝑛−1}.

Then #𝑆𝑡 = 2𝑛 − 3. Let 𝜔∗ = 2Ω
2𝑛−2 . Applying (11) to (24), we obtain that∏

𝑞=1, · · · ,𝑛,𝑞≠𝑡

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖𝑦𝑞𝜔
∗
��� ∏
𝑞=1, · · · ,𝑛−1

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖 �̂�𝑞𝜔
∗
���|𝑎𝑡 | < 2#𝑆𝑡+2𝜎, 𝑡 = 1, · · · , 𝑛.

This gives ∏
𝑞=1, · · · ,𝑛,𝑞≠𝑡

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖𝑦𝑞𝜔
∗
��� ∏
𝑞=1, · · · ,𝑛−1

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖 �̂�𝑞𝜔
∗
��� < 22𝑛−1 𝜎

𝑚min
, 𝑡 = 1, · · · , 𝑛.

Therefore, it follows that

min
𝑡=1, · · · ,𝑛

∏
𝑞=1, · · · ,𝑛,𝑞≠𝑡

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖𝑦𝑞𝜔
∗
��� max
𝑡=1, · · · ,𝑛

∏
𝑞=1, · · · ,𝑛−1

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖 �̂�𝑞𝜔
∗
��� < 22𝑛−1 𝜎

𝑚min
.

Denote 𝑦𝑞𝜔
∗ by 𝜃𝑞 and 𝜃min = min𝑝≠𝑞 |𝜃𝑝 − 𝜃𝑞 |. Since the 𝑦 𝑗 ’s are in 𝐵1

(𝑛−1) 𝜋
2Ω

(0) and 𝜔∗ = 2Ω
2𝑛−2 , we

have that the 𝜃 𝑗 ’s are in
[
− 𝜋

2 ,
𝜋
2
]
. Thus, by Lemma 3.4, we get

min
𝑡=1, · · · ,𝑛

∏
𝑞=1, · · · ,𝑛,𝑞≠𝑡

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖𝑦𝑞𝜔
∗
��� � 𝜁 (𝑛)

(
2𝜃min
𝜋

)𝑛−1
. (25)
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Moreover, using Lemma 3.5 yields

max
𝑡=1, · · · ,𝑛

∏
𝑞=1, · · · ,𝑛−1

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖 �̂�𝑞𝜔
∗
��� � 𝜉 (𝑛 − 1)

(
2𝜃min
𝜋

)𝑛−1
. (26)

Combining the above estimates, it follows that

𝜁 (𝑛)𝜉 (𝑛 − 1)
(

2𝜃min
𝜋

)2𝑛−2
<

22𝑛−1𝜎

𝑚min
. (27)

Thus,

𝜃min < 𝜋

(
2

𝜁 (𝑛)𝜉 (𝑛 − 1)

) 1
2𝑛−2

(
𝜎

𝑚min

) 1
2𝑛−2

,

and consequently,

𝑑min =
𝜃min
𝜔∗ <

(2𝑛 − 2)𝜋
2Ω

(
2

𝜁 (𝑛)𝜉 (𝑛 − 1)

) 1
2𝑛−2

(
𝜎

𝑚min

) 1
2𝑛−2

�
2𝜋𝑒
Ω

(
𝜎

𝑚min

) 1
2𝑛−2

, (28)

where 𝑑min := min𝑝≠𝑞 |𝑦𝑝 − 𝑦𝑞 | and the last inequality is from Lemma A.1. Therefore, if 𝑑min �

2𝜋𝑒
Ω

(
𝜎

𝑚min

) 1
2𝑛−2 , then there is no 𝜎-admissible measure of Y with less than n supports.

The last part consists in proving the cases when 𝑛 = 2, 3. When 𝑛 = 3, the result is enhanced by
noting that 2

𝜁 (𝑛) 𝜉 (𝑛−1) = 8 in (28). When 𝑛 = 2, the result is enhanced by improving the estimates (25)
and (26). For (25), we now have ���𝑒𝑖𝑦1𝜔

∗ − 𝑒𝑖𝑦2𝜔
∗
��� � 2 sin

(
𝜃min

2

)
,

where 𝜃min = |𝑦1𝜔
∗ − 𝑦2𝜔

∗ | and 𝜔∗ = Ω. For (26), we have

max
𝑗=1,2

���𝑒𝑖𝑦 𝑗𝜔∗ − 𝑒𝑖 �̂�1𝜔
∗
��� � 2 sin

(
𝜃min

4

)
.

Thus, similarly to (27), we obtain that

2 sin
(
𝜃min

2

)
2 sin

(
𝜃min

4

)
<

23𝜎

𝑚min
,

which gives

sin2
(
𝜃min

2

)
<

4𝜎
𝑚min

.

It then follows that

𝑑min =
𝜃min
𝜔∗ <

2 arcsin
(
2
(

𝜎
𝑚min

) 1
2
)

Ω
,

which completes the proof. �
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Comparison with results in [26]: Considering that the results in this section are closely related
to results in our previous work [26], we highlight the major difference between them. Note first that
Theorem 3.3 gives a sharper upper bound for 𝒟𝑛𝑢𝑚(1, 𝑛) than the previous estimate in [26]. It also
significantly improves the resolution estimate for resolving two sources, enhancing their practical
relevance. These improvements stem from employing location-amplitude identities, a more essential
and powerful method than the one used in [26, 27]. In particular, [26, 27] established the approximation
theory in the Vandermonde space by some algebraic manipulations, while the derived location-amplitude
identities here reveal in depth the essence of the super-resolution problem. For example, identities (7)
and (8) (or inequalities (10) and (11)) reveal directly the relation between the amplitudes and locations
of the true sources and the recovered ones, demonstrating that the stabilities of the recoveries are
determined by 𝜎∏

𝑞∈𝑆𝑡 (𝑒𝑖𝑦𝑡 𝜔
∗−𝑒𝑖𝑞𝜔∗ ) . This analytical perspective transforms the super-resolution problem

into analyzing the distribution of the locations of true and recovered sources, leading to optimal stability
results for the recovery of source numbers, locations and amplitudes as substantiated in Theorems 3.3,
3.8 and 3.10. As a comparison, the method in [26, 27] deals with only the number detection and location
recovery problem, since the algebraic manipulation incurs non-necessary noise amplifications when
analyzing the amplitude reconstruction. The method in [3] is only applicable for recovering the location
and amplitude of sources due to the ‘quantitative inverse function theorem’ necessitating an equal
number of true and recovered sources. Furthermore, our method is capable of analyzing the stability of
super-resolving multi-cluster sources under very general settings, making it highly effective.

Due to the simplicity and directness of our method, the bounds derived here are nearly optimal
and hard to improve. The only parts in the proof deteriorating the resolution estimate are the noise
amplification in Corollary 2.2 and inequality (27), which also indicate the path for future improvement.

3.2. Stability of location reconstruction

We now consider the location (support) recovery problem in the super-resolution. We first introduce the
following concept of 𝛿-neighborhood of a discrete measure.

Definition 3.6. Let 𝜇 =
∑𝑛

𝑗=1 𝑎 𝑗𝛿y 𝑗 , y 𝑗 ∈ R𝑘 be a discrete measure and let 𝛿 > 0 be such that the n balls
𝐵𝑘
𝛿

(
y 𝑗

)
, 1 � 𝑗 � 𝑛 are pairwise disjoint. We say that 𝜇 =

∑𝑛
𝑗=1 𝑎 𝑗𝛿ŷ 𝑗

is within 𝛿 neighborhood of 𝜇 if
each ŷ 𝑗 is contained in one and only one of the n balls 𝐵𝑘

𝛿

(
y 𝑗

)
, 1 � 𝑗 � 𝑛.

According to the above definition, a measure in a 𝛿-neighborhood preserves the inner structure of
the true set of sources. For any stable support recovery algorithm, the output should be a measure in
some 𝛿-neighborhood; otherwise, it is impossible to distinguish which is the reconstructed location of
some y 𝑗 ’s. We now introduce the computational resolution limit for stable support recoveries. For ease
of exposition, we only consider measures supported in 𝐵𝑘

(𝑛−1) 𝜋
2Ω

(0).

Definition 3.7. The computational resolution limit to the stable support recovery problem in the super-
resolution of sources in R𝑘 is defined as the smallest nonnegative number 𝒟𝑠𝑢𝑝𝑝 (𝑘, 𝑛) such that for all
n-sparse measure

∑𝑛
𝑗=1 𝑎 𝑗𝛿y 𝑗 , y 𝑗 ∈ 𝐵𝑘

(𝑛−1) 𝜋
2Ω

(0) and the associated measurement Y in (1), if

min
𝑝≠ 𝑗

����y 𝑗 − y𝑝
����2 � 𝒟𝑠𝑢𝑝𝑝 (𝑘, 𝑛),

then there exists 𝛿 > 0 such that any 𝜎-admissible measure for Y with n supports in 𝐵𝑘
(𝑛−1) 𝜋

2Ω
(0) is within

a 𝛿-neighborhood of 𝜇. In particular, when considering positive sources and positive 𝜎-admissible
measures, the corresponding computational resolution limit is denoted by 𝒟+

𝑠𝑢𝑝𝑝 (𝑘, 𝑛).

Leveraging the location-amplitude identities, we derive the following theorem for stably recovering
the source locations in the one-dimensional super-resolution problem.
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Theorem 3.8. Let 𝑛 � 2, and consider the measurement Y in (1) generated by any one-dimensional
source 𝜇 =

∑𝑛
𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 supported on 𝐵1

(𝑛−1) 𝜋
2Ω

(0) satisfying

𝑑min = min
𝑝≠ 𝑗

��𝑦𝑝 − 𝑦 𝑗
�� � 2.36𝑒𝜋

Ω

( 𝜎

𝑚min

) 1
2𝑛−1

. (29)

If 𝜇 =
∑𝑛

𝑗=1 𝑎 𝑗𝛿 �̂� 𝑗 supported on 𝐵1
(𝑛−1) 𝜋

2Ω
(0) is a 𝜎-admissible measure of the measurement Y, then 𝜇 is

within the 𝑑min
2 -neighborhood of 𝜇. After reordering the �̂� 𝑗 ’s, we have����̂� 𝑗 − 𝑦 𝑗

��� < 𝐶 (𝑛)
Ω

SRF2𝑛−2 𝜎

𝑚min
, 1 � 𝑗 � 𝑛, (30)

where 𝐶 (𝑛) =
√
𝑛 − 0.5 22𝑛− 3

2 𝑒2𝑛4.5−1 and SRF := 𝜋
Ω𝑑min

is the super-resolution factor. Moreover, for
the case when 𝑛 = 2, the minimum separation can be improved to

𝑑min �
3
Ω

arcsin

(
2
(

𝜎

𝑚min

) 1
3
)
.

Theorem 3.8 gives an upper bound for the computational resolution limit 𝒟𝑠𝑢𝑝𝑝 (1, 𝑛) that is better
than the one in [26]. It shows that surpassing the Rayleigh limit in the location recovery is possible
when 𝑚min

𝜎 � (2.36𝑒)2𝑛−1. This upper bound is shown to be sharp by a lower bound provided in [24],
by which we can conclude now that

2𝑒−1

Ω

( 𝜎

𝑚min

) 1
2𝑛−1

< 𝒟𝑠𝑢𝑝𝑝 (1, 𝑛) �
2.36𝑒𝜋

Ω

( 𝜎

𝑚min

) 1
2𝑛−1

.

It is also easy to generalize the estimates in Theorem 3.8 to high-dimensional spaces by methods in
[25, 22], whereby we can obtain that

2𝑒−1

Ω

( 𝜎

𝑚min

) 1
2𝑛−1

< 𝒟𝑠𝑢𝑝𝑝 (𝑘, 𝑛) �
𝐶2 (𝑘, 𝑛)

Ω

( 𝜎

𝑚min

) 1
2𝑛−1

,

for a constant 𝐶2 (𝑘, 𝑛).
Especially, for the case when 𝑛 = 2, our estimate demonstrates that when the signal-to-noise ratio

SNR > 12.5, then the resolution is definitely better than the Rayleigh limit, and the ‘super-resolution in
location recovery’ can be achieved.

We now present the proof of Theorem 3.8. It follows in a straightforward manner after employing
the location-amplitude identities.

We first recall the following auxiliary lemma.

Lemma 3.9. For − 𝜋
2 � 𝜃1 < 𝜃2 < · · · < 𝜃𝑘 � 𝜋

2 and �̂�1, �̂�2, · · · , �̂�𝑘 ∈
[
− 𝜋

2 ,
𝜋
2
]
, if������𝜂𝑘,𝑘 (𝑒𝑖 𝜃1 , · · · , 𝑒𝑖 𝜃𝑘 , 𝑒𝑖 𝜃1 , · · · , 𝑒𝑖 𝜃𝑘 )

������∞ <

(
2
𝜋

) 𝑘
𝜖, and 𝜃min = min

𝑞≠ 𝑗

��𝜃𝑞 − 𝜃 𝑗
�� � ( 4𝜖

𝜆(𝑘)

) 1
𝑘
,

where 𝜂𝑘,𝑘 is defined by (22) and 𝜆(𝑘) is given by

𝜆(𝑘) =
{

1, 𝑘 = 2,
𝜉 (𝑘 − 2), 𝑘 � 3, (31)
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with 𝜉 (·) being defined in (21), then after reordering �̂� 𝑗 ’s, we have����̂� 𝑗 − 𝜃 𝑗

��� < 𝜃min
2

and
����̂� 𝑗 − 𝜃 𝑗

��� � 2𝑘−1𝜖

(𝑘 − 2)!(𝜃min)𝑘−1 , 𝑗 = 1, · · · , 𝑘 . (32)

Proof. See Corollary 9 in [26]. �

Now we start the main proof.

Proof. Since 𝜇 =
∑𝑛

𝑗=1 𝑎 𝑗𝛿 �̂� 𝑗 , �̂� 𝑗 ∈ 𝐵1
(𝑛−1) 𝜋

2Ω
(0) is a 𝜎-admissible measure of Y, from the model (1), we

have

ℱ [𝜇] (𝜔) = ℱ [𝜇] (𝜔) + W1(𝜔), 𝜔 ∈ [−Ω,Ω],

for some W1 with |W1 (𝜔) | < 2𝜎, 𝜔 ∈ [−Ω,Ω]. This implies that �̂� =
∑𝑛

𝑗=1 𝑒
−�̂� 𝑗Ω�̂� 𝑗𝛿 �̂� 𝑗 and 𝜌 =∑𝑛

𝑗=1 𝑒
−𝑦 𝑗Ω𝑎 𝑗𝛿𝑦 𝑗 satisfy

ℱ[ �̂�] (𝜔) = ℱ[𝜌] (𝜔) + W2(𝜔), 𝜔 ∈ [0, 2Ω], (33)

for some W2 with |W2 (𝜔) | < 2𝜎, 𝜔 ∈ [0, 2Ω]. For any 𝑦𝑡 , let �̂�𝑡′ be the one in �̂� 𝑗 ’s that is the closest
to 𝑦𝑡 and define 𝑆𝑡 as

𝑆𝑡 := {𝑦1, · · · , 𝑦𝑡−1, 𝑦𝑡+1, · · · , 𝑦𝑛, �̂�1, · · · , �̂�𝑡′−1, �̂�𝑡′+1, · · · , �̂�𝑛}.

Then #𝑆𝑡 = 2𝑛 − 2. Let 𝜔∗ = 2Ω
2𝑛−1 . Since (33) holds, by (11), we have∏

𝑞=1, · · · ,𝑛,𝑞≠𝑡

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖𝑦𝑞𝜔
∗
��� ∏
𝑞=1, · · · ,𝑛

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖 �̂�𝑞𝜔
∗
��� < 22𝑛𝜎

𝑚min
, 𝑡 = 1, · · · , 𝑛. (34)

Therefore, it follows that

min
𝑡=1, · · · ,𝑛

∏
𝑞=1, · · · ,𝑛,𝑞≠𝑡

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖𝑦𝑞𝜔
∗
��� max
𝑡=1, · · · ,𝑛

∏
𝑞=1, · · · ,𝑛

���𝑒𝑖𝑦𝑡𝜔∗ − 𝑒𝑖 �̂�𝑞𝜔
∗
��� < 22𝑛𝜎

𝑚min
.

Denote 𝑦𝑞𝜔
∗, �̂�𝑞𝜔

∗ by, respectively, 𝜃𝑞 , �̂�𝑞 and 𝜃min = min𝑝≠𝑞 |𝜃𝑝 − 𝜃𝑞 |. Since 𝑦 𝑗 ’s in 𝐵1
(𝑛−1) 𝜋

2Ω
(0) and

𝜔∗ = 2Ω
2𝑛−1 , we have 𝜃 𝑗 , �̂� 𝑗 ’s in

[
− 𝜋

2 ,
𝜋
2
]
. By Lemma 3.4, we further get

max
𝑗=1, · · · ,𝑛

∏
𝑞=1, · · · ,𝑛

���𝑒𝑖𝑦 𝑗𝜔∗ − 𝑒𝑖 �̂�𝑞𝜔
∗
��� < 1

𝜁 (𝑛)

(
𝜋

2𝜃min

)𝑛−1 22𝑛𝜎

𝑚min
. (35)

We then utilize Lemma 3.9 to estimate the recovery of the locations. For this purpose, let 𝜖 =
𝜋2𝑛−1

𝜁 (𝑛) (𝜃min)𝑛−1
2𝜎
𝑚min

. Then (35) is equivalent to������𝜂𝑛,𝑛 (𝑒𝑖 𝜃1 , · · · , 𝑒𝑖 𝜃𝑛 , 𝑒𝑖 𝜃1 , · · · , 𝑒𝑖 𝜃𝑛 )
������∞ <

(
2
𝜋

)𝑛
𝜖 .

We thus only need to check the following condition:

𝜃min �
( 4𝜖
𝜆(𝑛)

) 1
𝑛
, or equivalently (𝜃min)𝑛 �

4𝜖
𝜆(𝑛) . (36)

https://doi.org/10.1017/fms.2024.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.72


Forum of Mathematics, Sigma 19

Indeed, by the separation condition (29),

𝜃min = 𝑑min𝜔
∗ �

2.36𝜋𝑒
𝑛 − 1

2

( 𝜎

𝑚min

) 1
2𝑛−1
� 𝜋

( 4
𝜆(𝑛)𝜁 (𝑛)

2𝜎
𝑚min

) 1
2𝑛−1

, (37)

where we have used Lemma A.2 in the last inequality. Then

(𝜃min)2𝑛−1 �
4𝜋2𝑛−1

𝜆(𝑛)𝜁 (𝑛)
2𝜎
𝑚min

,

whence we get (36). Therefore, we can apply Lemma 3.9 to get that, after reordering �̂� 𝑗 ’s,����̂� 𝑗 − 𝜃 𝑗

��� < 𝜃min
2

,����̂� 𝑗 − 𝜃 𝑗

��� < 2𝑛𝜋2𝑛−1

𝜁 (𝑛) (𝑛 − 2)!(𝜃min)2𝑛−2
𝜎

𝑚min
, 1 � 𝑗 � 𝑛.

(38)

Finally, we estimate
���̂� 𝑗 − 𝑦 𝑗

��. Since
����̂� 𝑗 − 𝜃 𝑗

��� < 𝜃min
2 , it is clear that

���̂� 𝑗 − 𝑦 𝑗
�� < 𝑑min

2 . Thus, 𝜇 is

within the 𝑑min
2 -neighborhood of 𝜇. Moreover,���̂� 𝑗 − 𝑦 𝑗

�� = 2𝑛 − 1
2Ω

����̂� 𝑗 − 𝜃 𝑗

���, 𝑗 = 1, · · · , 𝑛.

Using (38) and Lemma A.3, a direct calculation shows that

���̂� 𝑗 − 𝑦 𝑗
�� < 𝐶 (𝑛)

Ω

(
𝜋

Ω𝑑min

)2𝑛−2
𝜎

𝑚min
, (39)

where 𝐶 (𝑛) =
√
𝑛 − 0.5 22𝑛− 3

2 𝑒2𝑛4.5−1.
The last part is to prove the case when 𝑛 = 2. When 𝑛 = 2, by (34), we have���𝑒𝑖𝑦1𝜔

∗ − 𝑒𝑖 �̂�1𝜔
∗
������𝑒𝑖𝑦1𝜔

∗ − 𝑒𝑖 �̂�2𝜔
∗
������𝑒𝑖𝑦1𝜔

∗ − 𝑒𝑖𝑦2𝜔
∗
��� < 24𝜎

𝑚min
. (40)

Denote 𝜔∗ |𝑦1 − 𝑦2 | = 𝜃min. Reordering �̂� 𝑗 ’s so that | �̂�1 − 𝑦1 | � | �̂�2 − 𝑦1 |. Thus, if | �̂�1 − 𝑦1 |𝜔∗ � 𝜃min
2 ,

we have | �̂�2 − 𝑦1 |𝜔∗ � 𝜃min
2 . Recall also that �̂� 𝑗 ∈ 𝐵1

(𝑛−1) 𝜋
2Ω

(0), 𝑗 = 1, 2. Then (40) yields

(
2 sin

(
𝜃min

4

))2
2 sin

(
𝜃min

2

)
<

24𝜎

𝑚min
,

which gives

sin3
(
𝜃min

2

)
<

23𝜎

𝑚min
.

It then follows that

𝜃min < 2 arcsin
(

8𝜎
𝑚min

) 1
3

https://doi.org/10.1017/fms.2024.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.72


20 P. Liu and H. Ammari

and

𝑑min =
𝜃min
𝜔∗ <

3
Ω

arcsin

(
2
(

𝜎

𝑚min

) 1
3
)
,

where we have set 𝜔∗ = 2Ω
3 . Therefore, if

𝑑min �
3
Ω

arcsin

(
2
(

𝜎

𝑚min

) 1
3
)
,

then we must have | �̂�1 − 𝑦1 |𝜔∗ < 𝜃min
2 and consequently, | �̂�1 − 𝑦1 | < 𝑑min

2 . In the same manner, we also
have | �̂�2 − 𝑦2 | < 𝑑min

2 . This completes the proof. �

3.3. Stability of amplitude reconstruction

We now consider the stability of the amplitude reconstruction. Note that for the off-the-grid case, it
takes several tens pages in [3] to prove the stability of the reconstruction of each amplitude 𝑎 𝑗 . Here,
we can take two pages to have a stronger understanding for the amplitude reconstruction.

Theorem 3.10. Let 𝑛 � 2 and let the measurement Y be generated from any one-dimensional source
𝜇 =

∑𝑛
𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 supported on 𝐵1

(𝑛−1) 𝜋
2Ω

(0) and satisfying the separation condition

𝑑min = min
𝑝≠ 𝑗

��𝑦𝑝 − 𝑦 𝑗
�� � 2.36𝑒𝜋

Ω

( 𝜎

𝑚min

) 1
2𝑛−1

. (41)

For any𝜎-admissible measure of Y, 𝜇 =
∑𝑛

𝑗=1 �̂� 𝑗𝛿 �̂� 𝑗 , �̂� 𝑗 ∈ 𝐵1
(𝑛−1) 𝜋

2Ω
(0), after reordering the �̂� 𝑗 ’s, we have

���̂� 𝑗 − 𝑦 𝑗
�� < 𝑑min

9
,

���̂� 𝑗 − 𝑎 𝑗
�� < 𝐶1 (𝑛)SRF2𝑛−1𝜎, (42)

for a certain constant 𝐶1 (𝑛). Moreover, if �̂� 𝑗 = 𝑦 𝑗 , we have��𝑎 𝑗 − 𝑎 𝑗
�� < 𝐶2 (𝑛)SRF2𝑛−2𝜎, (43)

for a certain constant 𝐶2 (𝑛).

Proof. By Theorem 3.8, the separation condition (41) implies����̂� 𝑗 − 𝑦 𝑗

��� < √
𝑛 − 0.5 22𝑛− 3

2 𝑒2𝑛4.5−1

Ω

(
𝜋

Ω𝑑min

)2𝑛−2
𝜎

𝑚min
, 1 � 𝑗 � 𝑛. (44)

Together with (41), this gives | �̂� 𝑗 − 𝑦 𝑗 | < 𝑑min
9 , 𝑗 = 1, · · · , 𝑛. Hence, among {�̂�𝑞}𝑛𝑞=1, �̂� 𝑗 is the closest

point to 𝑦 𝑗 . We write 𝑦 𝑗 = �̂� 𝑗 + 𝜖 𝑗 with 0 �
��𝜖 𝑗 �� < 𝑑min

9 . Since 𝜇 =
∑𝑛

𝑗=1 �̂� 𝑗𝛿 �̂� 𝑗 , �̂� 𝑗 ∈ 𝐵1
(𝑛−1) 𝜋

2Ω
(0) is a

𝜎-admissible measure of Y, from the model (1), we have

ℱ [𝜇] (𝜔) = ℱ [𝜇] (𝜔) + W1(𝜔), 𝜔 ∈ [0,Ω],

for some W1 with |W1 (𝜔) | < 2𝜎, 𝜔 ∈ [0,Ω]. For each 𝑗 ∈ {1, · · · , 𝑛}, denote by 𝑆 𝑗 the set containing
all 𝑦𝑝’s and �̂�𝑝’s except 𝑦 𝑗 , �̂� 𝑗 . By

���̂�𝑝 − 𝑦𝑝
�� < 𝑑min

9 , 1 � 𝑝 � 𝑛, for all 𝑞 ∈ 𝑆 𝑗 we have 𝑞 ≠ 𝑦 𝑗 and 𝑞 ≠ �̂� 𝑗 .
Let 𝜔∗ = Ω

2𝑛−1 . As 𝑦𝑝’s and �̂�𝑝’s are in 𝐵1
(𝑛−1) 𝜋

2Ω
(0), we also have 𝑒𝑖𝑞𝜔∗

≠ 𝑒𝑖𝑦 𝑗𝜔
∗
, 𝑒𝑖𝑞𝜔

∗
≠ 𝑒𝑖 �̂� 𝑗𝜔

∗
, 𝑞 ∈ 𝑆 𝑗 .
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Thus, by (10), we can have�������̂� 𝑗 ∏
𝑞∈𝑆 𝑗

𝑒𝑖 �̂� 𝑗𝜔
∗ − 𝑒𝑖𝑞𝜔

∗

𝑒𝑖𝑦 𝑗𝜔
∗ − 𝑒𝑖𝑞𝜔

∗ − 𝑎 𝑗

������ < 22𝑛−1𝜎∏
𝑞∈𝑆 𝑗

��𝑒𝑖𝑦 𝑗𝜔∗ − 𝑒𝑖𝑞𝜔∗ �� . (45)

Equivalently, we have �������̂� 𝑗 − 𝑎 𝑗
∏
𝑞∈𝑆 𝑗

𝑒𝑖𝑦 𝑗𝜔
∗ − 𝑒𝑖𝑞𝜔

∗

𝑒𝑖 �̂� 𝑗𝜔
∗ − 𝑒𝑖𝑞𝜔∗

������ < 22𝑛−1𝜎∏
𝑞∈𝑆 𝑗

��𝑒𝑖 �̂� 𝑗𝜔∗ − 𝑒𝑖𝑞𝜔∗ �� . (46)

We rewrite its LHS as �������̂� 𝑗 − 𝑎 𝑗
∏
𝑞∈𝑆 𝑗

(
𝑒𝑖𝑦 𝑗𝜔

∗ − 𝑒𝑖 �̂� 𝑗𝜔
∗

𝑒𝑖 �̂� 𝑗𝜔
∗ − 𝑒𝑖𝑞𝜔∗ + 1

)������, (47)

and expand that ∏
𝑞∈𝑆 𝑗

(
𝑒𝑖𝑦 𝑗𝜔

∗ − 𝑒𝑖 �̂� 𝑗𝜔
∗

𝑒𝑖 �̂� 𝑗𝜔
∗ − 𝑒𝑖𝑞𝜔

∗ + 1
)
= 1 + (𝑒𝑖𝑦 𝑗𝜔∗ − 𝑒𝑖 �̂� 𝑗𝜔

∗ )𝑔(𝜖 𝑗 , 𝑆 𝑗 , �̂� 𝑗 , 𝑦 𝑗 , 𝜔∗) (48)

where ��𝑔(𝜖 𝑗 , 𝑆 𝑗 , �̂� 𝑗 , 𝑦 𝑗 , 𝜔∗)
�� � 𝐶3 (𝑛)

𝑑min
(49)

for a certain constant 𝐶3 (𝑛). Thus, combining (46), (47) and (48) yields that���̂� 𝑗 − 𝑎 𝑗
�� < ���𝑎 𝑗 (𝑒𝑖𝑦 𝑗𝜔∗ − 𝑒𝑖 �̂� 𝑗𝜔

∗ )𝑔(𝜖 𝑗 , 𝑆 𝑗 , �̂� 𝑗 , 𝑦 𝑗 , 𝜔∗)
��� + 22𝑛−1𝜎∏

𝑞∈𝑆 𝑗

��𝑒𝑖 �̂� 𝑗𝜔∗ − 𝑒𝑖𝑞𝜔
∗ �� . (50)

Now we estimate the two terms in the RHS of the above equation. First, by (11), we have���𝑎 𝑗 (𝑒𝑖𝑦 𝑗𝜔∗ − 𝑒𝑖 �̂� 𝑗𝜔
∗ )

��� < 22𝑛−1𝜎∏
𝑞∈𝑆 𝑗

��𝑒𝑖𝑦 𝑗𝜔∗ − 𝑒𝑖𝑞𝜔
∗ �� . (51)

Second, based on the estimate | �̂�𝑝 − 𝑦𝑝 | < 𝑑min
9 , 𝑝 = 1, · · · , 𝑛, it is easy to prove that

𝜎∏
𝑞∈𝑆 𝑗

��𝑒𝑖 �̂� 𝑗𝜔∗ − 𝑒𝑖𝑞𝜔∗ �� � 𝐶4 (𝑛)𝜎
𝑑2𝑛−2

min
(52)

holds for some constant 𝐶4 (𝑛). Combining estimates (49), (50), (51) and (52) yields��𝑎 𝑗 − 𝑎 𝑗
�� < 𝐶5 (𝑛)

𝑑2𝑛−1
min

𝜎

for some constant 𝐶5 (𝑛). Now we consider the case when �̂� 𝑗 = 𝑦 𝑗 . This time, by (45), we have��𝑎 𝑗 − 𝑎 𝑗
�� < 2#𝑆 𝑗𝜎∏

𝑞∈𝑆 𝑗

��𝑒𝑖𝑦 𝑗𝜔∗ − 𝑒𝑖𝑞𝜔
∗ �� .

Together with (52), we demonstrate (43) and complete the proof. �
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3.4. Stability of a sparsity-promoting algorithm

Nowadays, sparsity-promoting algorithms are popular methods in image processing, signal processing
and many other fields. As a direct consequence of results in the above sections, we derive a sharp
stability result for the following 𝑙0-minimization problem in the one-dimensional super-resolution:

min
𝜌 supported on 𝒪,𝜌 is a discrete measure

| |𝜌 | |0 subject to |ℱ𝜌(𝜔) − Y(𝜔) | < 𝜎, 𝜔 ∈ [−Ω,Ω], (53)

where | |𝜌 | |0 is the number of Dirac masses representing the discrete measure 𝜌.

Theorem 3.11. Let 𝑛 � 2 and 𝜎 � 𝑚min. Let the measurement Y in (1) be generated by a one-
dimensional source 𝜇 =

∑𝑛
𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 , 𝑎 𝑗 ∈ C, 𝑦 𝑗 ∈ 𝐵1

(𝑛−1) 𝜋
2Ω

(0). Assume that

𝑑min = min
𝑝≠ 𝑗

��𝑦𝑝 − 𝑦 𝑗
�� � 2.36𝑒𝜋

Ω

( 𝜎

𝑚min

) 1
2𝑛−1

. (54)

Let 𝒪 in the minimization problem (53) be (or be included in) 𝐵1
(𝑛−1) 𝜋

2Ω
(0). Then the solution to (53)

contains exactly n point sources. For any solution 𝜇 =
∑𝑛

𝑗=1 𝑎 𝑗𝛿 �̂� 𝑗 , it is in a 𝑑min
9 -neighborhood of 𝜇.

Moreover, after reordering the �̂� 𝑗 ’s, we have���̂� 𝑗 − 𝑦 𝑗
�� < 𝐶1 (𝑛)

Ω
SRF2𝑛−2 𝜎

𝑚min
,

���̂� 𝑗 − 𝑎 𝑗
�� < 𝐶2 (𝑛)SRF2𝑛−1𝜎, 1 � 𝑗 � 𝑛, (55)

for certain constants 𝐶1 (𝑛) and 𝐶2 (𝑛).

Theorem 3.11 reveals that sparsity promoting over admissible solutions can resolve the source lo-
cations to the resolution limit level. Particularly, under the separation condition (54), any tractable
sparsity-promoting algorithms (such as total variation minimization algorithms [5]) rendering the spars-
est solution could stably reconstruct all the source locations and amplitudes.

4. Two-point resolution in the multi-dimensional super-resolution

Now we have understood the stability of super-resolving multiple point sources. Specifically, we have
shown that with a SNR greater than 4, super-resolution is definitively achievable for resolving two point
sources. However, we are not merely interested in estimations; we aim to determine the precise resolution
limit for distinguishing two sources. In this section, we will develop the exact formula for this two-point
resolution limit. We will particularly address the multi-dimensional imaging problem as described by
(1), focusing on super-resolving two point sources, represented as 𝜇 =

∑2
𝑗=1 𝑎 𝑗𝛿y 𝑗 , y 𝑗 ∈ R𝑘 .

4.1. Two-point resolution for resolving sources with identical amplitudes

Inspired by the classic diffraction limit problem, we derived the following lemma for the resolution limit
when resolving two point sources with identical amplitudes.

Lemma 4.1. Let 𝜎
𝑚min
� 1

2 . For all measures 𝜇 =
∑2

𝑗=1 𝑎 𝑗𝛿y 𝑗 , y 𝑗 ∈ R𝑘 with 𝑚min = 𝑎1 = 𝑎2 > 0, if

min
𝑝≠ 𝑗

����y 𝑗 − y𝑝
����2 � 4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω
, (56)

then there does not exist any 𝜎-admissible measure of Y with less than two supports. However, when
(56) fails to hold, there exists a 𝜎-admissible measure of some Y with only one point source. When
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𝜎
𝑚min

> 1
2 , no matter what the separation distance is, there are always some 𝜎-admissible measures of

some Y with only one point source.

Proof. Step 1. We first prove the one-dimensional case. Let 𝜇 =
∑2

𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 and 𝜇 = 𝑎𝛿 �̂� . A crucial
relation is

|ℱ [𝜇] (𝜔) −ℱ[𝜇] (𝜔) | < 2𝜎, 𝜔 ∈ [−Ω,Ω] . (57)

Note that if (57) holds, 𝜇 can be a 𝜎-admissible measure of some Y generated by model (1). This
time, resolving two point sources is impossible. Conversely, if (57) does not hold, 𝜇 cannot be any 𝜎-
admissible measure of some Y generated by 𝜇 as in model (1). Let ℛ be the constant such that (57)
holds when |𝑦1− 𝑦2 | < ℛ and fails to hold in the opposite case. Based on the above discussions, proving

Lemma 4.1 is to show ℛ =
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω .
Instead of considering all the 𝜔 ∈ [−Ω,Ω] directly, we consider

|ℱ[𝜇] (𝜔) −ℱ[𝜇] (𝜔) | < 2𝜎, 𝜔 ∈ [0,Ω] . (58)

In the sequel, we intend to findℛ so that (58) holds when |𝑦1−𝑦2 | < ℛ and does not hold in the opposite
case. Afterward, we will show that (57) holds as well under some circumstances when |𝑦1 − 𝑦2 | < ℛ.

Step 2. Note that for the general source locations 𝑦1, 𝑦2, shifting them by x and getting that��ℱ [𝜇] (𝜔)𝑒𝑖𝑥𝜔 −ℱ[𝜇] (𝜔)𝑒𝑖𝑥𝜔
�� < 2𝜎, 𝜔 ∈ [−Ω,Ω],

we can transform the problem into the case when 𝑦1 = −𝑦2. Thus, we consider that the true source is
𝜇 = 𝑚min𝛿𝑦1 + 𝑚min𝛿𝑦2 with 𝑦1 > 0, 𝑦1 = −𝑦2. The measure 𝜇 is 𝑎𝛿 �̂� with a and �̂� to be determined.

Then the existence of 𝜇 satisfying (58) is equivalent to solving the condition on 𝑦1 so that

min
𝑎∈C, �̂�∈R

���𝑎𝑒𝑖 �̂�𝜔 − 2𝑚min cos(𝑦1𝜔)
��� < 2𝜎, 𝜔 ∈ [0,Ω],

where we have used

𝑎𝑒𝑖 �̂�𝜔 − 𝑚min(𝑒𝑖𝑦1𝜔 + 𝑒𝑖𝑦2𝜔) = 𝑎𝑒𝑖 �̂�𝜔 − 2𝑚min cos(𝑦1𝜔).

We denote 𝑑min := |𝑦1−𝑦2 | and first consider the case when 0 < 𝑑min < 𝜋
Ω . Note that for two nonnegative

values 𝑥, 𝑦, we have��𝑥𝑒𝑖 𝜃 − 𝑦
��2 = (𝑥 cos 𝜃 − 𝑦)2 + 𝑥2 sin2 𝜃 = 𝑥2 + 𝑦2 − 2𝑥𝑦 cos 𝜃 � (𝑥 − 𝑦)2,

and the equality is attained when 𝜃 = 0. Since 0 < 𝑑min � 𝜋
Ω

(
0 < 𝑦1 � 𝜋

2Ω
)
, we have cos(𝑦1𝜔) � 0, 𝜔 ∈

[0,Ω]. Thus, for every 𝜔,

min
𝑎∈C, �̂�∈R

���𝑎𝑒𝑖 �̂�𝜔 − 2𝑚min cos(𝑦1𝜔)
��� � | |𝑎 | − 2𝑚min cos(𝑦1𝜔) |,

and the minimum is attained when �̂� = 0 and a is a positive number. We now try to find the condition
on 𝑦1 so that there exists 𝑎 ∈ R+ satisfying

|𝑎 − 2𝑚min cos(𝑦1𝜔) | < 2𝜎, 𝜔 ∈ [0,Ω] .

This is equivalent to

max
𝜔,𝜔′ ∈ [0,Ω]

|2𝑚min(cos(𝑦1𝜔) − cos(𝑦1𝜔
′)) | < 4𝜎, (59)
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since the existence of 𝜔1, 𝜔2 ∈ [0,Ω] so that

|2𝑚min (cos(𝑦1𝜔1) − cos(𝑦1𝜔2)) | � 4𝜎

results in

max
𝜔∈[0,Ω]

|𝑎 − 2𝑚min cos(𝑦1𝜔) | � 2𝜎, ∀𝑎 ∈ R+.

If 𝑑min = 2𝑦1 � 𝜋
Ω , then 0 � 𝑦1𝜔 � 𝜋

2 , 𝜔 ∈ [0,Ω]. Then problem (59) becomes

2𝑚min

����1 − cos
(
𝑑min

2
Ω

)���� < 4𝜎.

Thus, 4 sin2
(
𝑑minΩ

4

)
< 4𝜎

𝑚min
, and equivalently,

𝑑min <

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω
.

Note that when 𝑑min <

4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω , choosing 𝑎 = 𝑚min+𝑚min cos(𝑦1Ω)
2 and �̂� = 0 makes

|ℱ[𝜇] (𝜔) −ℱ[𝜇] (𝜔) | < 2𝜎, 𝜔 ∈ [0,Ω] .

As ℱ [𝜇] (−𝜔) −ℱ [𝜇] (−𝜔) = ℱ[𝜇] (𝜔) −ℱ[𝜇] (𝜔) this time, the solution makes

|ℱ[𝜇] (𝜔) −ℱ[𝜇] (𝜔) | < 2𝜎, 𝜔 ∈ [−Ω,Ω] .

Thus, this is exactly the resolution limit ℛ when 0 < 𝑑min � 𝜋
Ω for the case when 𝜎

𝑚min
� 1

2 . For the

case when 𝑑min > 𝜋
Ω , by

4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω � 𝜋
Ω when 𝜎

𝑚min
� 1

2 and above discussions, we have

min
𝑎∈C, �̂�∈R

max
𝜔∈[0,Ω]

���𝑎𝑒𝑖 �̂�𝜔 − 2𝑚min cos(𝑦1𝜔)
��� � 2𝜎.

Thus, there does not exist any 𝜎-admissible measure of Y with less than two supports. This proves the
statements for the case when 𝜎

𝑚min
� 1

2 in the lemma.
Now, we consider the case when 𝜎

𝑚min
> 1

2 . We choose a specific case where 𝑎 = 𝑚min and �̂� = 𝑦1.
Then ��𝑚min𝑒

𝑖𝑦1𝜔 − 𝑚min(𝑒𝑖𝑦1𝜔 + 𝑒𝑖𝑦2𝜔)
�� = ��𝑚min𝑒

𝑖𝑦2𝜔
�� < 2𝜎

gives

|ℱ [𝜇] (𝜔) −ℱ [𝜇] (𝜔) | < 2𝜎, 𝜔 ∈ R.

Thus, the case when 𝜎
𝑚min

> 1
2 is meaningless. There are always some 𝜎-admissible measures for some

images with only one point source.

Step 3. Now we consider the case when the sources y 𝑗 ’s are in R𝑘 . We still consider the crucial
relation that

|ℱ [𝜇] (𝝎) −ℱ[𝜇] (𝝎) | < 2𝜎, | |𝝎| |2 � Ω. (60)
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By a similar argument as the one in step 1, we need to compute constant ℛ such that (60) holds when
| |y1 − y2 | |2 < ℛ and fails to hold in the opposite case. Note that by choosing suitable axes or transforming
the problem, we can make y1 = (𝑦1, 0, · · · , 0)�, y2 = (𝑦2, 0, · · · , 0)�. Consider 𝜇 = 𝑎𝛿ŷ, ŷ ∈ R𝑘 with a
and ŷ to be determined. We now have

ℱ [𝜇] (𝝎) −ℱ [𝜇] (𝝎) = 𝑎𝑒𝑖ŷ·𝝎 −
2∑
𝑗=1

𝑎 𝑗𝑒
𝑖y 𝑗 ·𝝎 = 𝑎𝑒𝑖ŷ2:𝑘 ·𝝎2:𝑘 𝑒ŷ1𝝎1 −

2∑
𝑗=1

𝑎 𝑗𝑒
𝑖𝑦 𝑗𝝎1 ,

where x1 is the first vector element and x2:𝑘 is the vector consisting of the 2-nd to the k-th elements of
x. Thus, analyzing when (60) holds can be reduced to the one-dimensional case, and it is not hard to see
that the result for the one-dimensional space still holds for multi-dimensional spaces. �

4.2. Resolution limit for detecting two positive sources

Now, we compute the computational resolution limit for detecting two positive sources. We have the
following theorem showing that the resolution limit is the one in Lemma 4.1.

Theorem 4.2. For 𝜎
𝑚min
� 1

2 , the computational resolution limit 𝒟+
𝑛𝑢𝑚(𝑘, 2) for resolving two positive

sources in R𝑘 is given by

𝒟+
𝑛𝑢𝑚(𝑘, 2) =

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω
.

It can be attained if 𝑎1 = 𝑎2. When 𝜎
𝑚min

> 1
2 , no matter what the separation distance is, there are

always some 𝜎-admissible measures of some Y with only one point source.

When 𝜎
𝑚min

< 1
2 , the two-point resolution 𝒟+

𝑛𝑢𝑚(𝑘, 2) is already less than the Rayleigh limit 𝜋
Ω ,

which far exceeds all expectations. This indicates that, in contrast to what was commonly supposed,
super-resolution from a single snapshot is, in fact, very possible.

Remark. Although 𝒟+
𝑛𝑢𝑚(𝑘, 2) is defined for measures on 𝐵𝑘

(𝑛−1) 𝜋
2Ω

(0), similar arguments as those in

the proof of Lemma 4.1 can generalize the resolution estimate to measures on R𝑘 .

Now we introduce the proof.

Proof. Step 1. We only need to consider the case when 𝜎
𝑚min
� 1

2 , as the case when 𝜎
𝑚min

> 1
2 is trivial.

Also, we only consider the one-dimensional case since the treatment for multi-dimensional spaces is
similar to the one in the proof of Theorem 4.1.

Let 𝜇 =
∑2

𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 and 𝜇 = 𝑎𝛿 �̂� . Similarly to step 1 in the proof of Theorem 4.1, the computational
resolution limit 𝒟+

𝑛𝑢𝑚(𝑘, 2) should be the constant such that

|ℱ [𝜇] (𝜔) −ℱ [𝜇] (𝜔) | < 2𝜎, 𝜔 ∈ [−Ω,Ω] (61)

holds when |𝑦1 − 𝑦2 | < 𝒟+
𝑛𝑢𝑚(𝑘, 2) and fails to hold in the opposite case. Choosing a suitable axis, we

assume that the true source is 𝜇 = 𝑚min𝛼𝛿𝑦1 + 𝑚min𝛿𝑦2 with 𝑦1 = −𝑦2, 𝛼 � 1. We consider 𝜇 = 𝑎𝛿 �̂�
with 𝑎 > 0 and �̂� to be determined. We shall prove that if

|𝑦1 − 𝑦2 | �
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω
,
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then (61) does not hold for any 𝜇 consisting of only one positive source. In the opposite case, Theorem 4.1
already ensures the existence of such 𝜇, 𝜇, making (61) hold. By the above two results, we prove the
theorem.

In the following proof, we will find a necessary condition for

min
𝑎>0,𝛼�1, �̂�∈R

|ℱ [𝜇] (𝜔) −ℱ [𝜇] (𝜔) | < 2𝜎, 𝜔 ∈ [−Ω,Ω] .

By the definition of 𝒟+
𝑛𝑢𝑚(𝑘, 2) in Definition 3.2, we only consider the case when 𝑑min � 𝜋

Ω .

Step 2. We analyze a necessary condition – that is,

min
𝑎>0,𝛼�1, �̂�∈R

|ℱ [𝜇] (Ω) −ℱ [𝜇] (Ω) | + |ℱ[𝜇] (0) −ℱ [𝜇] (0) | < 4𝜎. (62)

Since from (61) and the assumption for 𝜇,

ℱ [𝜇] (𝜔) −ℱ [𝜇] (𝜔) = 𝑎𝑒𝑖 �̂�𝜔 − 𝑚min
(
𝛼𝑒𝑖𝑦1𝜔 + 𝑒−𝑖𝑦1𝜔

)
, (63)

we thus consider

min
𝑎>0,𝛼�1, �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − 𝑚min

(
𝛼𝑒𝑖𝑦1Ω + 𝑒−𝑖𝑦1Ω

)��� + |𝑎 − 𝑚min(𝛼 + 1) |. (64)

Let 𝛼 = 1 + ℎ, ℎ � 0, and rewrite the above formula as

min
𝑎>0,ℎ�0, �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎 − (2𝑚min + ℎ𝑚min) |.

A key observation is that if 2𝑚min cos(𝑦1Ω) + ℎ𝑚min � 𝑎 � 2𝑚min + ℎ𝑚min, then we have

min
𝑎>0,ℎ�0, �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎 − (2𝑚min + ℎ𝑚min) |

� min
𝑎>0,ℎ�0, �̂�∈R, �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖 �̂�Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎 − (2𝑚min + ℎ𝑚min) |

= min
𝑎>0,ℎ�0

|𝑎 − ℎ𝑚min − 2𝑚min cos(𝑦1Ω) | + |𝑎 − (2𝑚min + ℎ𝑚min) |

= min
2𝑚min cos(𝑦1Ω)�𝑏�2𝑚min

|𝑏 − 2𝑚min cos(𝑦1Ω) | + |2𝑚min − 𝑏 |

= 2𝑚min − 2𝑚min cos(𝑦1Ω), (65)

where the second equality is because 𝑎 � 2𝑚min cos(𝑦1Ω) + ℎ𝑚min, ℎ𝑚min � 0 and 2𝑚min cos(𝑦1Ω) =
2𝑚min cos( 𝑑min

2 Ω) � 0 for 𝑑min � 𝜋
Ω .

However, letting ℎ = 0, �̂� = 0, we obtain that

min
𝑎>0

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎 − (2𝑚min + ℎ𝑚min) |

= min
𝑎>0

|𝑎 − 2𝑚min cos(𝑦1Ω) | + |𝑎 − 2𝑚min |

= min
𝑎>0

(𝑎 − 2𝑚min cos(𝑦1Ω)) + 2𝑚min − 𝑎
(
choose 2𝑚min cos(𝑦1Ω) � 𝑎 � 2𝑚min

)
= 2𝑚min − 2𝑚min cos(𝑦1Ω).
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Together with (65), this yields

min
𝑎>0,ℎ�0, �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎 − (2𝑚min + ℎ𝑚min) |

= 2𝑚min − 2𝑚min cos(𝑦1Ω)

in the case when 2𝑚min cos(𝑦1Ω) + ℎ𝑚min � 𝑎 � 2𝑚min + ℎ𝑚min.
Now we consider the case when 𝑎 < 2𝑚min cos(𝑦1Ω) + ℎ𝑚min. In this case, we have

min
𝑎>0,ℎ�0,𝑎<2𝑚min cos(𝑦1Ω)+ℎ𝑚min , �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎 − (2𝑚min + ℎ𝑚min) |

� min
𝑎>0,ℎ�0,𝑎<2𝑚min cos(𝑦1Ω)+ℎ𝑚min

|𝑎 − (2𝑚min + ℎ𝑚min) |

= min
𝑎>0,ℎ�0,𝑎<2𝑚min cos(𝑦1Ω)+ℎ𝑚min

2𝑚min + ℎ𝑚min − 𝑎

> 2𝑚min − 2𝑚min cos(𝑦1Ω).

Last, we consider the case when 𝑎 > 2𝑚min + ℎ𝑚min. This time, we have

min
𝑎>0,ℎ�0,𝑎>2𝑚min+ℎ𝑚min , �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎 − (2𝑚min + ℎ𝑚min) |

� min
𝑎>0,ℎ�0,𝑎>2𝑚min+ℎ𝑚min , �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)

���
� min

𝑎>0,ℎ�0,𝑎>2𝑚min+ℎ𝑚min
𝑎 − ℎ𝑚min − 2𝑚min cos(𝑦1Ω)

> 2𝑚min − 2𝑚min cos(𝑦1Ω).

Therefore, combining the above discussions yields

min
𝑎�0,ℎ�0, �̂�∈R

���𝑎𝑒𝑖 �̂�Ω − ℎ𝑚min𝑒
𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎 − (2𝑚min + ℎ𝑚min) |

= 2𝑚min − 2𝑚min cos(𝑦1Ω),

and that is,

min
𝑎�0,𝛼�1, �̂�∈R

���𝑎𝑒 �̂�Ω − 𝑚min

(
𝛼𝑒𝑖𝑦1Ω + 𝑒−𝑖𝑦1Ω

)��� + |𝑎 − 𝑚min(𝛼 + 1) |

= 2𝑚min − 2𝑚min cos(𝑦1Ω).

Thus, (62) is equivalent to

2𝑚min − 2𝑚min cos(𝑦1Ω) < 4𝜎.

Similarly to the proof of Theorem 4.1, this shows that

𝑑min <

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω

and completes the proof. �

4.3. Resolution limit for detecting two complex sources

Now we consider super-resolving complex sources and have the following theorem.
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Theorem 4.3. For 𝜎
𝑚min
� 1

2 , the computational resolution limit 𝒟𝑛𝑢𝑚(𝑘, 2) for resolving two sources
in R𝑘 is given by

𝒟𝑛𝑢𝑚(𝑘, 2) =
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω
. (66)

It can be attained if 𝑎1 = 𝑎2. When 𝜎
𝑚min

> 1
2 , no matter what the separation distance is, there are

always some 𝜎-admissible measures of some Y with only one point source.

Theorem 4.3 demonstrates that when 𝜎
𝑚min

< 1
2 , the two-point resolution for distinguishing general

sources is already better than the Rayleigh limit.
We now prove the theorem.

Proof. Step 1. We only need to analyze the case when 𝜎
𝑚min
� 1

2 , as the case when 𝜎
𝑚min

> 1
2 is trivial.

Also, we only consider the one-dimensional case since the treatment for multi-dimensional spaces is
similar to the one in the proof of Theorem 4.1.

Let 𝜇 =
∑2

𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 and 𝜇 = 𝑎𝛿 �̂� . Similarly to step 1 in the proof of Theorem 4.1, the resolution limit
𝒟𝑛𝑢𝑚(𝑘, 2) should be the constant such that the estimate

|ℱ [𝜇] (𝜔) −ℱ [𝜇] (𝜔) | < 2𝜎, 𝜔 ∈ [−Ω,Ω] (67)

holds when |𝑦1 − 𝑦2 | < 𝒟𝑛𝑢𝑚(𝑘, 2) and fails to hold in the opposite case.
Step 2. Without loss of generality, we assume the true source is

𝜇 = 𝑚min𝛼𝑒
−𝑖𝛽𝛿𝑦1 + 𝑚min𝑒

𝑖𝛽𝛿𝑦2

with 𝑦1 = −𝑦2, 0 < 𝑦1 � 𝜋
2Ω , 𝛼 � 1 and 0 � 𝛽 � 𝜋

2 . It is not hard to see that the other cases can all be
transformed to the above setting. We consider 𝜇 = 𝑎𝑒𝑖𝛾𝛿 �̂� with 𝑎 > 0, 𝛾 and �̂� to be determined. We
shall prove that if

|𝑦1 − 𝑦2 | �
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω
,

then (67) does not hold for any 𝜇 consisting of only one source. In the opposite case, Theorem 4.1
already ensures the existence of such 𝜇, 𝜇 satisfying (67). By the two results, we prove the theorem.

From (67), we have

ℱ[𝜇] (𝜔) −ℱ[𝜇] (𝜔) = 𝑎𝑒𝑖𝛾𝑒𝑖 �̂�𝜔 − 𝑚min

(
𝛼𝑒−𝑖𝛽𝑒𝑖𝑦1𝜔 + 𝑒𝑖𝛽𝑒−𝑖𝑦1𝜔

)
.

We rewrite it as

𝑎𝑒𝑖𝛾𝑒𝑖 �̂�𝜔 − 𝑚min

(
𝛼𝑒𝑖 (𝑦1𝜔−𝛽) + 𝑒𝑖 (𝛽−𝑦1𝜔)

)
(68)

and analyze it by considering the two cases: (1) 𝑦1Ω � 𝛽; (2) 𝑦1Ω < 𝛽.

Part 1: (𝑦1Ω � 𝛽)
In the first case, when 𝑦1Ω � 𝛽, we define 𝜔∗ = 𝛽

𝑦1
∈ [0,Ω]. Considering

ℱ [𝜇] (𝜔 + 𝜔∗) −ℱ [𝜇] (𝜔 + 𝜔∗) = 𝑎𝑒𝑖𝛾𝑒𝑖 �̂� (𝜔+𝜔∗) − 𝑚min

(
𝛼𝑒𝑖 (𝑦1𝜔−𝛽+𝑦1𝜔

∗) + 𝑒𝑖 (𝛽−𝑦1𝜔
∗−𝑦1𝜔)

)
= 𝑎𝑒𝑖𝛾+�̂�𝜔

∗
𝑒𝑖 �̂�𝜔 − 𝑚min

(
𝛼𝑒𝑖 (𝑦1𝜔) + 𝑒𝑖 (−𝑦1𝜔)

)
, (69)
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(67) is equivalent to���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒𝑖 �̂�𝜔 − 𝑚min

(
𝛼𝑒𝑖 (𝑦1𝜔) + 𝑒𝑖 (−𝑦1𝜔)

)��� < 2𝜎, 𝜔 ∈ [−Ω − 𝜔∗,Ω − 𝜔∗] .

Note that this reduces the problem to a case similar to the one for positive sources. Since the interval
[−Ω − 𝜔∗,Ω − 𝜔∗] includes the interval [−Ω, 0], in the same fashion as the proof for positive sources,
we consider the necessary condition that

min
𝑎>0,𝛼�1,𝛾∈R, �̂�∈R,0�𝛽�𝑦1Ω

|ℱ[𝜇] (−Ω + 𝜔∗) −ℱ[𝜇] (−Ω + 𝜔∗) | + |ℱ[𝜇] (𝜔∗) −ℱ[𝜇] (𝜔∗) | < 4𝜎.

(70)

Note that minimizing over 0 � 𝛽 � 𝑦1Ω is now equivalent to minimizing over 0 � 𝜔∗ � Ω. We thus
consider

min
𝑎>0,𝛼�1,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω]

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − 𝑚min

(
𝛼𝑒−𝑖𝑦1Ω + 𝑒𝑖𝑦1Ω

)��� + ���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − 𝑚min(𝛼 + 1)
���.

Let 𝛼 = 1 + ℎ, ℎ � 0, and rewrite the above formula as

min
𝑎>0,ℎ�0,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω]

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒

−𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)
���

+
���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − (2𝑚min + ℎ𝑚min)

���.
A key observation is that if 2𝑚min cos(𝑦1Ω) + ℎ𝑚min � 𝑎 � 2𝑚min + ℎ𝑚min, we have

min
𝑎>0,ℎ�0,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω]

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒

−𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)
���

+
���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − (2𝑚min + ℎ𝑚min)

���
� min

𝑎>0,ℎ�0,𝛾∈R, �̂�∈R, �̂�∈R

���𝑎𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒
−𝑖 �̂�Ω − 2𝑚min cos(𝑦1Ω)

��� + |𝑎𝑒𝑖𝛾 − (2𝑚min + ℎ𝑚min) |

= min
𝑎>0,ℎ�0

|𝑎 − ℎ𝑚min − 2𝑚min cos(𝑦1Ω) | + |𝑎 − (2𝑚min + ℎ𝑚min) |

= min
2𝑚min cos(𝑦1Ω)�𝑏�2𝑚min

|𝑏 − 2𝑚min cos(𝑦1Ω) | + |2𝑚min − 𝑏 |

= 2𝑚min − 2𝑚min cos(𝑦1Ω), (71)

where the second equality is because 2𝑚min cos(𝑦1Ω) + ℎ𝑚min � 𝑎 � 2𝑚min + ℎ𝑚min and
2𝑚min cos(𝑦1Ω) = 2𝑚min cos( 𝑑min

2 Ω) � 0 for 𝑑min � 𝜋
Ω .

However, letting ℎ = 0, �̂� = 0, 𝛾 = 0, 𝜔∗ = 0, we have

min
𝑎>0

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒

−𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)
��� + ���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − (2𝑚min + ℎ𝑚min)

���.
= min

𝑎>0
|𝑎 − 2𝑚min cos(𝑦1Ω) | + |𝑎 − (2𝑚min + ℎ𝑚min) |

= min
𝑎>0

(𝑎 − 2𝑚min cos(𝑦1Ω)) + 2𝑚min − 𝑎
(
choose2𝑚min cos(𝑦1Ω) � 𝑎 � 2𝑚min

)
= 2𝑚min − 2𝑚min cos(𝑦1Ω).
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Together with (71), this yields

min
𝑎>0,ℎ�0,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω]

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒

−𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)
���

+
���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − (2𝑚min + ℎ𝑚min)

���
= 2𝑚min − 2𝑚min cos(𝑦1Ω),

in the case when 2𝑚min cos(𝑦1Ω) + ℎ𝑚min � 𝑎 � 2𝑚min + ℎ𝑚min.
Now, we consider the case when 𝑎 < 2𝑚min cos(𝑦1Ω) + ℎ𝑚min. In this case, we have

min
𝑎>0,ℎ�0,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω]

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒

−𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)
���

+
���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − (2𝑚min + ℎ𝑚min)

���
� min

𝑎>0,ℎ�0,𝛾∈R,𝜔∗ ∈[0,Ω],𝑎<2𝑚min cos(𝑦1Ω)+ℎ𝑚min
|𝑎𝑒𝑖𝛾+�̂�𝜔∗ − (2𝑚min + ℎ𝑚min) |

� min
𝑎>0,ℎ�0,𝑎<2𝑚min cos(𝑦1Ω)+ℎ𝑚min

|𝑎 − (2𝑚min + ℎ𝑚min) |

= min
𝑎>0,ℎ�0,𝑎<2𝑚min cos(𝑦1Ω)+ℎ𝑚min

2𝑚min + ℎ𝑚min − 𝑎

> 2𝑚min − 2𝑚min cos(𝑦1Ω).

Finally, we consider the case when 𝑎 > 2𝑚min + ℎ𝑚min. In this case, we have

min
𝑎>0,ℎ�0,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω]

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒

−𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)
���

+
���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − (2𝑚min + ℎ𝑚min)

���
� min

𝑎>0,ℎ�0,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω],𝑎>2𝑚min+ℎ𝑚min

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒

−𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)
���

� min
𝑎>0,ℎ�0,𝑎>2𝑚min+ℎ𝑚min

𝑎 − (2𝑚min cos(𝑦1Ω) + ℎ𝑚min)

>2𝑚min − 2𝑚min cos(𝑦1Ω).

Therefore, combining all the above discussions, we arrive at

min
𝑎>0,ℎ�0,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω]

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − ℎ𝑚min𝑒

−𝑖𝑦1Ω − 2𝑚min cos(𝑦1Ω)
���

+
���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − (2𝑚min + ℎ𝑚min)

���
= 2𝑚min − 2𝑚min cos(𝑦1Ω),

or equivalently,

min
𝑎>0,𝛼�1,𝛾∈R, �̂�∈R,𝜔∗ ∈[0,Ω]

���𝑎𝑒𝑖𝛾+�̂�𝜔∗
𝑒−𝑖 �̂�Ω − 𝑚min

(
𝛼𝑒−𝑖𝑦1Ω + 𝑒𝑖𝑦1Ω

)��� + ���𝑎𝑒𝑖𝛾+�̂�𝜔∗ − 𝑚min(𝛼 + 1)
���

= 2𝑚min − 2𝑚min cos(𝑦1Ω).

Thus, (70) is equivalent to

2𝑚min − 2𝑚min cos(𝑦1Ω) < 4𝜎.
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Similar to the proof of Theorem 4.1, this yields

𝑑min <

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω
.

Part 2: (𝑦1Ω < 𝛽)
In part 2, because 𝑦1Ω < 𝛽, the trick used in the former proof does not work now. We utilize another

finding for the proof. Suppose 𝑑min �
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω and there exists some measure 𝜇 = 𝑎𝛿 �̂� so that

|ℱ [𝜇] (𝜔) − Y(𝜔) | < 𝜎, 𝜔 ∈ [−Ω,Ω] .

Then, this is in contradiction with (76) and (77) in Theorem 5.1. Thus, we have proved that

𝑑min <

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω
.

Note that this new finding can also be used to prove the first part, but we keep the first part for a stronger
understanding of the optimization problem and its underlying difficulty. The new finding comes from
an optimal algorithm described in the next section. Now we have completed the proof. �

Remark. We remark that the objectives of Section 3 and Section 4 are different. Section 3 provides
estimates for the computational resolution limits in super-resolving n-sparse sources. In contrast,
Section 4 focuses on deriving the exact formula for the computational resolution limit when super-
resolving two point sources. Regarding the methods of proof, directly addressing the optimization
problem (62) and (70) yields optimal estimates for two-point resolution. However, this approach does
not extend to the case of super-resolving n-sources. Conversely, location-amplitude identities offer a ro-
bust framework for analyzing the resolution of super-resolving n-sparse sources. Moreover, according to
Theorem 4.3, the resolution estimate in Theorem 3.3 is already very sharp, demonstrating the effec-
tiveness of location-amplitude identities in delivering precise insights into super-resolution problems.

4.4. Two-point resolution for general imaging models

The two-point resolution estimate in previous sections can actually be generalized to very general
imaging problems as we shall discuss next. We assume that the available measurement is

Y(𝝎) = 𝜒(𝝎) (ℱ [𝜇] (𝝎) + W(𝝎)) =
𝑛∑
𝑗=1

𝑎 𝑗 𝜒(𝝎)𝑒𝑖y 𝑗 ·𝝎 + 𝜒(𝝎)W(𝝎), 𝝎 ∈ R𝑘 , | |𝝎 | |2 � Ω, (72)

where 𝜒(𝝎) = 0 or 1, 𝜒(0) = 1 and 𝜒(𝝎) = 1, | |𝝎 | |2 = Ω. Moreover, the noise W is assumed to be
bounded as

|W(𝝎) | < 𝜎, | |𝝎| | � Ω.

For the imaging model (72), consider similar definitions to the previous ones for 𝜎-admissible
measures and the computational resolution limit. It is not hard to see that the estimates in the previous
sections still hold, and we have the following theorem.

Theorem 4.4. Consider the imaging model (72). For 𝜎
𝑚min

� 1
2 , the resolution limits 𝒟+

𝑛𝑢𝑚(𝑘, 2),
𝒟𝑛𝑢𝑚(𝑘, 2) for resolving two sources in R𝑘 are
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Figure 3. Optical transfer function.

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω
. (73)

These resolution limits can be attained if 𝑎1 = 𝑎2. When 𝜎
𝑚min

> 1
2 , no matter what the separation

distance is, there are always some 𝜎-admissible measures of some Y corresponding to one point source.

Compared to (1), the model (72) is more general – for instance, super-resolution from discrete
measurements can be modeled by (72). Thus, Theorem 4.4 can be applied directly to super-resolution in
practice, line spectral estimation and direction-of-arrival. Moreover, by the inverse filtering methods, our
results can be applied to imaging problems with very general optical transfer functions, such as the one
shown in Figure 3. We believe that this will inspire new understandings for the resolution of a number
of imaging modalities. We remark that it is more appropriate to apply Theorem 4.4 to imaging problems
where the noise level at 0 and | |𝝎 | |2 = Ω are close or comparable after modifying the model to (72).

In fact, Theorem 4.4 reveals the fact that the two-point resolution is actually not that related to the
continuous band of frequencies but rather mostly determined by the boundary points. In particular, in
the one-dimensional case, if we have only measurements in [−Ω+𝜖,Ω−𝜖] for 𝜖 > 0, then the resolution
in (73) does not hold anymore. In the multi-dimensional cases, similar conclusions hold as well. Thus,
the condition | |𝝎| |2 = Ω is nearly a necessary condition for Theorem 4.4 to hold.

5. Optimal Algorithms

We now have the exact resolution limit for determining whether the image is generated by one or two
sources. This is a new benchmark for super-resolution and model order detection algorithms. A natural
question is whether we can find the optimal algorithm to distinguish between one and two sources in the
image. Note that, according to our theoretical results, when the two sources are separated by more than

|𝑦1 − 𝑦2 | �
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω
,

any algorithm targeting certain solutions in the set of admissible measures provides a solution with
more than one source. But we still cannot confirm that there is more than one source inside. Only by
considering the sparest solution in the set of admissible measures can we confirm this fact. However,
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since 𝑙0 minimization is intractable, this direction is still unrealistic, and we resort to other means. In
[26], a simple singular value thresholding-based algorithm was proposed to detect the source number. In
this section, we consider a variant of it and theoretically demonstrate that the algorithm exactly attains
the resolution limit. We remark that the optimality of our algorithm refers to achieving the two-point
resolution limit in Theorems 4.2 and 4.3 under the imaging model (1). Algorithms leveraging specific
noise patterns may outperform this one.

5.1. An optimal algorithm for detecting two sources in dimension one

In [26], the authors proposed a number detection algorithm called sweeping singular value thresholding
number detection algorithm. It determines the number of sources by thresholding the singular value of
a Hankel matrix formulated from the measurement data. Here, we consider a simple variant of it.

To be more specific, we first assemble the following Hankel matrix from the measurements (1) – that
is,

H =

(
Y(−Ω) Y(0)
Y(0) Y(Ω)

)
. (74)

We denote the singular value decomposition of H as

H = 𝑈Σ̂𝑈∗,

where Σ̂ = diag(�̂�1, �̂�2) with the singular values �̂�1, �̂�2 ordered in a decreasing manner. We then
determine the source number by a thresholding of the singular values. We derive the following Theorem
5.1 for the threshold and the resolution of the algorithm.

Theorem 5.1. Consider 𝜇 =
∑2

𝑗=1 𝑎 𝑗𝛿𝑦 𝑗 , 𝑦 𝑗 ∈ 𝐵1
(𝑛−1) 𝜋

2Ω
(0) and the measurement Y in (1) that is generated

from 𝜇. If the following separation condition is satisfied

|𝑦1 − 𝑦2 | �
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω
, (75)

then we have

�̂�2 > 2𝜎 (76)

for �̂�2 being the minimum singular value of the matrix H in (74). However, if there exists 𝜇 consisting
of only one source being a 𝜎-admissible measure of Y, then

�̂�2 < 2𝜎. (77)

Proof. Observe that H has the decomposition

H = 𝐷𝐴𝐷� + Δ , (78)

where 𝐴 = diag(𝑒−𝑖𝑦1Ω𝑎1, 𝑒
−𝑖𝑦2Ω𝑎2) and 𝐷 =

(
𝜙1(𝑒𝑖𝑦1Ω), 𝜙1(𝑒𝑖𝑦2Ω)

)
with 𝜙1(𝜔) being defined as

(1, 𝜔)� and

Δ =

(
W(−Ω) W(0)
W(0) W(Ω)

)
.

We denote the singular values of 𝐷𝐴𝐷� by 𝜎1, 𝜎2.
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We first estimate | |Δ | |2. We have

max
𝑥2

1+𝑥
2
2=1

����Δ (𝑥1, 𝑥2)�
����2

= max
𝑥2

1+𝑥
2
2=1

√
(𝑥1W(−Ω) + 𝑥2W(0))2 + (𝑥1W(0) + 𝑥2W(Ω))2

= max
𝑥2

1+𝑥
2
2=1

√
W(0)2 + 2𝑥1𝑥2W(0) (W(−Ω) + W(Ω)) + 𝑥2

1W(−Ω)2 + 𝑥2
2W(Ω)2

< max
𝑥2

1+𝑥
2
2=1

√
𝜎2 + 4𝜎2𝑥1𝑥2 + (𝑥2

1 + 𝑥2
2)𝜎2

(
by the condition on the noise

)
=2𝜎.

Thus, we have | |Δ | |2 < 2𝜎. By Weyl’s theorem, we have���̂�𝑗 − 𝜎𝑗

�� � | |Δ | |2 < 2𝜎, 𝑗 = 1, 2. (79)

Now we estimate the minimum singular value of 𝐷𝐴𝐷� in the presence of two sources. Denote
𝜎min(𝑀) and 𝜆min(𝑀) as, respectively, the minimum singular value and eigenvalue of matrix M. We
have

𝜎min(𝐷𝐴𝐷�) � 𝑚min𝜎min(𝐷)2 = 𝑚min𝜆min(𝐷𝐷∗) = 4𝑚min sin2
(��� 𝑦1 − 𝑦2

4

���Ω)
.

Therefore, when 𝑦 𝑗 ∈ 𝐵1
(𝑛−1) 𝜋

2Ω
(0), 𝑗 = 1, 2, and (75) holds, 𝜎min(𝐷𝐴𝐷�) � 4𝜎. This is 𝜎2 � 4𝜎.

Similarly, by Weyl’s theorem, |�̂�2−𝜎2 | � | |Δ | |2. Thus, �̂�2 � 4𝜎− ||Δ | |2 > 2𝜎. Conclusion (76) follows.
However, note that if there exists 𝜇 = 𝑎1𝛿 �̂�1 consisting of one source being a 𝜎-admissible measure

of Y, we can substitute the D in (78) by
(
𝜙1(𝑒𝑖 �̂�1Ω)

)
with the W and Δ being modified. Now we have

𝜎2 = 0 and also | |Δ | |2 < 2𝜎. Thus, by (79), we get |�̂�2 | � | |Δ | |2 < 2𝜎 and prove (77). �

We summarize the algorithm in the following Algorithm 1. Note that in practical applications, one
can estimate a noise level although not tight and utilize our algorithm to detect the source number. By
Theorem 5.1, for all estimated 𝜎’s less than 𝑚min

2 , our algorithm can achieve super-resolution.

Algorithm 1: Singular-value-thresholding number detection algorithm
Input: Noise level 𝜎;
Input: Measurement: Y(𝜔), 𝜔 ∈ [−Ω,Ω];
1: Formulate the Hankel matrix

H =

(
Y(−Ω) Y(0)
Y(0) Y(Ω)

)
from measurement Y(𝜔);

2: Compute the singular value of H as �̂�1, �̂�2 distributed in a decreasing manner;
3: If �̂�2 � 2𝜎, determine source number 𝑛 = 2 and otherwise, determine 𝑛 = 1;
Return: 𝑛.

Numerical experiments:
We conduct many numerical experiments to elucidate the performance of Algorithm 1. We consider

Ω = 1 and measurements Y generated by two sources. The noise level is 𝜎, and the minimum separation
distance between sources is 𝑑min. We first perform 100, 000 random experiments (the randomness is in
the choice of (𝑑min, 𝜎, 𝑦 𝑗 , 𝑎 𝑗 )), and the results are shown in Figure 4 (a)–(c). The green points and red
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(a) detection results (b) detection success (c) detection fail

(d) detection results (e) detection success (f) detection fail

(g) detection results (h) detection success (i) detection fail

Figure 4. Plots of the successful and the unsuccessful number detections by Algorithm 1 depending on
the relation between 𝜎

𝑚min
and 𝑑min. The green points and red points represent, respectively, the cases

of successful detection and failed detection. The black line is the two-point resolution limit 𝒟𝑛𝑢𝑚(𝑘, 2)
derived in Theorem 4.3.

points represent, respectively, the cases of successful detection and failed detection. It is indicated that
in many cases, our Algorithm 1 can surpass the two-point resolution limit. We also conduct 100, 000
experiments for the worst-case scenario; see results in Figure 4 (d)–(f). As shown numerically, our
algorithm successfully detects the source number when 𝑑min is above the two-point resolution limit and
fails in exactly the opposite cases. Last, we consider the worst cases when detecting the source number
is impossible when 𝜎

𝑚min
> 1

2 . The results were presented in Figure 4 (g)–(i), and there is no successful
case when 𝜎

𝑚min
> 1

2 . Note that the failed cases when 𝜎
𝑚min

< 1
2 and 𝑑min above the two-point resolution

limit is due to the fact that |𝑒𝑖𝑦1Ω − 𝑒𝑖𝑦2Ω | becomes small when |𝑦1 − 𝑦2 |Ω approaching 2𝜋.
We also conduct several experiments to illustrate that our algorithm can detect the correct source

number even if it seems very unlikely to distinguish the two sources by other methods. We consider 5
cases where the source number is correctly detected by our algorithm; see Figure 5 (a). However, as
shown by Figure 5 (b)–(f), their MUSIC images only have one peak.

5.2. An optimal algorithm for detecting two sources in multi-dimensional spaces

For detecting two sources in multi-dimensional spaces, we can first apply Algorithm 1 to the measure-
ment in several one-dimensional subspaces 𝑉 𝑗 ’s and save the outputs, and then determine the source
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(a) detection results (b) MUSIC image (c) MUSIC image

(d) MUSIC image (e) MUSIC image (f) MUSIC image

Figure 5. Plot (a) is the relation between 𝜎
𝑚min

and 𝑑min for several cases. Plots (b)–(f) are MUSIC
images of these cases. Note that it is impossible to detect the correct source number from these MUSIC
images.

number as the maximum value among these outputs. If some of the 𝑉 𝑗 ’s are sufficiently close to the
space spanned by y2 − y1, it actually achieves similar resolution to the one in Theorem 5.1.

To be specific, let 𝜇 =
∑2

𝑗=1 𝑎 𝑗𝛿y 𝑗 , y 𝑗 ∈ R𝑘 and Y(𝝎),𝝎 ∈ R𝑘 , | |𝝎 | |2 � Ω be the associated
measurement in (1). We choose N unit vectors v 𝑗 ’s in R𝑘 and formulate the corresponding Hankel
matrices H𝑞’s as

H𝑞 =

(
Y(−Ωv𝑞) Y(0)

Y(0) Y(Ωv𝑞)

)
, 𝑞 = 1, · · · , 𝑁. (80)

Denoting �̂�𝑞, 𝑗 the j-th singular value of H𝑞 , we can detect the source number by thresholding on �̂�𝑞, 𝑗 ’s.
Moreover, we have the following theorem on the resolution and the threshold.

Theorem 5.2. Consider 𝜇 =
∑2

𝑗=1 𝑎 𝑗𝛿y 𝑗 , y 𝑗 ∈ 𝐵𝑘
(𝑛−1) 𝜋

2Ω
(0) and the measurement Y in (1) that is generated

from 𝜇. If

min
𝑞=1, · · · ,𝑁

min
(��∠(y1 − y2, v𝑞)

��, 𝜋 −
��∠(y1 − y2, v𝑞)

��) = 𝜃min (81)

with ∠(·, ·) denoting the angle between vectors, and the following separation condition is satisfied

| |y1 − y2 | |2 �
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω cos 𝜃min
, (82)

then we have

max
𝑞=1, · · · ,𝑁

�̂�𝑞,2 > 2𝜎 (83)
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for �̂�𝑞,2 being the minimum singular value of the Hankel matrix H𝑞 that defined in (80). However, if
there exists 𝜇 consisting of only one source being a 𝜎-admissible measure of Y, then

�̂�𝑞,2 < 2𝜎, 𝑞 = 1, · · · , 𝑁. (84)

Proof. By (81), there exists v𝑞∗ such that

��y1 · v𝑞∗ − y2 · v𝑞∗
�� = cos 𝜃min | |y1 − y2 | |2 �

4 arcsin
((

𝜎
𝑚min

) 1
2
)

Ω
.

Hence, similar to the proof of Theorem 5.1, we can show that �̂�𝑞∗ ,2 > 2𝜎. This proves (82). Also, we
can show (84) in the same way as the one in the proof of Theorem 5.1. �

We summarize the algorithm as the following Algorithm 2.

Algorithm 2: Multi-dimensional singular-value-thresholding number detection algorithm
Input: Noise level 𝜎, measurement: Y(𝝎),𝝎 ∈ R𝑘 , | |𝝎 | |2 � Ω;
Input: 𝑁 unit vectors v𝑞’s;
for 𝑞 = 1, · · · , 𝑁 do

Formulate the Hankel matrix:

H𝑞 =

(
Y(−Ωv𝑞) Y(0)

Y(0) Y(Ωv𝑞)

)
.

Compute the singular value of H as �̂�1, �̂�2 distributed in a decreasing manner;
if �̂�2 � 2𝜎 then

Return 𝑛 = 2.
Return 𝑛 = 1.

Numerical experiments:
We consider detecting two sources in two-dimensional spaces. For large enough N, we consider

v𝑞 =
(
cos

( 𝑞𝜋
𝑁

)
, sin

( 𝑞𝜋
𝑁

))�
∈ R2, 𝑞 = 1, · · · , 𝑁. (85)

Input v𝑞’s to Algorithm 2, we then determine the source number by Algorithm 2 from measurements
Y(𝝎). By Theorem 5.2, we can determine the correct number when

| |y1 − y2 | |2 �
4 arcsin

((
𝜎

𝑚min

) 1
2
)

Ω cos
(
𝜋

2𝑁
) .

This indicates that we already have an excellent resolution by leveraging only a few v𝑞’s. We use 𝑁 = 10
unit vectors in the experiments and conduct 100, 000 random experiments for both the general and worst
cases. As shown in Figure 6 (a) and (c), our algorithm successfully detects the source number when
𝑑min is above nearly the computational resolution limit 𝒟𝑛𝑢𝑚(𝑘, 2) and fails to detect the source number
on some cases when 𝑑min is below 𝒟𝑛𝑢𝑚(𝑘, 2). A very interesting phenomenon is that, as shown in
Figure 6 (b), there are many cases in which our algorithm detects the correct source number even when
𝑑min is much lower than the 𝒟𝑛𝑢𝑚(𝑘, 2). This indicates that the tolerance of the noise of the algorithm
is, in fact, excellent. The reason is that the worst cases or nearly worst cases actually only happen when
the noise satisfies certain patterns. Because we use the measurements in N one-dimensional subspaces,
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(a) detection results (b) detection success (c) detection fail

Figure 6. Plots of the successful and the unsuccessful number detections by Algorithm 2 depending
on the relation between 𝜎

𝑚min
and 𝑑min. The green points and red points represent respectively the cases

of successful detection and failed detection. The black line is the derived two-point resolution limit
𝒟𝑛𝑢𝑚(𝑘, 2).

it becomes more difficult for the noises in all the subspaces to satisfy these patterns. Thus, the noise
tolerance becomes better in the two-dimensional case.

Note that our theoretical results and algorithms are potentially of great importance in practical
applications. We will examine the super-resolving ability of our algorithm in practical examples in
future work.
A. Some inequalities

In this Appendix, we present some inequalities that are used in this paper. We first recall the following
Stirling approximation of factorial

√
2𝜋𝑛𝑛+

1
2 𝑒−𝑛 � 𝑛! � 𝑒𝑛𝑛+

1
2 𝑒−𝑛, (86)

which will be used frequently in the subsequent derivations.

Lemma A.1. Let 𝜁 (𝑛) and 𝜉 (𝑛 − 1) be defined as in (21). For 𝑛 � 2, we have( 2
𝜁 (𝑛)𝜉 (𝑛 − 1)

) 1
2𝑛−2
�

2𝑒
𝑛 − 1

.

Proof. For 𝑛 = 2, 3, 4, it is easy to check that the above inequality holds. Using (86), we have for odd
𝑛 � 5,

𝜁 (𝑛)𝜉 (𝑛 − 1) = ( 𝑛 − 1
2

!)2 (
𝑛−3

2 !)2

4
� 𝜋2 ( 𝑛 − 1

2
)𝑛 ( 𝑛 − 3

2
)𝑛−2𝑒−(2𝑛−4)

= (𝑛 − 1)𝑛−2 𝜋
2 ( 𝑛−1

2 )𝑛 ( 𝑛−3
2 )𝑛−2𝑒−(2𝑛−4)

(𝑛 − 1)𝑛−2

= 𝜋2𝑒2
(
𝑛 − 1

2𝑒

)2𝑛−2 (𝑛 − 3)𝑛−2

(𝑛 − 2)𝑛−2

� 0.29𝜋2𝑒2
(
𝑛 − 1

2𝑒

)2𝑛−2 (
since𝑛 � 5

)
,

and for even 𝑛 � 6,

𝜁 (𝑛)𝜉 (𝑛 − 1) = ( 𝑛
2
)!( 𝑛 − 2

2
)!
( 𝑛−2

2 )!( 𝑛−4
2 )!

4

� 𝜋2 ( 𝑛
2
)
𝑛+1

2 ( 𝑛 − 2
2

)𝑛−1( 𝑛 − 4
2

)
𝑛−3

2 𝑒−(2𝑛−4)
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= (𝑛 − 1)2𝑛−2 𝜋
2 ( 𝑛2 )

𝑛+1
2 ( 𝑛−2

2 )𝑛−1( 𝑛−4
2 ) 𝑛−3

2 𝑒−(2𝑛−4)

(𝑛 − 1)2𝑛−2

= 𝜋2𝑒2
(
𝑛 − 1

2𝑒

)2𝑛−2
𝑛

𝑛+1
2 (𝑛 − 2)𝑛−1(𝑛 − 4) 𝑛−3

2

(𝑛 − 1)2𝑛−2

> 𝜋2
(
𝑛 − 1

2𝑒

)2𝑛−2
.

Therefore, for all 𝑛 � 2, ( 2
𝜁 (𝑛)𝜉 (𝑛 − 1)

) 1
2𝑛−2
�

2𝑒
𝑛 − 1

( 2
𝜋2

) 1
2𝑛−2
�

2𝑒
𝑛 − 1

. �

Lemma A.2. Let 𝜁 (𝑛) and 𝜆(𝑛) be defined as in (21) and (31), respectively. For 𝑛 � 2, we have( 8
𝜁 (𝑛)𝜆(𝑛)

) 1
2𝑛−1
�

2.36𝑒
𝑛 − 1

2
.

Proof. For 𝑛 = 2, 3, 4, 5, the inequality follows from direct calculation. By the Stirling approximation
(86), we have for even 𝑛 � 6,

𝜁 (𝑛)𝜆(𝑛) = 𝜁 (𝑛)𝜉 (𝑛 − 2) = ( 𝑛
2
)!( 𝑛 − 2

2
)!
( 𝑛−4

2 !)2

4

� 𝜋2 ( 𝑛
2
)
𝑛+1

2 ( 𝑛 − 2
2

)
𝑛−1

2 ( 𝑛 − 4
2

)𝑛−3𝑒−(2𝑛−5)

= (𝑛 − 1
2
)2𝑛−1 𝜋

2 ( 𝑛2 )
𝑛+1

2 ( 𝑛−2
2 ) 𝑛−1

2 ( 𝑛−4
2 )𝑛−3𝑒−(2𝑛−5)

(𝑛 − 1
2 )2𝑛−1

= (
𝑛 − 1

2
2𝑒

)2𝑛−1 𝜋2𝑒422

(𝑛 − 1
2 )2

𝑛
𝑛+1

2 (𝑛 − 2) 𝑛−1
2 (𝑛 − 4)𝑛−3

(𝑛 − 1
2 )2𝑛−3

� (
𝑛 − 1

2
2𝑒

)2𝑛−1 4𝜋2

(𝑛 − 1
2 )2

,

and for odd 𝑛 � 7,

𝜁 (𝑛)𝜆(𝑛) = 𝜁 (𝑛)𝜉 (𝑛 − 2) = ( 𝑛 − 1
2

!)2 (
𝑛−3

2 )!( 𝑛−5
2 )!

4

� 𝜋2 ( 𝑛 − 1
2

)𝑛 ( 𝑛 − 3
2

)
𝑛−2

2 ( 𝑛 − 5
2

)
𝑛−4

2 𝑒−(2𝑛−5)

= (𝑛 − 1
2
)2𝑛−1 𝜋

2( 𝑛−1
2 )𝑛 ( 𝑛−3

2 ) 𝑛−2
2 ( 𝑛−5

2 ) 𝑛−4
2 𝑒−(2𝑛−5)

(𝑛 − 1
2 )2𝑛−1

= (
𝑛 − 1

2
2𝑒

)2𝑛−1 𝜋2𝑒422

(𝑛 − 1
2 )2

(𝑛 − 1)𝑛 (𝑛 − 3) 𝑛−2
2 (𝑛 − 5) 𝑛−4

2

(𝑛 − 1
2 )2𝑛−3

� (
𝑛 − 1

2
2𝑒

)2𝑛−1 4𝜋2

(𝑛 − 1
2 )2

.

Therefore, for all 𝑛 � 2, ( 8
𝜁 (𝑛)𝜆(𝑛)

) 1
2𝑛−1
�

2𝑒
𝑛 − 1

2

( (𝑛 − 1
2 )

28
4𝜋2

) 1
2𝑛−1
�

2.36𝑒
𝑛 − 1

2
. �

https://doi.org/10.1017/fms.2024.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.72


40 P. Liu and H. Ammari

Lemma A.3. Let 𝜁 (𝑛) be defined as in (21). For 𝑛 � 2, we have

(𝑛 − 1
2 )

2𝑛−1

𝜁 (𝑛) (𝑛 − 2)! � 2𝑛−
3
2 𝑒2𝑛√𝑛 − 0.5(4.5𝜋)−1.

Proof: By the Stirling approximation formula (86), when n is odd and 𝑛 � 3, we have
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�
2𝑛𝑒2𝑛

√
𝑛 − 1

2

(𝑒
√

2𝜋)3

(𝑛 − 1
2 )

2𝑛− 3
2
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2
�
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2

(
√
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< 2𝑛−
3
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√
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2
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When n is even and 𝑛 � 4, we have

(𝑛 − 1
2 )
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√
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3
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√
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2
(4.5𝜋)−1.

For 𝑛 = 2, the inequality follows from a direct calculation.
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