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Verifications of a formal technique
for viscoelastodynamics

D.W. Barclay and T. Bryant Moodie

Presented in this paper are justifications for the formal Karal-

Keller technique as i t applies to propagation, reflection, and

transmission of one-dimensional impact waves in nonhomogeneous

viscoelastic solids.

1. Introduction

From 19l»l+ to the present, a formal asymptotic technique, based on

generalizations of geometrical optics, has been developed and applied to

various areas of mathematical physics. Herein we will explain this method

and provide some rigorous justifications for i ts validity as applied to

waves in nonhomogeneous hyperbolic-viscoelastic materials.

In a series of lectures [9] given at Brown University in the summer of

19*A, Luneburg presented an approach to the problem of reconciling

geometrical optics to wave optics. He constructed an asymptotic expansion

in inverse powers of the frequency for the solution of Maxwell's equation

for a time-harmonic field and demonstrated that the leading term of this

expansion is the geometrical optics solution. Several authors (see [7] for

a l i s t of references) have shown that subsequent terms account for

diffraction effects, that i s , effects which cannot be accounted for by

classical geometrical optics. Friedlander [3] formulated Luneburg's

technique so that i t applies to general progressing waves.

Karal and Keller [4], using Friedlander's formulation to bypass the

often difficult Fourier synthesis, extended Luneburg's technique to study
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general progressing waves in isotropic elastic media. We will refer to

this formal asymptotic technique, when applied to waves in solid media, as

the Karal-Keller technique. Let us indicate briefly the steps involved in

the Karal-Keller asymptotic method. For problems whieh can be solved

exactly, examination of the asymptotic expansion of the solution shows that

i t consists of a sum of terms each of which is an asymptotic series

involving a phase function and an infinite sequence of amplitude functions.

For complex problems i t is assumed that the solution is also a sum of such

series. Inserting the series into the governing partial differential

equation one finds that the phase and amplitude functions satisfy ordinary

differential equations along the rays associated with the wave motion. For

some problems the in i t ia l conditions for all of these ordinary differential

equations can be found directly from the data of the problem (CH) while

for others one must resort to the device of canonical problems and the

'principle of localization' [8].

I t is clear that the Karal-Keller asymptotic method involves several

unproved assumptions. It is therefore reasonable to ask whether i t can be

proved that i t does indeed yield the asymptotic expansion of the exact

solution for the given problem. No general proof of this fact has been

published. Evidence for the method's validity can be obtained in one of

the following ways: ,

(i) comparisons can be made of results obtained using the

Karal-Keller method and the asymptotic expansion of known

exact solutions,

(ii) comparisons with experimental and numerical methods can be

carried out, or

( i i i ) in the case of oscillatory initial data, energy inequalities

can be used [6] to estimate the remainder of the asymptotic

series.

In connection with the above for elastodynami cs, we mention a paper by Lang

[5]. He applied the Karal-Keller theory to the problem of a spherical

source in homogeneous elastic media and demonstrated that the displacement

series terminates after two terms to yield the known exact solution.

Cooper [/] demonstrated that, for one-dimensional longitudinal waves in a

particular nonhomogeneous half-space, the Karal-Keller technique generates
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a terminating series which is the known exact solution. One of the present

authors [10], applying the Karal-Keller technique to the two-dimensional

problem of an impulsive source of cylindrical shear waves in media whose

shear modulus is proportional to an arbitrary power of radial distance from

the axis of symmetry, obtained complete agreement with known exact

solutions.

In the field of viscoelastodynamics , the Karal-Keller technique has

been applied to one-dimensional waves in a standard nonhomogeneous rod by

Park and Reiss [73], These authors provided a partial justification for

the method as i t applies to waves in a semi-infinite homogeneous rod by

demonstrating that the leading term of the exact and formal solutions are

in agreement. Moodie [77], [72] applied the method to several problems

involving cylindrical and spherical shear waves in nonhomogeneous media.

Because we feel that the formal Karal-Keller asymptotic technique offers a

viable method for solving problems involving dynamical loading of non-

homogeneous viscoelastic materials, we will here present justification for

i ts use. This we shall do by showing that, for one-dimensional waves in

nonhomogeneous viscoelastic rods, the Karal-Keller technique gives

asymptotic results which are in agreement with those obtained from the

exact solution. We shall also demonstrate that for reflection and

transmission, the results obtained by this method are in agreement with

those obtained rigorously from the exact solution. We thus go much further

than did Park and Reiss in providing a justification for the Karal-Keller

technique.

2. Formulation

We choose the centre line of a standard viscoelastic rod to coincide

with the positive x-axis. According to the one-dimensional theory of

longitudinal waves in rods , the equation of motion of the rod is

(l) 0* = pw ,
x ~bv

where u(x, t) is the axial displacement, o(x, t) the axial stress, and

p(x) the prescribed density. The literal subscripts refer to

differentiation with respect to the corresponding variable. The

constitutive equation for the standard viscoelastic solid is
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(2) at+ [E^o = {B+Bju^ + [EE1/r{]ux ,

where Six) and E,(x) are elastic moduli, and r\(x) is a viscous

modulus. Combining (l) and (2), the stress equation of motion of the rod

is

(3)

where the coefficients are defined by

C+) yZ(x) = [E+Ex)/p , o2{x) = E/p , Hx) = pjp , \{x) = Ex/x\ .

The dimensions of y and a are that of velocity.

We now assume [3] that the stress solution may be represented by

GO

(5) a ~ I An(x)Fn[t-S(x)] , An=0 for n < 0 ,
n=0

where the F ' s are r e l a t e d by

(6) F n s F n * l • n = 1 > 2 > ••• •

We further assume that the derivatives of 0 may be obtained by term-wise

differentiation in (5). The prime in (6) denotes differentiation with

respect to the entire argument t - S and (6) enables us to relate al l of

the F 's to F (the waveform) by successive integrations. For example,

i f F is the Heaviside step function, H(t) , defined by

H{t) = 1 for t > 0 , H(t) = 0 for t < 0 ,

then

(T) Fn

Note that FQ vanishes for negative argument, that i s , in front of the

wavefront whose equation is given by t = Six) , where 5 is called the

phase or eikonal function. For F given by (7), the coefficients A in

(5) are the jump conditions for the stress and i t s derivatives across the

wavefront. Solutions of (3) in the form (5) offer a convenient device for

studying the propagation of stress discontinuities. However, i t should be
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emphasized that solutions of this form are applicable only for hyperbolic-

viscoelastic materials, that i s , materials in which discontinuities

propagate with finite speed.

3. T h e g e n e r a l K a r a l - K e l i e r s o l u t i o n

We consider l o n g i t u d i n a l waves whose propagat ion i s governed by

equat ion (3) and seek the s t r e s s s o l u t i o n i n the form ( 5 ) . S u b s t i t u t i n g

(5) i n t o (3) and using t h e arguments o u t l i n e d in [ JO] , we der ive

(8) (S'f = [Y(x)T2

and

(9) 2S'A' + S"A + X\l-o2(S')2]A ft2 - rS'A = R , n > 0 ,

where

(10) Rn = A"n_^ - vA ' 2 2 2 2

Equation (8) is the well-known eikonal equation of geometrical optics.

Along the rays associated with the longitudinal disturbance i t becomes an

ordinary differential equation which may be integrated to give

- F -
(11) S(x) = 5 ± dx/Y(T) , S = S(x) .

' x

The plus sign corresponds to waves propagating in the positive x

direction while the minus sign corresponds to waves propagating in the

negative x direction. Equation (l l) enables us to determine the phase at

any point on a ray in terms of i ts value at x = x .

Equation (9) is the so called transport equation for determining the

amplitude functions A . Its general solution is
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where the upper signs correspond to waves propagating in the direction of

positive x and the lower signs to waves propagating in the direction of

negative x . In (12) it is very important to remember and choose the

correct sign for 5 in R - thus accounting for the direction of

propagation.

4 . K a r a i - K e l l e r s o l u t i o n s t o p a r t i c u l a r problems

In this section we will examine some particular impact problems by

means of the Karal-Keller asymptotic technique.

-PROBLEM 1 . The semi-infinite rod x 2 0 , defined by the properties

o2(x) = ay2{x) , 0 < a < 1 ,

(13) X = AQ , r = rQ/(l+x) , rQ > 0 ,

y2 = YQ(1+*)2 , Yo > 0 ,

where a, X , r and Yn are constants, is in i t ia l ly unstressed and at

res t . For t > 0 , a pressure is applied to the end x = 0 , so that

a(0, t) is known. The solution will f i rs t be obtained for a step pressure

input, and Duhamel's Theorem will be applied to obtain the solution for a

general input pressure function. Thus, from (5),

GO

(lit) cr(O, t) ~ I AF U-S] = -H(t) ,
n=0

where bars indicate that the variables are evaluated at x = x = 0 .

Hence, we choose
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A =
n

(15)

-1 if n - 0 ,

0 if n > 0 or n < 0 ,

S = 0 , FQ = Hit) .

Employing (13) and (15) in (ll) (taken with the plus sign so as to

correspond to a wave travelling in the direction of positive x ) we obtain

for the phase S ,

(16) S(x) = [ZM(1+:C)]/Y0 •

Substituting from (13) into (12) (taken with the upper signs) it is

easy to prove by mathematical induction that

(17)

where

(18)

A = (l+x)G I a.[ln{l+x)]3 ,
n j=0 °n

= [T0(l+r0)-X0(l-a)]/2Y0 .

Substituting (17) into (12) and performing various simplifications, we

obtain

for 1 < j < n ,

-1 if j = n = 0 ,

0 if 3 < 0 , rc > 0 or j > n ,

where a. = a. and the boundary conditions (15) have been used in

deriving (19).

The complete wavefront expansion of the solution to the above impact
problem is then given by

(20) a. [ln{H-x)]dH(t-S) ,
3nI

n=0
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where S is given by (l6) and the a. are given recursively by (19). If

we evaluate the first three terms of our expression for a given by (20),
we have'

(21) a ~ (1+x) -1 + (t-S) - i

(t-S)c •Hits) ,

where

(22)

i - - - 1 2 .
1 2

2Ka

Later we will show that this expansion agrees with the asymptotic expansion
rigorously derived from the exact solution.

In general the solution for an arbitrary input pressure,
a(0, t) = fit) , may be obtained from Duhamel's Theorem,

(23) a(x, *) = [
Jo

• * ? • (*, x)/(*-T)dr ,

where a* is the solution for a step input compressive stress at x = 0 ,
that i s , a* is given by (20). If, for example, fit) = -6(t) , where
Sit) i s the Dirac delta function, then

(t-5^M n

(2k) o ~ -(l+x)E6(t-S) + (l+a:)e

where S is given by (l6) and the a. by (19)-

I a. [ln(l+x)}°Hit-S)L on

We should here emphasize that although the solution has been obtained
for the particular viscoelastic material defined by (13), we could have
obtained the solution a for many very general classes of materials.
However, as we wish to effect a comparison between results obtained by the
Karal-Keller technique and the exact solution, we are restricted to those
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materials for which the exact solution may be obtained - this being a very

restrictive class. The power of the Karal-Keller technique resides in the

fact that i t enables one to solve problems not amenable to classical

boundary value procedures. In fact, the Karal-Keller technique does not

rely on separability.

PROBLEM 2. We shall now, for completeness, outline briefly the

procedure for treating the impact problem for a finite rod 0 - x 5 L . We

choose the condition at x = x = L to be that of vanishing stress, that

i s ,

(25) 5 = 0 .

Other boundary conditions than (25) can be handled by the methods presented

here. We consider this finite rod to be initially unstressed and at rest.

For t > 0 , a step compressive pressure is applied at the end x = 0 ,

that is ,

(26) a = -H(t) , x = x = 0 .

A transient stress wave is produced which leaves the end x = 0 at t = 0

and travels with variable velocity y(x) in the direction of positive x .

This outgoing wave has been discussed above and its wavefront asymptotic

expansion is given by (5) where the F , S, and A are determined from

(7), (ll),and (12) together with the appropriate boundary conditions (15).

The upper signs in (ll) and (12) must be chosen so that this expansion

corresponds to a wave which is outgoing with respect to the source at

x = 0 . From now on we will denote this outgoing wave by a and its

amplitude and phase functions by A and S . The leading term in the

expansion for the outgoing wave is found to be

where

(28) S 1 =

We now assume that at the stress-free boundary there is produced a
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reflected wave, a , which can be represented by

GO

(29) a2 ~ I A2(x)F [t-S2(x)] , A2 = 0 for n < 0 .
w=0 n n n

The amplitude functions, A , satisfy the transport equation (9) and the

phase function, £> , satisfies the eikonal equation (8). The solution of

(10), for a wave travelling from x = L in the direction of decreasing

X , is given by (12) taken with the lower signs and x = L . The phase

function, Sr , is given by (l l) taken with the minus sign and x = L . We

justify our assumption that a reflected wave is produced at x = L by

demonstrating that the boundary condition (25) can be satisfied by

(30) a = a1 + a2 .

Up until time t = S (L) the solution is given by the incident wave

a , which has been completely determined above. At t = S (L) the

incident wave has arrived at the boundary x = x = L . Applying the

boundary condition of vanishing stress we obtain

(31) A2 = -IjJ , S2 = S1 , x = x = L .

Then, because A and 5 are known, we may completely determine the

o
reflected wave, a (x, t) , by the methods employed above. To a f i rs t term

approximation this reflected wave is given by

rL
+

0

where

0 >x> Y ( T ) '

PROBLEM 3. In this our final application of the Karal-Keller

technique, we consider the impact problem for a step compressive pressure

applied to the end of a semi-infinite nonhomogeneous viscoelastic bar

composed of two media in i t ia l ly unstressed and at rest . These media we

https://doi.org/10.1017/S0004972700043860 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043860


A technique for viscoeIastodynamics 289

label medium "a" and medium "b" . We denote the compressional wave
speed Y and density p of the two media by y , y , , p , and p, with a

similar notation for the elastic and viscous moduli. A transient stress
wave is produced which leaves the end x = 0 at t = 0 and travels with
variable velocity y (x) in the direction of positive x towards the

interface at x = x = L . The boundary conditions at the interface require
that 5 = 5 , and V = V, , where v(x, t) is the particle velocity. We

assume that a wave is reflected by the boundary and that a wave is
transmitted across the boundary. Thus, we assume

V ~ T BXF [t-S1) + y B2F (t-S2) ,a n=0 nn nto nni ]

(35)

where the superscripts, j = 1, 2, 3 denote the incident, reflected, and

transmitted waves, respectively. Since the form for all of the waves is

that represented in §2, the solution is known provided the initial values

&, Jr , and Br are known. It is assumed that the incoming wave has been

defined by the methods used above, so that S and A are known.
n

From (2), (5) and (8) we can derive the relation

(36) ̂ . (-^{(Av.y-^) '.w'-' ̂ ^-pAfsy•},
3 = 1, 2, 3 •

This- relation yields the well-known result from the conservation of

momentum across a steadily moving discontinuity, A~. = PYS£ • Applying the

boundary conditions at x = x = L , we obtain
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(37)

S1 =

—p —"? —1
A - A - An n n '

- P = -B1 .
n n

Now, employing the relation (36) in the third equation in (37)» we obtain

— o — —Q —n —n
A<- i T A~> _ /I-*- I/-1-

2 + r J 3 = A1 - H1 , + ff2 + re3

n n n n-1 n-2 n-1

n - l

(38)

where

(39) ^

and

C*0) I7 = PaYa/pfoYfc .

Solving the system of equations consisting of the second equation in (37)

and (38), we obtain

(Ul)

Thus, since and A are known, the init ial values at the interface

(x = x = L) are determined and the above procedures may be used to obtain

the formal solution. For example, suppose the end x = 0 of the semi-

infinite bi-viscoelastic rod (which is initially unstressed and at rest) is

subjected to a suddenly rising compressive pressure; then to a first term

approximation we find that the reflected wave and transmitted wave are

given by

(U2) t)
1+r

yaMpaW
Ya(O)Pa(O)

exp y-o 1 - dx •H[t-S2(x)] ,

where
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and

where

1 - •H[t-S3(x)]

5. Exact s o l u t i o n s

In the remaining portion of this paper we shall obtain exact solutions

to the partial differential equation (3). We consider the three particular

problems solved in §4 by the formal Karal-Keller technique. From these

exact solutions, wavefront expansions for the stress a are obtained. As

will be seen, these expansions agree with those obtained in §4 and so

provide a verification of the Karal-Keller technique as applied to

inhomogeneous viscoelastic bars.

The equation (3) is to be solved subject to the ini t ial conditions

(^6) o(x, 0) = at(x, 0) = Ott(x, 0) = 0 ,

and the boundary condition

(1*7) a(0, t) = ~H(t) .

The method of solution will be by means of a Laplace transform

(1*8) <>(*, p) = I e pto(x, t)dt .
>0

On applying (U8) to (3) , we find that <J) sa t i s f i e s the ordinary

different ial equation
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subject to

(50)

flp+xix)l
pyd(x)+X(x)o<i(x)

<J)(0, p) = - i

The solution a to the initial-boundary value problem i s then recovered

from the solution to {k9) t>y using the inverse Laplace transform

(51) a(x, t) = - M

Here 6 > 0 is a constant chosen such that <J>(x, p) i s an analytic

function of p in Re(p) i 6 .

I t wi l l be the case tha t the nature of o(x, t) near a front can be

discovered by appealing to the asymptotic behavior of <i>{x, p) for large

values of the parameter p . In connection with th i s idea we prove the

following lemma, which we shal l use to extract the wavefront expansion from

the in tegra l representation (51) of 0 .

LEMMA. Suppose that (|>(x, p) is analytic in Re(p) > 6 > 0 and that

N A (x)
(52)

as p

(53)
,6+i

2m >6-i

(j)(x, p) = -~p- exp{-p5(x)}

in Re(p) > 6 > 0 . Then

6+i°°

n=0 p n+1

r N A (x)(t-S)n
 )

x, p)dp *> A[x)BUS){ I JL—-, + O[(t-S)N+1]\{

as t-S •*• 0 .

Proof. From (52) we may wri te

/•6+i00 . r N Ar N A

^r I exp{p(t-S)}R (p)dp) ,

where i s analytic and 0[p~ ) in Re(p) > 6 .
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If t < S , then each of the integrals appearing on the right of (5*0
are zero. This result may be established by closing the contour to the
right by means of a large semicircle. There are no singularities in
Re(p) > 6 and the integral round the semicircle vanishes as the radius
tends to infinity, so the integrals in question are zero.

If t > S , we may calculate the first N integrals on the right of
(5*0 by closing the contour to the left. On taking the residue due to the
pole at the origin we find that

(55)
P

We may also obtain a bound on the last integral appearing in (5!+). To do

so,-spl i t the contour of integration into two pieces denoted by L and

L . On L , llm(p)| > — and on L , |lm(p)| £ — where a = t - S .

Then

6a <itIf exp{p(t-S)}E Mdp = 0 \\
I J L i " {'l/a

e .N+2
"0

while i f we close L to the right by means of the semicircle

p = 6 + — e1 , where 191 S |- , we get

I [ exp{p(t-S)}R (p)dp = 0\ I aN+1exp\a\S + - cosellde(
J i 2 -TT/2

= 0(a

as a •+ 0 . Thus, since the integral over the entire contour Re(p) = 6

vanishes when a 5 0. , we may write

(56) exp{p(t-S)}RN{p)dp = H{t-S)0[(t-sf XJ ,
' 6-i°°

where we have restored the variables x and t according to a = t - S .

Hence the expressions for the integrals (55) and (56) give equation (53).

6. Asymptotic resu l t s from exact so lu t ions

We now obtain wave front expansions from the exact solution for each

of the problems considered in §4.
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PROBLEM 1. Consider the semi-infinite rod whose properties are
given by (13). Then inserting these expressions for the coefficients of
(Ii9), we find that (j> satisfies

(57) = 0 .

The change of variable x + 1 = e transforms this equation into an
equation with constant coefficients. We may then easily discover the
general solution to (57). We find that the solution which satisfies the
boundary condition (50) and which vanishes as x •+ <» is

(58) •(*, p) = - i (x+l)(r>0+1)/2exp{- i/(pHn(x+l)} ,

where

(59) f(P) =

The branch of the radical which appears in (.59) is chosen such that i t
i s positive when p is real , large and positive. With this choice, there
exist 6 > 0 such that f(p) is analytic in Re(p) > 6 . In addition, by
repeated use of the binomial expansion

(60) fip) =

in Re(p) > 6 , where & , & are given by (22).

According to the lemma of §5, we may discover the behavior of cr(x, t)
near the wavefront from the asymptotic expansion of <J> for large p . On
inserting (60) into (58) and using the power series for the exponential
function, we get

(61) <f>(x, p) = - - (x+l)eexp(- -2- Zn(arH)}{l - —

Zn(x+l)-,2 6o£n(x+l)

where £ is given by (18). Thus if we apply the inverse Laplace transform
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t o <)> and use the r e s u l t descr ibed by ( 5 3 ) , we f ind t h a t

r 8 ln(x+l)
a(x, t) = -(l+x)H{t-S){l - -^— it-S)

1 *

where

5 = —
Y0

This expansion for a is in complete agreement with (21), the expansion

obtained by the formal method.

PROBLEM 2. We next consider the impact problem for the finite rod

0 — x 5 L , subject to the boundary condition of vanishing stress at

x = L . Thus <j> , the Laplace transform of a , satisfies the equation

(1*9) together with the boundary conditions (50) and

(62) <f>(L, p) = 0 .

We cannot obtain an explicit representation for the solution of the

boundary value problem since the coefficients of the differential equation

(U9) are arbitrary functions of x . Nevertheless, we may s t i l l verify the

results of the Karal-Keller method for this problem. As was seen from the

previous problem, the information desired from the solution of the partial

differential equation hinged only on the asymptotic behavior of <(> as

p •*• °° . We may obtain such asymptotic -formulas under mild restrictions on

the coefficients of (U9), namely differentiability. In particular, we

establish the existence of a pair of linearly independent solutions to (U9)

and obtain the leading term in the asymptotic expansion for large p of

each of these solutions. This in turn gives the leading term in the wave-

front expansion for the stress a .

To determine the behavior of solutions to (U9), we follow the methods

described in [Z]. Make the transformation

I -
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(6h) <J>(x, p ) = [ z ' ( x ) ]

which carries the differential equation (1+9) into

(65) ^i-y = -pfiry •

dz2 z (x)

Here, prime denotes differentiation with respect to x and

(66) ,<«>. -J. {.£.(*;_,] + £ _ (f^+U-,
where

(67) q =

The function i?(x) is an analytic function of p which is small when p

is large. That i s , since

pY^Ae* UY* " " X

= 0(1)

as p •*• °° , then

(68)

uniformly on 0 £ x - L .

If we apply the method of variation of parameters to (65), temporarily

regarding the right hand side as a known function, we obtain the integral

equation

(69) y(x) = oxe
z{x) + c2e~B{x) + j sinh[z(x)-s(T)]i?(T)j/(T)dT ,

where xQ is some fixed point in 0 £ x £ L , and the e. 's (i = 1, 2)

are constants. Equation (69) is a Volterra integral equation; the

existence and differentiability of the solution can be demonstrated by

constructing the solution by the method of successive approximations. The

uniform convergence of this iterative procedure will ensure that the

https://doi.org/10.1017/S0004972700043860 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700043860


A technique fo r viscoeIastodynamics 297

solution is an analytic function of p in Re(p) 5 0 , provided the c . ' s

are analytic in Re(p) S O . By differentiating the integral equation, i t

may be verified that <f> given by (6k) satisfies the differential equation

(1*9), where y in (6k) is the solution to (69). As well, in view of the

bound (68), we may apply standard methods to determine the asymptotic

behavior of the solution to the integral equation for any choice of

o , o . Thus in turn we obtain the behavior of solutions to the

differential equation.

If we choose a = 0 , e = 1 , and a;. = L in (69), we find that

(U9) has a solution <$>-.(%, p) which is analytic in Re(p) 5 0 and such

that

^ - ^ -

If we choose c = 1 , e? = 0 , and a; = 0 , then we obtain a second

linearly independent solution §0(x, p) which is analytic in Re(p.) - 0

and such that

(72) <j>2(x, p ) =

Each of these asymptotic formulas holds uniformly in 0 S x S L .

We now return to the boundary value problem. The solution to the

differential equation (U9) which satisfies the boundary conditions (50) and

(62) may be expressed in terms the linearly independent pair (J>1 , (j) . We

find that

(Ik) cf>U, P) = Df^U, p)*2(*, p)-*2(£, pHx(x, p)]/pa)(p) ,

where

(75) u(p) = 4^(0, p)4>2(£, p) - \(L, P H 2 (0 , p) ,
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this function having the asymptotic behavior

In view of this formula and the fact that

(77) |sinh{3(L)}| > ^expfRe (s(i))} , Re(p) > 6 > 0 ,

where A > 0 is a constant, we may choose 6 > 0 such that w(p) has no

zeros in Re(p) 5 6 .

By applying the inverse Laplace transform to (7*0, we may obtain the

"behavior of the stress a near the first incident wavefront and near the

firs t reflected wavefront. This step may be accomplished by first working

out the asymptotic form of § using the asymptotic formulas for (()., <f> ,

and o)(p) . If we carry out this calculation, applying the identity

(78) (asinhs+icoshs)"1 = ^ - ^ + , ,Ja~b)e~ I r

a+b {a+b)(as\rihz+bcoshz)

to the hyperbolic function appearing in (76), we may write (7^) as

It .
(79) <f>U, P) = I •* (* , p) ,

i=l
where

(81) 42(*. p) = J

, p) - 2p LY(0)p(0)J s i n h { 2 ( L ) }

(»3) * (x, P) - - 2p LY(O)P(0)J sinh{3(L)} L IP._

Each of the functions 4> are analytic functions of p in Re(p) 2 6

Thus we have
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(8U) o(x, t) = (/(a:, t) + or{x, t) + -r^r ePV(x, p)4?

where

(85) a (x, t) = ~-r e^ ()> (x , p)dp ,

,Q^. 2, ,v i f ptj.2, \ •>
\oo J CT \X, t ) — r I ê  (p (x, p)ctp •

1 2From the asymptotic formulas for <f> , <fi and the definition (63) of

s(x) , we have on applying the lemma of §5,

^ ( x , t) - -I

and

These formulas are the same as those obtained by the formal method for the

first incident and reflected wave. In addition, if we examine the

remaining integrals appearing on the right of (81*), we find that the first

vanishes for t + S {x) < kS [L) and has jumps at t + 51(x) = 2nS1(L) ,

(n = 2, 3, •••) , the successive reflected wavefronts; the second is zero

for t - ^{x) < 2SX(L) and has jumps at t - S^x) = 2n51(I) ,

(w = 1, 2, . . . ) , the successive incident wavefronts.
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PROBLEM 3. We finally examine the biviscoelastic bar, considered in

the last of §4, which consists of medium "a" in 0 £ x 5 L and medium

"b" in x 2: L . For simplicity, we shall assume that medium "b" is

homogeneous, that i s , that the parameters y,, r, , c, , A, are constants.

Since r = p /p , the density is then assumed to have the form

(87) PbM = pb(L)exp{rb(x-L)} .

The solution to the transformed equation (U9) in 0 - x - L , subject

to the boundary condition (50)i is

(88) 4>a(x, p) = [4^(0, p)<t>2(x, p)-4>2(0,

^ ( x , p)]/poi(p)

where

(89) F(p) = <\>(L, p) = f e~pta(L, t)dt .
J0

The functions <f> , (j) , and w(p) are the same as in the previous problem

except that they are now associated with medium "a" . Thus, the symbols

Y, P, c, and A , which appear in their asymptotic formulas, should be

replaced by Y , P , o , and A .

In medium "b" where x ^ L , the equation has constant coefficients.

The solution which vanishes as x -*• °° is

(90)

where

(91) 4>3(x, p) B

the form of the solution being chosen such that <j> (L, p) = <J>t(£, p) , that

is by the boundary condition a {L, t) = aAL, t) . The branch of the

radical which appears in (9l) is chosen such that i t is real and positive

when p is real , large, and positive. It is easy to show that
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(92) = exp- — x V * °ffl •
The function F(p) , which appears in both the expressions for $

and $, , is determined by the remaining boundary condition which requires

that v (L, t) = vAL, t) where v{x, t) is the particle velocity. Since

u = v , where u is the particle displacement, we find from (l) that

> ' ( * , P) •

Thus the boundary condition that V (L, t) = vAL, t) implies that

a b

On using (93) to determine F{p) we get

(914)

where

F{p) =

The function F{p) has the asymptotic behavior

(95)
p cosh{3(£)}+rsinh{3(L)}

in Ke(p) > 6 > 0 , where

f = p(L)y(L)/pAL)yAL) .

Since the linear combination of hyperbolic functions in (95) satisfies an

analogous inequality to (77), we may choose 6 > 0 such that F(p) has no

singularities in Re(p) > 6 .

To discover the behavior of o , it remains only to look at each of
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the solutions <j> , <f>, for large p . Consider f i rs t . Using the

identity (78) in connection with the hyperbolic function appearing in the
asymptotic formula (76) for w(p) and with those hyperbolic functions in
(95)> ve find the following information about each of the terms appearing
in (88):

(x, p)F{p)/w(p) =

(x, p)F(p)Mp) =

^ ( L , p)<J>2(x, p)/pu(p) =

<i>2(L, p)(j>1(x, p)/pto(p) =

p)

p)

p)

p) ,

p) ,

:, p) + $ (x, p) ,

where each of the functions $. is analytic in Re(p) - 6 and has the

asymptotic behavior

(x, p) = o|i

, p) = 0|i

exp{z(x)-2z(£)}

, P) = ^
~y(x)p(x)'

a a
y(O)pJO) exp{z(x)-2s(.L))

• 5 (« . P) = ^
Va(*)pfl(x)

Ya(O)pa(0)
exp{z(x)-3z(£)

sinh{3(L)}
1K1)] •

1
X ' P ) = ^

Ya(0)pa(0)
exp{-z(x)-g(L)}

The function s(x) , which appears in each of these formulas, is the same
as before, namely,
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•x A ( T )tx A

• 1 1 0 ^
where

1 -
Y

2 ( T )

Now apply the inverse Laplace transform to <(> , using the above

information to write the stress as the sum of several terms in the

following way:

ajx, t) = a1(x, t) + a2(x, t) + a^(x, t) ,

where

rS+i'
-"-(X, t) = - -±r(96) a

(97) a2(x, *) = i21"

(98)

U.

/•6+iicl

or(x, t) = -^r

1 (8Hm J>tr ,
— ~ Gr \9 \X +

Examining each of these expressions reveals that the only contri'bution

to the stress due to the first incident and reflected wave comes from a

and a . The expression (96) for a gives the same result as in the

previous problem for the behavior of the stress near the first incident

wave. Similarly, examining a gives the behavior of the stress near the

first reflected front. From the asymptotic formula for the integrand in

(97) we find that
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a2(x, t) = -
yaMpa
V0 ) pa( 0 )

exp<
•L-, A ( T )

Ml + (I °
' 2Uo JJ V

1 -
C

2 ( T )

k+r

where

- [

Looking at a , we find that this quantity is identically zero during

the time that the disturbance first leaves the end x = 0 until i t next

reaches this end. From the behavior of the integrand, the first integral

appearing in (98) vanishes for t + S^(x) < hS (L) . I t has jumps at

t + S (x) = 2nS (I) (« = 2, 3, •••) , the successive fronts reflected from

the end x = L . Similarily the second integral appearing in (98) vanishes

for t - S1(x) < 2S1{L) and has discontinuities at t - 51(x) = 2nS1(L)

(n = 1, 2, . . . ) , the remaining wavefronts incident on x = L .

Finally we look at medium "b" . In a similar fashion as for medium

"a" , we may write (90) as

d)-. (X« P ) = $r (•£ P ) "*" $i_ (X P )

where

x exp' 1 - -£ (x-L) - ^- (x-L) -

and

(x, p) = 0 ^ exp{-

Then, the stress o,(x, t) has the form
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where

(x, t) = a3(x, t) + a£(x, t) ,

*> - ife
= 0 , for t - -7- (x-L) - < 0 ,

and

exp- - - — 1 -

where

S3(x) i (x-L) = f :r (»J) •

These formulas for the bi-viscoelastic problem are in agreement with

those obtained in §4, where in comparing the last expansion with that

obtained by the formal method, i t should be remembered that the parameters

which appear in connection with medium "b" were assumed constant.

7. Discussion

We have presented the formal Karal-Keller asymptotic technique as i t

applies to propagation of longitudinal waves in viscoelastic bars. Our

primary purpose was to provide justifications for the Karal-Keller

technique as well as demonstrating that this formal method provides a

direct way of solving asymptotically wave propagating problems governed by

hyperbolic partial differential equations. In the first part of this

paper, the Karal-Keller technique was used to solve several problems of

propagation, reflection, and transmission of impact waves. In the second

part, the same problems were solved by means of the Laplace transform. For
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each of the problems considered, the asymptotic formulas obtained by the

transform method were in complete agreement with those obtained by the

formal method, thus providing several verifications of the Karal-Keller

technique.

The Karal-Keller method is a direct procedure which involves only

ordinary differentiation, integration, and algebra. Because of its

directness, i t is invariably true that i t is much simpler than the

procedure of §6, which involves first finding the exact solution, and then

i t s asymptotic expansion.

At the present time no general proof of the validity of the formal

method has been published. I t is therefore important to show, for problems

which can be solved by other means, that the solutions give results which

agree with the asymptotic formulas obtained by the Karal-Keller method.
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