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Abstract
We investigate the relationship between a galaxy cluster’s hydrostatic equilibrium state, the entropy profile,K, of the intracluster gas, and the
system’s non-thermal pressure (NTP), within an analytic model of cluster structures. When NTP is neglected from the cluster’s hydrostatic
state, we find that the gas’ logarithmic entropy slope, k≡ d lnK/d ln r, converges at large halocentric radius, r, to a value that is systematically
higher than the value k� 1.1 that is found in observations and simulations. By applying a constraint on these ‘pristine equilibrium’ slopes,
keq, we are able to predict the required NTP that must be introduced into the hydrostatic state of the cluster. We solve for the fraction,
F ≡ pnt/p, of NTP, pnt, to total pressure, p, of the cluster, and we find F(r) to be an increasing function of halocentric radius, r, that can
be parameterised by its value in the cluster’s core, F0, with this prediction able to be fit to the functional form proposed in numerical
simulations. The minimum NTP fraction, as the solution with zero NTP in the core, F0 = 0, we find to be in excellent agreement with the
mean NTP predicted in non-radiative simulations, beyond halocentric radii of r� 0.7r500, and in tension with observational constraints
derived at similar radii. For this minimum NTP profile, we predict F � 0.20 at r500, and F � 0.34 at 2r500; this amount of NTP leads to
a hydrostatic bias of b� 0.12 in the cluster mass M500 when measured within r500. Our results suggest that the NTP of galaxy clusters
contributes a significant amount to their hydrostatic state near the virial radius and must be accounted for when estimating the cluster’s halo
mass using hydrostatic equilibrium approaches.
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clusters
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1. Introduction

Galaxy clusters are the largest gravitationally bound structures in
the universe and are important astrophysical environments for
understanding the interplay between dark matter halos and their
hot gaseous atmospheres. The hot, ionised component of the intr-
acluster gas is observed via its X-ray emission, which is expected to
scale with the galaxy cluster’s underlying dark matter halo mass.

Modern high precision X-ray telescopes such as XMM-Newton
(e.g. Jansen et al. 2001), Chandra (e.g.Weisskopf et al. 2000), and
eROSITA (e.g. Predehl et al. 2021) have enabled precise fits to be
made for the radial profile of the intracluster gas density, temper-
ature, and pressure, which can be related to the cluster’s halo mass
through the assumption of hydrostatic equilibrium. These hydro-
static halo masses can be correlated with observable probes of the
intracluster gas emission to produce a scaling relation – typically
to either a mean-weighted X-ray temperature (e.g. Vikhlinin et al.
2006, 2009; Babyk & McNamara 2023), or the shift in the Cosmic
Microwave Background (CMB) known as the Sunyaev–Zeldovich
(SZ; Sunyaev & Zeldovich 1970, 1972) effect, arising from pho-
ton interactions with energetic electrons in the intracluster gas
(e.g. Vanderlinde et al. 2010; Andersson et al. 2011).

In this approach, the halo mass is recovered up to a hydrostatic
bias, which is believed to lead to an underestimate in the halo mass
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in relaxed galaxy clusters by at least ∼10–20% (Martizzi & Agrusa
2016; Ettori & Eckert 2022). This hydrostatic bias is attributed
to the non-thermal pressure (NTP, hereafter) contributing to the
cluster’s hydrostatic state, which is neglected when calculating
hydrostatic halo masses. NTP is defined as the pressure of a system
that is not attributed to the randommotion of the intracluster gas;
NTP will be produced by shocks, mergers, and feedback processes.

One of the biggest challenges in estimating halo masses this
way is accurately quantifying the hydrostatic bias, which relies
on quantifying the fraction of NTP to total pressure in a cluster,
at any given halocentric radius. Observationally, the NTP frac-
tion in galaxy clusters is constrained to be �11% at halocentric
radii of r500 for systems with similar mass and at similar redshifts;
this is obtained by comparing hydrostatic halo masses with halo
masses computed from gravitational lensing (Siegel et al. 2018).
Other observational studies have predicted NTP fractions of�9%
and �15% at halo radii of r500 and r200, respectively, when cali-
brating hydrostatic gas mass fractions to the expected universal
gas fraction (Eckert et al. 2019); whilst the NTP fraction inferred
from X-ray surface brightness fluctuations has been predicted at
∼7% near r500, and only ∼1–2% closer towards the cluster’s core
(Dupourqué et al. 2023). This latter constraint is in relatively good
agreement to precise modelling by the Hitomi satellite, which by
directly measuring the turbulent gas motion within the central 100
kpc of the Perseus galaxy cluster, has constrained the fraction of
kinetic to thermal pressure support to be ∼2–7%, with an upper
bound of at most ∼11–13% (Hitomi Collaboration et al. 2016,
2018). These observational constraints suggest that galaxy clusters
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are consistent with little or no NTP in their central core and a radi-
ally increasing NTP fraction that is not expected to be more than
∼10% at r500.

The importance of NTP for hydrostatic halo mass estimation
has motivated its study in state-of-the-art hydrodynamic cosmo-
logical simulations of galaxy clusters. In general, non-radiative
simulations predict the cluster’s NTP at a factor of ∼3 above
observational constraints, with a NTP fraction of ∼20–40% near
r200 (e.g. Nelson, Lau, & Nagai 2014; Martizzi & Agrusa 2016).
These predictions are consistent across studies that vary the sub-
grid physics in radiative hydrodynamic codes (e.g. Pearce et al.
2020). Related work has shown that these numerical constraints
on the NTPwill vary when defined in terms of different definitions
of gas motion – total random motion, turbulent motion, radial
motion, or any combination of these – and that each definition
will vary in its contribution to the NTP fraction associated with
the hydrostatic bias (see Angelinelli et al. 2020).

Interestingly, recent observational constraints on the NTP of
galaxy clusters with gravitational lensing observations have pro-
duced results that are consistent with numerical predictions at
95% confidence, predicting a radially increasing profile with large
variation, consistent with aNTP fraction of∼20% near r200 (Sayers
et al. 2021), which is in tension with other observational con-
straints. Unfortunately, this lack of consensus between simulations
and observations, and between different sets of observations, rep-
resents an important limit in the utility of hydrostatic masses as a
tool for halo mass estimation.

In contrast to NTP, the gas entropy, K, is a thermodynamic
property of galaxy clusters that is well constrained across both sim-
ulations and observations. Astrophysical entropy is related to, but
distinct, from statistical entropy from thermodynamics. In galaxy
clusters, the gas entropy is a tracer of the evolution of the intr-
acluster gas phase, as it is a sensitive probe of non-gravitational
processes and hence is a strong indicator of the thermal state of
the cluster. In particular, K is known to scale with the cluster’s
halocentric radius, r, as a broken radial power law, scaling dif-
ferently inside and outside the influence of radiative heating and
non-gravitational feedback. In simulations, where the hot gaseous
atmosphere is shaped by non-radiative, gravitational processes,
the gas entropy is found to follow the radial scaling K(r)∝ r1.1 out
to r � r200 (Tozzi & Norman 2001; Voit, Kay, & Bryan 2005). This
is consistent with observational fits, recovering this power law
slope of 1.1 beyond cluster radii of r� 0.6r500 (Hogan et al. 2017;
Ghirardini et al. 2019). Within the region 0.04r500 � r� 0.4r500,
observational fits find a gradual increase in the entropy slope with
increasing cluster radius, with the entropy slope better fit by a shal-
lower power law, of K(r)∝ r1.05, inside this range (Babyk et al.
2018). Departures from this power law are expected below a radial
break of r � 0.03r500 (Babyk et al. 2018), where non-gravitational
processes become increasingly important towards the cluster’s
central region.

In the central regions of galaxy clusters, the thermal properties
of the intracluster gas are often used to classify clusters as either
‘cool core’ (CC) or ‘non-cool core’ (NCC) clusters. Generally, CCs
are associated with a temperature drop in the central region, whilst
NCCs show a constant or increasing temperature towards the
cluster’s centre (for an overview in defining these classifications,
see Hudson et al. 2010). In terms of their central gas entropy,
CCs are expected to follow a shallower radial power law, scal-
ing as K(r)∝ r2/3, as constrained observationally (e.g. Panagoulia,
Fabian, & Sanders 2014; Hogan et al. 2017; Babyk et al. 2018;

Ghirardini et al. 2019), whereas NCCs are expected to be better
described by some ‘entropy floor’, K(r)�K0, in the core. This
general understanding and consensus for the scaling of the gas
entropy, within and beyond the central region, for both CC or
NCC clusters, motivates our use of these expected constraints in
modelling the thermal state of galaxy clusters below; in doing so,
we can reveal the amount of NTP that is required to maintain
hydrostatic equilibrium.

In previous work (cf. Sullivan et al. 2024, hereafter S24b), we
developed an analytic model for galaxy clusters and the proper-
ties of their intracluster gas emission, for clusters in virial and
hydrostatic equilibrium, and parameterised by the structure and
composition of the hot gas and darkmatter constituents. However,
one important caveat in that model was the lack of NTP, imply-
ing an overestimate in its temperature and pressure profiles due to
the hydrostatic bias. In this work, we apply the observational and
simulation constraints to the gas entropy predicted in that model
and analytically predict the functional form of the required NTP
to attain the expected scaling. This allows us to propose an ana-
lytic profile for the NTP fraction of galaxy clusters, facilitating a
comparison to be made to both the observational and numerical
predictions for its radial profile.

Our general approach, detailing the mathematical connection
between the NTP fraction and the gas entropy, is detailed in
Section 2. In Section 3, we analyse the gas entropy predicted by
our previous model and propose a weighting function that con-
strains these profiles to attain the entropy scaling that is expected
from the literature. In Section 4, we present the required NTP
fraction for our cluster model, and we show how incorporating
this profile improves our predictions for the gas’ entropy, tem-
perature, and thermal pressure profiles. We also comment on the
expected hydrostatic bias and the impact this has on the cluster
scaling relations. We present our conclusions in Section 5.

2. Theoretical background andmethods

Hydrostatic equilibriumwith non-thermal pressure

In galaxy clusters, the total pressure of the systemwill comprise the
thermal pressure, pth, exerted by the intracluster gas, as well as the
NTP, pnt, arising due to gravitational shocks andmergers, or due to
feedback processes (e.g. powerful outflows driven by active galac-
tic nuclei) in the central regions. For galaxy clusters in hydrostatic
equilibrium, the acceleration exerted by this pressure on the intra-
cluster gas will be balanced by the gravitational force generated by
the cluster’s mass, at any halo radius.

In the idealised case of a spherically symmetric cluster, the
hydrostatic equilibrium condition at any halocentric radius, r, is:

d
dr

[
pth(r)+ pnt(r)

] = −ρgas(r)
GM(r)
r2

, (1)

in terms of the radial derivatives of the thermal pressure profile,
pth(r), and the NTP profile, pnt(r); the halo’s enclosed mass,M(r);
the density profile of the intracluster gas, ρgas(r); and the gravi-
tational constant, G. We note that this assumption of spherical
symmetry is not necessary always true for a large population of real
clusters (see, e.g. Campitiello et al. 2022); however, we will assume
this holds hereafter.

In the simplest case, considering only gas and dark matter
within the galaxy cluster, the enclosed halo mass, M(r), is given
by integrating the sum of the density profiles for the dark matter
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halo, ρdm(r), and the intracluster gas, ρgas(r), within the spherical
volume of radius r, as:

M(r)= 4π
∫ r

0

[
ρdm(r′)+ ρgas(r′)

]
r′2dr′. (2)

To solve for the temperature profile, T(r), of the intracluster
gas, the thermal pressure profile must be related to the gas’ state
variables, which for an ideal gas, obeys the relation:

pth = kBT
μmp

ρgas, (3)

where kB is the Boltzmann constant, μ is the mean molecular
weight, andmp is the proton mass. Subsequently, Equation (1) can
be expressed as:

d
dr

[
ρgas(r)T(r)+ μmp

kB
pnt(r)

]
= −Gμmp

kB
ρgas(r)M(r)

r2
, (4)

which can be solved for T(r), given some radial parameterisation
for the NTP profile, pnt(r).

When observationally estimating the cluster mass, the NTP
term in Equation (4) is generally assumed to be zero (e.g. Vikhlinin
et al. 2006, 2009), circumventing the need to assume the form
of pnt(r), which is not well constrained. We took this approach
(i.e. neglecting the contribution of pnt) in S24b. Without a NTP
term, the hydrostatic equilibrium state of the cluster is assumed
to be entirely balanced by the gas’ thermal pressure; this requires
the gas to be hotter than it would otherwise be if NTP was present.
In this study, hereafter, we will refer to the hydrostatic state with-
out NTP as ‘pristine equilibrium’, to differentiate from the ‘real
equilibrium’ state that will include NTP.

The pristine equilibrium temperature of the gas, which we
denote Teq(r), is then given by the general solution:

Teq(r)= Gμmp

kB
1

ρgas(r)

∫ ∞

r

M(r′)ρgas(r′)dr′

r′2
. (5)

When includingNTP in the cluster’s hydrostatic equilibrium state,
that is, Equation (4), the real equilibrium gas temperature, T(r),
will instead be given by:

T(r)= Teq(r) [1−F(r)] , (6)

where F(r) parameterises the fraction of NTP to total pressure in
the system:

F(r)≡ pnt
p
(r). (7)

By this definition, the gas’ thermal pressure, pth(r), will be related
to the NTP fraction, F(r), by:

pth(r)= p(r) [1−F(r)] , (8)

where p(r) is the cluster’s total pressure.We assume this total pres-
sure will always be given by the hydrostatic equilibrium condition,
Equation (1), defining the equilibrium pressure:

peq(r)=G
∫ ∞

r

M(r′)ρgas(r′)dr′

r′2
, (9)

which, in the pristine equilibrium assumption, will also be the
thermal pressure of the gas.

The gas entropy

The definition of the intracluster gas entropy, K, is:

K ≡ kBT
n2/3e

, (10)

in terms of the Boltzmann constant, kB, the gas temperature, T,
and the electron number density, ne, which is given by:

ne = ρgas

μemp
; (11)

here μe is the mean molecular weight of electrons and mp is the
proton mass. For a spherically symmetric cluster, the radial gas
entropy profile, K(r), is then:

K(r)=
[

μemp

ρgas(r)

]2/3

kBT(r). (12)

We can assign a pristine equilibrium gas entropy, Keq(r), to a
cluster that is in pristine equilibrium, which will be defined as:

Keq(r)=
[

μemp

ρgas(r)

]2/3

kBTeq(r), (13)

in terms of the pristine equilibrium temperature of the gas,
Teq(r).

The gas entropy slope

By taking the logarithmic derivative of Equation (12) with respect
to the halocentric radius, r, we define the ‘entropy slope’, k(r), in
terms of the logarithmic derivatives of the gas’ temperature and
density, as:

k(r)≡ d lnK(r)
d ln r

= d ln T(r)
d ln r

− 2
3
d ln ρgas(r)

d ln r
. (14)

For a cluster in pristine equilibrium, the associated pristine
equilibrium entropy slope, keq(r), is obtained from Equation
(13), as:

keq(r)≡ d lnKeq(r)
d ln r

= d ln Teq(r)
d ln r

− 2
3
d ln ρgas(r)

d ln r
. (15)

By relating the gas’ real equilibrium temperature, T(r), to its
pristine equilibrium temperature, Teq(r), by Equation (6), these
entropy slopes can be related to the NTP fraction, F(r), via the
differential equation:

k(r)= keq(r)+ d ln [1−F(r)]
d ln r

. (16)

The NTP fraction is thus constrained if both k(r) and keq(r) are
known.

Constraining the non-thermal pressure fraction

One approach for solving Equation (16) is to relate the real entropy
slope to its pristine equilibrium value via a weighting function,
w(r), such that:

k(r)=w(r) · keq(r). (17)

We choose the weighting function such that k(r) matches liter-
ature values for the entropy slope over an appropriate range of
halocentric radii. Given some form for this weighting function,
w(r), we solve Equation (16) in the form:
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Table 1. Summary of the five parameters in the ideal baryonic cluster halo model: their symbol, definition, and physical values when� = 500.

c α η d ε

Definition: Concentration Inner density slope of the
dark matter profile

Fraction of cosmological
baryon content

Dilution Inner density slope of the
intracluster gas profile

Physical values: c= 2.5 α ∈ [0, 1.5] η ∈ [0.6, 1] d= 1 ε ∈ [0, 1]

keq(r) [w(r)− 1]= dF(r)
dr

r
[F(r)− 1]

, (18)

which requires a boundary condition on F(r). We introduce the
parameter F0 ≡F(r = 0), as the cluster’s central NTP fraction,
such that Equation (18) can be integrated to give:

F(r)= 1+ (F0 − 1) · e
∫ r
0 keq(r′)[w(r′)−1] dr′

r′ . (19)

A scale-free approach

Wedefine the cluster’s virial mass,Mvir, in terms of its virial radius,
rvir, such that:

Mvir ≡ 4
3
πr3vir�ρcrit,0; (20)

Mvir is the mass enclosing an average density of � times the
present-day critical density of the universe, ρcrit,0, with the con-
vention � = 500 usually assumed in studies of galaxy clusters. We
therefore use M500 as the virial mass and r500 as the virial radius.
We then define a scale-free dimensionless halocentric radius,
s, as:

s≡ r
rvir

, (21)

where rvir depends on this choice of �.
In terms of s, the NTP fraction solution in Equation (19) can be

expressed as:

F(s)= 1+ (F0 − 1) · e
∫ s
0 keq(s

′)[w(s′)−1] ds′
s′ . (22)

This can be solved, given a scale-free profile for the pristine equi-
librium gas entropy slope, keq(s); a scale-free weighting function,
w(s); and a prescription for the cluster’s central NTP fraction, F0.

The ideal baryonic cluster halo profiles

In general, a model for a cluster’s pristine equilibrium entropy
slope, keq(s), in scale-free form requires a scale-free structural
parameterisation for a cluster’s intracluster gas and dark matter
halo, to solve for its hydrostatic state. We use the analytic model
derived in S24b, which we briefly summarise.

We obtained an ‘ideal baryonic cluster halo’ in S24b in terms of
scale-free density profiles for the dark matter halo, ρdm(s), and the
intracluster gas, ρgas(s). For the dark matter, this profile was taken
as a generalisation to the NFW (Navarro, Frenk, & White 1995,
1996, 1997) profile:

ρdm(s, c, α, η)
�ρcrit,0

= (1− ηfb,cos)u(c, α)
3sα(1+ cs)3−α

, (23)

and for the intracluster gas, by the similarly generalised profile:
ρgas(s, c, α, η, d, ε)

�ρcrit,0
= ηfb,cosU(c, α, d, ε)

3sε[1+ C(c, α, d, ε)s]3−ε
. (24)

These density profiles are each a function of the dimensionless
halocentric radius, s, and taken in a dimensionless ratio to some

overdensity, �, times the present-day critical density of the uni-
verse, ρcrit,0. The five parameters that specify these density profiles
are summarised in Table 1, along with their recommended value or
range in values (cf. S24b). The parameter functions in Equations
(23) and (24) are then specified in terms of these parameters:

u(c, α)≡
[∫ 1

0

s2−αds
(1+ cs)3−α

]−1

, (25)

C(c, α, d, ε)≡ d(α − ε)+ c(3− ε)
3− α

, (26)

and:

U(c, α, d, ε)≡
[∫ 1

0

s2−εds
[1+ C(c, α, d, ε)s]3−ε

]−1

. (27)

We adopt a cosmological baryon fraction of fb,cos = 0.158 (Planck
Collaboration et al. 2016).

3. Analysis

The pristine equilibrium gas entropy and gas entropy slope of
the ideal baryonic cluster halos

Taking the expression for the pristine equilibrium gas entropy,
Equation (13), we can predict the entropy profiles for the ideal
baryonic cluster halo model:

Keq(s, c, α, η, d, ε)
Kvir

=
{
3sε

[
1+ C(c, α, d, ε)s]3−ε

}5/3

[
η U(c, α, d, ε)]2/3

× I(s, c, α, η, d, ε),
(28)

as a function of the dimensionless halocentric radius, s; the five
structural parameters from Table 1; and the integral function:

I(s, c, α, η, d, ε)≡
∫ ∞

s

ds′
{
(1− ηfb,cos)u(c, α) ·

∫ s′
0

s′ ′2−αds′ ′
(1+cs′ ′)3−α

s′2+ε
[
1+ C(c, α, d, ε)s′]3−ε

+ ηfb,cosU(c, α, d, ε) ·
∫ s′

0

s′′2−εds′′[
1+ C(c, α, d, ε)s′′]3−ε

}
.

(29)
In this expression, the gas entropy is scaled by the virial entropy,
Kvir, which we define as:

Kvir ≡
[

μemp

fb,cos�ρcrit,0

]2/3

kBTvir, (30)

in terms of the virial temperature,Tvir, defined as:

Tvir ≡ 1
3

μmp

kB
GMvir

rvir
. (31)

When � = 500 in Equation (30), this allows us to define the
entropy and temperature values of K500 and T500.
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Figure 1. The pristine equilibrium gas entropy profiles, in scale-free form Keq/K500, shown in the top row, and the pristine equilibrium gas entropy slopes, keq ≡ d ln Keq/d ln r,
shown in the bottom row, each traced over the scaled halocentric radius r/r500, as predicted for the ideal baryonic cluster halo model. The halo concentration, c, and dilution,
d, are both fixed parameters, whilst each column varies the gas inner slope, ε. Within each box, each colour varies the halo inner slope, α, with the solid coloured lines tracing a
fraction of cosmological baryon content of η = 0.8, and the shaded colour region around each solid line (not visible for all curves) tracing this value continuously between η = 0.6
and η = 1.

Taking the logarithmic derivative of Equation (28) with respect
to s, we find that the pristine equilibrium entropy slope, keq(s), for
this model can be solved as:

keq(s, c, α, η, d, ε)= 5
3

[
ε + (3− ε)

C(c, α, d, ε)s[
1+ C(c, α, d, ε)s]

]

−

{
(1− ηfb,cos)u(c, α) ·

∫ s
0

s′2−αds′
(1+cs′)3−α

I(s, c, α, η, d, ε)sε+1
[
1+ C(c, α, d, ε)s]3−ε

+ ηfb,cosU(c, α, d, ε) ·
∫ s

0

s′2−εds′[
1+ C(c, α, d, ε)s′]3−ε

}
.

(32)

Over the parameter space detailed in Table 1, the profiles for the
pristine equilibrium gas entropy, in the form Keq/K500, and the
corresponding slopes, keq, are traced within Fig. 1, as a function
of the dimensionless halocentric radius s≡ r/r500.

Fig. 1 shows how varying the gas profile’s inner slope, ε, drives
the behaviour of the gas entropy in the central region. Gas cores,
ε = 0, in the left column, produce high central entropy, charac-
teristic of NCC clusters; weak gas cusps, ε = 0.5, in the centre
column, attain a central entropy slope of keq � 0.6− 0.9, which
is roughly consistent with observational constraints in CC clus-
ters (e.g. Babyk et al. 2018). This association between cuspy gas
inner slopes and CCs is a well known observational correlation
(see, e.g. Hudson et al. 2010) and is well reproduced in these pan-
els. In the right panel, showing NFW-like gas cusps, ε = 1, the gas
entropy becomes increasingly steep towards the centre of the clus-
ter, implying a rapid drop in the gas entropy in the core. We note
that such steep gradients are not generally observed or predicted.

Throughout the parameter space traced in Fig. 1, the gas
entropy slope converges to a constant value of keq � 1.4 in the clus-
ter’s outskirts, beyond halocentric radii r� 0.8r500. In comparison

to the consensus in the literature, where the gas entropy slope is
expected to attain a constant value of k� 1.1 beyond r� 0.6r500,
this pristine equilibrium model systematically overestimates the
gas entropy in the cluster’s outer region. In particular, by Equation
(15), when treating the intracluster gas density profile as fixed,
this overestimate in keq(s) reflects an overestimate in the loga-
rithmic derivative of the pristine equilibrium gas temperature,
Teq(s), which, as the gas temperature will be decreasing in the clus-
ter’s outer region, implies that Teq(s) is decreasing too gently with
radius in the outskirts. If the gas temperature falls more rapidly,
this implies that NTP is required, specifically as an increasing
function of halocentric radius, to ensure that the cluster remains
in hydrostatic equilibrium.

Choosing a weighting function

To relate the pristine and real entropy slopes and thus predict the
required NTP function, we must prescribe the weighting func-
tion, w(s). At large radii, when keq � 1.4, we require a weighting
of w� 0.8, such that the entropy slope is reduced to k� 1.1, as
is observed in both simulations and observations. Leaving the
entropy slopes unchanged in the inner region, where slopes con-
sistent with CCs and NCCs are relatively well established, implies
that the weighting function must take the form of a continu-
ous step function, transitioning between w= 1 and w= 0.8 as a
function of halocentric radius.

There are two parameters that need to be chosen for such a
function: the steepness of the transition and the radius at which the
transition occurs. We set the mid-point weight of w= 0.9 to occur
at a halo radius of r � 0.4r500, with the steepness set by an ampli-
tude of 5 in the exponent. This choice ensures that the entropy
slope k� 1.1 is reached and remains fixed, above halocentric radii
r� 0.6r500, whilst k� 1 is a better fit to its value within the region
0.2r500 � r� 0.4r500.
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Figure 2. The weighted gas entropy slopes, k≡ d ln K/d ln r, traced over the scaled halocentric radius r/r500, derived as a modification to the pristine equilibrium profiles from
Fig. 1, when weighted by the weighting function from Equation (33). The halo concentration, c, and dilution, d, are both fixed parameters, whilst each column varies the gas inner
slope, ε. Within each box, each colour varies the halo inner slope, α, with the solid coloured lines tracing a fraction of cosmological baryon content of η = 0.8, and the shaded
colour region around each solid line (not visible for all curves) tracing this value continuously between η = 0.6 and η = 1. The faded profiles in the background of each panel
correspond to the associated pristine equilibrium entropy slopes, keq ≡ d ln Keq/d ln r, from the top row of Fig. 1.

Figure 3. The non-thermal pressure (NTP) fraction,F ≡ pnt/p, traced over the scaled halocentric radius r/r500, that solves the entropy slope constraints via Equation (22). In each
box, the cluster’s structural parameters are varied over the entire parameter space from Table 1, producing the turquoise shaded regions, given a choice in the cluster’s central
NTP fraction,F0, which is set toF0 = 0 in the left panel, andF0 = 0.1 in the right panel. The black dotted line in each box is the best-fit to the functional form proposed in Nelson
et al. (2014), given in Equation (34), with its best-fitting parameters specified in Table 2. We compare our predictions to numerical fits: from Nelson et al. (2014), shown by the
orange line; and from Angelinelli et al. (2020), shown by the light blue and blue dashed lines, corresponding to different contributions of the gas motion. We also compare to
observational constraints: from the Hitomi Collaboration et al. (2018), as given by the pink shaded region, with the 4% value from Hitomi Collaboration et al. (2016) shown by the
pink solid line; from Eckert et al. (2019), shown by the red error bars; and from Dupourqué et al. (2023), shown by the purple error bars.

This scale-free weighting function is then specified by the
continuous step function:

w(s)= 0.8+ 1

5
[
1+ e5[log10 (s)+0.4]

] . (33)

We emphasise that this choice in parameters within the step func-
tion is not unique and could be altered in both the steepness of
the transition and its radial occurrence, both of which exhibit a
degree of degeneracy to one another, and each of which can quan-
titatively impact the predicted NTP profile. However, as we have
ensured that our choice produces entropy slopes that are consis-
tent with the values in the literature, we do not consider other
choices hereafter.

These new entropy slopes, calculated by weighting each of
the pristine equilibrium entropy slopes, keq, from Fig. 1, are
shown in Fig. 2. For all parameter configurations, these weighted

entropy slopes now converge to k= 1.1 in the cluster’s outskirts,
as ensured.

4. Results

The predicted non-thermal pressure fraction

We now estimate the scale-free NTP fraction, F(s), required for
the entropy slope of an ideal baryonic cluster halo to be consis-
tent with the imposed constraints, by using the weighting function
in Equation (33). In Fig. 3, we trace these F(s) profiles over the
dimensionless halocentric radius s≡ r/r500, for two choices of
the central NTP fraction, F0, and subsequently evaluated con-
tinuously over the parameter space from Table 1, producing the
turquoise shaded intervals.

In the left panel, the cluster’s central NTP fraction is set to
F0 = 0, commensurate with zero NTP in the cluster’s core; this
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Table 2. Analytic fits for the non-thermal pressure (NTP) fraction, F ≡ pnt/p, as
a function of the scale-free halocentric radius, r/r500, when solved by Equation
(22) over the parameter space in Table 1, for the weighting function, Equation
(33), and specified by the cluster’s central NTP fraction,F0, in each choice given
below. The best-fitting parameters specify the functional form suggested by
Nelson et al. (2014), given in Equation (34).

Central NTP fraction A B γ

F0 = 0 0.501 1.771 1.208

F0 = 0.1 0.451 1.771 1.208

traces the minimum NTP fraction required to attain the imposed
entropy constraints. In the right panel, this parameter is set to
F0 = 0.1, corresponding to a baseline NTP fraction of 10% in the
cluster’s core, as roughly consistent with the Hitomi upper limit.
Importantly, this central NTP fraction, F0, does not change the
characteristic shape of these NTP fractions; instead, changing this
value corresponds to a vertical shift in the NTP fraction over all
halocentric radii.

For each of our two predictions, we fit the parameter space of
NTP fraction profiles to the functional form suggested in Nelson
et al. (2014), which is given by the parameterisation:

F(s)= 1−A
{
1+ e−(s/B)γ } , (34)

which we take as a function of the dimensionless halocentric
radius s≡ r/r500, consistent with our parameter space in Table 1.
This fitting procedure allows us to capture the turquoise shaded
intervals in Fig. 3 with an analytic approximation. The best-fitting
values to the parameters A, B, and γ are given in Table 2, for each
of the two NTP predictions, specified by our two choices in F0.
These best-fit curves are shown by the black dotted lines in each
panel of Fig. 3.

We compare these predictions to the mean profiles obtained
in non-radiative hydrodynamic simulations: from Nelson et al.
(2014), shown by the orange line, and from Angelinelli et al.
(2020), shown in both the light blue and blue dashed lines, each
predicted from different calculations of the gas motion. These
numerical fits are each given in terms of a mean density radius,
r200m, which we re-scale using the conversion r200m � 2.70r500
(as in, e.g. Nelson et al. 2014) to plot in comparison to our model.
Further, we show comparison to observational constraints on the
NTP: from Eckert et al. (2019), shown by the red error bars, and
from Dupourqué et al. (2023), shown by the purple error bars.
We also compare to constraints from the Hitomi Collaboration
et al. (2018) in the cluster’s central core, shown by the pink shaded
region, with the 4% value (as given in Hitomi Collaboration et al.
2016) traced by the pink solid line.

The left panel of Fig. 3 shows that our minimum NTP fraction
profile, the F0 = 0 result, is in strong agreement with numeri-
cal simulation fits at large cluster radii, above r� 0.7r500. Whilst
this is in strong tension with observational constraints at similar
halo radii, this minimum profile is consistent the lower limit of
observational constraints available in the cluster’s central region
(Hitomi Collaboration et al. 2018; Dupourqué et al. 2023). For this
minimum NTP fraction, our model predicts F � 0.20 at r500, and
F � 0.34 at 2r500; these predictions are within a few percent of
the mean values from Nelson et al. (2014) and Angelinelli et al.
(2020) in the total gas motion prediction. We use this minimum

NTP fraction as our baseline prediction to produce the results that
follow below.

Implications for the gas entropy, temperature and thermal
pressure

Fig. 4 shows the improvement in predicting the gas’ entropy pro-
files when incorporating our minimumNTP fraction profile in the
cluster’s hydrostatic state.We show the parameter space of pristine
equilibrium entropy profiles, in scale-free form Keq/K500, in the
left panel, shown in the light blue shaded region; this corresponds
to the prediction from our previous work. The new parameter
space of scale-free entropy profiles, K/K500, are given in the right
panel, in the light purple shaded region. In each case, the galaxy
cluster’s structural parameters are those specified in Table 1.

The corresponding scale-free parameter region of gas temper-
atures, T/T500, and thermal pressures, pth/p500, are traced over
this same parameter space, as shown by the light purple shaded
regions in the top right and bottom right panels of Fig. 5, respec-
tively. These profiles are compared to the predictions from our
previous work, S24b, given by the light blue shaded regions in the
left panels of this figure: tracing the scale-free parameter region of
pristine equilibrium temperatures,Teq/T500, and equilibrium pres-
sures pressures, peq/p500 (as the thermal pressure, without NTP),
in the top left and bottom left panels, respectively. Importantly, we
see that including the proposed NTP profile in the cluster’s hydro-
static state predicts gas temperatures that are now consistent with
observational constraints at large cluster radii.

Implications for the hydrostatic bias

The NTP fraction at any given halocentric radius of a galaxy clus-
ter will result in a hydrostatic bias, b(r), that arises when estimating
the enclosed halo mass, M(r), from its observed thermal proper-
ties. This bias is typically quantified (as in, e.g. Pratt et al. 2019;
Salvati et al. 2019) by the definition:

b(r)≡ 1− Meq(r)
M(r)

, (35)

where Meq(r) is the halo mass deduced when assuming pristine
hydrostatic equilibrium, and M(r) is the halo’s real mass. This
hydrostatic bias will then be related to the value of the NTP frac-
tion, F(r), and its first derivative, in the form (see, e.g. Eckert et al.
2019):

b(r)=F(r)− r2

[1−F(r)]
dF(r)
dr

pth(r)
GM(r)ρgas(r)

. (36)

In our scale-free framework, this is equivalent to:

b(s)=F(s)− 1
3

s2

[1−F(s)]
dF(s)
ds

Mvir

M(s)
T(s)
Tvir

, (37)

now in terms of the dimensionless halo radius, s; a dimensionless
ratio of the cluster’s true mass,M(s), to its virial mass,Mvir; and a
dimensionless ratio of the cluster’s temperature, T(s), to its virial
temperature, Tvir. By construction, at r500, the ratio of the cluster’s
true mass to the virial mass M500 will be unity; similarly, the ratio
of the cluster’s temperature to the virial temperature T500 will be
�1 over the chosen parameter space at r500 (see, e.g. S24b). The
hydrostatic bias can then be estimated by our predicted minimum
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Figure 4. The gas entropy profiles, in scale-free form K/K500, traced over the scaled halocentric radius r/r500, for the ideal baryonic cluster halos: in pristine equilibrium, in the left
panel, indicated by the light blue shaded region; and when including the minimum NTP fraction, as given by the fit forF0 = 0 in Table 2, in the right panel, indicated by the light
purple shaded region. These predictions are compared to recent observational fits for the gas entropy profile of galaxy clusters, from Ghirardini et al. (2019), for samples of cool
core clusters (the blue dotted line) and non-cool core clusters (the orange dash-dotted line), as well as to the universal gas entropy profile fromBabyk et al. (2018) (the teal dashed
line).

Figure 5. The gas’ temperature and thermal pressure profiles, in scale-free form T/T500 and pth/p500, shown in the top and bottompanels, respectively, each traced over the scaled
halocentric radius r/r500, for the ideal baryonic cluster halos: in pristine equilibrium, in the left panel, indicated by the light blue shaded region; and when including the minimum
NTP fraction, as given by the fit forF0 = 0 in Table 2, in the right panel, indicated by the light purple shaded region. These predictions are compared to recent observational fits for
the temperature profile of galaxy clusters, from Ghirardini et al. (2019), for samples of cool core clusters (the blue dotted line) and non-cool core clusters (the orange dash-dotted
line), as well as to the universal gas pressure profile from Arnaud et al. (2010) (the purple dotted line).

NTP fraction, which givesF � 0.20 at r500, as specified by the best-
fit in Table 2, and the first derivative of this function, with respect
to s, which will be analytic.

This NTP profile imposes a hydrostatic bias in the halo mass
M500 of b� 0.12, whenmeasured within r500; in other words, when
assuming there is no NTP contribution to the hydrostatic state of

a galaxy cluster, the halo massM500 will be underestimated by 12%
of its real value. This hydrostatic bias will shift the scaling relations
of the halo mass M500 with respect to the cluster’s gas’ mean-
weighted temperature observables and its integrated SZ signals by
approximately this same bias (within ∼12 ±5% from the results
presented in S24b).
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5. Conclusion

We have applied constraints from observed gas entropy slopes
to predict the NTP fraction that is required to explain these
observations. Our key findings are summarised below.

• The required NTP fraction,F(r), as a function of halocen-
tric radius, r, is a radially increasing function, and can be
parameterised by its value in the cluster’s core, F0.

• This profile, F(r), is always well-fit to the functional form
proposed in hydrodynamic simulations, as given inNelson
et al. (2014).

• The profile for the minimum NTP fraction, defined as
the case with F0 = 0, is in excellent agreement with the
mean NTP fit predicted by numerical simulations, from
Nelson et al. (2014) and Angelinelli et al. (2020), at large
halocentric radii, when r� 0.7r500.

• In the cluster’s central region, this minimum NTP frac-
tion is consistent with the lower limit observational con-
straints from the Hitomi Collaboration et al. (2018) and
Dupourqué et al. (2023), which indicate that clusters have
little or no NTP in their core.

• This profile for the minimum NTP fraction predicts the
fractions of F � 0.20 at r500, and F � 0.34 at 2r500.

• Inclusion of this minimum NTP fraction into a hydro-
static equilibrium model predicts entropy, temperature,
and thermal pressure profiles for the intracluster gas that
are consistent with observations.

• NTP is an important feature in the halo mass scaling
relations. Using the minimum NTP fraction results in a
hydrostatic bias of b� 0.12 when measuring the cluster
massM500 within a halocentric radius of r500.

As noted in the introduction, our expectation is that the NTP
profile in a cluster will arise from a combination of gravitationally-
driven shocks and mergers, primarily at larger halocentric radii,
and feedback processes, such as powerful outflows driven by active
galactic nuclei (AGNs), which shouldmanifest at small radius. Our
results indicate that the effects of NTP are more pronounced at
larger radii, suggesting the important role of gravitational shocks,
which are likely to be both strong and long-lived, as predicted by
cosmological simulations of clusters (e.g. Power et al. 2020).

What does this mean for the contribution of feedback to the
NTP profile?We observe powerful AGN jets in galaxy clusters (e.g.
Shabala 2018) but they are understood to be intermittent, both
in their observable properties and in the manner in which they
impact their environment (e.g. Yates, Shabala, & Krause 2018). If
we assume that feedback will be driven by jet dynamics and ener-
getics, what does the implied form of the NTP profile at small
radii mean for our physical understanding of the action of feed-
back? We will investigate this question in a forthcoming paper
that investigates the NTP in the central region of galaxy clusters,
specifically, whether or not realistic AGN feedback is consistent
with zero NTP in the central regions of galaxy clusters.
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