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Relative hyperbolicity of free-by-cyclic extensions
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Abstract

Given a finitely generated free group F of rank(F) ≥ 3, we show that the mapping torus
of φ is (strongly) relatively hyperbolic if φ is exponentially growing. As a corollary of
our work, we give a new proof of Brinkmann’s theorem which proves that the mapping
torus of an atoroidal outer automorphism is hyperbolic. We also give a new proof of
the Bridson–Groves theorem that the mapping torus of a free group automorphism
satisfies the quadratic isoperimetric inequality. Our work also solves a problem posed
by Minasyan and Osin: the mapping torus of an outer automorphism is not virtually
acylindrically hyperbolic if and only if φ has finite order.

1. Introduction

Fix a finitely generated free group F with rank(F) ≥ 3. Any element φ ∈ Out(F) (the outer
automorphism group of F) gives us a short exact sequence

1 → F → Γ → 〈φ〉 → 1,

where the group Γ is referred to as the extension group for the short exact sequence. When φ has
infinite order, we say that Γ is an extension of F by Z or a free-by-cyclic extension. By choosing
a lift Φ ∈ Aut(F) of φ, we get the group F �Φ Z which we call a mapping torus of φ. Choosing a
different lift will give us an isomorphic group (hence, quasi-isometric). When φ has infinite order,
the groups Γ and F �Φ Z are isomorphic (hence, quasi-isometric). Significant work has been done
in understanding geometry of F �Φ Z. Bestvina, Feighn and Handel first proved that the mapping
torus is hyperbolic if φ is fully irreducible and atoroidal [BHF97, Theorem 5.1]. It follows from
work of Bestvina and Feighn [BF92] and Brinkmann [Bri00] that F �Φ Z is hyperbolic if and
only if φ does not have any periodic conjugacy classes (i.e. φ is atoroidal). We contribute to this
study by proving the following result.

Theorem 3.15. Let φ ∈ Out(F) and Φ ∈ Aut(F) be any lift of φ. Then the group F �Φ Z is
strongly relatively hyperbolic if and only if φ is exponentially growing.

One interesting observation that comes out of this result is connected to the mapping
class group theory of surfaces with boundaries. It is well known that pseudo-Anosov maps
of such surfaces give us (strongly) relatively hyperbolic extension groups. Our work here
shows that pseudo-Anosovs are not the only type of maps which give relatively hyperbolic
extensions.
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The ‘only if’ direction follows from the work of Makura [Mac02] and Hagen [Hag19]. The
‘if’ direction is our main contribution to the above theorem. We prove this in Proposition 3.13,
where we show that F �Φ Z will be (strongly) hyperbolic relative to a collection of subgroups
which correspond to the mapping torus of (representatives of) components of the nonattracting
subgroup system of certain attracting lamination of φ. This connection between nonattracting
subgroup system and relative hyperbolicity was first established in [Gho18]. This connection is
very natural in the sense that a conjugacy class is attracted to some lamination under iteration
of φ if and only if it is not carried by the nonattracting subgroup system; and being attracted
to any lamination implies exponential growth for the conjugacy class.

As a corollary of Proposition 3.13, we give a new proof of Brinkmann’s result by a simple
inductive argument (inducting on the rank of the subgroups of F chosen as representatives of
components of the nonattracting subgroup system) on the peripheral subgroups obtained in
Proposition 3.13.

Corollary 3.14. An outer automorphism φ ∈ Out(F) is atoroidal if and only if the group
F �Φ Z is a hyperbolic group for some (hence, every) lift Φ ∈ Aut(F) of φ.

We then combine our work with a result of Genevois and Horbez [GH21] to answer a question
asked by Minasyan and Osin in [MO15, Problem 8.2].

Corollary 4.2. If φ ∈ Out(F) is an infinite order element and Φ ∈ Aut(F) is some lift of φ,
then the group F �Φ Z is acylindrically hyperbolic but not relatively hyperbolic if and only if φ
is polynomially growing.

The proof of Theorem 3.15 uses the completely split train-track theory from Feighn and
Handel’s recognition theorem work [FH11] and the weak attraction theory from Handel and
Mosher’s subgroup decomposition for Out(F) body of work [HM20].

Idea of proof. Given an exponentially growing φ, one always has an attracting lamination Λ+

associated to it. The nonattracting subgroup system Ana(Λ+) is a malnormal subgroup system
that carries all conjugacy classes which are not attracted to Λ+ under iterations of φ (see § 2.1).
As Γ and F �Φ Z are isomorphic when φ is exponentially growing, we set Γ = F �Φ Z for the
rest of the paper for convenience.

We perform a partial electrocution of Γ with respect to a collection of certain lifts of the
components of Ana(Λ+) and form a new metric space (Γ̂, | · |el). After this we use the weak
attraction theorem to show the under iteration of either φ or φ−1, we gain enough legality
(Lemma 3.5 to proceed (primarily following the technique in Bestvina, Feighn and Handel’s
work in [BHF97]) to prove that we have flaring (Proposition 3.10. This combined with the
Mj–Reeves strong combination theorem [MR08, Theorem 4.6] proves that Γ will be strongly
relatively hyperbolic in Proposition 3.13.

When φ is atoroidal, a simple inductive argument by repeatedly applying Proposition 3.13
on the peripheral subgroups which are being electrocuted to form the coned-off graph, shows
that Γ will be hyperbolic, thus giving a new proof of Brinkmann’s theorem.

In the last section we show an application of our work which generalizes a theorem of [BHF97]
and appears in the form of the following theorem.

Theorem 5.6. Let φ, ψ be outer automorphisms which satisfy the standing assumptions 5.1.
Then there exists some M > 0 such that for every m,n ≥M , the group Q := 〈φm, ψn〉 is a free
group of rank 2 and the extension group F � Q̃ is hyperbolic for any lift Q̃ of Q.
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The proof of this theorem proceeds by proving a version of Mosher’s 3-of-4 stretch
lemma [Mos97], which in our setting is Proposition 5.5, and using it together with the
Bestvina–Feighn combination theorem. An alternative proof of this theorem can be obtained
by a recent work of Uyanik [Uya19].

Hyperbolic extensions of free groups have also been produced by Dowdall and Taylor [DT18]
in their work on convex cocompact subgroups of Out(F) and by Uyanik in a recent work [Uya19].
Uyanik does not have any assumptions of fully irreducibility on the elements of the quotient
group. Theorem 5.6 gives a new class of examples of free-by-free hyperbolic extensions and we
hope that this will be useful in the future when further research is done to give even weaker con-
ditions on Q so that the extension group is hyperbolic. This result is a significant generalization
of a theorem of Bestvina, Feighn and Handel [BHF97, Theorem 5.2] where they prove a similar
result by assuming φ, ψ to be fully irreducible and atoroidal.

As an application, we use our work together with the polynomial growth case of Bridson
and Groves’ theorem [BG10], to give a new proof of the general case of the Bridson–Groves
theorem [BG10] which shows that the mapping torus of any free group automorphism satisfies
the quadratic isoperimetric inequality, implying that the conjugacy problem is solvable for such
groups.

Theorem 5.8. The mapping tori of a free group automorphism satisfies the quadratic isoperi-
metric inequality.

2. Preliminaries

We recall some of the basic notions and tools used in the study of Out(F). The definitions and
results presented in this section have been developed over a significant period of time in [BH92,
BFH00, FH11] by Bestvina, Feighn and Handel.

2.1 Marked graphs, circuits and path
A marked graph is a finite graph G which has no valence 1 vertices and is equipped with a homo-
topy equivalence, called a marking, to the rose Rn given by ρ : G→ Rn (where n = rank(F)).
The homotopy inverse of the marking is denoted by the map ρ : Rn → G. A circuit in a marked
graph is an immersion (i.e. a locally injective continuous map) of S1 into G. Here I denotes an
interval in R that is closed as a subset. A path is a locally injective, continuous map α : I → G,
such that any lift α̃ : I → G̃ is proper. When I is compact, any continuous map from I can be
homotoped, relative to its endpoints, by a process called tightening to a unique path (up to
reparametrization) with domain I. If I is noncompact, then each lift α̃ induces an injection from
the ends of I to the ends of G̃. In this case, there is a unique path [α] which is homotopic to α
such that both [α] and α have lifts to G̃ with the same finite endpoints and the same infinite
ends. If I has two infinite ends, then α is called a line in G; otherwise, if I has only one infinite
end, then α is called a ray. Given a homotopy equivalence of marked graphs f : G→ G′, f#(α)
denotes the tightened image [f(α)] in G′. Similarly, we define f̃#(α̃) by lifting to the universal
cover.

Free factor systems. Given a collection of finitely generated subgroups of F, say F 1, . . . , F k, the
collection of their conjugacy classes denoted by {[F 1], . . . , [F k]} is called a subgroup system. We
say that a circuit [c] is carried by this subgroup system if and only if there exists a representative
H i of some [F i] such that c ∈ H i. The subgroup system is called a malnormal subgroup system
if H i ∩Hj = ∅ for every i 	= j, where H i is any representative of [F i].
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A subgroup system {[F 1], [F 2], . . . , [F k]} is called a free-factor system if F = F 1 ∗ F 2 ∗ · · · ∗
F k ∗B, with B possibly trivial. Note that every free-factor system is always a malnormal
subgroup system. Note that given any subgraph H ⊂ G, the fundamental groups of the
noncontractible components of H gives rise to a free-factor system, which is denoted by [H].

2.2 Weak topology
Given any finite graph G, let B̂(G) denote the compact space of equivalence classes of lines,
circuits, paths and rays in G. We give this space the weak topology. Namely, for each finite path
γ in G, we have one basis element N̂(G, γ) which contains all paths and circuits in B̂(G) which
have γ as its subpath. Let B(G) ⊂ B̂(G) be the compact subspace of all lines in G with the
induced topology. One can give an equivalent description of B(G) following [BFH00]. A line is
completely determined, up to reversal of direction, by two distinct points in ∂F, because there
is only one line that joins these two points. We can then induce the weak topology on the set of
lines coming from the Cantor set ∂F. More explicitly, let B̃ = {∂F × ∂F− �}/(Z2), where � is
the diagonal and Z2 acts by interchanging factors. We can put the weak topology on B̃, induced
by Cantor topology on ∂F. The group F acts on B̃ with a compact but non-Hausdorff quotient
space B = B̃/F. The quotient topology is also called the weak topology. Elements of B are called
lines. A lift of a line γ ∈ B is an element γ̃ ∈ B̃ that projects to γ under the quotient map and
the two elements of γ̃ are called its endpoints.

One can naturally identify the two spaces B(G) and B by considering a homeomorphism
between the two Cantor sets ∂F and set of ends of universal cover of G, where G is a marked
graph. Here Out(F) has a natural action on B. The action comes from the action of Aut(F)
on ∂F. Given any two marked graphs G,G′ and a homotopy equivalence f : G→ G′ between
them, the induced map f# : B̂(G) → B̂(G′) is continuous and the restriction f# : B(G) → B(G′)
is a homeomorphism. With respect to the identification B(G) ≈ B ≈ B(G′), if f preserves the
marking, then f# : B(G) → B(G′) is equal to the identity map on B. When G = G′, f# agree
with their homeomorphism B → B induced by the outer automorphism associated to f .

A line (path) γ is said to be weakly attracted to a line (path) β under the action of φ ∈ Out(F),
if the φk(γ) converges to β in the weak topology. This is same as saying, for any given finite
subpath of β, φk(γ) contains that subpath for all sufficiently large values of k; similarly if we
have a homotopy equivalence f : G→ G, a line (path) γ is said to be weakly attracted to a line
(path) β under the action of f# if the fk#(γ) converges to β in the weak topology.

Topological representative. Given φ ∈ Out(F) a topological representative is a homotopy equiva-
lence f : G→ G (where ρ : G→ Rn is a marked graph), f takes vertices to vertices and edges to
edge paths and ρ ◦ f ◦ ρ : Rn → Rn represents φ. A nontrivial path γ in G is a periodic Nielsen
path if there exists a k such that fk#(γ) = γ; the minimal such k is called the period and if k = 1,
we call such a path Nielsen path. A periodic Nielsen path is indivisible if it cannot be written as
a concatenation of two or more nontrivial periodic Nielsen paths.

2.3 EG strata and NEG strata
A filtration of a marked graph G is a strictly increasing sequence of subgraphs G0 ⊂ G1 ⊂ · · · ⊂
Gk = G, each with no isolated vertices. The individual terms Gr are called filtration elements,
and if Gr is a core graph (i.e. a graph without valence 1 vertices), then it is called a core filtration
element. The subgraph Hr = Gr \Gr−1 together with the vertices which occur as endpoints of
edges in Hr is called the stratum of height r. The height of subset of G is the minimum r such
that the subset is contained in Gr. The height of a map to G is the height of the image of
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the map. A connecting path of a stratum Hr is a nontrivial finite path γ of height < r whose
endpoints are contained in Hr.

Given a topological representative f : G→ G of φ ∈ Out(F), we say that f respects the filtra-
tion or that the filtration is f-invariant if f(Gr) ⊂ Gr for all r. Given an f -invariant filtration,
for each stratum Hr with edges {E1, . . . , Em}, define the transition matrix of Hr to be the square
matrix whose jth column records the number of times f(Ej) crosses the other edges. If Mr is
the zero matrix, then we say that Hr is a zero stratum. If Mr is irreducible, meaning that for
each i, j there exists p such that the i, j entry of the pth power of the matrix is nonzero, then
we say that Hr is irreducible; and if one can furthermore choose p independently of i, j, then Hr

is aperiodic. Assuming that Hr is irreducible, by the Perron–Frobenius theorem, the matrix Mr

a unique eigenvalue λ ≥ 1, called the Perron–Frobenius eigenvalue, for which some associated
eigenvector has positive entries: if λ > 1, then we say that Hr is an exponentially growing (EG)
stratum; whereas if λ = 1, then Hr is a nonexponentially growing (NEG) stratum. An edge in
an NEG stratum will be sometimes referred to as NEG edge. Similarly for edges in EG stratum
we shall sometimes use the term EG edge.

2.4 Relative train-track maps
Let f : G→ G be a topological representative for φ ∈ Out(F) and consider a filtration G0 ⊂
G1 ⊂ · · · ⊂ Gk which is preserved by f . One can define a map Tf by setting Tf (E) to be the
first edge of the edge path f(E). We say Tf (E) is the direction of f(E). If E1, E2 are two edges
in G with the same initial vertex, then the unordered pair (E1, E2) is called a turn in G. Define
Tf (E1, E2) = (Tf (E1), Tf (E2)). Thus, Tf is a map that takes turns to turns. A turn is said to
have height r if both the edges defining the turn are of height r.

We say that a nondegenerate turn (i.e. E1 	= E2) is illegal if for some k > 0 the turn
T kf (E1, E2) becomes degenerate (i.e. T kf (E1) = T kf (E2)); otherwise, the turn is legal. A path
is said to be a legal path if it contains only legal turns. A path is r − legal if it is of height r and
all its height r turns are legal.

Relative train-track map [FH11, § 2.6]. Given φ ∈ Out(F) and a topological representative
f : G→ G with a filtration G0 ⊂ G1 ⊂ · · · ⊂ Gk which is preserved by f . The topological repre-
sentative f is a relative train-track map if every stratum is either a zero stratum or irreducible
stratum and, in addition, the following conditions are satisfied for every EG stratum Hr:

(i) if E is edge in Hr, then Tf (E) is also an edge of Hr;
(ii) f maps r-legal paths to legal r-paths;
(iii) if γ is a nontrivial path in G of height less than r with its endpoints in Hr, then f#(γ) has

its end points in Hr.

2.5 Completely split train-track maps
Given relative train-track map f : G→ G, splitting of a line, path or a circuit γ is a
decomposition of γ into subpaths . . . γ0γ1 · · · γk . . . such that for all i ≥ 1 the path f i#(γ) =
· · · f i#(γ0)f i#(γ1) · · · f i#(γk) . . . . The terms γi are called the terms of the splitting of γ. Hence-
forth, the notation α · β will be used to denote a splitting and αβ will denote a concatenation
of nontrivial paths α, β.

Given two NEG edges E1, E2 and a root-free closed Nielsen path ρ such that f#(Ei) = Ei.ρ
pi ,

then E1, E2 are said to be in the same linear family and any path of the form E1ρ
mE2 for some

integer m is called an exceptional path.
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Complete splittings. A splitting of a path or circuit γ = γ1 · γ2 · · · · · γk is called complete splitting
if each term γi falls into one of the following categories:

(i) γi is an edge in some irreducible stratum;
(ii) γi is an indivisible Nielsen path;
(iii) γi is an exceptional path;
(iv) γi is a maximal subpath of γ in a zero stratumHi and γi is taken (see [FH11, Definition 4.4]).

Completely split improved relative train-track maps. A CT or a completely split improved relative
train-track map is a topological representative with particularly nice properties. However, CTs
do not exist for all outer automorphisms. Only the rotationless (see [FH11, Definition 3.13]) outer
automorphisms are guaranteed to have a CT representative as has been shown in the following
theorem from [FH11, Theorem 4.28].

Lemma 2.1. For each rotationless φ ∈ Out(F) and each increasing sequence F of φ-invariant
free-factor systems, there exists a CT f : G→ G that is a topological representative for φ and
f realizes F .

The following results are some properties of CTs defined in the recognition theorem work of
Feighn and Handel in [FH11]. We only state those we need here.

(i) (Rotationless) Each principal vertex is fixed by f and each periodic direction at a principal
vertex is fixed by Tf .

(ii) (Completely split) For each edge E in each irreducible stratum, the path f(E) is completely
split.

(iii) (Vertices) The endpoints of all indivisible Nielsen paths are vertices. The terminal endpoint
of each nonfixed NEG edge is principal.

(iv) (Periodic edges) Each periodic edge is fixed.
(v) (Zero strata) Each zero strata Hi is contractible and enveloped by an EG strata Hs, s > i,

such that every edge of Hi is a taken in Hs. Each vertex of Hi is contained in Hs and link
of each vertex in Hi is contained in Hi ∪Hs.

(vi) (Linear edges) For each linear edge Ei there exists a root-free Nielsen path wi such that
f#(Ei) = Eiw

di
i for some di 	= 0.

(vii) (Nonlinear NEG edges) [FH11, Lemma 4.21] Each non-fixed NEG stratum Hi is a single
edge with its NEG orientation and has a splitting f#(Ei) = Ei·ui, where ui is a closed
nontrivial completely split circuit and is an Nielsen path if and only if Hi is linear.

We shall call any nonfixed, nonlinear NEG edge a superlinear NEG edge. The advantage of
using CT maps rather than using the regular relative train-track maps is the greater control that
we get when we iterate the train-track maps, which is very much a necessity here.

2.6 Attracting laminations
A closed subset of B = B(F) is called a lamination. An element of a lamination is called a leaf.
The action of Out(F) on B induces an action on the set of laminations.

For each marked graph G the homeomorphism B ≈ B(G) induces a bijection between
F-laminations and closed subsets of B(G). The closed subset of B(G) corresponding to a lam-
ination Λ ⊂ B is called the realization of Λ in G; we generally use the same notation Λ for its
realizations in marked graphs. In addition, we occasionally use the term lamination to refer to
F-invariant, closed subsets of B̃; the quotient map B̃ �→ B puts these in natural bijection with
laminations in B.
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Given φ ∈ Out(F) and a lamination Λ ⊂ B, we say that Λ is an attracting lamination for φ
if there exists a leaf 
 ∈ Λ satisfying the following:

(i) Λ is the weak closure of 
;
(ii) 
 is a birecurrent, i.e. every finite subpath of 
 occurs infinitely many times in either direction

of 
;
(iii) 
 is not the axis of the conjugacy class of a generator of a rank-one free factor of Fn;
(iv) there exists p ≥ 1 and a weak open set U ⊂ B such that φp(U) ⊂ U and such that {φkp(U) |

k ≥ 1} is a weak neighborhood basis of 
.

Any such leaf 
 is called a generic leaf of Λ, and any such neighborhood U is called an attract-
ing neighborhood of Λ for the action of φp. Let L(φ) denote the set of attracting laminations
for φ.

Bestvina, Feighn and Handel [BFH00] showed that there is bijection between the elements of
L(φ) and the exponentially growing strata of G. In fact, they showed that given a relative train-
track map, there is a unique way of associating each attracting lamination to an exponentially
growing stratum of G. Moreover, they established a bijection between the sets L(φ) and L(φ−1)
by using the notion of free-factor support.

Free factor support. The free-factor support of a line 
 is the conjugacy class of the smallest (with
respect to inclusion) free factor F k such that ∂
 ∈ ∂F k. For an attracting lamination associated
to some EG stratum Hr of G, the free-factor support of Λ+

φ is the free-factor support of any
generic leaf of Λ+

φ and equals to [Gr] (the free-factor system defined by Gr as a subgraph of G)
(see [BFH00, Definition 3.2.3, Lemma 3.2.4]).

In this particular case, one can think of a free-factor support of an attracting lamination,
Λ+ ∈ L(φ), to be the conjugacy class of the smallest (in terms of subgroup inclusion) free factor
that carries Λ+. Two laminations Λ+ ∈ L(φ) and Λ− ∈ L(φ−1) are said to be dual if and only if
they have the same free-factor support. In [BFH00], it is shown that duality induces a bijection
between the sets L(φ) and L(φ−1).

Given a rotationless outer automorphism φ ∈ Out(F) we list a few properties which will be
important for us.

Lemma 2.2. [FH11, Lemma 3.30, Corollary 3.31] For a rotationless φ ∈ Out(F) the following
are true:

(i) If F is a φ invariant free factor, then φ|F is rotationless.
(ii) Each Λ+ ∈ L(φ) is invariant under φ.
(iii) Every free factor, conjugacy class which is periodic under φ is fixed by φ.

2.7 Relatively hyperbolic groups
Given a group Γ and a collection of subgroups Hα < Γ, the coned-off Cayley graph of Γ or the
electric space of Γ relative to the collection {Hα} is a metric space which consists of the Cayley
graph of Γ and a collection of vertices vα (one for each left coset of Hα) such that each point
of Hα is joined to (or coned-off at) vα by an edge of length 1/2. The resulting metric space is
denoted by (Γ̂, | · |el).

A group Γ is said to be (weakly) hyperbolic relative to a finite collection of finitely generated
subgroups {Hα} if Γ̂ is a δ-hyperbolic metric space, in the sense of Gromov. Here Γ is said to be
strongly hyperbolic relative to the collection {Hα} if the coned-off space Γ̂ is hyperbolic and it
satisfies the bounded coset penetration property (see [Far98]), but this bounded coset penetration
property is a very hard condition to check for random groups Γ. However, it is well known that if
the group Γ is weakly relatively hyperbolic with respect to the collection of subgroups {Hα} and
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this collection is mutually malnormal and quasiconvex , then Γ is strongly relatively hyperbolic.
We shall be using this result for our constructions here.

In our main result, Proposition 3.13, the bounded coset penetration property is verified by the
cone-bounded hallways strictly flare condition due to [MR08]. It was shown in [MR08] that this
flaring property establishes a condition (namely, mutual coboundedness) due to Bowditch [Bow12]
which implies the strong relative hyperbolicity.

3. Exponential growth case

We begin this section by recalling the construction of the nonattracting subgroup system and list
a few of the properties we will be using. We give the definitions and some results about the two
key concepts, nonattracting subgroup system and weak attraction theorem, from the subgroup
decomposition work of Handel and Mosher [HM20, § 1 and Theorem F] which are central to the
proofs in this paper.

Recall from [FH11] that there exists some K > 0 such that given any φ ∈ Out(F), φK is
rotationless. Hence, given any φ we may pass on to a rotationless power to make use of the
rich CT structure. We show that the mapping torus of φK is relatively hyperbolic. Then using
Drutu’s work [Dru09], we conclude that the mapping torus of φ is also relatively hyperbolic,
because mapping torus of φK is quasi-isometric to mapping torus of φ.

Topmost lamination. For an outer automorphism φ, we call an attracting lamination Λ to be
topmost if there are no attracting lamination of φ that contain Λ as a proper subset.

It is easy to see that for any exponentially growing outer automorphism, if we choose a rel-
ative train-track map, then the attracting lamination associated to the highest EG stratum is
always topmost (by observing that there are no other EG strata above it and using [HM09,
Proposition 2.31]). Thus, every exponentially growing outer automorphism has at least one
topmost attracting lamination. From [BFH00, Corollary 6.0.11] we know that if Λ± is a dual
lamination pair for φ, then Λ+ is topmost lamination for φ if and only if Λ− is topmost for φ−1.

3.1 Nonattracting subgroup system
The nonattracting subgroup system of an attracting lamination contains information about lines
and circuits which are not attracted to the lamination. This is a crucial construction from the
train-track theory that lies in the heart of our proof here. First introduced by Bestvina, Feighn
and Handel in their Tit’s alternative work [BFH00], it was later studied in more details by Handel
and Mosher in [HM20]. We urge the reader unfamiliar with this construction to look into [HM20]
where it has been explored in great detail.

The construction of the nonattracting subgraph is as follows.
Suppose φ ∈ Out(F) is rotationless and f : G→ G is a CT representing φ such that Λ+

φ is an
invariant attracting lamination which corresponds to the EG stratum Hs ⊂ G. The nonattracting
subgraph Z of G is defined as a union of irreducible strata Hi of G such that no edge in Hi is
weakly attracted to Λ+

φ . This is equivalent to saying that a strata Hi is contained in G \ Z if
and only if there exists some k ≥ 0 such that for some edge Ei of Hi, a term in the complete
splitting of fk#(Ei) is an edge of Hs.

Define the path ρ̂s to be trivial path at an arbitrarily chosen vertex if there does not exist
any indivisible Nielsen path of height s, otherwise ρ̂s is the unique indivisible path of height s
(see [FH11, Corollary 4.19]).

The groupoid 〈Z, ρ̂s〉. Let 〈Z, ρ̂s〉 be the set of lines, rays, circuits and finite paths in G which
can be written as a concatenation of subpaths, each of which is an edge in Z, the path ρ̂s or
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its inverse. Under the operation of tightened concatenation of paths in G, this set forms a
groupoid [HM20, Lemma 5.6]. We say that a path, circuit, ray or line is carried by 〈Z, ρ̂s〉 if it
can be written as a concatenation of paths in 〈Z, ρ̂s〉.

Define the graph K by setting K = Z if ρ̂s is trivial and let h : K → G be the inclusion map.
Otherwise, define an edge Eρ representing the domain of the Nielsen path ρs : Eρ → Gs, and let
K be the disjoint union of Z and Eρ with the following identification. Given an endpoint x ∈ Eρ,
if ρs(x) ∈ Z, then identify x ∼ ρs(x). Given distinct endpoints x, y ∈ Eρ, if ρs(x) = ρs(y) /∈ Z,
then identify x ∼ y. In this case, define h : K → G to be the inclusion map on K and the map
ρs on Eρ. It is not difficult to see that the map h is an immersion. Hence, restricting h to each
component of K, we get an injection at the level of fundamental groups. The nonattracting
subgroup system Ana(Λ+

φ ) is defined to be the subgroup system defined by this immersion.
Handel and Mosher proved that the nonattracting subgroup system has a maximality

property with respect to subgroup inclusion (see [HM20, Corollary 1.8]).
We leave it to the reader to look it up in [HM20] where it is explored in detail. We do,

however, list some key properties which we will use and these results exhibit the importance of
this subgroup system. For ease of notation, we simply write σ̂ = ρ̂s when it is clear what height
or Nielsen path we are working with.

Lemma 3.1 [Lemmas 1.5 and 1.6 and Corollary 1.8, HM20].

(i) A path is carried by 〈Z, σ̂〉 if and only if it lifts to an edge path in K (under the immersion
defined earlier). A line or conjugacy class is carried by 〈Z, σ̂〉 if and only if it is carried by
Ana(Λ+

φ ).
(ii) The set of lines carried by Ana(Λ+

φ ) is closed in the weak topology.

(iii) A conjugacy class [c] is not attracted to Λ+
φ if and only if it is carried by Ana(Λ+

φ ).
(iv) For a finite-rank subgroup B < F, if each conjugacy class is not weakly attracted to Λ+

φ ,

then there exists some A < F such that B < A and [A] ∈ Ana(Λ+
φ ).

(v) The nonattracting subgroup system Ana(Λ+
φ ) does not depend on the choice of the CT

representing φ.
(vi) Given φ, φ−1 ∈ Out(F) both rotationless elements and a dual lamination pair Λ±

φ we have

Ana(Λ+
φ ) = Ana(Λ−

φ )
(vii) The nonattracting subgroup system Ana(Λ+

φ ) is a free-factor system if and only if the
stratum Hr is not geometric.

(viii) The nonattracting subgroup system Ana(Λ+
φ ) is a malnormal subgroup system. More

specifically, it is a vertex group system.

In light of this lemma, we sometimes use the phrase ‘α is an element of 〈Z, σ̂〉’ and ‘α is
carried by 〈Z, σ̂〉’ interchangeably when α is a path, line or circuit in G. Similarly, when α is a
line or a circuit, the phrase ‘α is carried by Ana(Λ+

φ )’ and ‘α is carried by 〈Z, σ̂〉’ mean the same
thing.

3.2 Weak attraction theorem
Lemma 3.2 [HM20, Corollary 2.17]. Let φ ∈ Out(F) be a rotationless and exponentially grow-
ing. Let Λ±

φ be a dual lamination pair for φ. Then for any line γ ∈ B not carried by Ana(Λ±
φ ), at

least one of the following hold:

(i) γ is attracted to Λ+
φ under iterations of φ;

(ii) γ is attracted to Λ−
φ under iterations of φ−1.
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Moreover, if V +
φ and V −

φ are attracting neighborhoods for the laminations Λ+
φ and Λ−

φ respec-
tively, there exists an integer M ≥ 0 (depending on the choice of attracting neighborhoods) such
that for every γ ∈ B, at least one of the following holds:

(a) γ ∈ V −
φ ;

(b) φM (γ) ∈ V +
φ ;

(c) γ is carried by Ana(Λ±
φ ).

3.3 Free-by-cyclic extensions for exponentially growing φ
The method of proof followed in this work was developed by the author in [Gho18], where exam-
ples of free-by-free (strongly) relatively hyperbolic extensions are constructed, which, in turn,
was inspired by the work of Bestvina, Feighn and Handel in [BHF97], where they constructed
free-by-free hyperbolic extensions.

For the rest of this section, we assume that φ ∈ Out(F) is an exponentially growing and
rotationless outer automorphism. Let Λ±

φ be a dual lamination pair associated to this auto-
morphism. In addition, let f : G→ G be a CT map representing φ and Hr be the unique
exponentially growing strata associated to Λ+

φ and Ana(Λ+
φ ) be the nonattracting subgroup

system of Λ+
φ . Recall that, by construction, any conjugacy class is not weakly attracted to Λ+

φ

under iterates of φ if and only if it is carried by Ana(Λ+
φ ). Similarly, let f ′ : G′ → G′ be a CT

representing φ−1 and H ′
s be the unique exponentially growing strata in G′ that is associated

to Λ−
φ .
We use the term generic leaf segment of α repeatedly, by which we mean we are considering

a subpath of α of height r (or height s) which is also a subpath of some generic leaf of Λ+
φ

(or Λ−
φ ) and the first and last edges of this subpath are in Hr (or H ′

s, depending on the context).
In general, when we talk about subpaths of generic leaves we are always considering leaf segments
with their initial and terminal edges in Hr (or H ′

s).

Convention. We use the notation |α|Hr
to denote the r-length of a path α in G, i.e. we only

count the edges of α contained in Hr for computing this length.

Bounded cancelation constant. Let f : G→ G be a CT representing some φ ∈ Out(F). The
bounded cancelation constant for f , denoted by BCC(f) is a constant such that given any
concatenation of paths αβ (with endpoints at vertices) in G, f#(αβ) is obtained from the con-
catenation f#(α)f#(β) by canceling at most BCC(f) edges from terminal end of f#(α) with at
most BCC(f) edges from initial end of f#(β) (see [BFH00, Lemma 2.3.1]).

We recall the notion of critical constant from [BHF97, p. 219].

Critical constant. Let f : G→ G be a CT for some exponentially growing φ ∈ Out(F) with Hr

being an exponentially growing strata with associated Perron–Frobenius eigenvalue λ and Λ+
φ be

the attracting lamination associated to Hr. The number 2BCC(f)/(λ− 1) is called the critical
constant for f corresponding to Hr.

Let C be some number greater than critical constant for f corresponding to Hr. Suppose
αβγ is a concatenation of height r paths where β is some height r legal segment with r-length
≥ C and α, γ are height r legal paths. Note that f#(β) is a legal path of height r. Then bounded
cancelation implies that fk#(αβγ) contains a legal segment of height r. It can be easily seen that
because C exceeds the critical constant, there is some 1 ≥ μ > 0 (depending on C) such that
after tightening operation, the subpath of fk#(β) which survives as a height r legal segment in
fk#(αβγ) has r-length ≥ μλk|β|Hr

≥ μλkC.
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It is perhaps worth noting here that the r-length of β grows exponentially fast under iteration
by f , whereas the cancelations due to tightening at both ends of iterates of β happen at most
by a fixed amount determined by the bounded cancelation constant of f . Thus, we may remove
the requirement that α, γ are r-legal paths and instead assume that they are height r paths such
that for some M we have |fM# (α)|, |fM# (γ)| > BCC(fM ). Then for that same M , the subpath of
fM# (β) which survives as height r legal segment in fM# (αβγ) has r-length at least μλMC.

To summarize: if we have a path in G which has some r-legal ‘central’ subsegment (such as β
above) of length greater than the critical constant, with sufficient ‘protection’ on both sides (such
as α, γ absorbing the cancelations above), then the bounded cancelation lemma protects this
‘central’ segment from completely canceling out under the tightening operation while iterating
under f .

Following the work of Bestvina, Feighn and Handel [BHF97] we define the following notion
of legality for any number C > 0 which exceeds the critical constant for f .

Notation. For any path α in G, we decompose α = ε1δ1 · · · εkδk. where each εi is a path which
does not contain any subsegment that is an element of 〈Z, σ̂〉 and each δi is a path that is entirely
carried by 〈Z, σ̂〉.

Let |α|〈Z,σ̂〉 =
∑

|εi|G, where |αi|G denotes the length of αi in G. Recall that no edge of Hr

is individually an element by 〈Z, σ̂〉 because it grows exponentially under iteration and limits to
a generic leaf of the attracting lamination associated to Hr. However, a concatenation of edges
of Hr can give us an indivisible Nielsen path (in that case, it would be one of the δi) which is
represented by an element of 〈Z, σ̂〉.

Therefore, |α|〈Z,σ̂〉 denotes the edge length of α in G relative to 〈Z, σ̂〉, i.e. length of α
in G, not counting the copies of subpaths of α which are carried by 〈Z, σ̂〉, where σ is the
unique indivisible Nielsen path of height r (if it exists). In what follows, ρ will denote the unique
indivisible Nielsen path of height s in the CT map f ′ : G′ → G′ for φ−1. From train-track theory
we know that if ρ is a closed Nielsen path, then so is σ and the conjugacy classes of ρ and σ
are same up to reversal, because the laminations associated to the strata Hr and H ′

s are dual
to each other. In addition, recall from Bestvina–Feighn–Handel train-track theory that σ has
exactly one illegal turn in Hr and, hence, does not occur as a subpath of any generic leaf of Λ+

φ .

Lemma 3.3. Suppose φ ∈ Out(F) is rotationless and exponentially growing with a lamination
pair Λ±

φ which are topmost for φ, φ−1. Let f : G→ G be a CT map representing φ and let δ
be any path in G not carried by 〈Z, σ̂〉. If λ is Perron–Frobenius eigenvalue corresponding to
the exponentially growing stratum Hr associated with Λ+

φ , then |fk#(δ)|〈Z,σ̂〉 ≤ λk|δ|〈Z,σ̂〉 for all

k ≥ 0.

Proof. Recall that if H is an exponentially growing stratum such that no edge in H is weakly
attracted to Λ+

φ under iterates of f#, then H is carried by 〈Z, σ̂〉. Next, consider an exponentially
growing stratum Ht such that some edge, say E, of Ht is weakly attracted to Λ+

φ under iteration
by f#. By using [HM20, Fact 1.59, item 1(c)] we see that some edge in the complete splitting of
fk#(E), for all sufficiently large k ≥ 0, will be an edge in Hr. Now apply [HM09, Proposition 2.31]
to conclude that t > r and the attracting lamination associated with Ht properly contains Λ+

φ .
Therefore, our hypothesis that Λ+

φ being topmost implies that every exponentially growing
strata having height not equal to r is carried by 〈Z, σ̂〉. Suppose edge E is any edge not carried
by 〈Z, σ̂〉. This means either E is an edge in Hr or some NEG stratum of height greater than r
not carried by 〈Z, σ̂〉. The maximum possible growth rate, measured by | · |〈Z,σ̂〉, under iterates
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of f is λ, i.e. |fk#(E)|〈Z,σ̂〉 ≤ λk. If δ is any path in G, we get |fk#(δ)|〈Z,σ̂〉 ≤ λk|δ|〈Z,σ̂〉 for every

k ≥ 0, because every edge of δ grows at most by a factor of λk. �

Standing assumptions for this section. For the rest of this section, fix some C much larger than the
critical constants of f, f ′ corresponding to the EG strata Hr, H

′
s, respectively. By increasing C if

necessary, also assume that C > max{2BCC(f), 2BCC(f ′)}. In addition, fix the μ corresponding
to this choice of C arising from the notion of critical constant.

Definition 3.4. For any circuit α in G, decompose α into a concatenation of paths each of
which is either contained in the complement of Gr or a path in Gr−1 or a path of height r. By αi
we denote a component (if it exists) in this decomposition of α which is a generic leaf segment
of height r and |αi|Hr

≥ C. We look at the following ratio for this decomposition:∑
|αi|Hr

|α|〈Z,σ̂〉
.

The Hr-legality of α is defined as the maximum of the above ratio over all such decompositions
of α and denoted by LEGHσ

r
(α). Define LEGHσ

r
(α) = 0 if |α|〈Z,σ̂〉 = 0.

The following lemma shows that there exists some uniform exponent M , such that iterating
α by φ±M gives us enough legality to eventually be proportional to the relative length of φ±M

in their respective marked graphs.

Lemma 3.5 (Legality growth). Suppose φ ∈ Out(F) is rotationless and exponentially growing
with a lamination pair Λ±

φ which are topmost for φ, φ−1. Then there exists ε > 0 and some

M > 0 such that for every conjugacy class α not carried by Ana(Λ±
φ ) and for every m ≥M ,

either LEGHσ
r
(φm#(α)) ≥ ε or LEG

H
′ρ
s

(φ−m# (α)) ≥ ε.

Proof. We choose a long generic leaf segment γ+ of some generic leaf of Λ+
φ and let |γ+|〈Z,σ̂〉 �

3C. Use γ+ to define a weak attracting neighborhood V +
φ for Λ+

φ . Similarly, choose a long
generic leaf segment γ− such that |γ−|〈Z′,ρ̂〉 � 3C and define an attracting neighborhood V −

φ .
The weak attraction theorem tells us that there exists some M+ > 0 such that for any conjugacy
class α that is not carried by Ana(Λ±

φ ) either α ∈ V −
φ or φm#(α) ∈ V +

φ for every m ≥M+. By a
symmetric argument applied on φ−1, we get M− > 0. Let M = max{M+,M−}. By increasing
M if necessary, we also assume that μλM > 2, where λ is the Perron–Frobenius eigenvalue for
Hr, μ is the constant arising out from the discussion on critical constant. We now show that
there exists some ε1 > 0 such that for every conjugacy class α not carried by the nonattracting
subgroup system either LEGHσ

r
(φM# (α)) ≥ ε1 or LEG

H
′ρ
s

(φ−M# (α)) ≥ ε1. We use the change of
markings map τ to push paths in G to paths in G′ as follows: if α is a path in G, then we use
the notation α′ to denote the path τ#(α) in G′.

Suppose there does not exist any such ε1 > 0 which satisfies the property stated previously,
i.e. for each positive integer i, there exists a conjugacy class which is represented by a circuit δi in
G such that |δi|〈Z,σ̂〉, |δ′i|〈Z′,ρ̂〉 > 0 (because they are not carried by the nonattracting subgroup

system) and legality ratios of fM# (δi) in G and f ′M# (δ′i)) in G′ are both less than 1/i. We argue
to a contradiction by constructing a line which violates the weak attraction theorem.

First we handle the case when |δi|〈Z,σ̂〉 (respectively, |δ′i|〈Z′,ρ̂〉) is unbounded. Pass to a sub-
sequence, if necessary, and assume that both |δi|〈Z,σ̂〉 and |δ′i|〈Z′,ρ̂〉 diverge to ∞ as i→ ∞.
As δi are not carried by the nonattracting subgroup system, we have either fM# (δi) ∈ V +

φ or
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δ′i ∈ V −
φ (which implies f ′M# (δ′i) ∈ V −

φ ). However, given our assumption that |δi|〈Z,σ̂〉 → ∞ and
that the legality ratio of fM# (δi) is small for all sufficiently large i, the height r leaf segments
of fM# (δi) contributing to its legality ratio is small compared with |fM# (δi)|〈Z,σ̂〉 (which diverges
to ∞). We claim that we can find some sequence of subpaths αi ⊂ δi which has the following
properties for all sufficiently large i:

(i) αi not carried by 〈Z, σ̂〉;
(ii) |αi|〈Z,σ̂〉 diverges to ∞;
(iii) for all sufficiently large i, fM# (αi) does not contain any height r generic leaf segment of Λ+

φ

of r-length ≥ C;
(iv) for all sufficiently large i, αi cannot be written as a concatenation αi = αxiαyiαzi , where

αyi is a generic leaf segment of Λ+
φ of height r with |αyi |Hr

≥ C and αxi , αzi are paths of
height r with |fM# (αxi)|, |fM# (αzi)| > BCC(fM ).

It is clear that items (i) and (ii) are easily satisfied. To see why we can choose the αi so
that item (iii) is also true, we argue by contradiction. If property (iii) fails, then there exists
some L > 0 such that for each sufficiently large i, and for any subpath βi of δi with |βi|〈Z,σ̂〉 ≥ L,
|fM# (βi)|〈Z,σ̂〉 contains a height r leaf segment of r-length ≥ C. For every sufficiently large i,
write δi as a concatenation of subpaths βji such that |βji |〈Z,σ̂〉 = L for each j, except perhaps
for at most one value of j. We then have that for each j, fM# (βji ) contains a r-legal generic leaf
segment, say γji , having r-length ≥ C. Fixing i and summing over the j, we obtain

LEGHσ
r
(fM# (δi)) ≥

∑
j |γ

j
i |Hr

|fM# (δi)|〈Z,σ̂〉
≥ C

|fM# (δi)|〈Z,σ̂〉
|δi|〈Z,σ̂〉
L+ 1

≥ C

λM (L+ 1)
> 0,

where the first inequality is due to the maximality clause in the definition of legality ratio. The
third inequality is obtained by using Lemma 3.3. However, our assumption that the legality ratio
of fM# (δi) is less than 1/i for all sufficiently large i now gives us the desired contradiction.

If αi satisfy items (i), (ii), (iii), then item (iv) must also be satisfied. Suppose property
(iv) fails and let αyi be a subsegment of αi such that αyi is a height r generic leaf segment
with r-length ≥ C. We can then write αi = αxiαyiαzi where αxi , αzi are paths of height r with
|fM# (αxi)|, |fM# (αzi)| > BCC(fM ). This implies that fM# (αi) contains a generic leaf segment of
r-length at least μλM |αyi

|
Hr

(follows from definition of critical constant). Since |αyi |Hr
≥ C

and μλM > 2, we see that fM# (αi) contains a generic leaf segment of r-length greater than C,
contradicting property (iii).

Suppose that for every such sequence of αi that satisfies items (i)–(iv), α′
i fails to satisfy item

(ii) for the map f ′ : G′ → G′ for all sufficiently large i. This would imply that for any sufficiently
large subpath of δi whose fM# image does not contain a central generic leaf segment of r-length at
least C, the f ′M# τ# image contains a central long generic leaf segment of s-length ≥ C. However,
this would violate that the legality ratios of both fM# (δi) and f ′M# (δ′i) converge to 0. Therefore,
we assume that we have a sequence αi ⊂ δi which satisfies items (i)–(iv) for f : G→ G and α′

i

satisfies similar properties in f ′ : G′ → G′.
As the lengths of αi in G diverge to ∞, we may assume (after perhaps adding a few edges

and changing the length of αi by at most |G|, where |G| denotes the total number of edges in G)
that for all sufficiently large i, αi is a circuit not carried by 〈Z, σ̂〉, because |αi|〈Z,σ̂〉 → ∞.
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In addition, because the circuits αi are not carried by 〈Z, σ̂〉, [HM20, Lemma 1.11] tells
us that there exists a line 
 which is a weak limit of some subsequence of αi and 
 is
not carried by 〈Z, σ̂〉. This, by definition, implies that 
 is not carried by Ana(Λ±

φ ). There-
fore, neither is 
 carried by the nonattracting subgroup system nor does the realization
of 
 in G or G′ contain γ+ or γ− as a subpath (i.e. 
 does not belong to the chosen
attracting neighborhoods) by using properties (ii) and (iv) of αi. In addition, we have that
fM# (
) /∈ V +

φ and f ′M# (
) /∈ V −
φ (by property (iii) of αi), but this violates the weak attraction

theorem.
Next we deal with the case when |δi|〈Z,σ̂〉 (respectively, |δ′i|〈Z′,ρ̂〉) are bounded above. It

directly follows that |fM# (δi)|〈Z,σ̂〉 and |f ′M# (δ′i)|〈Z′,ρ̂〉 are both bounded above. Applying the

weak attraction theorem, we also have that fM# (δi) has a central leaf segment of length
at least C, hence the numerator in the legality ratio of fM# (δi) is at least 1. Similarly for
legality ratio of f ′M# (δ′i). Hence, this contradicts our assumption that both of these legal-
ity ratios converge to zero as i→ ∞. Thus, the case when the |δi|〈Z,σ̂〉 is bounded is ruled
out.

Hence, we conclude that an ε1 > 0 does indeed exist so that either LEGHσ
r
(φM# (α)) ≥ ε1 or

LEG
H

′ρ
s

(φ−M# (α)) ≥ ε1.
For the final step, take any conjugacy class α not carried by the nonattracting subgroup

system and assume without loss that LEGHσ
r
(φM# (α)) ≥ ε1. As we are working with a topmost

lamination it follows that |fk#(φM# (α))|〈Z,σ̂〉 ≤ λk|φM# (α)|〈Z,σ̂〉 for every k > 0 by using Lemma 3.3.
If m > M , it now follows from the definitions that LEGHσ

r
(φm#(α)) ≥ ε, where ε = ε1μ. Recall

that μ ≤ 1 and, therefore, we set ε = ε1μ to complete the proof. �

Given a conjugacy class α not carried by Ana(Λ±
φ ), the following lemma compares the growth

of legal segments of α relative to the size of α, when both are being measured in terms of paths
not carried by 〈Z, σ̂〉, i.e. | · |〈Z,σ̂〉.

Before we state the lemma, we would like to point out a small subtlety regarding the topmost
lamination hypothesis. As Λ+

φ is a topmost lamination, any exponentially growing strata of
height greater than r is carried by 〈Z, σ̂〉 (see proof of Lemma 3.3). Thus, the only strata of
height s > r which can get attracted to Λ+

φ are superlinear NEG edges of the form Es �→ Esus,
where us is a circuit contained in Gs−1 and gets attracted to Λ+

φ . Hence, neither Es nor us are
carried by 〈Z, σ̂〉. In this situation, for any circuit α not carried by the nonattracting subgroup
system, the part of α that lies above Hr only grows polynomially and the part that intersects
with Hr grows exponentially. This enables us to control the exponent for flaring in the following
lemma. However, if we work with a circuit that does not get attracted to any lamination which
properly contains Λ+

φ , the lemma will still be true for all such circuits without the topmost
assumption.

If we remove the topmost assumption on Λ+
φ , then we could have a circuit α that has a long

overlap with both Λ− (which properly contains Λ−
φ ) and Λ+

φ . It would be very tricky to control
the exponents of the following lemma in that case. However, if we consider a conjugacy classes
which are attracted to Λ+

φ , but not weakly attracted to any lamination properly containing Λ+
φ ,

both Lemmas 3.5 and 3.6 will still be true for such circuits. This observation will be useful in
the proof of Proposition 5.5.

Lemma 3.6. Suppose φ ∈ Out(F) is rotationless and exponentially growing with a lamination
pair Λ±

φ which are topmost for φ, φ−1. Then for every ε > 0 and A > 0, there is M1 depending
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only on ε, A such that if LEGHσ
r
(α) ≥ ε for some circuit α, then

|fm# (α)|〈Z,σ̂〉 ≥ A|α|〈Z,σ̂〉
for every m ≥M1.

Proof. Using the description of critical constant we can see that

|fm# (α)|〈Z,σ̂〉 ≥ μλm
{∑

|generic leaf segments of α with r-length ≥ C|Hr

}
≥ μλmε|α|〈Z,σ̂〉.

Choose m to be large enough so that μλmε ≥ A. �
Recall the nonattracting subgroup system Ana(Λ±

φ ) = {[F 1], [F 2], . . . , [F k]} is a mutually
malnormal subgroup system of finitely generated subgroups of F (hence, quasiconvex). Hence,
one can start with the Cayley graph of F and construct the coned-off space F̂ with respect to
the collection {F i} and form a electrocuted metric space denoted by (F̂, | · |el). The group F is
then strongly hyperbolic relative to the collection {F i}. Note, that this property of F̂ is still true
if we replace any of the F i with a conjugate of itself. We stress the fact here that Ana(Λ±

φ ) is
not necessarily a free-factor system. For a conjugacy class not carried by Ana(Λ±

φ ), by |α|〈Z,σ̂〉
we denote the length (relative to 〈Z, σ̂〉) of the circuit in G that realizes this conjugacy class.
By ‖α‖el we denote the length of the shortest representative of the conjugacy class α in the
electrocuted metric space (F̂, | · |el). Note that ‖α‖el is independent of the graph G on which we
have the relative train-track map. The following lemma establishes that these two measurements
are comparable and, hence, our results are independent of the choice of train-track map. Before
we begin, we would like to state an example which will perhaps be useful for the reader to
understand the way we are computing the bounds.

The first half of the proof gives an upper bound to the electrocuted length of lifts (to the
electrocuted universal cover of marked graph G) of circuits α in the graph G in terms of |α|〈Z,σ̂〉
because lifting a circuit can cause its length to blow up in the electrocuted metric of the universal
cover, we need to show that we can control this. Consider the automorphism which is realized by
a train-track map on the rose with two edges f(a) = ab, f(b) = bab. Here the indivisible Nielsen
path σ = abAB, where A,B are inverses of a, b, respectively. Consider the conjugacy class of the
circuit α = abσAbσ. Then |α|〈Z,σ̂〉 = 4 and ‖α‖el = 6. All the embedded paths in the rose here
can be listed as ab, aB,Ab,AB and their inverses. We can get a bound on ‖α‖el in terms of a
multiple of |α|〈Z,σ̂〉 by counting the number of such embedded paths and copies of the path σ
each of which can appear at most |α|〈Z,σ̂〉 times.

The second half of the proof deals with bounding a similar problem which can happen when
we project paths from the electrocuted universal cover to the marked graph G. An example to
keep in mind would be the geodesic aσa which gives ‖aσa‖el = 3, but its projection has length 4
in the rose. By rewriting aσa as abaBAa we see that when we tighten this path in the projection,
there are no copies of σ in it. Thus, each segment of such type will cause a discrepancy of length
at most 4 in this example. Then we can bound |α|〈Z,σ̂〉 by a multiple of ‖α‖el by counting the
maximum number of times such discrepancies can occur.

Suppose Λ+ is an attracting lamination for φ ∈ Out(F) and Hp is the EG strata associated
to Λ+. If there is a closed indivisible Nielsen path of height p (equivalently, if Hp is a geometric
strata [HM20, Proposition 2.18]), then Λ+ is minimal (i.e. does not contain any other attracting
lamination (see [HM09, Corollary 2.32] and [HM20, Proposition 2.15])). It is due to this property
that we do not need the ‘topmost lamination’ assumption for the following lemma.
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Lemma 3.7 (Length comparison). Suppose φ ∈ Out(F) is rotationless and exponentially grow-
ing with a dual lamination pair Λ±

φ and α is any circuit in G which is not carried by Ana(Λ±
φ ).

Then there exists some K > 0, independent of α, such that K ≥ |α|〈Z,σ̂〉/‖α‖el ≥ 1/K.

Proof. As we are working with a conjugacy class which is not carried by Ana(Λ±
φ ), the circuit α

representing such a conjugacy class is not carried by 〈Z, σ̂〉, hence |α|〈Z,σ̂〉 ≥ 1. Let Hr denote
the exponentially growing stratum corresponding to the lamination Λ+

φ .

Let L′
2 = max{|ε̃i|G̃el} where εi varies over finitely many embedded paths (i.e. no repetition of

an edge or its inverse) in G which consist entirely of edges of G which are not carried by 〈Z, σ̂〉.
Each such ε̃i is a geodesic (in the electrocuted universal cover) that does not pass through
any conepoint. The electrocuted geodesic representing α̃ can be written as a concatenation
of paths of type ε̃i and geodesics of length one connecting two points inside the copy of a
coset, via the conepoint. The number of such ε̃i appearing in a decomposition of α̃ is at most
|α|〈Z,σ̂〉 + 1 and the number of components of the other type (via the conepoints) is at most
|α|〈Z,σ̂〉. Hence, if α is any circuit in G which is not carried by the nonattracting subgroup system,
then

|α̃|G̃el ≤ L′
2(|α|〈Z,σ̂〉 + 1) + |α|〈Z,σ̂〉 =⇒ |α̃|G̃el/|α|〈Z,σ̂〉 ≤ L2,

for some L2(= 3L′
2) independent of α.

Suppose next that w ∈ F is some cyclically reduced word not in the union of F i. Let α̃ be
a path in electrocuted universal cover G̃ that represents the geodesic connecting the identity
element to w, under the lift of the marking on G. Suppose α̃ = ũ1X1ũ2X2 · · · ũnXn, where Xi

are geodesic paths in G̃ connecting two points in a copy of some coset via the attached conepoint
and ui are geodesic paths in G̃ which connect copies of two electrocuted cosets and does not pass
through any conepoint. ũ1, Xn could possibly be trivial.

Under this setup we have

|α̃|G̃el = |ũ1|G̃el + |ũ2|G̃el + · · · + |ũn|G̃el + n.

Modify α̃ by replacing each Xi with a path ṽi inside the corresponding coset, such that ṽi is
a geodesic in the standard metric on G̃ (i.e. before electrocution). Consider projection of this
modified path obtained from α̃ to G, and tighten the projection of ũi to get the path ui. This
gives the inequality |ui|〈Z,σ̂〉 ≤ |ũi|G̃el . The projection of each ṽi is a path carried by 〈Z, σ̂〉, so it
does not contribute to the relative length of the tightened projection of α̃ unless the projection
of ṽi, call it v∗i , is a closed indivisible Nielsen path of height r and there is cancelation between
v∗i and ui and/or ui+1 so that after tightening, the path uiv

∗
i ui+1 has no copies of the closed

indivisible Nielsen path of height r (this is where we use the property that an EG strata of
height p > r, which is not contained in Z, has no corresponding closed indivisible Nielsen path
of height p). This could bump up the length of the projected path. However, each such v∗i can
contribute a maximum of length 2|G| + 1 to the tightened (modified) projection of α̃ (call it α).

Thus, α is obtained by tightening of u1v
∗
1u2v

∗
2 · · ·unv∗n, to give us a circuit which represents

the conjugacy class of the word determined by α̃. Let j vary over all such indices of v∗i where v∗i
is the indivisible Nielsen path of height r. We then obtain

|α|〈Z,σ̂〉 ≤
∑

|ui|〈Z,σ̂〉 +
∑

|v∗j |G ≤ |α̃|G̃el + |α̃|G̃el · (2|G| + 1) ≤ 2|α̃|G̃el(1 + |G|).
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Therefore, |α|〈Z,σ̂〉/|α̃|
G̃
el ≤ L1(= 2(1 + |G|)). Combining the two inequalities, we obtain

1
L1

≤ |α̃|G̃el/|α|〈Z,σ̂〉 ≤ L2. (1)

For the last step use the lift of marking map on G to G̃ and observe that there is an F-equivariant
quasi-isometry between G̃, with electrocuted metric, and the universal cover of the standard rose
for F with the electrocuted metric obtained by electrocuting cosets of the collection of subgroups
{F i}. Hence, there exists some K ′ > 0 such that for every cyclically reduced word w ∈ F \ ∪F i
we have

1
K ′ ≤ |w|el/|α̃w|

G̃
el ≤ K ′, (2)

where α̃w is the electrocuted geodesic in G̃ connecting the image of identity element to image
of w under the marking map on G̃ and |w|el is the length of the electrocuted geodesic in F̂

connecting identity element and w. Hence, combining the inequalities (1) and (2) above we can
conclude that there exists some K > 0 such that

K ≥ |α|〈Z,σ̂〉/‖α‖el ≥
1
K
,

where ‖α‖el is the electrocuted length, in F̂, of the cyclically reduced word whose conjugacy class
is represented by α in G. �
Corollary 3.8 (Conjugator growth). If we have a lift Φ such that Φ(F i) = F i and Φ(F j) =
x−1
j F jxj , for some xj ∈ F, then |Φn

#(xj)|el must grow exponentially fast as n→ ∞.

Proof. First, we note that xj /∈ F i, otherwise we can construct a lift that leaves both F i and F j

invariant. This would contradict the maximality of the subgroups (see Lemma 3.1(iv)) whose
conjugacy classes form the nonattracting subgroup system. Let fi, fj be nontrivial elements of
F i, F j , respectively, and consider a word w = fix

−1
j fjxj and iterate this under Φ. As conjugacy

class of w is not carried by the nonattracting subgroup system, |φn#[w]|〈Z,σ̂〉 grows exponentially
as n→ ∞. If xj has nonexponential growth, in F̂, under iterates of Φ it implies that |Φn

#(w)|el
has nonexponential growth in the electrocuted metric. This would contradict Lemma 3.7. �

Observe that the proof actually tells us that |xjΦ(xj)Φ2(xj) · · ·Φn(xj)|el grows exponentially
fast as n→ ∞. This observation will be useful when we try to prove the cone-bounded hallway
flaring condition in Lemma 3.12.

In addition, note that this corollary is trivially true if there are no peripheral subgroups,
i.e. if the nonattracting subgroup system is trivial. This is because the triviality of the nonat-
tracting subgroup system implies that every conjugacy class is attracted to the corresponding
attracting lamination and, thus, will be exponentially growing.

Proposition 3.9 (Conjugacy flaring). Suppose φ ∈ Out(F) is rotationless and exponentially
growing with a lamination pair Λ±

φ which are topmost. Then there exists some M0 > 0 such

that for every conjugacy class α not carried by Ana(Λ±
φ ), we have

3‖α‖el ≤ max{‖φm#(α)‖
el
, ‖φ−m# (α)‖

el
}

for every m ≥M0.

Proof. Let M, ε be as in Lemma 3.5 and let λr, λs be stretch factors associated to the EG strata
for Λ+

φ and Λ−
φ , respectively. Every conjugacy class not carried by Ana(Λ±

φ ) is stretched at most
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by a factor of λr under φ and by factor of λs under φ−1. Thus, for every conjugacy class α not
carried by Ana(Λ±

φ ), we get |φM# (α)|〈Z,σ̂〉 ≤ λMr |α|〈Z,σ̂〉, which implies |α|〈Z,σ̂〉 ≤ λMr |φ−M# (α)|〈Z,σ̂〉
by replacing α with φ−M (α). By a symmetric argument we obtain an inequality involving λs.
Use Lemma 3.7 to choose some number D > 0 such that we have ‖φM# (α)‖

el
≥ ‖α‖el/D and

‖φ−M# (α)‖
el
≥ ‖α‖el/D for every conjugacy class α not carried by Ana(Λ±

φ ). Note that D is
chosen arbitrarily here, only to track the ratio of the numbers above and it depends only on
M,λr, λs. We also have LEGHσ

r
(φM# (α)) ≥ ε or LEG

H
′ρ
s

(φ−M# (α)) ≥ ε.
By applying Lemma 3.7, we may choose some constant K such that for every conjugacy class

α as above, either K ≥ |φM# (α)|〈Z,σ̂〉/‖φ
M
# (α)‖

el
≥ 1/K or K ≥ |φ−M# (α)|〈Z′,ρ̂〉/‖φ

−M
# (α)‖

el
≥

1/K.
For concreteness assume that LEGHσ

r
(φm#(α)) ≥ ε. Then by applying Lemma 3.6 with ε and

A = 3DK2, we get that there exists some M1 such that for all m ≥M0 > M +M1, such that

‖φm#(α)‖
el
≥ 1
K

|φm#(α)|〈Z,σ̂〉

≥ 1
K

3DK2|φM# (α)|〈Z,σ̂〉

≥ 3DK
1
K

‖φM# (α)‖
el

= 3D‖φM# (α)‖
el

≥ 3D
1
D
‖α‖el = 3‖α‖el. (3)

�
The following lemma proves that conjugacy flaring implies the Mj–Reeves cone-bounded

hallways strictly flaring condition. The technique used in the proof is similar to that used by
Bestvina, Feighn and Handel in [BHF97, Theorem 5.1]. Recall that we are working with an
exponentially growing outer automorphism with a dual lamination pair Λ±

φ such that Ana(Λ±
φ ) =

{[F 1], [F 2], . . . , [F k]}.
Proposition 3.10 (Hallway flaring). Suppose φ ∈ Out(F) is rotationless and exponentially
growing with a lamination pair Λ±

φ which are topmost. Choose a lift Φ ∈ Aut(F) of φ. There

exists numbers NΦ > 0 and LΦ > 0 such that for every word w ∈ F \
⋃
i F

i with |w|el ≥ LΦ we
have

2|w|el ≤ max{|Φn
#(w)|

el
, |Φ−n

# (w)|
el
}

for every n ≥ NΦ. Moreover, if w is cyclically reduced, then the result holds for all w such that
|w|el > 1.

Proof. Recall that any subgraph H ⊂ G determines a free-factor system Fr, the components
of Fr being determined by the connected components of H. Consider the filtration element Gr
corresponding to Hr and let Fr be the free-factor system determined by Gr. The free-factor
support of Λ±

φ , denoted by [Br] say, has the property [Br] � Fr (see [BFH00, § 2.6]). As Φ leaves
some conjugate of Br invariant, let B denote such an invariant free factor. We note here that B
is not necessarily a proper free factor. However, we can choose a basis of B so that none of the
conjugacy classes of the basis elements are carried by Ana(Λ±

φ ). We work with such a basis.
Let L′ = max{|Φi

#(bj)|el | i = 0,±1,±2, . . . ,±M0} where bj ∈ B varies over all the basis ele-
ments of B and M0 is the constant from Proposition 3.9. By the description of L′, we have that
|Φi

#(bj)|el ≥ 1/L′ for all i, j as described previously.
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Assume w ∈ F \
⋃
i F

i and |w|el ≥ L′ − 3.
The proof is by induction. For the base case let n = M0.
If w is a cyclically reduced word, then conjugacy class of w is not carried by Ana(Λ±

φ ) and
so by using Proposition 3.9 we have

max{|Φn
#(w)|

el
, |Φ−n(w)|el} ≥ 3|w|el ≥ 2|w|el.

If w is not cyclically reduced, then we can choose a basis element k ∈ B, such that kw ∈ F \ ∪F i
is a cyclically reduced word. Hence, we get the same inequality as previously, but with w being
substituted by kw.

For concreteness, suppose that |Φn
#(kw)|

el
≥ 3|kw|el. Then we have 3|kw|el ≤ |Φn

#(kw)|
el
≤

|Φn
#(w)|

el
+ |Φn

#(k)|
el
≤ |Φn

#(w)|
el

+ L′. This implies that 3 + 3|w|el − L′ ≤ 3|kw|el − L′ ≤
|Φn

#(w)|
el

since |k|el = 1 (because k is a basis element) and there is no cancelation between k and
w. As we have |w|el ≥ L′ − 3, the above inequality then implies 2|w|el ≤ |Φn

#(w)|
el

and we are
done with the base case for our inductive argument. In addition, note that L′ − 3 < |Φn

#(w)|
el

and
so Φn

#(w) /∈ ∪F i. By repeatedly applying the above argument, one concludes that Φsn
# (w) /∈ ∪F i

for all s > 0.
Now assume that M0 < n for the inductive step. First observe that from what we have proven

so far, given any integer s > 0 we have either |ΦsM0
# (w)|

el
≥ 2s|w|el or |Φ−sM0

# (w)|
el
≥ 2s|w|el. Fix

some positive integer s0 such that 2s0 > 2L′. Any integer n > s0M0 can be written as n = sM0 + t
where 0 ≤ t < M0 and s0 ≤ s. If |ΦsM0

# (w)|
el
≥ 2s|w|el, then we can deduce

|Φn
#(w)|

el
= |ΦsM0+t

# (w)|
el
≥ 2s|w|el/L′ ≥ 2|w|el.

Similarly, when |Φ−sM0
# (w)|

el
≥ 2s|w|el, we can prove by a symmetric argument that |Φ−n

# (w)|
el
≥

2|w|el. Set LΦ ≥ L′ − 3 and NΦ > s0M0 to conclude the proof. �

Remark 3.11. We would like to point out that one can be done with the proof of
Proposition 3.13 by using the combination theorem due to Gautero [Gau16] because
Proposition 3.10 essentially shows that the automorphism Φ is ‘relatively hyperbolic’ in the
sense of Gautero and Lustig [GL07]. However, we take a slightly different approach to leave open
some room for further generalizations in the future.

For the rest of the paper, fix some lift Φ ∈ Aut(F) of φ. Observe that the construction of
the nonattracting subgroup system (in particular, the fact that it is a vertex group system)
implies that Φ can leave at most one of F i invariant (see Lemma 3.1(iv)). This implies that if
Φ(F i) = wiF

iw−1
i and Φ(F j) = wjF

jw−1
j , then wi 	= wj if i 	= j. For any w ∈ F, use the notation

w−1Φ to denote the composition of the inner automorphism x �→ w−1xw with Φ. Let Φi = w−1
i Φ

and Φj = w−1
j Φ in Γ. Applying Corollary 3.8, we see that w−1

j wi /∈ F j and w−1
i wj /∈ F i. Using

the action of Φ on F we get Φn
i = w−1

i Φ(w−1
i ) · · ·Φ(n−1)(w−1

i )Φn.
To be in sync with the framework for the cone-bounded hallway flaring condition, we work

with a lift Φi (constructed from Φ) such that Φi(F i) = F i and Φi(F j) = xjF
jx−1
j . Then Φj =

x−1
j Φi is a lift which leaves F j invariant and Φj(F i) = x−1

j F ixj . A simple computation using the

action of the automorphism Φi on Γ, we get that Φ−n
i Φn

j = Φ−n
i (x−1

j )Φ−(n−1)
i (x−1

j ) · · ·Φ−1
i (x−1

j ).
This means that Φ−n

i Φn
j is an inner automorphism which is defined by the conjugating word

Φ−n
i (x−1

j )Φ−(n−1)
i (x−1

j ) · · ·Φ−1
i (x−1

j ) ∈ F. Recalling Corollary 3.8 (and the remark just after it)
we have that this conjugator word grows exponentially as n→ ∞.
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We have to bound the exponent to get flaring, which is done in the following lemma, and it
gives the cone-bounded hallways strictly flaring condition as we soon show.

Lemma 3.12 (Cone-bounded hallway flaring). Suppose φ ∈ Out(F) is rotationless and exponen-
tially growing with a lamination pair Λ±

φ which are topmost. Let Φi be a lift such that Φi(F i) = F i

and Φi(F j) = xjF
jx−1
j for some xj ∈ F when j 	= i. Then there exists some Nc > 0 such that

2|xj |el ≤ max{|Φi
n
#(xj)|el, |Φi

−n
# (xj)|el}

for every n ≥ Nc (independent of i, j) and for every such j 	= i.

Proof. From Corollary 3.8 we have that xj /∈ F i ∪ F j and xj has exponential growth under iter-
ates of Φi in the electric metric in F̂. In addition, note that if yj is another word in F such
that Φi(F j) = yjF

jy−1
j , then we have xjF jx−1

j = yjF
jy−1
j . The malnormality of the subgroup

system immediately implies that yj = xjfj for some fj ∈ F j . This shows that once Φi is chosen,
the corresponding conjugators xj are uniquely determined up to choosing the tail fj . For con-
creteness, we assume that xj has no tail in F j . If yj is another conjugator such that yj = xjfj ,
then |yj |el = |xj |el + 1 and Φk

i (yj) = Φk
i (xj)Φ

k−1
i (xj) · · ·Φi(xj)xjfj,kx−1

j · · ·Φk−1
i (x−1

j ) for some
fj,k ∈ F j . Note that for no k can we have Φi(fj,k) = xjfj,kx

−1
j as this violates malnormality of

F j . Corollary 3.8 and the remark after the lemma tells us that electrocuted length of yj grows
exponentially under Φj . Our calculations here show that |Φk

i (yj)|el grows exponentially if and
only if |Φk

i (xj)Φ
k−1
i (xj) · · ·Φi(xj)xj |el grows exponentially.

Let N ′
i , L

′
i be the constants we obtain as output from Proposition 3.10 by replacing Φ with

Φi. Set L = max{L′
i}. If |xj |el > L, then we are done by using Proposition 3.10. Otherwise, let

N i,j
2 be a constant such that |ΦN i,j

2
i (xj)|el > 2L and |ΦN i,j

2
j (xj)Φ

N i,j
2 −1

j (xj) · · ·Φj(xj)xj |el > 2L.
Such a constant always exists follows from Corollary 3.8. We take Ni to be the maximum of N ′

i

and the {N i,j
2 } as j varies over a finite set of indices.

Finally, let Nc be the maximum of all the Ni, as i varies over the indices of Φi, where any
Φj is obtained from Φi by precomposing with inner automorphism defined by the word xj . �

Remark. We would like to point out to the reader how to deduce [BFH00, Theorem 5.1], which
deals with case when φ is fully irreducible and nongeometric. Proposition 3.10 gives us the flaring
condition for all nontrivial cyclically reduced words and words which are not cyclically reduced
but have length greater than or equal to L. If w is a nontrivial word which is not cyclically
reduced and has length less than or equal to L, then using the weak attraction theorem we can
conclude that the word grows exponentially under iterates of any chosen lift of φ. As one only has
finitely many words of absolute length less than or equal to L in F, we get a uniform exponent
for all nontrivial words just as in [BFH00, Theorem 5.1]. Note that for the fully irreducible and
nongeometric case, the nonattracting subgroup system of the unique attracting lamination for
φ is trivial. The difficulty of producing such a strong statement in the case when the F i are
nontrivial is due to presence of words of the form fifjf

−1
i where i 	= j and fi ∈ F i.

For convenience of the reader we reproduce some of the terminologies used in the Mj–Reeves
strong combination theorem for relative hyperbolicity and put it in the context that we have
here. Recall that we have fixed some Φ ∈ Aut(F) which is a lift of φ ∈ Out(F).

We start with the short exact sequence

1 → F → Γ → 〈Φ〉 → 1.
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The Cayley graph of the quotient group gives us a tree T , in fact a line in this case, which we
shall use to construct a tree of spaces structure for Γ. The map from Γ to T is the obvious one
given by the short exact sequence. The preimage of each vertex is a coset of F and same for the
edges.

(i) We perform an electrocution of F with respect to the collection {F i}, denoted by (F̂, | · |el),
and because Ana(Λ±

φ ) is a malnormal subgroup system, F is (strongly) relatively hyperbolic
with respect to the collection {F i}. This gives a (strongly) relatively hyperbolic structure on
the edge spaces and vertex spaces associated to T . Hence, conditions (1) and (2) of [MR08,
Definition 3.1] are satisfied.

(ii) For each edge of T , its preimage is F × [0, 1], therefore condition (3) of [MR08, Definition 3.1]
is satisfied.

(iii) For each edge of T , the maps from the edge space to the incident vertex spaces are given
by identity and Φ, which are both quasi-isometries. Hence, condition (4) (quasi-isometries
embedded condition) of [MR08, Definition 3.1] is satisfied.

(iv) Condition (5) (strictly type-preserving condition) of [MR08, Definition 3.1] follows from the
fact that Φ preserves the F i up to conjugacy.

(v) As all the vertex and edge spaces are isometric to the same space, which is obtained by
electrocuting {F i} inside F, condition (6) of [MR08, Definition 3.1] is also satisfied.

This gives us a tree of strongly relatively hyperbolic spaces structure on Γ. Now we perform
partial electrocution of Γ by electrocuting the cosets of F in Γ by using all the cosets of F i for
each i, and denote this electrocuted metric space by Γ̂. The strictly type-preserving condition
ensures that Γ̂ is a tree of strongly relatively hyperbolic spaces with respect to the same base
tree T . The conepoints in edge spaces are mapped to conepoints in vertex spaces and the edge
maps used for Γ induce edge maps for Γ̂ in the same way as discussed previously. The vertex
spaces and edge spaces are again copies of cosets of F where the map from each edge space
to the incident vertex spaces are given by identity and Φ, which are therefore (uniform) quasi-
isometries. Hence, the quasi-isometries-preserving electrocution condition [MR08, p. 1786] is
satisfied.

Induced tree of coned-off spaces. Γ̂ as described previously is the induced tree of coned-off spaces.
This is the first stage of electrocution (called partial electrocution in the paper of Mj and Reeves;
see [MR08, Definition 3.1] and the discussion that follows after it).

Cone locus (from [MR08, p. 1787]). The cone locus of Γ̂, induced tree of coned-off spaces, is the
forest whose vertex set consists of the conepoints of the vertex spaces of Γ̂ and whose edge set
consists of the conepoints in the edge spaces of Γ̂. The incidence relations of the cone locus is
dictated by the incidence relations in T . In our case the vertex set corresponds to conepoints
attached to copies of electrocuted cosets of each F i in gF, where g varies over all elements of Γ.
The incidence relations are dictated by Φ(gF i) = hF i when there is an edge in T such that gF̂
maps to into the initial vertex space and hF̂ maps into the terminal vertex space of the edge,
under the natural map induced from short exact sequence.

Each connected component of the cone locus is called a maximal cone subtree. In our case,
the connected components of the cone locus are lines, whose vertices correspond to conepoints
attached to ΦmgF i as m varies over all of Z and g ∈ F, i are fixed. If Φi is some lift of φ that
leaves F i invariant, then we see that fiΦm

i F
i = Φm

i F
i for every word fi ∈ F i and every m ∈ Z.

This shows that the stabilizer of the maximal cone subtree corresponding to the identity coset
of F i in Γ can be identified with the mapping torus F i � 〈Φi〉. One similarly shows that for any
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other coset gF i, where g ∈ F, the stabilizer of the corresponding maximal cone subtree will be
isomorphic to F i � 〈Φi〉.

The collection of maximal cone subtrees, Tj , is denoted by T . The metric space that Tj gives
rise to is denoted by Cj , and the collection of Cj is denoted by C. In our context, the collection
C corresponds to the collection of cosets of Γi = F i � 〈Φi〉 as a subgroup of Γ, for each i.

Hallway (from [BF92]). A disk f : [−m,m] × I → Γ̂ is a hallway of length 2m if it satisfies the
following conditions:

(i) f−1(∪Γ̂v : v ∈ T ) = {−m, . . . ,m} × I;
(ii) f maps i× I to a geodesic in Γ̂v for some vertex space;
(iii) f is transverse, relative to condition (i) to ∪Γ̂e.

Recall that in our case, the vertex spaces being considered above are just copies of F̂ with
the electrocuted metric (obtained from F by coning-off the collection of subgroups F i).

Thin hallway. A hallway is δ-thin if d(f(i, t), f(i+ 1, t)) ≤ δ for all i, t.
A hallway is λ-hyperbolic if

λl(f({0} × I)) ≤ max{l(f({−m} × I)), l(f({m} × I))}

Essential hallway. A hallway is essential if the edge path in T resulting from projecting Γ̂ onto
T does not backtrack (and, hence, is a geodesic segment in the tree T ).

Cone-bounded hallway (from [MR08, Definition 3.4]). An essential hallway of length 2m is cone
bounded if f(i× ∂I) lies in the cone locus for i = {−m, . . . ,m}.

Recall that in our case, the connected components of the cone locus are Tj which are the
cosets of Γi (post electrocuting the cosets of F i in Γi) inside Γ. This condition therefore requires
that the points f(i× ∂I) are conepoints of electrocuted copies of some coset of the peripheral
subgroups given by the nonattracting subgroup system.

Hallways flare condition (from [BF92, MR08]). The induced tree of coned-off spaces, Γ̂, is said
to satisfy the hallways flare condition if there exists λ > 1, m ≥ 1 such that for all δ there is
some constant C(δ) such that any δ-thin essential hallway of length 2m and girth at least C(δ)
is λ-hyperbolic.

In our context, Proposition 3.10 establishes that hallways flare condition is satisfied for Γ̂
(with λ = 2 and C(δ) = L), because Γ̂ is obtained from Γ by electrocuting cosets of F i, for each
i. To see this, consider any two distinct quasi-isometry lifts of T in Γ̂ which are at least distance
L apart. Look at the identity coset of F̂ and a geodesic path in F̂ whose end points are in the
vertices of the two chosen lifts. If w is the word in F representing this path, then |w|el ≥ L and,
hence, Proposition 3.10 implies the hallway flaring condition.

Thus, Γ̂ is a hyperbolic metric space by using the Bestvina–Feighn combination theorem and
Γ is weakly hyperbolic relative to the collection T ([MR08, Lemma 3.8]).

Cone-bounded hallways strictly flare condition (from [MR08, Definition 3.6]). The induced tree
of coned-off spaces Γ̂, is said to satisfy the cone-bounded hallways strictly flare condition if there
exists λ > 1, m ≥ 1 such that any cone-bounded hallway of length 2m is λ-hyperbolic.

In our case, this condition is easily checked by using Lemma 3.12. To see why, recall the
construction of maximal cone subtrees in our case and see the discussion preceding the statement
of Lemma 3.12.

Hence, we have the following theorem by applying [MR08, Theorem 4.6].
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Proposition 3.13. Let φ ∈ Out(F) be rotationless and exponentially growing outer automor-
phism equipped with a dual lamination pair Λ±

φ , which are topmost. Let Φ ∈ Aut(F) be a lift of

φ. In addition, let Ana(Λ±
φ ) = {[F 1], [F 2], . . . , [F k]} denote the nonattracting subgroup system

for Λ±
φ . If F i denote representatives of [F i] such that Φi(F i) = F i for some lift Φi, then the

extension group Γ in the short exact sequence

1 → F → Γ → 〈Φ〉 → 1

is strongly hyperbolic relative to the collection of subgroups {F i �Φi Z}.

3.4 Atoroidal case
Observe that if φ is atoroidal (i.e. does not have any periodic conjugacy class), then φ is
necessarily exponentially growing (see [Gho21, Lemma 3.1]). This can also be seen by using
the Bestvina–Feighn–Handel theorem developed in [BFH05] which implies that any polynomi-
ally growing outer automorphism necessarily has a periodic conjugacy class. Thus, we can use
Proposition 3.13 to set up a recursion on each mapping tori {F i �Φi Z} in the following way.

(i) If the mapping tori {F i �Φi Z} is hyperbolic, we stop.
(ii) If the restriction of φ to F j is polynomially growing then using the Kolchin-type theorem

of Bestvina, Feighn and Handel [BFH05] we know that φ must fix some conjugacy class in
F j and therefore φ cannot be atoroidal. Hence, this case is not possible.

(iii) If rank(F i) ≤ 2, then again this implies φ fixes some conjugacy class and therefore cannot
be atoroidal. Hence, this case is not possible.

(iv) If none of the previous cases happen, then we may continue recursively by considering the
restriction φ ∈ Out(F i) (which is also rotationless) and applying Proposition 3.13. As each
subsequent component, say F i,jΦ , obtained from F iΦ in this process is a proper free factor of
F by itself (due to Lemma 3.1(v)), the rank of such F i,jΦ drops at each step of recursion.
Therefore, this process must stop when we have rank(F i,j,k,...,s) = 3 and the mapping tori
corresponding to this invariant subgroup must be hyperbolic (any outer automorphism of
a free group of rank 2 always fixes some conjugacy class).

This shows that for an atoroidal φ, the collection of parabolic subgroups obtained in
Proposition 3.13 can be made finer (in finitely many steps) until eventually we have that each
subgroup in the collection is a hyperbolic group. Now we use two well-known facts in the theory
of hyperbolic groups.

(a) If Γ is (strongly) hyperbolic relative to the finite collection {Hi}i and each Hi is (strongly)
hyperbolic relative to the finite collection {Ki

j}j , then Γ is (strongly) hyperbolic relative to

the finite collection {Ki
j}i,j .

(b) If Γ is (strongly) hyperbolic relative to the finite collection {Hi}i and each Hi is hyperbolic,
then Γ is hyperbolic.

Then we can conclude that Γ itself must be hyperbolic when φ is atoroidal. Thus, as a corollary
of Proposition 3.13, we have obtained a new proof of Brinkmann’s theorem [Bri00].

Corollary 3.14. Let φ ∈ Out(F) and Φ ∈ Aut(F) be any lift of φ. Then φ is atoroidal if and
only if F �Φ Z is a hyperbolic group.

Proof. Suppose φ is atoroidal. Pass to a rotationless power φk of φ and consider the mapping torus
of φk. The discussion shows that F �Φk Z is hyperbolic. As F �Φk Z is a finite-index subgroup of
F �Φ Z they are quasi-isometric. Therefore F �Φ Z is also hyperbolic.
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For the converse direction, observe that if F �Φ Z is hyperbolic, then F �Φ Z cannot contain
a copy (up to finite index) of Z × Z. Hence, φ cannot have a periodic conjugacy class. �

The converse of Proposition 3.13 has already been proven, and is present implicitly in the
work of Macura [Mac02] as was first pointed out in the work of Hagen and Wise [HW16].
In [Mac02], Macura studied the divergence function for the free-by-cyclic extensions induced
by polynomially growing outer automorphisms and proved that the divergence function for
an extension induced by an outer automorphism of growth order r, is approximately xr+1.
However, it is well known that relatively hyperbolic groups have exponential divergence function
(see [Sis12]). The author thanks Mark Hagen for pointing this out.

Remark. In the work of Macura, it is implicit that for a polynomially growing outer automor-
phism φ, the induced mapping torus group F �Φ Z is a thick metric space of order r (in the sense
of [BDM09]) for any lift Φ of φ and, hence, F �Φ Z cannot be relatively hyperbolic with respect
to any finite collection of subgroups. Hagen has written down an explicit proof of this in [Hag19].

Thus, in light of the above discussion, we have the following theorem.

Theorem 3.15. If φ ∈ Out(F) and Φ ∈ Aut(F) is any lift of φ, then the group F �Φ Z is strongly
relatively hyperbolic if and only if φ is exponentially growing.

Proof. Let Γ = F �Φ Z denote the mapping torus. Pass to rotationless power φ′ of φ and consider
the mapping torus Γ′ of φ′. Proposition 3.13 shows that Γ′ is (strongly) relatively hyperbolic
group. As Γ′ is quasi-isometric to Γ, by using the fact that relative hyperbolicity is quasi-isometry
invariant [Dru09], we can conclude that Γ is also (strongly) relatively hyperbolic.

For the converse direction, suppose that Γ is relatively hyperbolic. If φ is not exponen-
tially growing, then it is either polynomially growing or of finite order. Hagen’s work in [Hag19,
Theorem 1.2] shows that Γ cannot be relatively hyperbolic in the polynomially growing case or
finite order case. Hence, φ must be exponentially growing. �

Before we move on to the polynomially growing case we would like to remark that a somewhat
similar looking result as in Proposition 3.13 was claimed in an yet unpublished paper of Gautero
and Lustig [GL07]. What they show is that the mapping torus of any outer automorphism is
(strongly) hyperbolic relative to the collection of ‘canonical’ subgroups which contain all the
polynomially growing conjugacy classes. A result similar to the Gautero–Lustig theorem can be
easily deduced by a repeated application of Proposition 3.13 on the peripheral subgroups given
in the conclusion of that proposition (similar to the argument we gave for the atoroidal case,
Corollary 3.14). The two facts that allow us to provide a inductive argument in this case are as
follows.

(a) For a geometric lamination Λ+
φ , the nonattracting subgroup system can be written as

Ana(Λ+
φ ) = F ∪ {[〈c1〉], [〈c2〉], . . . , [〈ck〉]}, where F is a free-factor system and 〈ci〉 are infi-

nite cyclic subgroups where the conjugacy classes [ci] represents the boundary components
of the surface which supports the lamination. This fact can be extracted from the subgroup
decomposition work [HM20] where the geometric models are developed to study geomet-
ric strata (see Remark 1.3 in [HM20] or the proof of Proposition 5.11 in [HM09, Case 3b,
pp. 49–50]). This allows us to perform induction on the rank of the components of the
nonattracting subgroup system.

(b) For a nongeometric lamination, we know that Ana(Λ+
φ ) is a free-factor system

(Lemma 3.1(vi)).

We record this result as a corollary:
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Corollary 3.16. The mapping torus of every rotationless, exponentially growing φ ∈ Out(F) is
(strongly) hyperbolic relative to a finite collection of peripheral subgroups of the form F i �Φi Z,
where Φi is a lift of φ that preserves F i and the outer automorphism class of Φi restricted to F i

is polynomially growing.

4. Polynomial growth case

For any φ ∈ Out(F), we have the following result due to Genevois and Horbez. In an earlier
work, Button and Kropholler (see [BK16, Corollary 4.3]) had proven a similar result but with
‘virtually acylindrically hyperbolic’ conclusion instead of ‘acylindrically hyperbolic’.

Lemma 4.1. [GH21, Corollary 1.5] Let φ ∈ Out(F) and Φ ∈ Aut(F) be any lift of φ. Then the
mapping torus F �Φ Z is acylindrically hyperbolic if and only if φ has infinite order.

Combining this lemma with Theorem 3.15 we conclude as follows.

Corollary 4.2. Let φ ∈ Out(F) be of infinite order. Then the extension group F �Φ Z is
acylindrically hyperbolic but not relatively hyperbolic if and only if φ is polynomially growing.

To conclude of this section we would like to point out that this answers a problem posed by
Minasyan and Osin [MO15, Problem 8.2].

5. Applications

5.1 Free-by-free hyperbolic extensions
Consider the short exact sequence

1 → F → Γ → Q→ 1,

where Q is a free subgroup of Out(F). In this section, we give the construction of a free-by-
free hyperbolic extension Γ where the elements of quotient group Q are not necessarily fully
irreducible. Thus, far in the study of Out(F), the only examples of free-by-free hyperbolic exten-
sions which are known; necessarily assume that every element of Q is fully irreducible. Thus,
Theorem 5.6, in a way, gives a new class of examples of free-by-free hyperbolic extensions.

Standing assumptions. We let φ, ψ be atoroidal outer automorphisms with dual lamination pairs
Λ±
φ and Λ±

ψ and assume that the following hold:

(i) {Λ+
φ ,Λ

−
φ } ∩ {Λ+

ψ ,Λ
−
ψ} = ∅;

(ii) Ana(Λ±
φ ) does not carry generic leaves of Λ±

ψ and Ana(Λ±
ψ ) does not carry generic leaves

of Λ±
φ ;

(iii) φ± and ψ± are both rotationless.

We now make the following observations.

(1) As the outer automorphism φ is atoroidal, the restriction of φ as an element of Out(F i)
(where [F i] ∈ Ana(Λ±

φ )) is also atoroidal. Similarly for ψ.
(2) As F � 〈Φ〉 is a hyperbolic group, we can look at it as a tree of hyperbolic metric spaces

using the short exact sequence 1 → F → F � 〈Φ〉 → 〈Φ〉 → 1. Bowditch [Bow07, pp. 85–86]
shows that in this situation, hallways flare (see Theorem 3.7 in [MR08]).

(3) As hallways flare, we conclude that conjugacy flaring also holds.

We record these observations in the following lemma.
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Lemma 5.1. Suppose φ ∈ Out(F) is rotationless and atroidal and let Φ ∈ Aut(F) be some lift
of φ. There exists numbers Nφ,Mφ > 0 such that:

(i) (hallway flaring) for every n ≥ Nφ and every nontrivial word w ∈ F

3|w| ≤ max{|Φn
#(w)|, |Φ−n

# (w)|};
(ii) (conjugacy flaring) for every m ≥Mφ and every nontrivial conjugacy class in F

3‖c‖ ≤ max{‖φm#(c)‖, ‖φ−m# (c)‖}.
The following result shows that under our assumptions there is a mutual attraction of the

laminations for φ, ψ.

Lemma 5.2. If φ, ψ are outer automorphisms which satisfy the standing assumptions above,
then we have the following result.

Generic leaves of Λ+
φ ,Λ

−
φ are attracted to Λ+

ψ (respectively, Λ−
ψ ) under action of ψ

(respectively, ψ−1). Similarly, with roles of φ, ψ reversed.

Proof. Let γ+
φ denote a generic leaf of Λ+

φ . We claim that γ+
φ cannot be a leaf of Λ−

ψ . It is clear
that γ+

φ cannot be a generic leaf of Λ−
ψ , because otherwise the weak closure would be equal to

both Λ+
φ and Λ−

ψ , which would violate item (i) in the standing assumption. If H−
t is the EG

strata associated to Λ−
ψ for some relative train-track map fψ : G−

ψ → G−
ψ then γ+

φ must have
height at least t, because all strata below H−

t are carried by Ana(Λ±
ψ ). In addition, if γ+

φ has
height greater than t, it cannot be a leaf of Λ−

ψ .
If γ+

φ is a nongeneric leaf of Λ−
ψ of height t, then [BFH00, Lemma 3.1.15] closure of γ+

φ is
all of Λ−

ψ which again contradicts item (i) of the standing assumption. Thus, γ+
φ cannot be a

nongeneric leaf of Λ−
ψ and, consequently, γ+

φ cannot be a leaf of Λ−
ψ .

Choose attracting neighborhoods V +
ψ and V −

ψ of Λ+
ψ and Λ−

ψ , respectively, defined by long
generic leaf segments of the respective laminations such that γ+

φ /∈ V −
ψ .

By using the weak attraction Lemma 3.2 together with the standing assumption (ii), we know
that either γ+

φ ∈ V −
ψ or γ+

φ is weakly attracted to Λ+
ψ under iteration by ψ. However, because we

have ruled out the first possibility, γ+
φ is necessarily attracted to Λ+

ψ . This implies that generic
leaves of Λ+

φ are attracted to Λ+
ψ .

The proof of other conclusions in item (ii) follows from symmetric arguments. �
Let {αi} be a sequence of conjugacy classes and also denote their realization in G by αi.

Decompose each αi as a concatenation of subpaths each of which are either in the complement
of Gr or are paths of height r. Further decompose each height-r component into segments which
are either generic leaf segments of Λ+

φ (denote such a segment by εi,k for some k) or a path which
is not a generic leaf segment.

Definition 5.3. We say that αi is approximate Λ+
φ if for any L > 0, the ratio

{
∑

|εi,k|G | summing over all such k where |εi,k|G ≥ L}
|αi|G

converges to 1 as i→ ∞.

Lemma 5.4. Let φ, ψ be outer automorphisms of F which satisfy the standing assumptions.
Then for any sequence of conjugacy classes {αi}, the sequence cannot approximate both Λ−

φ

and Λ−
ψ .

178

https://doi.org/10.1112/S0010437X22007813 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007813


Relative hyperbolicity of free-by-cyclic extensions

Proof. Suppose that {αi} approximates Λ−
ψ . As in the proof of Lemma 5.2 we choose an attracting

neighborhood V −
φ for Λ−

φ such that Λ−
ψ /∈ V −

φ .
In this setup, Λ−

ψ /∈ V −
φ and generic leaves of Λ−

ψ are not carried by Ana(Λ±
φ ). Hence, by apply-

ing the uniformity part of the weak attraction theorem, we get an M ≥ 1 such that φm#(γ−ψ ) ∈ V +
φ

for all m ≥M for every generic leaf γ−ψ ∈ Λ−
ψ . As V +

φ is an open set we can find an I ≥ 1 such
that φm#(αi) ∈ V +

φ for all m ≥M, i ≥ I. This implies that {αi} cannot approximate Λ−
φ , because

otherwise generic leaves of Λ−
φ would get attracted to Λ+

φ . �

Now we are ready to prove a version of Mosher’s 3-of-4 stretch lemma [Mos97] and give a
new example of a hyperbolic-by-hyperbolic hyperbolic group.

Proposition 5.5 (3-of-4 stretch). Let φ, ψ be outer automorphisms which satisfy the standing
assumptions. In addition, we suppose that L(φ±) ∩ L(ψ±) = ∅. Then we have the following.

(i) There exists some M ≥ 0 such that for any conjugacy class α, at least three of the four
numbers

‖φni
# (α)‖, ‖φ−ni

# (α)‖, ‖ψni
# (α)‖, ‖ψ−ni

# (α)‖

are greater an or equal to 3‖α‖, for all ni ≥M .
(ii) There exists some N ≥ 0 such that for any word w ∈ F, at least three of the four numbers

|Φni
# (w)|, |Φ−ni

# (w)|, |Ψni
# (w)|, |Ψ−ni

# (w)|

are greater than 3|w|, for all ni ≥ N .

Proof. Proof of (i). Suppose there does not exist any such M0. We argue to a contradiction by
using the weak attraction theorem. By our supposition, we get a sequence of conjugacy classes
αi such that at least two of the four numbers ‖φni

# (αi)‖, ‖φ−ni
# (αi)‖, ‖ψni

# (αi)‖, ‖ψ−ni
# (αi)‖ are

less than 3‖αi‖ and ni > i. Lemma 5.1 tells us that at least one of {‖φni
# (αi)‖, ‖φ−ni

# (αi)‖} is at
least 3‖αi‖ and at least one of

{‖ψni
# (αi)‖, ‖ψ−ni

# (αi)‖} is at least 3‖αi‖ for all sufficiently large i.
For sake of concreteness suppose that

‖φni
# (αi)‖ ≤ 3‖αi‖, ‖ψni

# (αi)‖ ≤ 3‖αi‖ ∀ ni. (4)

The above assumptions show that αi grows exponentially under iterates of both φ−1 and ψ−1.
Hence, after passing to a subsequence of αi, we may assume that all αi are weakly attracted to
some attracting lamination Λ−

1 of φ−1 and Λ−
2 of ψ−1 (because L(φ±),L(ψ±) are finite sets).

If αi is also attracted to some lamination which contains Λ−
1 we replace Λ−

1 with the highest
lamination such a inclusion chain and call it Λ−

1 . Similarly for Λ−
2 . Thus, after passing to a

subsequence, we may also assume that none of the αi are attracted to any lamination which
properly contain Λ−

1 and Λ−
2 . Let Λ+

i be dual to Λ−
i for i = 1, 2.

If Λ−
1 is carried by the nonattracting subgroup system of Λ−

2 , then αi cannot approximate
both Λ−

1 and Λ−
2 because the realization of any generic leaf of Λ−

1 in any CT representing ψ−1 will
be entirely contained in the nonattracting subgraph for Λ−

2 . Otherwise when generic leaves of Λ−
1

are weakly attracted to Λ−
2 and vice versa, we use the additional hypothesis L(φ±) ∩ L(ψ±) = ∅

and follow the proof of Lemma 5.4 to conclude that αi does not approximate both Λ−
1 and Λ−

2 .
For concreteness, suppose that αi do not approximate Λ−

1 . Then we can choose some attract-
ing neighborhood V −

1 of Λ−
1 which is defined by some long generic leaf segment and after passing

to a subsequence if necessary we may assume that αi /∈ V −
1 for all i. Also note that αi is not
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carried by Ana(Λ±
1 ) for all sufficiently large i. By using the uniformity part of the weak attraction

Lemma 3.2, there exists some M+ such that φm#(αi) ∈ V +
1 for all m ≥M .

Choose a CT f : G→ G representing φ and let Hr be the EG stratum associated to Λ+
1 . Our

assumption that Λ−
1 is the highest lamination to which αi are attracted ensures that αi are not

attracted to any lamination which properly contain Λ+
1 (due to duality). We can choose i to be

sufficiently large we may assume that ni ≥M+ and so by using Lemma 3.5 we have that for some
ε > 0, LEGHσ

r
(φni

# (αi)) ≥ ε. By using Lemma 3.6 (see the discussion preceding the statement)
we obtain that for any A > 0 there exists some M+

1 such that

|fm# (αi)|〈Z,σ̂〉 ≥ A|αi|〈Z,σ̂〉
for every m > M+

1 . This implies that for all sufficiently large i, |fni
# (αi)|〈Z,σ̂〉 ≥ A|αi|〈Z,σ̂〉. Choos-

ing a sequence Ai → ∞ so that we have Ai > i.|αi|/|αi|〈Z,σ̂〉 and after passing to a subsequence
of {ni} we may assume that |fni

# (αi)|〈Z,σ̂〉 ≥ Ai|αi|〈Z,σ̂〉 ≥ i.|αi|. Finally, using an F−equivariant

quasi-isometry between G̃ and universal cover of standard rose for F, we obtain some constant
K ′′ such that K ′′|αi| ≥ ‖αi‖ for every i. We therefore get

3 ≥
‖φni

# (αi)‖
‖αi‖

≥
‖φni

# (αi)‖el

‖αi‖
≥

|φni
# (αi)|〈Z,σ̂〉
K‖αi‖

≥
Ai · |αi|〈Z,σ̂〉
KK ′′|αi|

≥ i

KK ′′ .

The first inequality is inequality (4) above. The second inequality follows from the fact the
absolute length is at least as much as length in electrocuted metric. The third inequality is
obtained by using Lemma 3.7. The fourth inequality uses Lemma 3.6 and the choice of K ′′

explained previously. The last inequality follows from the choice of Ai made previously. Thus,
we get a contradiction to the existence of the sequence of conjugacy classes αi.

The proof of (ii) is similar to proof of Proposition 3.10 (see Lemma 5.1). �
Theorem 5.6. Let φ, ψ be outer automorphisms which satisfy the standing assumptions above
and L(φ±) ∩ L(ψ±) = ∅. Then there exists some M > 0 such that for every m,n ≥M the group
Q := 〈φm, ψn〉 is a free group of rank 2 and the extension group F � Q̃ is hyperbolic for any lift
Q̃ of Q.

Proof. The conclusion about free groups follows directly from 3-of-4 stretch result in
Proposition 5.5. The hyperbolicity of the extension group follows by using the Bestvina–
Feighn Combination theorem [BF92] because Proposition 5.5(ii) implies that the annuli flare
condition is satisfied. �

It is worth pointing out that it is very easy to construct examples of φ, ψ such that no
element of Q will be fully irreducible. To see this consider a free group of rank at least 6. Say
F = 〈a, b, c, d, e, f〉. Now take two fully irreducible elements without common nonzero powers,
say ψ1, φ1, defined on 〈a, b, c〉. Now extend φ1 to an outer automorphism of F so that every
conjugacy class in 〈d, e, f〉 is attracted to the lamination of φ1 under iterates of φ. Do the same
for ψ. For any given relative train-track map for φ there is no restriction on the strata above
the base stratum associated to the attracting lamination of φ1, except that they must be all
attracted to the attracting lamination of φ1. Then φ, ψ satisfy all our standing assumptions for
this section and we get a free-by-free hyperbolic extension. Observe that both φ and ψ have a
common invariant conjugacy class of free factor 〈a, b, c〉 and, hence, none of the elements of the
free group generated by powers of φ, ψ are fully irreducible.

Corollary 5.7 [BHF97, Theorem 5.2]. Suppose φ, ψ are fully irreducible and atoroidal which
do not have common powers. Then there exists some M > 0 such that for every m,n ≥M the
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group Q := 〈φm, ψn〉 is a free group of rank 2 and the extension group F � Q̃ is hyperbolic for
any lift Q̃ of Q.

Proof. As φ, ψ are fully irreducible, atoroidal, our standing assumptions are automatically
satisfied. Now apply Theorem 5.6. �

Remark. Caglar Uyanik has pointed out to the author that Theorem 5.6 can also be deduced
from his work [Uya19], because our standing assumptions imply that the hypothesis of [Uya19,
Proposition 4.2] (the version of Mosher’s 3-of-4 stretch lemma in his work) is satisfied. The
attracting laminations in our hypothesis act as the attracting and repelling simplices in the
space of currents which is used for a ping-pong argument in that paper.

5.2 Quadratic isoperimetric inequality
Bridson and Groves [BG10] proved that the mapping torus of any outer automorphism of a free
group satisfies the quadratic isoperimetric inequality. We can deduce the same theorem from our
work here, and it is perhaps a simpler proof of the Bridson–Groves theorem. In another related
work Macura [Mac00] has some interesting results on the quadratic isoperimetric inequality
problem.

Theorem 5.8. The mapping torus of any φ ∈ Out(F) satisfies the quadratic isoperimetric
inequality.

Proof. If φ is polynomially growing, then the result follows from the Bridson–Groves theorem
for the special case of polynomially growing outer automorphisms. Otherwise, for exponentially
growing φ, denote its mapping torus by Γ. Pass to a rotationless power, call it φ′, and use
Corollary 3.16 to conclude that the mapping torus of φ′, Γ′ say, is (strongly) hyperbolic rel-
ative to a collection of peripheral subgroups each of which satisfy the quadratic isoperimetric
inequality (by applying polynomially growth case of the Bridson–Groves theorem on the periph-
eral subgroups). Farb’s work in [Far98] shows that if the peripheral subgroups of a relatively
hyperbolic group G, satisfies a quadratic isoperimetric inequality, then G satisfies the quadratic
isoperimetric inequality. Hence, we conclude that Γ′ satisfies a quadratic isoperimetric inequality.

As Γ′ is a finite index subgroup of Γ and the property of satisfying a quadratic isoperimetric
inequality is quasi-isometry invariant, Γ also satisfies a quadratic isoperimetric inequality. �
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