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Generalized symmetry

J.B. Wilker

Let X be a set and G a group which acts on X and is

generated by two elements a and b . Motivated by a geometric

problem of L. Fejes Toth, we define a subset S c X to have

[a, &]-symmetry if its images under a and b satisfy

S^ T\ F = S . The problem of finding all sets with [a, b]-

symmetry when an arbitrary 2-generator group G acts on an

arbitrary space X is shown to be equivalent to the same problem

in the special case when the 2-generator free group acts on

itself by right translation. This action is modelled in the

hyperbolic plane in a way that helps to reveal the [a, b]-

symmetric subsets of the free group.

1. The concept of generalized symmetry

Let X be a set and G a group acting on X . Let f, g, h be

elements of G and S a subset of X . We say that S has generalized

symmetry of the first type if S? n S& = S1 and S has generalized

symmetry of the second type if Sr u £r = •!> . Here S* denotes the image

of S under the permutation of X which corresponds to f .

The term generalized symmetry is appropriate because if g = h = e ,

the identity, the first equation becomes

S? n S = S or S? => S

and the second equation becomes

/ u S = S or S? c S .
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374 J .B . Wi Iker

Taken together, these imply that S" = S or that f is an ordinary

symmetry of S .

Our two types of generalized symmetry are closely related. By taking

complements through the equations which define them and making use of the

fact that [&) ' = (S')f and so on, we see that S? n S9 = 5^ implies

(S'r u (.S')& = {S')n and vice versa. Since a set has one type of

generalized symmetry precisely when its complement has the other, we

restrict attention to the first type of generalized symmetry. One might

object that this precludes consideration of sets with both types of

generalized symmetry. In point of fact, nothing new is lost by this

restriction because a doubly symmetric set S must satisfy S^ = S9 = £>

and this indicates that f, g , and h are ordinary symmetries of S or

ordinary symmetries followed by a common mapping.

An arbitrary element k € G can be applied to both sides of the

equation S? n S9 = S1 to yield the equivalent equation S^ n S 3 = S1 .

Our condition for generalized symmetry is therefore homogeneous and can be

brought to canonical form by taking k to be f~ , g~ , or h~ . We

adopt the canonical form with k = h so that the defining equation reads

£> n £i = S with a = fh and b = gh playing equivalent roles. When

this equation holds we say that S has [a, b]-symmetry and we write

S € [a, b] .

There are two different problems associated with generalized symmetry.

In the first we are given a and b € G and we seek the most general

S c X such that S € [a, b] . In the second, we are given S c X and we

seek the most general a and b £ G such that 5 € [a, b] . This paper

treats only the first problem. Because of this, there is no point in

taking G to be any larger than the group generated by a and b . In

what follows, we assume G - (a, b) .

2. Motivation

The motivation for these considerations is a question put to me by L.

Fejes Toth. In his question, X is euclidean n-space, g = T is a

translation, h = K is a dilatation, and we are asked to find the most
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general set S which satisfies S n & = s . in order to mention a few

examples, we allow a taste of the second problem to flavour our discussion.

If S is a simplex and T is any translation such that S n f> has

non-void interior, then there is a K such that S n £,=£;. In fact

this property can be used to characterize the simplex (see [2], [5], and

references cited there). If S is a hypercube and T is translation part

of the way along a body diagonal then there is a K such that

S n £> = D . The first indication that much more pathological sets can

also possess this kind of symmetry is the observation that if S is the

usual Cantor set on the real line, T is translation by 2/3 in either

direction and K is the appropriate dilatation with scale factor 1/3 ,

then 5 n S 7 = £^ .

In [5] there is a fairly complete discussion of the problem of Fejes

Toth. In that paper we refer to solutions of S n £> = £> by writing

S € (T, K) rather than S i Q T 1 , TK'1] . This is quite natural

considering the statement of the problem. However the present notation

seems more appropriate because of its greater symmetry and its connection

with various solutions to the problem. Many geometrically appealing sets

satisfying S n S^ = & are double cones with their vertices at the fixed

points of the dilatations K and TK . Notice that the simplex and

the hypercube both admit this description.

Further connections with [5] will be mentioned as we progress. This

paper is, in effect, an elaboration of the general considerations which

proved significant in [5].

3. The [a, 2>]-hull

If the sets S. {i (. I) all satisfy 5^ n d3. = S. then so does
t i ^ ^

their intersection, 5 = [\{S. : i i i} . Given any subset R c X we can

define

R = n{S : S 3 R and S i [a, b]} .
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Since X € [a, b] , R i s well defined. Evidently R is the smallest set

containing R and belonging to [a, b] . We refer to R as the [a, b]-

hull of R .

In [5] we obtained the following description of R . Let R = R and

for n i 0 l e t

R = R u / u / J / n /
n+1 n n n { n n

Then R = U R . One corollary of our first theorem is an improved
n=0 n

description of R prompted by a remark of M.F. Newman.

Recall that G = <a, £>> is the group generated by a and b . Let

G c G be the semigroup with identity generated by a and b . For

each n > 1 , let G~ c G be the set of at most 2 elements which can

be expressed as words of length n in a and £> . If X c X and

Go c G , let

XQ° = |a? : x € * Q and ff €

THEOREM 1. Let 5 fce a su&set of * . Then S € [a, b] if and

only if

(i) for all x € X , x i S implies xG a S ,

G-n
(ii) for all x € X and n i l , x c S implies x € S .

Proof. The condition S° n S3 = S is obviously equivalent to

( i ) ' 5^ n i' => S , and

( i i ) 1 / n S ^ c S .

Now (i) ' is equivalent to ^ ZD S and S3 r> S , and therefore to

-1 ,-1
S D T and S s f . Since G~ is a semigroup with identity this

last pair of conditions is equivalent to S = S and this in turn is
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equivalent to condition (i) of the theorem.

Condition (ii) ' is equivalent to say, for all y, z d S , y = z = x

implies x € S and this is equivalent to saying, for all x Z X ,

a"1 b'1
x € S and x (. S implies x € S or, alternatively, for all

x € X , x c S implies x € S . This is the case n = 1 of condition

(ii) of the theorem. An easy induction shows that condition (ii) is self-

improving and therefore that the general condition is equivalent to the

special case with n = 1 .

COROLLARY 1. If R is a subset of X then R , the [a, b]-hull of

R y is given by

- r~ r~n r~

R = R u |i a : 3n U with x <= R } .

Proof. Any set with [a, b]-symmetry which contains R must contain

R = if by Theorem 1 (i) and then must contain

r-n „-
R = {x d X : 3n > 1 with x <= R }

by Theorem 1 (ii) . I t follows that R u R c R . To prove that

R u R = R we must verify that i t has [a, hj-symmetry and we do this by

checking conditions (i) and (ii) of Theorem 1.

r~ r~ r~n

If x € R± , x c j ^ = i?i and i f x € i?2 with x c R
x > t h e

inf ini te t a i l of x l i e s in fl and the f in i te ly many elements in

n-1 -m
U x l i e in R . I t follows that R u i? sa t i s f ies condition (i) .

m=l

G-n n G-n
If x c B u fi then the 2 points x. € x must satisfy

-fn.

x . c » f o r some m . > 1 . I f m = max{m m . . . , " » } t h e n

G

x c i? and x € i?_ . It follows that if u i? satisfies condition
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(ii) as well.

COROLLARY 2. Suppose that for all x i. X , there exists

m = m(x) > 1 such that x t G~ . Then if R is a subset of X ,

R = RG~ .

Proof. If x $ R = R , then for arbitrarily large values of k ,

G-km G-km
x 4 -ft-i .because x € x . The proof of Corollary 1 indicates that

if a point x is added to R via i?? , then for al l sufficiently large

G-n
values of n , x cr R . Our opening remark therefore shows that i f

x | R , then x ^ i?? , and hence x $ R .

COROLLARY 3. Suppose that for all x € X and m > 1 , x \ G~m .

Then if R is a subset of X ,

R = RG~ u {x 6 X : \xG~-R°~\ < ">} .

Proof. Under the conditions of the corollary the expression

— CD _ V 7

G .. Gn

x = U x
n=0

is a disjoint union. It follows that \x -R \ < °° if and only if

G-n G-
x tr if for sufficiently large values of n .

4. An example

Let X he the euclidean plane and let a and b "be the translations

(x, y) •*• (x, y) + (1, 0) and (a;, y) •+ {x, y) + (0, l) respectively. The

2
orbit of (0, 0) under the group G = <a, b) is the integer lattice Z »

and we seek the most general set S c Z such that S^ n £> = S .

The semigroup G consists of all integer translations

(a;, y) •+ {x, y) + (s, t) with s 5 0 and t 5 0 . The set G reduces

to the n + 1 translations of this type with s + t = -n . It follows
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that ( 0 , 0 ) is equal to the third quadrant of Z and if

[x., y.) £ Z , [x , y ) is equal to the third quadrant translated by

[x , j/.J . These sets possess [a, b ]-symmetry and constitute the minimal

non-void examples.

In order to find the most general set with [a, fc]-symmetry we can use

Theorem 1, Corollary 3. If 0 # R <= Z , R = R is a union of

2
translates of the third quadrant and a line of Z parallel to a

coordinate axis either misses i t , meets i t in a negatively directed ray, or

is contained in i t . If x = a meets i?_ , then so does x = a' for

a' £ a . Since R / 0 i t is clear that x = a meets R as 0 •* -°° .

We define

c = sup{c i. Z : x = c meets i? }

and, on the basis of similar considerations,

d = sup{cf € Z : y = d meets f? } .

If a. and d are "both equal to +*> , then for any

(xQ, yQ) € Z - i?1 , the lines a: = a:0 and y = yQ meet i?x at

(x0, y^ and (^j J/Q) . The set {xQ, yQ) - R± contains at ..most

[XQ-XJ) [yQ-yj] Points, (x0, yQ) ? i?2 , and it follows that R = Z .

If e and d are both finite, then [a , d ) f i?2 , but points of

the form (^Q+IJ y) or [x, d +l) do not belong to /?„ . It follows that

R is equal to the third quadrant translated by [a , d } .

If e is finite and d = -K=° , points of the form [eQ, y) all

belong to R?, but those of the form (e0
+l> y) do not. It follows that

R is equal to the halfplane x 5 cn . A similar consideration applies if

a = +00 and d_ is finite.
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An instructive modification of this example is to roll the integer

lattice into a cylinder Z x Z by identifying (x, y) and (x, y*m) for

some m > 1 . The transformation a continues to be aperiodic but b now

satisfies b = e . Every point of the cylinder satisfies

Q-m
(x, y) € {x, y) and Theorem 1, Corollary 2, applies. The [a, b]-

symmetric sets are 0 , the half-infinite cylinders x 2 c 0 , and the whole

cylinder.

5. T h e o r b i t p a r t i t i o n

If G is a group acting on a space X , the sets x [x (. X) are

called the orbits of G . Two orbits either coincide or are disjoint and

so they give a partition of X , X = U{X. : i € i] . In our case

G = <a, b) and the orbits X. [i € I) all satisfy X°: = T. = X. and
^ v % v

therefore possess [a, fc]-symmetry. It follows that if 5 is an arbitrary

set with [a, i]-symmetry then its orbital parts S. = S n X. all possess
Is If

[a, b]-symmetry. The most general set S € [a, b] can therefore be

written in the form

S = \}{Si : i € 1} ,

where S. c X. and 5. € [a, b] .
^ t ^

It is not in general true that if the sets S. {j € J) all satisfy
3

Ef1. n •>. = S. then so does their union, S = U{S. : j £ J} . However this
3 3 0 3

is true if

and in part icular i t is true i f £>. n 5? = 0 whenever j ? k . One way to
3 K

achieve th i s i s to l e t S. c X. where X = U{X. : j (. J} i s the ff-orbit
3 3 3

partition of X . For then it follows that ^ n s c j ^ n E ^ . n l ,
3 " 3 *• 3 K-

and hence d1. n S? = 0 whenever j ± k . This shows that any set of the
«7 *
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form given at the end of the l a s t paragraph must possess [a, £>]-symmetry.

THEOREM 2. Let X = U{:r. : i i 1} be the < a, b)-orbit partition of

X . Then a subset S c X belongs to [a, b] if and only if

S = U{Si : i € J}

where S . c X. and S. € [a, b] .
If If If

COROLLARY. If X has cardinality o of the continuum, it possesses

2 subsets with [a, b]-syrmetry.

Proof . The group G = <a , b) has at most K elements. I t follows

that each orbit has at most N points and so there must be a o rb i t s .

On each orbit we have at least the 2-fold choice S. = X. or S. = 0 and
If If 1s

this shows that there are at least 2T subsets of X with [a , b ]-

symmetry. On the other hand X has only £T subsets!

Theorem 2 was mentioned in [5] for the sake of its corollary. It is

important in our present treatment because it shows that we can solve the

problem of [a, b ]-symmetry orbit by orbit. This is very convenient

because we have a useful model of the way in which a group acts on an

orbit.

6. T r a n s i t i v e a c t i o n

Let G be a group and H a subgroup. Let X = G/H = {Hg : g € G]

be the set of right cosets of H in G . Then G acts on X by right

translation: an element r d G maps Hg € X to Hgr € X . There is only

one orbit under this action because Hg is mapped to Hg by

g j . The subgroup H c G is the stabilizer of the point H £ X .

It turns out that this is the only way a group G can act

transitively on a set X . To see this, choose a base point x 6 X and

let H be the subgroup of G which fixes x . If x € X and g € G

satisfy a^ = x then the coset xAx) = Hg can be assigned as a

coordinate to name the point x . This coordinate coset can be described
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as the set of all elements of G which map x. to x . It follows that

the action of G on X is equivalent to right translation on these right

cosets. For if r € G maps x to y then gv maps x n to y , Egv

is the coordinate for y , and the mapping of coordinates carries Hg to

Hgr . This observation goes back to Burnside ([?]> Chapter ix).

The correspondence between points x € X and right cosets xAx) c G

extends to a correspondence between subsets S c X and unions of right

cosets T o G where T = ~xAS) = U{~x (x) : x € 5} . This extended

correspondence commutes with the action of G : if S corresponds to T

then £> corresponds to Tr . The mapping x from subsets of X to

coordinatizing subsets of G has an inverse which we will call a; . A

moment's thought shows that x. is given by the elegant expression

\(T) = xTQ .

Let us change G-coordinates on X from the base point x^ to the

base point y . If y = x and the stabilizer of x is x [x ) = H

then the stabilizer of y is the conjugate subgroup yAy^ = kHk . If

x € X satisfies x = xP, then it also satisfies x = y , and its y -

based coordinate is

yQ(x) = [kHk'^kg = kHg = kxQ(x) .

It follows that the coordinate of a subset S c X changes from XAS) to

yQ(S) = *£Q(S) .

In our case G = (a, b) might not act transitively on X but we can

always obtain transitive action by passing to the individual orbits. For

simplicity, we temporarily assume that our G does act transitively on X

and we carry on with the notation of the preceding paragraphs. We have

remarked that the coordinate function x commutes with the action of G .

It follows that a subset 5 c / satisfies 5 s n f " = S if and only if the
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subset xAS) = T c G satisfies Ta n Tb = T .

If a subset Tc G has [a, b]- symmetry, then so does kT for any

k € G . This follows immediately if we multiply the equation Ta n Tb = T

on the left by k . If T = xA.S) , one point of view is that the various

sets kT are the different names for S corresponding to different base

points in X . However if k lies in the normalizer of H , there is an

alternative point of view. Under this condition, if T = ii{Hg . : 3 € j\ ,
3

then kT = U{kHg. : 3 6 J} = U{Hkg. : 3 € J) . Since kT is a union of
3 3

right cosets of H , xAkT) is a well defined [a, 2;]-symmetric subset of

X, and i t will be different from S if kT is different from T .

THEOREM 3. Let G = (a, b) act transitively on X , let x be a

point of X, and let H be the subgroup of G which fixes x . There is

a one-to-one correspondence between the subsets 3 c X which satisfy

S*2 n £T = S and the subsets T c G which satisfy Ta n Tb = T and are

equal to a union of right cosets of H . Under this correspondence the set

T is given by

T = xQ(S) = {g Z G : afQ Z

and the set S is given by

S=xQ(T) =xTQ.

The example of Section 4 provides a simple illustration of Theorem 3.

2
When G = (a, b) = Z acts on itself the subsets T c G which satisfy

Ta n Tb = T are 0 , translates of the third quadrant, halfplanes x S cQ

and y 5 d~ and G itself. When G acts on the cylinder Z x Z , the

subgroup H is equal to <fcm> at every base point. The [a, i>]-symmetric

subsets of G which can be expressed as a union of right cosets of H are

0 , the halfplanes x 5 a. , and G itself. These give rise to the

[a, fc]-symmetric subsets of Z x Z
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7. The free group

When a group G acts on a set X there is a homomorphism of G into

perm X . Related to Theorem 2 is the fact that X admits a partition into

ff-orbits, X = U{X. : i £ i] . Related to Theorem 3 is the fact that once
Is

we choose a base point x • € X • , then X. can "be modelled as a right coset

space X. = G/H. . A transformation of G fixes every point in the orbit
Is Is

X. if it lies in K. , the intersection of the stabilizers gH.g~
Is Is Is

{g £ G) . A transformation of G fixes every point in X if i t l i e s in

K = CI{K. : i € I"} . Thus K i s the kernel of the homomorphism of G into
Is

perm X .

In our case when G =(a, b) acts on X , i t i s important to notice

that the [a, fc]-symmetric subsets of X are determined not by G but by

i t s homomorphic image in perm X . Suppose F = <a, B> has G as a

homomorphic image and th is homomorphism carries a •*• a and $ -*• 6 . The

group F acts on X through i t s homomorphism onto G and the image of F

in perm X i s the same as that of G . I t follows that [a, 3]-symmetric

subsets of X are the same as [a, 2>]-symmetrie subsets of X . The

u t i l i t y in th i s i s that Theorem 3 can be applied with F in the role of

G . If F i s chosen to be the free group on two generators then F maps

homomorphically onto every 2-generator group G . Theorem k is an

al ternat ive to Theorem 1, Corollary 1, in providing a universal answer to

the question of which sets possess [a, fc]-symmetry.

THEOREM 4. Let F = <a, $> be the free group on two generators.

The problem of finding the [a, b]-symmetria subsets of an arbitrary set X

is equivalent to the problem of finding the subsets T c F which satisfy

To. n T& = T and T = [){Hf. : j € J} for arbitrary subgroups H c F .
3

8. Geometry of the free group

It may appear that our abstract approach to the question of

generalized symmetry has taken us rather far from its geometric origin.

This is not the case. In Section 4 we saw that the free abelian group on

two generators acting on itself by right translation is equivalent to the

group generated by two perpendicular translations in the euclidean plane
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acting on any orbit. In this section we shall see that the free group on

two generators acting on itself by right translation is equivalent to the

group generated by two sufficiently long, perpendicular translations in the

hyperbolic plane acting on any orbit. This observation was prompted by a

remark of B.H. Neumann.

He pointed out that the U-valent graph of the free group on two

generators can be represented very elegantly within the square

\x| + \y| S 1 . The edges of this graph are all parallel to the coordinate

axes but they are not all of the same length. The origin is a vertex and

its nearest neighbours are the four points (±%, 0) and (0, ±%) . Each

of these vertices has for its nearest neighbours the origin and three new

points a distance % away. This pattern continues so that each vertex at

graph theoretic distance n - 1 from the origin is joined to three

vertices at graph theoretic distance n from the origin by edges of length

1/2* .

Figure 1 shows this graph with its edges "coloured" and directed to

make its automorphism group equal to the free group on generators a and

b . This group is sharply transitive on the vertices of the graph,so once

one vertex is labelled e , the remaining vertices v can be labelled by

the automorphism which moves e to v . When this is done, the action of

any automorphism can be determined by right translating the vertex labels.

Figure 2 shows a topologically equivalent graph drawn in the unit

circle \z \ < 1 . Adjacent edges meet at right angles and are represented

by arcs of circles perpendicular to \z \ = 1 so that they correspond to

straight line segments in the Poincare model of the hyperbolic plane. The

polygons joining e to a to ba to a ba , and so on, and e to b

to ab to b ab , and so on, have edges of equal length if and only if

their vertices lie on a cycle. These two polygons are guaranteed not to

interfere with one another if this cycle is a horocycle or hypercycle

rather than a circle. The minimum edge length arises in the case of the

horocycle and is equal to log(l+\/2) ? which is twice the distance whose

angle of parallelism is irA • In this case the vertex labelled a is

located at s = V2/2 and the one labelled b is located at z = (V2/2)i .

The resulting graph has an automorphism group consisting of hyperbolic
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V

FIGURE 1
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FIGURE 2
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FIGURE 3
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isometries. By colouring and directing its edges as in Figure 1 we reduce

this automorphism group to the free group on two generators. These

generators are the perpendicular translations a and b given by

and z =
V2z+2 -V~2iz+2

It is clear that the group generated by a and b acts without fixed

points on the orbit of 3 = 0 because these points comprise the vertices

of our graph. The group transports the open disk of hyperbolic radius

k log(l+\/5) centred at 3 = 0 to congruent disks centred at the other

vertices of our graph. Since these disks do not overlap, the group acts

without fixed points on the orbit of any point in their union. We are lead

to consider a fundamental region for the group generated by a and b .

This can be taken equal to the asymptotic quadrangle shown in Figure 3.

Since this quadrangle tiles the hyperbolic plane without overlap, the group

generated by a and b acts without fixed points on every orbit. This

means that the action on every orbit is equivalent to the group acting on

itself by right translation. We remark that our Figure 3 is essentially

the same as Magnus' Figure 19a ([3], p. 178), and therefore its history goes

back to 1882.

9. Subsets of the free group

A subset T of the free group F generated by a and b has

[a, £]-symmetry if Ta n Tb = T . Theorem 1, Corollary 3, applies in this

context to say that if i? c F , its [a, 2)]-hull is given by

R = RF~ u {x £ F : \xF~-J1F~\ < «=} .

The graph of the free group has just been discussed,and if we modify the

labelling given a moment ago, we can obtain an effective graphical procedure

for computing R .

Our original labelling of Figure 1 is adapted to right translations.

Thus the vertex labelled W has neighbours aw to the east a W to the

west, bw to the north and b w to the south. If the labels are all

reversed without changing the convention about how a and b act on the

graph, we obtain a new labelling which is adapted to left translation. In

this labelling the vertex labelled u has neighbours ua to the east,
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ua to the west, ub to the north,and ub~ to the south. Regardless of

the labelling of vertices it is natural to distinguish the directed edges

of the graph by calling them a, a , b , or b~ , according to whether

they proceed west to east, east to west, south to north, or north to south.

The left action labelling of vertices has the advantage that if the symbols

for the edges of the polygon from e to u are taken in their natural

order they spell out u .

Now consider the left action labelling of the graph of F together

with the formula for computing R in F . The set F consists of all

points which can be reached from e by steps directed south or west. We

say that these points lie south-west of e and take special note of the

fact that they comprise a vanishingly thin fraction of the third quadrant

points. In this descriptive language the set RF consists of all points

south-west of a point of R and xF consists of all points south-west of

x . It is not hard to form an intuitive picture of those x for which

\xF~-RF~\ < °° .

By using this graphical technique,we see that if I = ja , b } , then

the set R = RF {• [a, ib] . The set i?? adds the required point e to

give R = F~ . In spite of this simple example,there is a useful class of

sets R with the property that ~R = R = RF~ .

THEOREM 5. Let F = <a, b) be the free group generated by a and

b and let F c F be the semigroup with identity generated by a and

b . Then if R c F+ , the [a, b]-hull of R is given by 1 = RF~ .

Proof. The negative semigroup F~ can be written in the form

F~ = {e} u F'a'1 u F'b'1 .

If S = RF~ , then S satisfies

Sa = RF~a

= R[{e] u F'a'1 u F'b'^a

= Ra u RF~ u

= S u Q? u RF

and similarly
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Sb = S u [R u RF'a'^b .

Since R <z F ,. [i? u RF b~ ~\a consists of reduced words which end in a ,

and [ff u RF b ~\b consists of reduced words which end in b . It follows

that Sa n Sb = 5 and since R c 5 c R , fl=S.

COROLLARY. £et F = <a, 2>> be the free group generated by a and

b . Then F contains o distinct subsets T which satisfy Ta n Tb = T.

Proof. There are c real numbers t satisfying 0 < t < 1 . Each

such real number can be associated with a distinct binary "decimal" and

hence, by chainging O's to a's and l's to b's , with a distinct

infinite sequence of a's and b's . Let R.cF be the subset whose

elements are initial segments of the series corresponding to t . Let

T, = R.F~ . According to Theorem 5, the sets T all possess [a, b ]-

symmetry. Since T, n F+ = R , it follows that T / T if t # t .
V V U -. t r, J- t-

This gives us c different [a, b]-symmetric subsets of F , and since F

X

has a total of 2 = a subsets, the result follows.

This corollary stands in contrast to the result of Section 4 where we

showed that the free abelian group with generators a and b has only ^

[a, £>]-symmetric subsets.

10. Generalized symmetry in classical geometry

Let X be euclidean n-space and a and b two af f in i t ies , or l e t X

be hyperbolic, spherical> or e l l i p t i c n-space and a and b two

isometries. Find the most general set S which sa t i s f ies a n £> = S

and describe the classes of these sets which are geometrically appealing.

This is the ful l problem which I would l ike to solve in further work under

the heading of generalized symmetry.

To solve the f i r s t part of th i s problem and find the most general set

which sa t is f ies 5° n S3 = S , l e t X = U{x. : i € J} be the (a, fc>-orbit
Is

partition of X and use Theorems 2, 3, and k together with the graphical

method of finding T's which satisfy Ta n Tb = T in the free group F .
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The difficulty which this prescription conceals is the difficulty of

determining the groups G = (a, b) and expressing their orbits in the form

X. = F/H. . The following is a first step towards doing this.

THEOREM 6. Let G = < a, b) be a 2-generator subgroup of the

affinities of euolidean n-spaee or the isometries of hyperbolic, spherical

or elliptic n-space. Then for almost every point x of the space, G

acts on the orbit x as if by right translation on itself.

Proof. The group G has at most countably many elements. Each of

these except the identity fixes a set of points of measure 0 . The union

of these countably many fixed point sets is therefore a null set. It

follows that almost every point x lies in the complementary set and is

stabilized only by the identity. Since stabilizers along an orbit are

conjugate subgroups, this means that almost every point x lies in an

orbit x on which G acts without fixed points. This proves the result.

Theorem 6 allows us to neglect the atypical orbits if we are content

to find our [a, b]-symmetric subsets up to measure zero. However it

leaves unanswered the question of which abstract groups G = F/H can arise

and how. The next step in our continuing program is to collect information

on this question.

The problem of determining the finitely generated subgroups of the

classical geometric groups is a natural extension of the problem of

determining their finite subgroups. This problem is of interest in a

broader context than that of generalized symmetry. For example, the

construction which yields the Hausdorff-Banach-Tarski Paradox ([4],

Chapter XI) depends on the fact that the infinite group

2 3
G = (a, b : a = b = e) can arise in euclidean 3-space generated by a

halfturn and a 120° rotation about intersecting axes.
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