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Vertical thermal convection is a non-equilibrium system in which both buoyancy
and shear forces play a role in driving the convective flow. Beyond the onset of
convection, the driven dissipative system exhibits chaotic dynamics and turbulence. In
a three-dimensional domain extended in both the vertical and the transverse dimensions,
Gao et al. (Phys. Rev. E, vol. 97, 2018, 053107) have observed a variety of convection
patterns which are not described by linear stability analysis. We investigate the fully
nonlinear dynamics of vertical convection using a dynamical-systems approach based
on the Oberbeck–Boussinesq equations. We compute the invariant solutions of these
equations and the bifurcations that are responsible for the creation and termination of
various branches. We map out a sequence of local bifurcations from the laminar base
state, including simultaneous bifurcations involving patterned steady states with different
symmetries. This atypical phenomenon of multiple branches simultaneously bifurcating
from a single parent branch is explained by the role of D4 symmetry. In addition, two global
bifurcations are identified: first, a homoclinic cycle from modulated transverse rolls and
second, a heteroclinic cycle linking two symmetry-related diamond-roll patterns. These are
confirmed by phase space projections as well as the functional form of the divergence of
the period close to the bifurcation points. The heteroclinic orbit is shown to be robust and
to result from a 1:2 mode interaction. The intricacy of this bifurcation diagram highlights
the essential role played by dynamical systems theory and computation in hydrodynamic
configurations.
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1. Introduction

Vertical convection, in which a layer of fluid is confined between two vertical plates
maintained at different temperatures, is relevant for industrial applications, including the
control of insulation properties of double-glazed windows. Vertical convection also serves
as a model system in the geophysical context to describe convectively driven flows in
the Earth, the ocean and the atmosphere. Moreover, vertical convection is a fundamental
hydrodynamics problem in its own right, as a prototype for studying pattern formation
mechanisms within spatially extended driven dissipative nonlinear out-of-equilibrium
systems. In our companion paper Zheng, Tuckerman & Schneider (2024), we studied
a domain in which the transverse (or spanwise) direction was taken to be of the same
length as the distance between the plates (the wall-normal direction), with the vertical
dimension (parallel to gravity) chosen large compared with both. Consequently, flow
patterns are primarily two-dimensional (2-D), with variations predominantly in the vertical
and wall-normal direction. Here, we will consider an extended three-dimensional (3-D)
geometry, in which the transverse and vertical dimensions are both large compared with
the inter-plate spacing and, thus, flow patterns vary in two extended directions.

We begin by briefly surveying 3-D numerical investigations of vertical convection.
Chait & Korpela (1989), Henry & Buffat (1998) and Xin & Le Quéré (2002) analysed
the instability of 2-D nonlinear flow (transverse rolls) to 3-D perturbations in order to
determine when and whether the flow could be assumed to be 2-D. In Rayleigh–Bénard
convection, the stability thresholds in Rayleigh number (Ra), Prandtl number (Pr) and
2-D roll wavelength delimit a volume that is called the Busse balloon (Busse 1978),
named after the researcher who has been at the forefront of pattern formation research
in Rayleigh–Bénard convection. Busse later also transferred his analysis to vertical
convection. Using the approximation (corresponding to infinite thermal diffusivity) that
the temperature retains its linear conductive profile, Nagata & Busse (1983) computed
a fully nonlinear 3-D solution which is probably the diamond roll state (FP2) to be
described in § 3. Such 3-D solutions have sometimes been termed tertiary solutions,
whereas the laminar and 2-D transverse roll solutions are called primary and secondary,
respectively. Clever & Busse (1995) extended the computation of 3-D solutions to
Pr = 0.71, corresponding to convection in air, the case we study in this paper.

Gao et al. (2013, 2015, 2018) combined linear and weakly nonlinear theory as
well as direct numerical simulations (DNS) to study the 3-D flow. Gao et al. (2013,
2015) studied the equilibria and periodic orbits in a computational domain of size
[Lx, Ly, Lz] = [1, 1, 10], the same domain we consider in our companion paper Zheng
et al. (2024). In order to study secondary instabilities in the transverse direction of the
2-D steady rolls, Gao et al. (2018) computed their linear stability. Their analysis showed
two types of instabilities, with spanwise wavelengths of about four and eight. They
consequently extended the spanwise length of the domain from unity to Ly = 8 to capture
both instabilities. In addition, when Lz = 9 the Rayleigh number thresholds of both types
of 3-D instabilities are close, motivating them to decrease Lz from 10 to 9 in order to study
the competition between both instabilities destabilising 2-D rolls. Like a spanwise domain
size of Lz = 10, a domain with Lz = 9 also accommodates four co-rotating rolls in the
primary instability of the base state and is large enough to allow interactions between rolls.
Cimarelli & Angeli (2017) and Cingi, Cimarelli & Angeli (2021) unsuccessfully attempted
to explain the results of Gao et al. (2013, 2018) from a bifurcation-theoretic point of view.

In this paper, we study vertical convection in air (Pr = 0.71) in the configuration
[Lx, Ly, Lz] = [1, 8, 9]. Similarly to the approach described in Zheng et al. (2024), we
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extend previous studies by Gao et al. (2018) that were based primarily on time-stepping by
using numerical continuation and stability analysis. This unravels the bifurcation-theoretic
origins of complex flows and the connections between them. This approach of explaining
patterns and their dynamics in terms of equilibria and periodic orbits has been applied
successfully to inclined layer convection where fascinating convection patterns were
previously observed in DNS and experimentally by Daniels, Plapp & Bodenschatz
(2000). Through a numerical bifurcation analysis, Reetz & Schneider (2020) and Reetz,
Subramanian & Schneider (2020) identified the invariant solutions underlying most of the
patterns and constructed bifurcation diagrams connecting them. These invariant solutions
capture key features and dynamics of the observed patterns and the bifurcation diagrams
reveal their origin. Here, we follow the same strategy to explain flow patterns in vertical
convection in a somewhat larger domain.

Using parametric continuation techniques that can follow states irrespective of their
stability, we describe the discovery of three new branches of steady states, which, together
with those observed by Gao et al. (2018) via time integration, brings the number of
branches observed thus far to six. Several of these new states bifurcate simultaneously,
at the same value of the control parameter, despite not being related by symmetry. We
have shown that this otherwise non-generic phenomenon is explained by the fact that the
parent branches have D4 symmetry; see Swift (1985), Knobloch (1986), Chossat & Iooss
(1994), Bergeon, Henry & Knobloch (2001) and Reetz et al. (2020). In our geometry,
D4 symmetry leads to simultaneous bifurcations to states that are aligned with respect
to the transverse and vertical directions, and others which are diagonal with respect to
them. Competition between aligned and diagonal states is also seen in two periodic orbits
(observed by Gao et al. 2018), that consist of diagonal excursions from states which are
more aligned. We have also discovered two new periodic orbits.

Most of the steady states and periodic orbits that we have identified are unstable. While
these are not directly observed in time-dependent simulations, following unstable branches
is essential for understanding the origin of stable states and for constructing a bifurcation
diagram unifying the solutions to a problem. Moreover, unstable states play the role of
way-stations, near which chaotic or turbulent trajectories spend much of their time. These
are believed to form the core structures supporting weakly turbulent dynamics. Among
the unstable periodic orbits that may influence trajectories of a fluid-dynamical system,
we have discovered some whose branches terminate in global bifurcations, leading to their
disappearance. Although there have been a number of computations of global bifurcations
in hydrodynamic systems (Tuckerman & Barkley 1988; Prat, Mercader & Knobloch 2002;
Millour, Labrosse & Tric 2003; Nore et al. 2003; Abshagen et al. 2005; Bordja et al. 2010;
Bengana & Tuckerman 2019; Reetz et al. 2020), we are not aware of previous calculations
of heteroclinic or homoclinic cycles in vertical convection.

The remainder of this article is organised as follows. In § 2 we summarise the key
numerical methods used in our research which are already presented in detail in Zheng
et al. (2024). The results from the bifurcation analysis are presented in § 3 for fixed
points and in § 4 for periodic orbits. Concluding remarks and future research directions
are outlined in § 5.

2. System and methods

We refer the reader to Reetz (2019), Reetz & Schneider (2020), Reetz et al. (2020), and
Zheng et al. (2024) for detailed descriptions of the numerical methods used in the research.
Here, we only summarise the key points.
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Figure 1. Schematic of the vertical convection configuration approximating [Lx, Ly, Lz] = [1, 8, 9]. The flow
is bounded between two walls in x direction at x = 0.5 where the flow is heated and at x = −0.5 where the
flow is cooled. The domain is periodic in y and z directions. Most of the visualisations that we present are taken
on the y–z midplane at x = 0 outlined by the dotted lines, and they are visualised in the direction of negative
to positive x, as indicated by the eye and arrow. The laminar velocity and temperature are shown as the orange
and green curves, respectively.

2.1. The DNS of vertical convection
The vertical convection system is studied numerically by performing DNS with the
ILC extension module of the Channelflow 2.0 code (Gibson et al. 2021), to solve the
non-dimensionalised Oberbeck–Boussinesq equations

∂u
∂t

+ (u · ∇)u = −∇p +
(

Pr
Ra

)1/2

∇2u + T ez, (2.1a)

∂T
∂t

+ (u · ∇)T =
(

1
Pr Ra

)1/2

∇2T , (2.1b)

∇ · u = 0, (2.1c)

in a vertical channel, with periodic boundary conditions in y and z, shown in figure 1. The
boundary conditions in x at the two walls are of Dirichlet type:

u(x = ±0.5) = 0, T (x = ±0.5) = ±0.5. (2.2a,b)

Supplementary integral constraints are necessary in the periodic directions; we set the
mean pressure gradient to zero in both y and z. The laminar solution, illustrated in figure 1,
is

u0(x) = 1
6

√
Ra
Pr

(
1
4

x − x3
)

ez, (2.3a)

T0(x) = x, (2.3b)

p0(x) = Π, (2.3c)

with arbitrary pressure constant Π .
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The governing equations and boundary conditions are discussed in our companion paper
Zheng et al. (2024). The only aspect which differs here is the domain size: instead of the
narrow domain [Lx, Ly, Lz] = [1, 1, 10] with one extended direction studied in Gao et al.
(2013), here we study the 3-D computational domain [Lx, Ly, Lz] = [1, 8, 9] of Gao et al.
(2018). This domain has two extended directions and is illustrated in figure 1. This domain
is spatially discretised by [Nx, Ny, Nz] = [31, 96, 96] Chebychev–Fourier–Fourier modes.

2.2. Symmetries and computation of invariant solutions
We often refer to the symmetries of our system, the group SVC, which is generated by
reflection in y, combined reflection of x, z and temperature T , and translation in y and z:

πy[u, v, w, T ](x, y, z) ≡ [u, −v, w, T ](x, −y, z), (2.4a)

πxz[u, v, w, T ](x, y, z) ≡ [−u, v, −w, −T ](−x, y, −z), (2.4b)

τ(�y, �z)[u, v, w, T ](x, y, z) ≡ [u, v, w, T ](x, y + �y, z + �z), (2.4c)

stated more compactly as SVC ≡ 〈πy, πxz, τ (�y, �z)〉 ∼ [O(2)]y × [O(2)]x,z. The groups
we use are Zn, the cyclic group of n elements, Dn, the cyclic group of n elements together
with a non-commuting reflection, and O(2), the group of all rotations together with a
non-commuting reflection. Here [O(2)]y refers to reflections and translations in y, as in
(2.4a) and (2.4c), respectively, whereas [O(2)]xz refers to reflections in (T , x, z) as in
(2.4b) and translations in z as in (2.4c), a convention that we use in the rest of the paper
where possible. Note that the generators of a group are non-unique, as is the decomposition
into direct products (indicated by ×).

We adopt the shooting-based matrix-free Newton method implemented in Channelflow
2.0 to compute invariant solutions. The only difference with respect to our description
in Zheng et al. (2024) arises from the presence here of homoclinic and heteroclinic
orbits. Although the Newton method can converge with one shot in most of the cases
(provided that the initial guess is sufficiently close to the solution), the multi-shooting
method (Sánchez & Net 2010; van Veen, Kawahara & Atsushi 2011) is required in order
to converge orbits with long periods (typically T > 300 in our case) that are close to a
global bifurcation point and very unstable orbits. For these periodic orbits, we employ the
multi-shooting method with at most six shots.

To characterise the stability of a solution, its leading eigenvalues and eigenvectors for
fixed points, or Floquet exponents and Floquet modes for periodic orbits, are determined by
Arnoldi iterations. When solutions have symmetries, the resulting linear stability problem
has the same symmetries, leading to multiple eigenvectors sharing the same eigenvalues.
In such cases, we choose the eigenvectors appropriate to our analysis either by subtracting
two nonlinear flow fields along a trajectory or branch, or by imposing symmetries.

2.3. Order parameter and flow visualisation
Once an equilibrium or time-periodic solution is converged, parametric continuation in
Rayleigh number is performed to construct bifurcation diagrams. Solutions are represented
via the L2-norm of their temperature deviation θ ≡ T − T0. Branches of fixed points are
represented by curves showing ||θ ||2 as a function of Ra; for periodic orbits, the maximum
and minimum of ||θ ||2 along an orbit are plotted. The flows are visualized via their
temperature deviation fields θ on the y–z plane at x = 0 and on the x–z plane at y = 4.
The thermal energy input I due to buoyancy and the dissipation D due to viscosity are
used to plot phase portraits.
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3. Fixed points

We begin by noting that the numbering used for fixed points and for periodic orbits applies
only to this paper; except for FP1, the fixed points and periodic orbits here are not the same
as those in Zheng et al. (2024).

3.1. Three known fixed points: FP1–FP3
Gao et al. (2018) observed three fixed points in the domain [Lx, Ly, Lz] = [1, 8, 9] and
presented visualisations and Fourier decompositions of them. These states have been
recomputed here and their flow structures are shown in figures 2(b)–2(d). In this work,
we identify the bifurcations that create and destroy these states and construct a bifurcation
diagram that includes stable and unstable branches. As presented in the bifurcation
diagram in figure 2(a), the laminar base flow is stable until Ra = 5707, where the first fixed
point, FP1, bifurcates. As in Zheng et al. (2024), FP1 is called 2-D or transverse rolls. This
state contains four spanwise (y)-independent co-rotating convection rolls, and is shown in
figures 2(b) and 3(a). Cingi et al. (2021) have reported bistability between the base flow
and 2-D rolls in several Rayleigh-number ranges, but their interpretation contradicts the
results obtained here and also those reported by Gao et al. (2018). In particular, Cingi et al.
(2021) find the laminar flow to be bistable with 2-D rolls (FP1) over the Rayleigh number
range of [5708, 7000]. We believe this reported bistability to be spurious, and to almost
certainly result from the use by Cingi et al. (2021) of a time-stepping code to simulate
a weakly unstable state without monitoring the growth or decay of perturbations nor a
complementary linear stability analysis.

Fixed point FP1 loses stability at Ra = 6056 via a circle pitchfork bifurcation that
breaks the y translation symmetry τ(�y, 0) and creates FP2, shown in figures 2(c) and
3(b). We refer to these as diamond rolls, whereas Gao et al. (2018) called them wavy
rolls. Fixed point FP2 results from the subharmonic varicose instability of FP1, which was
discussed in Subramanian et al. (2016) and Reetz et al. (2020). FP2 undergoes subcritical
pitchfork bifurcations at Ra = 6058.5, so that its stability range is only [6056, 6058.5].
The time-dependent simulations of Cingi et al. (2021) did not detect FP2. In contrast,
Gao et al. (2018) observed FP2 as a transient at Ra = 6100 and computed its threshold
via a linear stability analysis. Clever & Busse (1995) computed a state resembling FP2 by
means of a steady-state calculation. (Their threshold of about Ra ≈ 6295 can perhaps be
attributed to a lack of spatial resolution available in 1995.)

The bifurcation from FP2 creates FP3, which Gao et al. (2018) call thinning rolls.
Initially unstable, FP3 is stabilised by a saddle-node bifurcation at Ra = 6008.5. At higher
Rayleigh number, FP3 undergoes two additional saddle-node bifurcations at Ra = 6265.8
and Ra = 6209.56. As pointed out by Gao et al. (2018), FP3 can have either of two
possible diagonal orientations. Figure 2(d) shows one of the two cases: the slightly wider
red portions are located along a diagonal joining the top left with the bottom right.

The symmetry (isotropy) groups of FP1–FP3 are

FP1: 〈πy, τ (�y, 0), πxz, τ (0, Lz/4)〉 ∼ [O(2)]y × [D4]xz;
FP2: 〈πy, τ (Ly/2, 0), πxz, τ (0, Lz/2), τ (Ly/4, −Lz/4)〉 ∼ D2 × D4;

FP3: 〈πyπxz, τ (Ly/4, −Lz/4)〉 ∼ D4.

⎫⎪⎬
⎪⎭ (3.1)

Note that τ(Ly/4, −Lz/4) = τ(Ly/4, 3Lz/4), and that the symmetry groups for FP2 and
FP3 cannot be divided into those related to y and those related to x, z. The bifurcation from
FP2 → FP3 breaks the D4 symmetry of FP2.
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Figure 2. Bifurcation diagram (a) and flow structures visualised via the temperature field on the y–z plane at
x = 0 (b–g) of six equilibria in domain [Lx, Ly, Lz] = [1, 8, 9]. The diagram shows two supercritical pitchfork
bifurcations, one from the base state to FP1 (b) and another one from FP1 to FP2 (c). Fixed point FP3 (d)
bifurcates from FP2 in a subcritical pitchfork bifurcation. The unstable FP4 (e) bifurcates supercritically
from FP1. The unstable FP5 branch ( f ) bifurcates at one end subcritically from FP2, and at the another end
supercritically from FP1. FP3 and FP5 bifurcate together from FP2, whereas FP4 and FP5 bifurcate together
from FP1. Two small grey rectangles surround these two simultaneous bifurcations, which are also shown in the
enlarged diagrams on the right. On the lower enlarged diagram, the dashed red and brown lines are distinct, but
too close to one another to be distinguished. FP6 bifurcates from FP5 in two supercritical pitchfork bifurcations
and it connects FP5 at two Rayleigh numbers. In (a), solid and dashed curves signify stable and unstable
states, respectively. The ranges over which FP1, FP2, FP3 and FP6 are stable are [5707, 6056], [6056, 6058.5],
[6008.5, 6140] and [6251.4, 6257.6], respectively. The stars in (a) indicate the locations of the visualisations
of (b–g). Fixed points FP1–FP3 are discussed in Gao et al. (2018) whereas FP4–FP6 are newly identified in
this work. Other branches of equilibria exist, which we have not followed nor shown on this diagram. Flow
visualisations on the x–z plane are shown in figure 3.
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Figure 3. Flow visualisation complementary to figures 2(b–g): FP1–FP6 visualised via the temperature field
on the x–z plane at y = 4. The same colour bar is used as in figures 2(b)–2(g).

3.2. Three new fixed points: FP4–FP6
We have also found three new branches of fixed points, FP4–FP6. Figure 2(a) shows that
there is a supercritical pitchfork bifurcation at Ra = 6131, at which FP4 and FP5 bifurcate
simultaneously from FP1. Both FP4 and FP5 are unstable along their entire branches. (The
enlarged diagram on the bottom right of figure 2(a) contains two distinct dashed red and
brown lines which are too close to be distinguished.) Since FP1 is y-independent and FP4
and FP5 are not, these are circle pitchfork bifurcations, yielding FP4 and FP5 states of any
phase in y. Fixed point FP4, shown in figures 2(e) and 3(d), shares with FP3 a diagonal
orientation. Fixed point FP4 also consists of rolls with a slight wavy modulation along the
y direction, but this modulation is weaker than that of FP3. FP4 plays an essential role in
one of the global bifurcations that we discuss in § 4.1.2.

The FP5 branch (which we refer to occasionally as the moustache branch) is shown in
figures 2( f ) and 3(e). After bifurcating from FP1, the FP5 branch undergoes saddle-node
bifurcations at Ra = 6317.5 and Ra = 6034, towards decreasing and increasing Rayleigh
number, respectively, and finally terminates at Ra = 6058.5 by meeting FP2 in a
subcritical pitchfork bifurcation. This is not a circle pitchfork bifurcation, since the
diamond branch FP2 is also y-dependent; four possible FP5 branches emanate from FP2,
related to one another by translations in y and in z. (Fixed point FP3 is also created at
Ra = 6058.5, in another simultaneous bifurcation that is discussed in § 3.3.) Thus, two
routes connect FP1 to FP5: one route is a single circle pitchfork bifurcation and a second
route is a circle pitchfork bifurcation from FP1 to FP2 followed by an ordinary pitchfork
bifurcation from FP2 to FP5. The bifurcation from FP1 to FP2 breaks y invariance whereas
that from FP2 to FP5 breaks the fourfold translation symmetry τ(Ly/4, −Lz/4).

The last new equilibrium, FP6, shown in figures 2(g) and 3( f ), is created from FP5 at
Ra = 6164.3 in a supercritical pitchfork bifurcation, inheriting the instability of FP5 at
the bifurcation point. Fixed point FP6 becomes stable, but only over a very short range
Ra ∈ [6251.4, 6257.6], indicated by the slight thickening of the branch in figure 2(a).
(We do not discuss or show in figure 2(a) the new branches that necessarily emanate
from the stabilising bifurcation at Ra = 6251.4, nor the numerous other branches created
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at points at which the real part of an eigenvalue crosses zero. The bifurcation at
Ra = 6257.6 is discussed in § 4.4.) FP6 then undergoes a saddle-node bifurcation at
Ra = 6329 before terminating at the FP5 branch at Ra = 6305.8 in another supercritical
pitchfork bifurcation.

The symmetry groups of these states are

FP4: 〈πyπxz, τ (Ly/4, −Lz/4)〉 ∼ D4;
FP5: 〈πy, πxz, τ (Ly/2, Lz/2)〉 ∼ [Z2]y × [Z2]xz × Z2;

FP6: 〈πy, πxzτ(Ly/2, 0)〉 ∼ [Z2]y × Z2.

⎫⎪⎬
⎪⎭ (3.2)

Fixed point FP1 is homogeneous in y and the states which branch from it, directly or
indirectly, are FP2 with a y periodicity of Ly/2 = 4, and FP3, FP4, FP5 and FP6 with
y-periodicity Ly = 8. This sets the stage for 1:2 mode interaction, as analysed in detail
by Armbruster, Guckenheimer & Holmes (1988), one of whose consequences is a robust
heteroclinic cycle to be discussed in § 4.2.3.

3.3. Two simultaneous bifurcations
The two enlarged bifurcation diagrams on the right of figure 2(a) depict bifurcations
at which two qualitatively different branches with different symmetries are created
simultaneously. Fixed points FP3 and FP5 bifurcate simultaneously from FP2 at
Ra = 6058.5, and FP4 and FP5 bifurcate simultaneously from FP1 at Ra = 6131. These
simultaneous bifurcations can be explained by the same D4 scenario that is discussed in
detail in Zheng et al. (2024). We repeat here the normal form corresponding to bifurcation
in the presence of D4 symmetry:

ṗ = (μ − ap2 − bq2)p, (3.3a)

q̇ = (μ − bp2 − aq2)q. (3.3b)

The dynamical system (3.3) has the non-trivial solutions

p = ±
√

μ/a q = 0, (3.4a)

p = 0 q = ±
√

μ/a, (3.4b)

p = ±
√

μ/(a + b) q = ±
√

μ/(a + b), (3.4c)

p = ±
√

μ/(a + b) q = ∓
√

μ/(a + b), (3.4d)

i.e. two classes of solutions, (3.4a)–(3.4b), which we call here the diagonal solutions, and
(3.4c)–(3.4d), which we call here the rectangular solutions, for reasons which figure 4
makes clear. The diagonal solutions are related to one another by symmetry, as are the
rectangular ones, but the diagonal solutions are not related by symmetry to the rectangular
solutions.

We begin by explaining the simultaneous bifurcation from FP2. The symmetry group
D4 of FP2 is generated by the translation operator τ(Ly/4, −Lz/4) together with either of
the reflection operators, πy or πxz. Fixed point FP2 is invariant under any product of these
operations. In the model (3.3), FP2 corresponds to the trivial solution p = q = 0 from
which the other solutions bifurcate.

When FP2 loses stability at Ra = 6058.5, a real eigenvalue λ1,2 crosses the imaginary
axis. This double eigenvalue has a 2-D eigenspace, spanned by any two of its linearly
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Figure 4. (a) Eigenvector e1 responsible for FP2 → FP3 bifurcation (obtained by subtracting FP2 at
Ra = 6058.5 from FP3 at Ra = 6056) and (b) its y-reflected version πye1. (c,d) Superpositions (e1 ±
πye1)/

√
2. (e) Eigenvector e2 responsible for FP2 → FP5 bifurcation (obtained by subtracting FP2 at Ra =

6058.5 from FP5 at Ra = 6056) and ( f ) its quarter-diagonal translation τ(Ly/4, −Lz/4)e2. (g,h) Superpositions
(e2 ± τ(Ly/4, −Lz/4)e2)/

√
2. All eigenvectors are visualised via the temperature field on the y–z plane at

x = 0. The same colour bar is used in all plots.

independent eigenvectors. Figure 4(a) shows the eigenvector e1 of FP2 giving rise to
state FP3 shown in figure 2(d), whereas figure 4(b) shows its y-reflection, πye1. Since
πy belongs to the symmetry group of FP2, πye1 is also an eigenvector of FP2, as is any
superposition of e1 and πye1. The diagonal solution (3.4a) represents FP3 which arises
from eigenvector e1. Solution (3.4b) represents FP3′ ≡ πyFP3, whose diagonal is reversed
and which arises from eigenvector πye1. The amplitudes of e1 and πye1 are represented in
the model (3.3) by variables p and q:

FP3 = FP2 + p(t)e1 + q(t)πye1. (3.5)

The eigenvector e2 of FP2 leading to state FP5 is shown in figure 4(e). Eigenvector e2
turns out to be identical to the equal superposition of e1 and πye1, as shown in figure 4(c).
This is a manifestation of the fact that, in the model (3.3), the rectangular solutions (3.4c)
and (3.4d) contain equal amplitudes of p and q. The shifted eigenvector τ(Ly/4, −Lz/4)e2
leads to FP5′ ≡ τ(Ly/4, −Lz/4)FP5; its superposition with e2 produces e1. Indeed, in
the model (3.3), equal superpositions of rectangular solutions of types (3.4c) and (3.4d)
produce the diagonal solutions of types (3.4a) and (3.4b). (Figures 4(d) and 4(h) are
also eigenvectors of FP2, identical to figures 4( f ) and 4(b), respectively.) In figure 4, the
eigenvectors have been approximated by subtracting FP2 from FP3 and from FP5 just
beyond the bifurcation point (Ra = 6058.5 for FP2 and Ra = 6056 for FP3 and FP5). This
selects the appropriate choices out of the multitude of eigenvectors of the highly symmetric
FP2.

Just as solutions (3.4c) and (3.4d) are not related to solutions (3.4a) or (3.4b) by any
symmetry operation, FP5 cannot be produced by a symmetry transformation from FP3.

1000 A29-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.840


Natural convection in a vertical channel. Part 2

In addition, figure 2(a) makes it clear that branches FP3 and FP5 behave differently, with
a different global temperature norm and different saddle-node bifurcations.

We turn now to the simultaneous bifurcations of FP4 and FP5 from FP1 at
Ra = 6131. The symmetries of FP1 are generated by reflection and translation in y
together with reflection in (x, z) and fourfold translation in z, i.e. [O(2)]y × [D4]xz. We
again compute the eigenvectors of FP1 responsible for these two bifurcations. Taking
symmetry transformations and superpositions, we obtain the eigenvector responsible for
FP5 (FP4) as the equal superposition of the eigenvector responsible for FP4 (FP5) with
a symmetry-transformed version of it. Interestingly, the eigenvectors responsible for the
simultaneous bifurcation from FP1 → (FP4, FP5) at Ra = 6131 are very similar to those
responsible for the simultaneous bifurcation from FP2 → (FP3, FP5) at Ra = 6058.5.
This can be explained as follows. The two simultaneous bifurcations occur at Rayleigh
numbers which are close to each other and to Ra = 6056, at which FP2 is formed via a
supercritical circle pitchfork bifurcation from FP1. Fixed point FP2 inherits the spectrum
of FP1, with the exception of the double eigenvalue responsible for the circle pitchfork.
(Just above Ra = 6056, this double eigenvalue becomes positive for FP1, whereas it splits
into a zero and negative eigenvalue for FP2.) The other eigenvectors and eigenvalues of
FP2 at Ra = 6058.5 are close to those of FP1 at Ra = 6131, including those shown in
figure 4 which cause the simultaneous bifurcations. We do not show the eigenvectors of
FP1 to avoid repetition.

It has been known since the mid-1980s (Swift 1985) that D4 symmetry leads to the
simultaneous creation of non-symmetry-related branches. This has been applied to a
number of situations, such as the simultaneous creation of standing and traveling waves
(Knobloch 1986; Borońska & Tuckerman 2006; Reetz et al. 2020). The application most
relevant here is that of counter-rotating Taylor–Couette flow, in which spirals were first
described in the classic paper by Taylor (1923). The superposition of spirals of opposite
helicity leads to a state called ribbons, much as the superposition of diagonal states
produces the rectangular states in the current study. Exceptionally, ribbons were first
predicted mathematically (Demay & Iooss 1984; Chossat & Iooss 1994), setting off a
quest to observe them experimentally, which was finally achieved by Tagg et al. (1989).

4. Periodic orbits

In this section, we explore four periodic orbits, PO1–PO4. Periodic orbits PO1–PO3 are
created by a sequence of local bifurcations (i.e. bifurcations associated with a change in the
real part of one or more eigenvalues/Floquet exponents): FP3 → PO1 → PO2 → PO3.
PO1 and PO2 disappear in a global homoclinic and heteroclinic bifurcation, respectively,
whereas the termination of PO3 is not discussed in this work. Periodic orbit PO4 bifurcates
from and terminates on FP6 via Hopf bifurcations. The bifurcation diagram of figure 5(a)
shows the six equilibria discussed in § 3 and the four periodic orbits to be discussed,
whereas the periods of the limit cycles are shown in figure 5(b).

4.1. First periodic orbit (PO1)

4.1.1. Creation of PO1: Hopf bifurcation
Produced by a subcritical pitchfork bifurcation from FP2, FP3 is unstable at onset, but
is stabilised by a saddle-node bifurcation at Ra = 6008.5 and then loses stability again
at Ra = 6140 via a supercritical Hopf bifurcation that produces a periodic orbit PO1.
PO1 inherits all of the spatial symmetries of FP3: 〈πyπxz, τ (Ly/4, −Lz/4)〉 ∼ D4 and,
hence, no additional spatiotemporal symmetries are present. The S-shaped green curve in
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Figure 5. (a) Bifurcation diagram of fixed points (FPs) and periodic orbits (POs) and (b) periods of four
periodic orbits in domain [Lx, Ly, Lz] = [1, 8, 9]. In (a), for each periodic orbit, we show two curves, the
maximum and minimum of ||θ ||2 along an orbit. Periodic orbit PO1 appears via a Hopf bifurcation from FP3
at Ra = 6140 (marked by a cyan cross) and undergoes a period-doubling bifurcation at Ra = 6154.7 giving
rise to PO2. Periodic orbit PO1 then undergoes a saddle-node bifurcation at Ra = 6157.97 and disappears by
meeting FP4 in a homoclinic bifurcation at Rahom = 6151.97 at which its period diverges; see (b). Periodic
orbit PO2 loses stability at Ra = 6173.8 where PO3 is created via a supercritical pitchfork bifurcation. The
stability of PO2 changes multiple times along the branch for 6235 < Ra < 6255, see details in figure 12.
Periodic orbit PO2 then undergoes two closely spaced saddle-node bifurcations (at Ra = 6276 and 6273.6;
see panel b) before terminating by meeting two symmetrically related versions of FP2 in a heteroclinic
bifurcation at Rahet = 6277.95, at which its period diverges. Periodic orbit PO3 is continued until Ra = 6407.3
(the range 6340 < Ra < 6407.3 is not shown) and its period remains approximately constant. The apparent
lack of smoothness in the curves representing PO2 and PO3 (in panel a around Ra = 6250) corresponds
to the overtaking of one temporal maximum or minimum of ||θ ||2 by another as Ra is varied. Periodic
orbit PO4 bifurcates from and terminates on FP6 at Ra = 6257.6 and Ra = 6328.8, and it is stable within
6257.6 < Ra < 6278. In (a), solid and dashed curves signify stable and unstable states respectively, and the
curves representing periodic orbits are slightly thicker than those of fixed points. The same colour code is used
in (a,b). A schematic bifurcation diagram is shown in figure 15. Many other branches of equilibria and periodic
orbits exist, which we have not followed nor shown on this diagram.

figure 5(a) contains the maximum (PO1max, above the cyan curve of FP3) and minimum
(PO1min, below the cyan curve) values of ||θ ||2 over the period of each PO1 state.
The period (T) of PO1 increases smoothly before the saddle-node bifurcation at Ra =
6157.97. Prior to this, PO1 loses stability by undergoing a period-doubling bifurcation at
Ra = 6154.7 to PO2, which is discussed in § 4.2.1. The saddle-node bifurcation can be
seen in both the maximum and minimum dashed green curves of figure 5(a) and leads to
what we call the lower branch (because of its lower value of ||θ ||2).

By using the multi-shooting method with two to five shots, we have been able to continue
the lower PO1 branch down in Rayleigh number to Ra = 6152.2041, where the period of
PO1 is very long: T = 955.4 time units. We will show in § 4.1.2 that PO1 disappears via a
homoclinic bifurcation, at which its period is infinite. Figures 6(a)–6(d) show snapshots of
PO1 at Ra = 6152.249, on the lower branch. Among these snapshots, figures 6(a) and 6(b)
capture the thinning and thickening of the rolls along the diagonal, with local waviness
along the edge of the rolls. The waviness becomes weaker in figure 6(c) and finally, in
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Figure 6. (a–d) The dynamics of PO1 (visualised via the temperature field on the y–z plane at x = 0) on the
unstable lower branch at Ra = 6152.249 (Rahom = 6151.97). Snapshot (d) converges to FP4 when used as an
initial estimate for Newton solving. (e) Time series from DNS at Ra = 6152.249 (T = 900), initialised by the
unstable PO1 shown in (a) (red curve) and by FP4 with a small perturbation (black). The trajectory initialised
by the unstable PO1 spends a long time near FP4 (250 < t < 800). Both simulations converge to the stable PO1
branch (t > 2500) at this Rayleigh number. ( f ) Phase portrait illustrating the same data set as in (e). The plot
shows the thermal energy input (I) vs the viscous dissipation over energy input (D/I). Fixed point FP4 (hollow
blue circle) is located on the vertical line D/I = 1, where energy dissipation and input are equal. The four red
stars in (e, f ) indicate the moments at which the snapshots (a–d) are taken. The same colour code is used in
(e, f ).

figure 6(d) the edges are smoother and the roll widths almost uniform. All of the states
in the cycle have a definite diagonal orientation. This implies that there exists another
version of PO1 with the opposite diagonal orientation. The times at which these snapshots
are taken are marked by stars in figures 6(e) and 6( f ).

Figure 6(e) shows time series initialised with this unstable PO1 and also with a slightly
perturbed FP4, at Ra = 6152.249. Both of these runs eventually converge to another state:
the stable upper branch of PO1, whose period T = 161 is much shorter than the period
T = 900 of the lower branch PO1. For t < 1000, the red curve remains close to FP4 during
a large portion of the period. Figure 6(d) corresponds to the fourth star of 6(e), indicating
via this projection that 6(d) is long-lived and very close to FP4. Indeed, we used figure 6(d)
as the initial estimate for Newton’s method to converge to FP4 at Ra = 6152.249. However,
figure 6(c), which only shows a transient at Ra = 6152.249, resembles figure 2(e), which
shows the converged FP4 at Ra = 6281. We see from this that the diagonal orientation
of FP4 becomes more prominent at higher Rayleigh numbers. Figure 6( f ) shows a phase
portrait from the same simulation as 6(e), using the thermal energy input I and viscous
dissipation D. There, FP4 is indicated as the hollow blue circle with D/I = 1, showing that
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Figure 7. (a) Leading eigenvalues at Ra = 6152.249 of FP4: [λ1, λ2, λ3, λ4, λ5, λ6, λ7] = [0.0212, 0.0208,

0.0026, 0, 0, −0.00017, −0.0034]. Eigenvalues λ2 (escaping, red), λ4,5 (neutral, green) and λ7 (approaching,
blue) are marked in colour. (b) The L2-distance between each instantaneous flow field of PO1 and FP4 at
Ra = 6152.249, close to Rahom = 6151.97. The evolution of PO1 (black curve) is exponential most of the time,
with the escape from (red line) and approach to (blue line) FP4 governed by λ2 and λ7. (c–f ) Four leading
eigenmodes of FP4 at Ra = 6152.249, visualised via the temperature field on the y–z plane at x = 0: e2, e4, e5
and e7. The same colour bar is used in all plots.

energy dissipation and input are equal. Near FP4, the dotted red curve looks continuous;
this is due to the clustering of points near FP4.

4.1.2. Termination of PO1: homoclinic bifurcation
The close approach to FP4 implies that PO1 is close to a homoclinic cycle. We
have verified that this closest approach is always to the same version of FP4 and
not to another symmetry-related version. Thus, PO1 approaches a homoclinic, and not
a heteroclinic cycle. A homoclinic cycle approaches a fixed point along one of its
stable directions and escapes from it along one of its unstable directions. For this
reason, we compute the eigenvalues and eigenvectors of FP4. Figure 7(a) shows the
leading eigenvalues that we have computed at Ra = 6152.249, close to the global
bifurcation point. The seven leading eigenvalues, all real, are [λ1, λ2, λ3, λ4, λ5, λ6, λ7] =
[0.0212, 0.0208, 0.0026, 0, 0, −0.00017, −0.0034]. We have set any eigenvalue whose
absolute value is less than 10−7 to zero. Figure 7(a) shows other eigenvalues with smaller
real parts as well and some of the eigenvalues are too close together to be distinguished.
Certain eigenvalues of special significance are highlighted by coloured circles and their
corresponding eigenvectors are shown in figures 7(c)–7( f ).

1000 A29-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.840


Natural convection in a vertical channel. Part 2

The eigenvectors can be interpreted by considering FP4 and PO1, as depicted in
figures 6(a)–6(d). There are two neutral directions, due to the continuous translation
symmetry in the periodic directions. Eigenvalue λ4 is zero and the corresponding
eigenvector e4, depicted in figure 7(d), is the neutral mode associated with z-translation
(i.e. the z derivative) of the roll-like FP4, very close to a z-translated version of figure 6(d).
There must also be a marginal eigenvector corresponding to y-translation and indeed,
λ5 = 0 and we have verified numerically that e5, depicted in figure 7(e), is the y derivative
of FP4. This is not immediately obvious, but note that for z constant, the y derivative of
FP4 oscillates in sign and its maxima and minima are located along a diagonal. The green
circle in figure 7(a) contains λ4 and λ5 (but also λ6, whose decay rate is very small).

The other two eigenvectors shown in figures 7(c) and 7( f ) are responsible for the
approach to and escape from FP4. We have determined which eigenvalues are associated
with approach and escape by comparing them with the observed approach and escape
rates, and also by subtracting FP4 from the instantaneous flow fields and comparing
the result to the eigenvectors. For the escaping dynamics of PO1 from FP4, the
quantity (||x(t) − FP4||2) increases exponentially at rate λ2 = 0.0208. The corresponding
eigenvector e2 is shown in figure 7(c) and can be viewed as corresponding to widening
and narrowing of the rolls. The approaching dynamics is characterised by λ7 = −0.0034.
The corresponding eigenvector e7, shown in figure 7( f ), can be viewed as corresponding
to translation in y. The portion of PO1 escaping FP4 along e2 has been fit to the red line
in figure 7(b). Although the rate of escape matches λ2 closely, the approach rate only fits
λ7 over a short range of time (blue line). In figure 7(a), the red circle contains λ2 (but also
λ1, which is very close to λ2), and the blue circle encloses λ7.

The eigendirection e7 along which PO1 approaches FP4 is not the leading stable (least
negative) one, as would be usual for a homoclinic orbit. This is because PO1 exists in
the invariant symmetry-restricted subspace 〈τ(Ly/4, −Lz/4)〉, to which e7 also belongs.
In contrast, e6 (not shown), whose eigenvalue λ6 is slightly less negative, has the opposite
symmetry 〈τ(Ly/4, Lz/4)〉. Note also that near-homoclinic orbits for which the rate of
escape exceeds the rate of approach (i.e. here |λ2| > |λ7|) are unstable, as is already seen
in the time series in figure 6(e). However, because our periodic orbits are computed using
Newton’s method and not time integration, we can calculate this periodic orbit despite its
instability.

In addition, a homoclinic orbit bifurcating from a hyperbolic fixed point (which is
the case for FP4) is structurally unstable, i.e. it exists for a single parameter value; see
Kuznetsov (2004, Lemma 6.1) for a proof. Strictly speaking, FP4 is a relative hyperbolic
fixed point, since it has zero eigenvalues along the directions of its continuous translation
symmetries in y and z, but the result applies to the evolution normal to these directions,
i.e. with y and z phases fixed (Krupa & Melbourne 1995). Thus, the homoclinic cycle on
which PO1 terminates is neither stable nor robust.

The closeness of some of the eigenvalues in figure 7(a) can be explained by the fact
that the y dependence of FP4 is extremely weak. If FP4 were entirely y-independent, like
FP1, then eigenvectors would come in pairs, corresponding to a trigonometric dependence
(analogous to sine and cosine eigenmodes) in y with different phases, or to the choice of
diagonal direction. Since the dependence in y is weak, this is still approximately true in
many cases. Eigenvalue λ1 = 0.0212 is very close to λ2 = 0.0208 and indeed eigenvector
e1 (not shown) resembles a y-shifted version of e2. The near-neutral eigenvalues
λ3 = 0.0026 and λ6 = −0.00017 correspond to eigenvectors e3 and e6 (not shown),
which resemble e5 and e7 but oriented in the opposite diagonal direction or, equivalently,
reflected.
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Figure 8. Growth of the period of PO1 close to the global bifurcation point. PO1 undergoes a saddle-node
bifurcation at Ra = 6157.97 where the lower branch appears. (a) The periods computed by numerical
continuation and its logarithmic fit (see the text). (b) Here a logarithmic scale is used for Ra − Rahom, on
which the period depends linearly. The red horizontal bar in (a,b) indicates the Rayleigh number range
6152.2 < Ra < 6152.45 used for curve fitting.

As Ra approaches Rahom, PO1 approaches FP4 and the time spent near FP4 increases,
until PO1 touches FP4 and acquires an infinite period in a homoclinic bifurcation. The
period of PO1 is dominated by the time of approach to FP4, as shown in figure 7(b). This
time can be estimated by the formula

T ≈ − 1
|λ−| ln |Ra − Rahom| + cT , (4.1)

where λ− = λ7 = −0.0034 is the rate of exponential approach to FP4, Rahom = 6151.97
and cT = 533 is a fitting constant. This asymptotic scaling law for T as a function of Ra
was first derived in Gaspard (1990) and later used by various researchers including Meca
et al. (2004), Reetz et al. (2020) and Liu et al. (2024). As shown in figure 8, we have fit
the numerically computed periods of the states on the lower branch to this formula. Note
that only the Rayleigh number range 6152.2 < Ra < 6152.45 very close to Rahom has been
used for fitting and that we have extended the backwards continuation of PO1 to the lowest
Rayleigh number possible (Ra = 6152.2041) within our numerical precision and ability.

Gao et al. (2018) observed a periodic orbit produced by a Hopf bifurcation from a steady
state; these are the solutions that we have called PO1 and FP3. Our bifurcation analysis
agrees with their results. Extending their work, we have found that PO1 undergoes a
saddle-node bifurcation and then terminates in a homoclinic bifurcation by meeting a new
unstable fixed point, FP4.

4.2. Second periodic orbit (PO2)

4.2.1. Creation of PO2: period-doubling bifurcation and symmetry
Orbit PO2 bifurcates from PO1 in a period-doubling bifurcation at Ra = 6154.7. At this
value of Rayleigh number, its period (T = 341) is exactly twice that of PO1 (T = 170.5),
as shown in figure 5(b). We have confirmed the threshold in two additional ways: at Ra =
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Figure 9. (a–d) Snapshots of the dynamics of PO2 (visualised via the temperature field on the y–z plane at
x = 0) at Ra = 6277.88 near Rahet = 6277.95. Snapshots (b,d) show states which are close to two
symmetry-related versions of FP2 (figure 2c). (e) Time series from DNS at Ra = 6277.88, initialised by the
unstable PO2 shown in (a). The dynamics after t ≈ 1250 becomes irregular and eventually terminates in chaos.
( f ) Phase space projection close to the global bifurcation point: shown are the PO2 at Ra = 6277.88 and two
symmetry-related FP2 states involved in the heteroclinic cycle. In (e, f ), the four red stars indicate the moments
where the snapshots (a–d) are taken and the two purple crosses mark the instants t55 and t412. In ( f ), the red
arrows show the direction of the trajectory.

6154.7, the maxima and minima of ||θ ||2 of PO2 in the time series are extremely close in
amplitude and frequency to those of PO1; and the power spectrum contains a very small
component of the new frequency of PO2.

Orbit PO2 inherits all of the spatial symmetries of PO1: 〈πyπxz, τ (Ly/4, −Lz/4)〉 ∼ D4
and has, in addition, the spatiotemporal symmetry:

(u, v, w, θ)(x, y, z, t + T/2) = (u, v, w, θ)(x, y − Ly/4, z, t). (4.2)

Gao et al. (2018) presented visualisations of PO2 in their figure 20 at Ra = 6250 and noted
that it satisfied (4.2). Figures 9(a)–9(d) show four snapshots of the temperature field of
PO2 in which the spatiotemporal symmetry (4.2) of PO2 can clearly be seen. Figures 9(b)
and 9(d) are very similar to each other and to two symmetry-related versions of the
diamond-roll state, which we denote by FP2 and FP2′ ≡ τ(Ly/4 = 2, 0)FP2. Between
these instants, figures 9(a) and 9(c) show a wavy modulation of convection rolls along
one of the diagonals. Since FP2 is y-reflection symmetric, there necessarily exists another
version of PO2 in which the modulation occurs along the other diagonal.

4.2.2. Termination of PO2: heteroclinic bifurcation and eigendirections
Figure 5(b) shows that although the period of PO2 decreases significantly with increasing
Ra until Ra = 6204.8, it increases beyond that, eventually diverging. This implies
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that PO2 undergoes a global bifurcation. We have been able to continue PO2 until
(Ra, T) = (6277.88, 710.8) and we estimate the critical Rayleigh number for the global
bifurcation to be approximately Rahet = 6277.95.

The snapshots of figures 9(a)–9(d) are taken at Ra = 6277.88, very close to
Rahet = 6277.95. PO2’s alternating visits to FP2 and FP2′ indicate that PO2 ends at a
heteroclinic cycle between these two fixed points. In figure 9(e), we show a time series of
PO2 at Ra = 6277.88, indicating the instants at which snapshots in figures 9(a)–9(d) are
taken. It is clear that figures 9(b) and 9(d) belong to fairly long-lived plateaux. The global
measurement ||θ ||2 does not distinguish between FP2 and FP2′, so we have plotted a phase
portrait in figure 9( f ), which represents each instantaneous flow field by its distance from
each version of FP2. The phase portrait shows the clustering of points near FP2 and FP2′,
confirming that PO2 is close to a heteroclinic cycle connecting these states.

The phase portrait in figure 9( f ) also shows clustering of points around (0.1, 0.1),
corresponding to instants t38 and t394. This clustering suggests that the limit cycle might
be approaching other fixed points. However, the time series in figure 9(e) does not show
any other plateaux close to t38 and t394, and Newton’s method did not converge to any new
equilibria around the states from t28 to t55 and from t384 to t412. This remains true up to
the highest Rayleigh number (or, equivalently, the longest period) of PO2 reached by our
numerical continuation. We conclude that this heteroclinic cycle contains no other fixed
points.

The dynamics along which PO2 approaches and escapes from FP2 can be
described by eigenvalues and eigenvectors of FP2. Figure 10(a) shows the leading
eigenvalues of FP2 at Ra = 6277.88, computed by Arnoldi iteration, and which are
[λ1,2, λ3,4, λ5,6, λ7,8, λ9,10] = [0.031, 0, −0.00019, −0.00788, −0.0138]. We previously
saw that for FP4, the eigenvalues are approximately double (see figure 7a) due to the
approximate symmetries of FP4. Here, FP2 has exact reflection symmetries leading to
eigenvalues which are exactly double.

The two neutral eigenmodes due to the continuous translation symmetries are e3,
corresponding to the z derivative of FP2 and shown in figure 10(d) and e4, corresponding
to its y derivative and shown in figure 10(e). The green circle in figure 10(a) contains
λ3,4, but also λ5,6. Figure 10(c) shows the escaping eigenmode e1, which is responsible for
choosing the diagonal orientation of PO2. Looking at figures 9(a)–9(d), this is not obvious,
but we have verified that subtracting FP2 from instantaneous temperature fields in the
escaping phase of PO2 yields a field resembling e1. Moreover, eigenvalues λ1,2 = 0.031
capture well the escape rate from FP2, as shown in figure 10(b). Eigenmode e2, with the
same eigenvalue, is related to e1 by reflection symmetry, as shown in figures 4(a)–4(b)
for Ra = 6056. The direction in which PO2 approaches FP2 is e9, again confirmed by
subtracting FP2 from the appropriate flow field in PO2, and λ9,10 closely approximate
the decay rate to FP2 shown in figure 10(b). The direction in which PO2 approaches
the equilibrium is again not its leading stable eigendirection, and for the same reason
as for PO1: PO2 remains within the symmetry group 〈πyπxz, τ (Ly/4, −Lz/4)〉, to which
e9 belongs, but not eigenmodes e5,6 and e7,8 (not shown). Since |λ1,2| > |λ9,10|, the
heteroclinic cycle is unstable, which is confirmed by the chaotic behaviour in the time
series in figure 9(e) after t ≈ 1250.

For FP2, since the eigenvalues are double, the eigenspace corresponding to each is 2-D;
the eigenvectors that play the roles mentioned above (y-translation, z-translation, escape
and approach) must be selected as linear combinations of the two arbitrary eigenvectors
returned by the Arnoldi method. By differentiating FP2 in y and z and by subtracting FP2
from the instantaneous flow fields during approaching or escaping phases, we have been
able to choose the appropriate eigenvector in each case.
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Figure 10. (a) Leading eigenvalues of FP2 at Ra = 6277.88. The 10 leading eigenvalues are real and double:
[λ1,2, λ3,4, λ5,6, λ7,8, λ9,10] = [0.031, 0, −0.00019, −0.00788, −0.0138]. Eigenvalue λ1,2 (escaping, red), λ3,4
(neutral, green) and λ9,10 (approaching, blue) are marked in colour. (b) The L2-distance between each
instantaneous flow field of PO2 and FP2 (and FP2′) at Ra = 6277.88, close to Rahet. The dynamics of PO2
is exponential for most of the cycle (black and cyan curves). The approaching (blue line) and escaping (red
line) dynamics of PO2 with respect to FP2 are shown and are governed by two eigenvalues of FP2. (c–f ) Four
leading eigenmodes of FP2 at Ra = 6277.88, visualised via the temperature field on the y–z plane at x = 0: e1,
e3, e4 and e9. The same colour bar is used in all plots.

4.2.3. Robust heteroclinic cycle and 1:2 resonance
We now wish to show that the heteroclinic cycle that PO2 approaches is robust (also
called structurally stable), i.e. that it exists over a parameter range rather than only at
a single point. We have confirmed by numerical experiments that varying slightly the
Rayleigh number does not affect the two transitions, also called half-cycles, FP2 → FP2′
and FP2′ → FP2. More rigorously, we list here the three conditions (Krupa 1997) that
are required for a heteroclinic cycle between two fixed points, here FP2 and FP2′, to be
robust.

(i) There exist two invariant subspaces S and S′ such that FP2 is a saddle (sink) and
FP2′ is a sink (saddle) for the flow restricted to subspace S (S′).

(ii) There exist saddle-sink connections FP2 → FP2′ in S and FP2′ → FP2 in S′.
(iii) There exists a symmetry relation between the two fixed points.

Item (iii) is satisfied by definition: we have set FP2′ ≡ τ(Ly/4, 0)FP2. For items (i) and
(ii), we define S and S′ to be the fixed-point subspaces of two conjugate subgroups:

S ≡ Fix|〈πyπxzτ(Ly/2,0),τ (Ly/4,−Lz/4)〉,

S′ ≡ Fix|〈πyπxz,τ (Ly/4,−Lz/4)〉.

}
(4.3)
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Figure 11. (a,c) Fixed points FP2 and FP2′ ≡ τ(2, 0)FP2 at Ra = 6277.8. (b,d) Unstable eigenmodes: e1 of
FP2 and e′

1 ≡ τ(2, 0)e1 of FP2′. The wavenumbers of the equilibria and unstable eigenmodes in the y direction
suggest a 1 : 2 mode interaction. All snapshots are visualised via the temperature field on the y–z plane at x = 0.

We note that e1, depicted in figure 11(b), is an unstable eigenvector of both FP2 and
FP2′ and belongs to subspace S but not to S′. We define e′

1 ≡ τ(Ly/4, 0)e1, shown in
figure 11(d), which is also an unstable eigenvector of FP2 and FP2′, and which belongs to
subspace S′ but not to S. The L2-inner product of these two eigenmodes 〈e1, e′

1〉 is zero,
and so they are orthogonal.

We have carried out simulations within subspaces S and S′ by numerically imposing the
corresponding symmetries. When we restrict the simulation to S, the unstable eigenmode
e′

1 is disallowed and escape from FP2 (a saddle in subspace S) must take place along e1.
This trajectory lands on FP2′, which is linearly stable (a sink in subspace S). Changing
the imposed subspace from S to S′, eigenvector e1 is disallowed and escape from FP2′
(a saddle in subspace S′) occurs along e′

1. This trajectory lands on the stable equilibrium
FP2, which is a sink in subspace S′. Similar arguments apply to the approaches to FP2′
and FP2 via eigenvectors e′

9 and e9, shown in figure 10( f ), respectively. Thus, we have
demonstrated items (i) and (ii), proving that the heteroclinic cycle is robust. These three
conditions are also discussed in Reetz & Schneider (2020), together with an example of a
robust heteroclinic cycle between two symmetrically related oblique-wavy-roll equilibrium
states found in inclined layer convection system.

In addition to demonstrating that the heteroclinic cycle that emerges from PO2 and
FP2 is robust, we discuss its origin. We first address why FP2 has unstable and stable
eigenvectors of the form e1 and e9. We recall that FP1 is homogeneous in y, FP2 has a y
periodicity of Ly/2 = 4, and FP3, FP4 and FP5 have y-periodicity Ly = 8. When FP2 is
created, it inherits the eigenvectors of FP1, including those which lead from FP1 to FP4 and
FP5 (with y-periodicity Ly = 8). The existence of such eigenvectors for FP2 is confirmed
by the bifurcations from it to FP3 and FP5, which also have y-periodicity Ly = 8; see, for
example, figure 4. Because these Ly-periodic eigenvectors are all associated with nearby
bifurcations, their corresponding eigenvalues are necessarily among the leading ones of
FP2 in this range of Ra. This is the scenario of 1:2 resonance, the normal form of which
was derived by Armbruster et al. (1988):

ż1 = z1z2 + z1

(
μ1 + e11|z1|2 + e12|z2|2

)
,

ż2 = ±z2
1 + z2

(
μ2 + e21|z1|2 + e22|z2|2

)
,

⎫⎪⎬
⎪⎭ (4.4)

where z1 and z2 are complex amplitudes of modes with wavenumbers 1 and 2, μ1, μ2
are control parameters and e11, e12, e21, e22 are nonlinear coefficients. These authors have
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demonstrated that (4.4) has a solution which is a heteroclinic orbit over a finite range
of parameter values. Heteroclinic orbits of this type have been observed in full fluid
dynamical configurations by, e.g., Mercader, Prat & Knobloch (2002), Nore et al. (2003),
Bengana & Tuckerman (2019) and Reetz & Schneider (2020).

We now recall from § 3.3 that, in addition to the diagonally oriented eigenmode e1
and its translation- and reflection-related versions, FP2 also has eigenmodes of type
e2 ≡ (e1 + πye1)/

√
2, shown in figures 4(c)–4( f ), which have a reflection symmetry in

y and which we have called rectangular. The diagonal eigenvector e1 is responsible for the
bifurcation to FP3, whereas the rectangular eigenvector e2 is responsible for the bifurcation
to FP5. Perturbing FP2 along e2 can lead to a rectangular periodic orbit that retains
y-reflection symmetry, which is currently under investigation.

4.2.4. Stability of PO2
The PO2 is stable over a short interval: from its onset at Ra = 6154.7 until Ra = 6173.8,
where it becomes unstable via a pitchfork bifurcation giving rise to another periodic orbit
PO3, to be discussed next in § 4.3. Just before the global bifurcation at Ra = 6277.95,
PO2 undergoes two saddle-node bifurcations at Ra = 6276 and then at Ra = 6273.6; these
bifurcations do not restabilise PO2. However, Gao et al. (2018) observed PO2 at Ra =
6250 via DNS, implying that PO2 should be stable at that Rayleigh number. In order to
understand this, we computed the leading Floquet exponent of PO2 over a range of Ra
surrounding 6250.

The intriguing evolution of the stability of PO2 is presented in figure 12. The leading
Floquet exponent λ1 is real from Ra = 6173.8 to Ra = 6237.6: it increases monotonically
from Ra = 6173.8 to Ra = 6225 (not shown), and then decreases monotonically to zero
over the interval 6226 < Ra < 6237.6. The leading real exponent is then superseded by a
complex conjugate pair λ1,2 whose real part, initially negative, becomes positive over the
interval 6239 < Ra < 6246.32. At Ra ≈ 6246.5, the leading exponent λ1 becomes real
and negative, so that there is a small interval 6246.5 < Ra < 6252 over which PO2 is
stable. It is within this very short interval that PO2 was observed by Gao et al. (2018). In a
further effort to understand the stabilisation and subsequent destabilisation of PO2 in this
region, we computed the Floquet eigenmode to the left (figure 12b) and right (figure 12c)
of the stable region, but we were unsuccessful in gleaning any physical insight from these.
(There necessarily exist new branches bifurcating at the values at which λ1 or the real part
of λ1,2 cross zero, but finding and following these new branches are beyond the scope of
the current work.)

4.3. Third periodic orbit (PO3): pitchfork bifurcation
As mentioned in § 4.2.4, PO2 loses stability at Ra = 6173.8 via a supercritical pitchfork
bifurcation which creates PO3. The visual features of PO3 resemble those of PO2
near onset, but become much less regular at higher Rayleigh numbers, for instance
at Ra = 6407.3, depicted in figures 13(a) and 13(d). The PO3 has spatial symmetries
〈τ(Ly/2, −Lz/2)〉 ∼ Z2, and the spatiotemporal symmetry (4.2) inherited from PO2. This
spatiotemporal symmetry can be seen by comparing figures 13(b) and 13(c), for instance;
the direction of drift for PO3 is from left to right. Periodic orbit PO3 loses stability at
Ra = 6183. The bifurcating Floquet exponent is real, suggesting a pitchfork bifurcation
leading to the creation of a pair of symmetry-related periodic orbits. However, we did not
find any stable periodic orbit via DNS in the vicinity of Ra = 6183, implying that such a
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Figure 12. (a) The real part of the leading Floquet exponents of PO2 as a function of Rayleigh number. From
low to high Rayleigh number, the leading Floquet exponent decreases monotonically within 6226 < Ra <

6238.75. At Ra = 6238.75, one sees the formation of a complex conjugate pair which has a positive real
part for 6239 < Ra < 6246.32. For 6246.5 < Ra < 6252, PO2 is stable, with stability lost for Ra > 6252.
The apparent non-smoothness of the curve at (Ra, λ1) ≈ (6238.7, −0.00047) and (6250, −0.002) is due to
the crossover of competing leading Floquet exponents. The two blue circles indicate where (b,c) are taken.
(b,c) Two leading unstable Floquet eigenmodes for (b) 6226 < Ra < 6237.6 and (c) Ra > 6252, visualised via
the temperature field on the y–z plane at x = 0. The same colour bar is used in (b,c).

bifurcation would be subcritical. Because PO3 is only stable for 6173.8 � Ra � 6183, it is
not surprising that it was not observed by Gao et al. (2018).

We continued PO3 until Ra = 6407.3, considerably into the chaotic regime
(Ra > 6300) mentioned by Gao et al. (2018). (The range 6340 < Ra < 6407.3 is not
included in figure 5.) Parametric continuation of PO3 for Ra > 6350 was computationally
challenging, probably due to the fact that the orbit is very unstable in this Rayleigh number
range; see the discussion of the numerical convergence of the iterative Newton algorithm
in Sánchez et al. (2004) and Reetz et al. (2020). The spectrum of PO3 at Ra = 6407.3
has more than 50 unstable eigendirections with a wide range of frequencies, as illustrated
in figure 13(e). Moreover, integrating the converged PO3 forward in time at Ra = 6407.3,
the transition from a periodic to chaotic state is triggered after fewer than two periods
of the orbit; see figure 13( f ). Consequently, we stopped the forward Rayleigh number
continuation at Ra = 6407.3 and do not discuss how PO3 terminates.

4.4. Fourth periodic orbit (PO4): Hopf bifurcations
A new periodic orbit PO4 begins and ends on the lower branch of FP6 via two Hopf
bifurcations at Ra = 6257.6 and Ra = 6328.8, respectively. As might be expected and as
shown in figure 14, PO4 is an oscillating version of FP6. Since PO4 preserves the two
reflection symmetries of FP6 〈πy, πxzτ(Ly/2, 0)〉, PO4 has no additional spatiotemporal
symmetries. The Hopf bifurcation terminating PO4 occurs very slightly before the
saddle-node bifurcation that terminates FP6 at Ra = 6329. The PO4 originates from FP6
within the short range over which FP6 is stable, and at Ra = 6278, PO4 is destabilised by
a secondary Hopf bifurcation. Thus, PO4 is stable for 6257.6 < Ra < 6278, as shown in
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Figure 13. (a–d) Snapshots of the dynamics of PO3 (visualised via the temperature field on the y–z plane at
x = 0) at Ra = 6407.3 showing turbulent and disordered switching rolls. (e) Floquet exponent spectrum of
PO3 at Ra = 6407.3 showing its 51 unstable Floquet exponents. ( f ) Time series from DNS at Ra = 6407.3,
initialised by the converged unstable PO3. The temporal transition from a periodic to chaotic signal occurs at
t ≈ 400. The red stars indicate the moments at which the snapshots (a–d) are taken.
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Figure 14. (a) Time series from DNS of PO4 at Ra = 6300 (T = 255.7). The red stars indicate the moments
at which the snapshots (b,c) are taken. (b,c) Visualisations of PO4 at Ra = 6300, via the temperature field on
the y–z plane at x = 0.

figure 5(a) and in the schematic figure 15. Its period increases smoothly and monotonically
throughout its range of existence, shown in figure 5(b).

Based on the bifurcation diagram in figure 5(a), the family of branches FP5, FP6 and
PO4, are unusual in leaving no trace of their existence beyond the disappearance of FP6
at Ra = 6329. Two FP5 branches join and terminate at Ra = 6317.5; two FP6 branches,
themselves created from FP5, annihilate at Ra = 6329; PO4, created from FP6, disappears
at Ra = 6328.8. When we add to this the disappearances of periodic orbits (PO1 and PO2)
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Figure 15. Schematic bifurcation diagram summarising the origin and stability of all of the fixed points (FPs)
and periodic orbits (POs) that we identified in the computational domain [Lx, Ly, Lz] = [1, 8, 9]. PF, SN, PD, H,
Het and Hom are abbreviations for pitchfork, saddle-node, period-doubling, Hopf, heteroclinic and homoclinic
bifurcations. The dotted vertical lines together with the solid red lines and numbers mark the Rayleigh numbers
at which bifurcations occur. Solid and dashed horizontal lines signify stable and unstable states, respectively.

via global bifurcations, we see that of the six fixed points and four periodic orbits that arise
from the bifurcation of 2-D rolls at Ra = 5707, only four fixed points and one periodic
orbit survive past Ra = 6329. Clever & Busse (1995) commented about simplification
in another phenomenon (drifting waves) that they observed in vertical convection: ‘Of
course, this is not a physically realistic scenario since there are other bifurcation points on
the branch of the steady solutions . . . But the return from a complex structure to a more
simple one with increasing control parameter is a possibility that cannot be excluded a
priori’.

5. Discussion, conclusions and outlook

We have numerically investigated vertical thermal convection in the domain [Lx, Ly, Lz] =
[1, 8, 9], the configuration studied by Gao et al. (2018), for Rayleigh number up to
Ra ≈ 6400. In this Rayleigh number range, the system exhibits various spatiotemporally
organised flow patterns and weak turbulence. Using the computational power of
parallelised numerical continuation based on matrix-free Newton methods, we have
computed invariant solutions, more specifically fixed points, periodic orbits, and
homoclinic and heteroclinic orbits.

We have situated all known solutions in the context of a bifurcation diagram. The
diagrams shown in figures 2 and 5 are presented in schematic form in figure 15. This
diagram contains the names of the states and the bifurcations between them, along with
their precise thresholds, and emphasises the complexity of the bifurcation scenario. As was
the case for Zheng et al. (2024), all of the solution branches that we have found here are
connected directly or indirectly to the laminar branch. This is not always so: our ongoing
investigation has revealed branches which arise via saddle-node bifurcations and seem to
be unconnected to the laminar state; see also figure 3 of Reetz et al. (2020).
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Compared with the narrow domain [1, 1, 10] presented in Zheng et al. (2024),
the critical Rayleigh number for the primary instability of four spanwise-independent
co-rotating rolls (called FP1 in both papers) in the spanwise-extended domain is only
slightly lower. This is due to the slight reduction in the vertical length from Lz = 10
to Lz = 9 or, equivalently, from λ = 2.5 to λ = 2.25 in the primary roll wavelength.
However, secondary and tertiary branches exist at much lower Rayleigh numbers for the
[1, 8, 9] domain than for the [1, 1, 10] domain, since the larger domain accommodates a
wider variety of spanwise-varying patterns.

We observe complicated bifurcation scenarios involving both spatial and temporal
aspects. Spatially, parametric continuation reveals two types of branches. One set of
branches consists of states which are aligned with the periodic directions y and z: FP1
(2-D rolls), FP2 (diamond rolls), FP5 (moustache rolls) and the closely related FP6. The
other set of branches consists of states which are oriented diagonally: FP3 (thinning rolls)
or the similar FP4. We observed two instances of simultaneous bifurcation to branches
of states with different symmetries. We were able to explain this otherwise non-generic
phenomenon as the breaking of D4 symmetry of the parent branches FP1 and FP2.
(In this highly symmetric geometry, D4 symmetry is a subgroup of the full symmetry
groups of FP1 and FP2.) We confirmed this by computing and comparing the eigenvectors
responsible for the simultaneous bifurcations.

Temporally, by following certain periodic orbit branches, PO1 and PO2, far from
their onset via Hopf and period-doubling bifurcations, we have identified homoclinic
and heteroclinic bifurcations that terminate these periodic-orbit branches. The fixed
points at which these orbits spend an increasingly long time are aligned with the y
and z axes (FP2), or nearly so (FP4), whereas the excursions are to diagonal states.
Thus, these periodic orbits and global bifurcations can also be seen as a manifestation
of competition between aligned and diagonal states. Although this is well understood
from a mathematical group-theoretic viewpoint, there may exist some physical or
phenomenological interpretation of when and why aligned or diagonal states are favoured.
Another type of competition that we observe is between wavelengths: the heteroclinic
orbit from FP2 can be interpreted as resulting from competition or interaction between
states with wavenumbers 1 (y wavelength Ly) and 2 (y wavelength Ly/2). Indeed, the 1:2
mode interaction is a classic scenario leading to a robust heteroclinic orbit (Armbruster
et al. 1988; Mercader et al. 2002; Nore et al. 2003; Bengana & Tuckerman 2019; Reetz &
Schneider 2020).

The highest Rayleigh number that we have studied is Ra = 6407, 12.3 % above the onset
of convection (FP1 at Ra = 5707). Even in this relatively small range of Ra, we have found
a large variety of branches and bifurcation scenarios and there are certainly more to be
discovered and analysed. In particular, primary bifurcations from the base state can lead to
secondary states containing spanwise-independent (or 2-D) co-rotating rolls of many other
wavelengths (all unstable at onset). These 2-D rolls can also undergo secondary, tertiary
and global bifurcations. The increasing number of branches with Rayleigh or Reynolds
number is a general feature of the Navier–Stokes and Boussinesq equations. However,
branches can also disappear by the same types of local bifurcations that create them,
and periodic orbits can be destroyed by global bifurcations, both of which occur in our
configuration.

It has been conjectured that trajectories in chaotic and turbulent flows spend a substantial
amount of time visiting unstable periodic orbits that are linked via their stable and
unstable manifolds (Cvitanović & Eckhardt 1991; Kawahara & Kida 2001; Suri et al.
2020; Crowley et al. 2022). Computing unstable periodic orbits and understanding the
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bifurcations which produce and link them are thus relevant to better understanding and
statistical measures of turbulent flows (Clever & Busse 1995; Graham & Floryan 2021).
In particular, reconstructing turbulence statistics using periodic orbits was explored by
Chandler & Kerswell (2013), using around 50 periodic orbits embedded in turbulent 2-D
Kolmogorov flow; see also Cvitanović (2013). Extending this approach to 3-D turbulent
thermal convection is one of the objectives of our future research.
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