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Abstract Let M be an irreducible 3-manifold M with empty or toroidal boundary which has at least one
hyperbolic piece in its geometric decomposition, and let A be a finite abelian group. Generalizing work
of Sun [20] and of Friedl–Herrmann [7], we prove that there exists a finite cover M ′ →M so that A is a
direct factor in H1(M ′,Z).

1. Introduction

In [20], Sun showed that any closed hyperbolic 3-manifold virtually contains any

prescribed finite subgroup in homological torsion. Sun used the immersed almost-Fuchsian
surfaces of Kahn and Markovic [14] to construct immersed π1-injective 2-complexes. By

using Agol’s result that the fundamental groups of closed hyperbolic 3-manifolds are

virtually compact special [2] and the implications on virtual retractions to quasi-convex
subgroups, Sun finds for any closed hyperbolic 3-manifold a finite cover containing the

prescribed finite abelian group as a direct factor in homology [20, Theorem 1.5].

Since the Kahn–Markovic construction requires that the manifolds be closed, Sun’s

results do not apply to hyperbolic 3-manifolds with cusps. Indeed, Sun asked whether his
result applied also to finite-volume hyperbolic 3-manifolds with cusps. In this paper, we

extend the results of Sun to a larger class of 3-manifolds which includes all finite-volume

hyperbolic 3-manifolds, giving a positive answer to [20, Question 1.8].

Theorem 1.1. Suppose that M is an irreducible 3-manifold with empty or toroidal

boundary which has at least one hyperbolic piece in its geometric decomposition and that

A is a finite abelian group. There is a finite cover N →M so that H1(N ;Z) has a direct
factor isomorphic to A.

Prior to Theorem 1.1, Friedl and Herrmann used [20] and a result of Hadari [10] to show
that for any such M and any k > 0 there is finite cover N →M with |TorH1(N ;Z)|>k [7,

Theorem 1.3]. Independently, Liu showed that any such M admits a finite cover N ′ →M

with |TorH1(N
′;Z)| �= 0 [16, Corollary 1.4].
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The key case in the proof of Theorem 1.1 is the case of finite-volume hyperbolic
3-manifolds. We follow the strategy of [20] but give an independent proof which simplifies

and generalizes Sun’s results. We replace Sun’s use of the results of Kahn and Markovic

[14] with those of Kahn and Wright [15] and replace some arguments of Sun with
an elementary argument using coverings of surfaces. We then apply virtual retraction

properties of relatively quasi-convex subgroups in relatively hyperbolic groups to deduce

both the case where M is finite-volume hyperbolic and also to reduce the general case to

this one. Cooper and Futer [6] independently obtained similar results to those of [15] on
constructing many closed immersed π1-injective quasi-Fuchsian surfaces in finite-volume

hyperbolic 3-manifolds with cusps. However, our arguments rely on the additional control

on the quasi-conformal constants and the holonomies in the Kahn–Wright constructions.
A hybrid hyperbolic manifold is constructed either by inbreeding (c.f. [1, 4]) or

interbreeding (c.f. [8]) arithmetic hyperbolic manifolds. For n > 3 every arithmetic

hyperbolic n-manifold N of simplest type contains a totally geodesic arithmetic hyperbolic
3-manifold M (coming from restrictions of the associated quadratic form). By [3, §9], we
get the following corollary (some of these cases follow from [20]).

Corollary 1.2. Suppose that n> 3 and N is a finite-volume hyperbolic n-manifold which

is either arithmetic of simplest type or a hybrid. Then if A is a finite abelian group, there
is a finite cover N1 →N so that H1(N1;Z) has a direct factor isomorphic to A.

2. Quasi-isometric embeddings

Our first goal is to prove Theorem 1.1 in the case of a noncompact finite-volume hyperbolic

3-manifold. In Section 6, we deduce the general case from this case. In this section, we
record some elementary facts about quasi-isometries and hyperbolic spaces.

Definition 2.1. Let k,λ,κ be constants, and let X,Y be metric spaces. A map f : X → Y

is a k–local (λ,κ)-quasi-isometric embedding if for all x ∈X the map

f |Bk(x) : Bk(x)→ Y

is a (λ,κ)-quasi-isometric embedding.

The following is essentially [15, Theorem A.20].

Proposition 2.2. For all δ, for all κ ≥ 0 and all λ ≥ 1, there exist k,λ′,κ′ so that if Y

is a δ–hyperbolic metric space and X is a geodesic metric space, then any k-local (λ,κ)-
quasi-isometric embedding f : X → Y is a (λ′,κ′)-quasi-isometric embedding.

Proof. Since X and Y are geodesic metric spaces, distances in X and Y are calculated by

geodesics. Therefore, we can apply the standard local-to-global result for quasi-geodesics

(see, for example, [5, Theorem 3.1.4, p.25]).

2.1. Half-planes

Let θ ∈ (0,π]. The space Pθ is the subspace of H
3 obtained from gluing two totally geodesic

half-planes together along their boundary geodesic, meeting at angle θ. There is a natural
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Figure 1. The proof of Lemma 2.3

embedding pθ : H
2 →H

3 given by mapping the positive y-axis to the boundary geodesic
of the two half-planes (we consider H2 in the upper half-space model as a subset of R2).

The image of these boundary geodesics is the pleating locus for pθ.

Lemma 2.3. Given θ ∈ (0,π], there exists κθ ≥ 0 so that for all θ0 ∈ [θ,π] the map pθ0 is

a (1,κθ)-quasi-isometric embedding.

Proof. We show that it suffices to take

κθ = 2 ·arccosh
(

1

sin
(
θ
2

)) .

Indeed, suppose that a,b ∈H
2, let a= pθ(a) and b= pθ(b) and consider the image of the

geodesic segment [a,b] in pθ(H
2). If the sign of the x -coordinates of a and b are the same,

then [a,b] maps to a geodesic segment in H
3 and dH3(a,b) = dH2(a,b) in this case.

Suppose then that the signs of the x -coordinates of a and b are different, and let c∈ [a,b]
have x -coordinate 0. Let c= pθ(c). Then pθ([a,b]) consists of two geodesic segments [a,c]

and [c,b] meeting at some angle η ≥ θ.

Consider the geodesic triangle Δ in H
3 with vertices a,b,c, and let e be the distance from

c to the geodesic [a,b]. The shortest geodesic from c to [a,b] cuts Δ into two right-angled

hyperbolic triangles, one of which has angle at c at least θ
2 . We thus have a hyperbolic

triangle with side lengths e1,e2,e3, say, where the angle opposite e3 is π
2 , and the angle

opposite e2 is at c and is E2 ≥ θ
2 . Let E1 be the angle opposite the side of length e1.

The second hyperbolic law of cosines says

cos(E1) =−cos(E2)cos
(π
2

)
+sin(E2)sin

(π
2

)
cosh(e1),
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so

cosh(e1) =
cos(E1)

sin(E2)
≤ 1

sin
(
θ
2

) .
Let d1 = dH3(a,c) and d2 = dH3(c,b). Observe that dH2(a,b) = d1+d2. It is clear that

d1+d2−2arccosh

(
1

sin
(
θ
2

))≤ dH3(a,b)≤ d1+d2,

and the result follows.

3. Kahn–Wright surfaces

From this section until the end of Section 5, let N be a (noncompact) finite-volume

hyperbolic 3-manifold. We remark that our proof of Theorem 1.1 works in the compact
hyperbolic setting also without changes and is simpler in some ways than Sun’s in this

case.

The set of closed geodesics in N = H
3/Γ is in 1-to-1 correspondence with the set

of conjugacy classes of loxodromic elements in Γ. For a closed geodesic α in N (with

corresponding conjugacy class [γ] ⊂ Γ), let 
(α) denote the length of α (the translation

length of γ) and θ(α) the holonomy class of α (the rotation angle of γ around its axis).

3.1. Pre-good curves

Later in the section, we give a brief discussion of the construction of surfaces due to Kahn
and Wright in [15]. However, we first give a lemma which proves the existence of certain

well-behaved geodesics whose nth powers will become part of the Kahn–Wright surface.

In the next section, we take a cover of the Kahn–Wright surface, cut along a lift of this
nth power, and then quotient by the nth root of the two resulting boundary curves, to

form a complex Xn. This construction is similar to Sun’s in [20] and forms the basis of the

proof of Theorem 1.1 in the finite-volume hyperbolic case. The following is an analogue

in the finite-volume case of Sun’s [20, Lemma 2.9]. In order to use this geodesic in Kahn
and Wright’s construction, it is important to control its height, a measure of how far it

goes into a cusp neighborhood. See [15, §3] for the definition of height in the following

statement.

Lemma 3.1. For n ∈N,ε > 0, μ> 1
2 , there exists R0 so that for all R>R0 there exists a

geodesic α0 in N of height at most μ logR such that
∣∣
(α0)− 2R

n

∣∣< ε
n and

∣∣θ(α0)− 2π
n

∣∣< ε
n .

Proof. For a closed subset Ω of SO(2) and T > 0, let

G(T,Ω) = {α : α is a closed geodesic in N,
(α)≤ T,θ(α) ∈ Ω} .
As noted in [15, §3.1], an application of the Margulis argument shows that

#G(T,Ω)∼ e2T

2T
‖Ω‖ as T →∞ (1)
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which in this case follows, for example, from [18, Theorem 1.1] by setting ϕ := 1Ω the

indicator function on SO(2) (see also [9]).

Considering geodesics α ∈ G(2R/n+ ε/n,Ω)\G(2R/n− ε/n,Ω), where Ω is the interval
( 2πn − ε

n,
2π
n + ε

n ), we have

#

{
α :

∣∣∣∣
(α0)− 2R

n

∣∣∣∣< ε

n
and

∣∣∣∣θ(α0)− 2π

n

∣∣∣∣< ε

n

}
∼ με

e4R/n

4R
. (2)

The arguments in the proof of [15, Lemma 3.1] apply to show that, as R grows, the
proportion of those α with height larger than μ logR shrinks since μ > 1

2 . In particular,

for sufficiently large R, one can find α0 as needed.

Note that α0 may be chosen to be primitive. In the language of Kahn and Wright, αn
0

is an (R,ε)-good curve.

Definition 3.2. Fix n ∈ N and also R,ε. An (R,ε,n)-pre-good curve in N is a geodesic

α0 satisfying the conclusion of Lemma 3.1 for μ= 1.

We remark that Kahn and Wright allow curves to have height at most 50log(R) before

needing to be ‘cut-off’, so certainly curves of height at most logR are fine. Lemma 3.1

asserts that, for fixed n and ε, for large enough R, there exists an (R,ε,n)-pre-good curve
(in fact there are many).

3.2. The construction of Kahn and Wright

In [15], Kahn and Wright build certain quasi-Fuchsian immersed surfaces in N out of

pieces called good pants and good hamster wheels. Each good pant and good hamster
wheel is immersed in N and has geodesic boundary components, which are referred to as

cuffs.

The construction in [15] depends on choices of parameters R (sufficiently large) and
ε > 0 (sufficiently small). A pant is a sphere with three holes, and a hamster wheel is a

sphere with R+2 holes, 2 of which are special. Pants and hamster wheels are good if all

cuffs have complex length within ε of 2R and perfect if they are exactly 2R.
We postpone for now the choice of the parameters R and ε in order to discuss the

construction. Kahn and Wright also specify another pair of parameters called ‘cutoff

heights’, and the purpose of Lemma 3.1 above is to ensure that we can find an α0 whose

height stays below the cutoff heights and whose nth power is a good curve.
Suppose that we find a curve α0 as in Lemma 3.1 so that α= αn

0 is an (R,ε)-good curve

and so that the height of α0 (and hence α) is at most logR. Then Kahn and Wright build

a surface S out of good pants and good hamster wheels, and α appears as a cuff on at
least one (in fact many) of these pieces.

Let HR = {(x,y) ∈H
2 | x≥ 0} and HL = {(x,y) ∈H

2 | x≤ 0}, and let m= {(x,y) ∈H
2 |

x= 0}=HR∩HL.
Consider α0 : S

1 →N as a map from the circle to N parametrized proportional to arc

length, and let u = α0(1). Let φn : S
1 → S

1 be the connected n-fold covering map, and

let α : S1 →N be the composition α0 ◦φn. Suppose f : S0 �N is a Kahn–Wright surface

https://doi.org/10.1017/S1474748022000329 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000329


2936 M. Chu and D. Groves

and that there is a map C : S1 → S0 so α = f ◦C. Let φ−1
n (u) = {u1, . . . ,un}, and note

that there are n different points {a1, . . . ,an} on S0, so f(ai) = α(ui) for each i.
Choose a basepoint b ∈H

3, and let π : (H3,b)→ (N,u) be the based universal covering

map. Fix a basepoint c ∈H
2, and for each i, let τi : (H

2,c)→ (S0,ai) be a based universal

cover so that τi(m) = C(S1).

The map f elevates to n distinct (based) maps:

f̃i : (H
2,c)→ (H3,b)

so that for each i we have π ◦ f̃i = f ◦ τi.
Now, for a pair i �= j from {1, . . . ,n}, we have f̃i(m) = f̃j(m). Thus, we can take the

two maps f̃i|HR
and f̃j |HR

and glue them together via an orientation-preserving isometry

along the boundary to get a continuous map f̃HR
i,j : H2 → H

3, and similarly for the two

maps restricted to HL to get a continuous map f̃HL
i,j .

Kahn and Wright prove that, for appropriate choices of parameters, their surface, built

as an assembly of good pants and good hamster wheels, is close to an assembly of perfect

pants and perfect hamster wheels and that the map which takes the ‘good’ assembly to
the ‘perfect’ assembly is compliant (see [15, §A.5]), which in particular means that it

takes cuffs to cuffs. For a perfect assembly with cuff α, the construction analogous to

the f̃i,j leads to pairs of totally geodesic half-planes glued along their boundary geodesic,
namely to a map pθ for some θ. Thus, the map that takes the good assembly to the

perfect assembly induces a map between f̃HR
i,j : H2 → H

3 and some map pθ : H
2 → H

3,

and this map takes m to the pleating locus for pθ.

Our first task is to bound θ away from 0, and our second is to show that the two
maps are close. The sense in which they are close will be that of [15, p. 554]—being of

ε0-bounded distortion to distance D for appropriate choice of ε0 and D.

Denote the angles of the maps pθ induced by i, j and HR by θ(i,j,HR) and for i, j and
HL by θ(i,j,HL).

The following is a summary of the above discussion and also of [15, Theorem A.18].

In the following statement, R0 is the constant from the statement of Lemma 3.1 (with
values n, ε0 and μ= 1, respectively).

Theorem 3.3. Fix n∈N. For all D there exist C, ε0 and R1 >R0 so that for all ε∈ (0,ε0)

and all R > R1 and any (n,R,ε)-pre-good curve α0 there exists a Kahn–Wright surface

f : S0 �N containing α= αn
0 as a cuff, constructed as an (R,ε)-good assembly.

For each i,j ∈ {1, . . . ,n} with i �= j, we have the following:

(1) For any point v which lies within D of m in H
2, we have

d
(
f̃HL
i,j (v),pθ(i,j,HL)(v)

)
,d
(
f̃HR
i,j (v),pθ(i,j,HR)(v)

)
<Cε

and

(2) For any point z ∈ H
2 lying at distance at least D from m, the maps f̃HL

i,j and f̃HR
i,j

restricted to the ball of radius D about z are (1+Cε,Cε)-quasi-isometric embeddings.
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Moreover, we have

θ(i,j,HR),θ(i,j,HL) ∈
(π
n
,π
)
.

The following is an easy consequence of Theorem 3.3 and Lemma 2.3. In the following

statement εD is the constant from Theorem 3.3 applied to n and D, R0 is the constant

from Lemma 3.1 applied with choices n, εD and μ = 1, and R1 is the constant then
obtained from Theorem 3.3.

Corollary 3.4. Fix n ∈ N. There exist λ,κ so that for any D there exist RD > R1,R0

and εD > 0 so that for any α0 and f : S0 �N as in Theorem 3.3 with R >RD and any
ε ∈ (0,εD) the maps f̃HR

i,j and f̃HL
i,j are D-local (λ,κ)-quasi-isometric embedding.

Now, choose D,λ1,κ1 so that any D–local (λ,κ)-quasi-isometric embedding from H
2 to

H
3 is a global (λ1,κ1)-quasi-isometric embedding (see Proposition 2.2). This D then gives

RD and εD as above.

Lemma 3.1 proves that there is an (n,RD,εD)-pre-good curve α0, and the construction

from [15] proves that there is an f : S0 →N with α=αn
0 as a cuff satisfying the conclusions

of Theorem 3.3 and Corollary 3.4, with R=RD.

We fix this map f : S0 �N , along with n, D, RD, εD, α0, α = αn
0 , κ and ε as chosen

above for the next two sections.

4. The space Xn

By standard separability properties of surface groups, we may find a cover S → S0 to

which α lifts as a nonseparating simple closed curve and so that:

(1) The injectivity radius of S is at least max{2D,λ1κ1}, and
(2) The lift of α to S is contained in an embedded collar of width at least

max{2D,λ1κ1}.
Given the surface S, we build a space Xn which immerses into N, exactly as in [20].

Passing from S0 to S before constructing Xn makes the proof that Xn is π1-injective

with quasi-convex image much simpler than Sun’s proof from [20, §4]. Let C denote the
image of α in S, and let φn

C : C → S
1 be an n-to-1 covering map, and let τC : C → C be

a deck transformation. We may choose φn
C so that τ is an isometry.

Definition 4.1. The space Xn(S,C) is defined by cutting S along C to get a surface S1

with two boundary components, denoted C1 and C2, and taking the quotient of S1 by

the relation generated by c∼ τCi
(c) for c ∈ Ci and i= 1,2.

Suppose that S is equipped with a hyperbolic metric, and consider the induced metric

on S1. Since the maps τCi
are isometries, there is a natural induced quotient metric on

Xn(S,C), which is locally isometric to H
2 away from the images of the Ci.

The following result is clear from the construction of S from S0.

Lemma 4.2. The injectivity radius of Xn is at least max{2D,λ1κ1}.
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Let S1 be the surface obtained from S by cutting along C, and let C1,C2 be the boundary
components of S1. Let q : S1 →Xn be the defining quotient map, and let Ci = q(Ci) for

i= 1,2.

Because in S the curve C has an embedded collar of width at least 2D, for any i,j ∈
{1,2}, any two distinct elevations of Ci and Cj to X̃n are at distance at least 4D from

each other.

Definition 4.3. Suppose that A= {Z1, . . . ,Zm} is a finite collection of metric spaces and

that k > 0. A metric space Z is k -modeled on A if for every z ∈ Z there is an i so that
the ball of radius k about z is isometric to a ball in Zi.

Recall HR = {(x,y) | x ≥ 0,y > 0} is the (closed) half-hyperbolic plane (in the upper

half-space model). Let Wn be the space obtained from n copies of HR glued along the

boundary geodesics (by an isometry).

Lemma 4.4. The space X̃n is D-modeled on Wn.

Proof. Let x ∈ X̃n, and consider the covering map π : X̃n →Xn.

Case 1: d(π(x),{C1,C2})≤D.

In this case, in X̃n there is a unique elevation of some Ci which lies within D of x.

Let y be a point in this elevation so d(x,y) ≤D. Then BD(x) ⊆ B2D(y), and B2D(y) is
isometric to a ball of radius 2D in Wn.

Case 2: d(π(x),{C1,C2})>D.

In this case, there is no elevation of either Ci which lies within D of x, and BD(x) is
isometric to a ball of radius D in H

2 (and so in Wn).

By construction, the immersion f1 : S →N obtained from composing the covering map

S→ S0 with f : S0 �N yields an immersion g : Xn �N . Let g̃ : X̃n →H
3 be the induced

map on universal covers.

Two points x,y in X̃n at distance at most D either lie in an isometrically embedded

copy of a half-space from H
2,= or else in two different ‘sheets’ of a copy of Wn. In either

case, it follows immediately from Corollary 3.4 that g̃ is a D–local (λ,κ)-quasi-isometric

embedding. Thus,

Theorem 4.5. The map g̃ : X̃n →H
3 is a D-local (λ,κ)-quasi-isometric embedding and

hence is a (global) (λ1,κ1)-quasi-isometric embedding.
In particular, since the injectivity radius of Xn is at least λ1κ1 the map g is π1-

injective, and g∗(π1(Xn)) is relatively quasi-convex in π1(N). Moreover, g∗(π1(Xn)) does

not intersect any (conjugate of) the cusp subgroups of π1(N).

5. Virtual retractions and the proof of Theorem 1.1 in the hyperbolic case

In this section, we prove Theorem 1.1 in case of a (noncompact) finite-volume hyperbolic
3-manifold N. Let Γ = π1(N). By [22, Theorem 17.14], π1(N) is the fundamental group of

a compact virtually special cube complex X. Let Γ′ ≤ Γ be a finite-index subgroup so that

the cover of X corresponding to Γ′ is special, and let N1 be the cover of N corresponding
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to Γ′. As in Section 4, construct an immersion g : Xn →N1. Note that (Γ
′,P) is relatively

hyperbolic, where P consists of the (abelian) cusp subgroups.

Let H = g∗ (π1(Xn)) ≤ π1(N1) = Γ′. The subgroup H is relatively quasi-convex in Γ′,
and so by [12, Corollary 6.7] (we use the formulation as in [19, Theorem 6.3]) that H is

a virtual retract of Γ′. Let Γ′′ be a finite-index subgroup of Γ′ which retracts onto H. Let

N2 be the finite cover of N1 corresponding to Γ′′. As in [20, Proposition 3.7], we have the
induced maps on homology:

H1(Xn;Z)
g∗−→H1(N2;Z)

r∗−→H1(Xn;Z).

Therefore, since r ◦ g∗ = idH , H1(Xn;Z) = Z
2·genus(S)+1 ⊕ Z/nZ is a direct factor of

H1(N2;Z). In particular, Z/nZ is a direct factor of H1(N2;Z), and this proves the

hyperbolic case of Theorem 1.1 in the case that A is finite cyclic.
Given a finite abelian group A, induction on the rank k of A also works as in [20,

Proposition 3.9] as follows. Let A= A1⊕Z/nk+1Z, where A1 =⊕k
i=1Z/niZ. Suppose by

induction that H1 ≤ Γ′ is a relatively quasi-convex free product of images of π1 (Xni
) (for

i=1, . . . ,k) and that H2 = (gk+1)∗
(
π1(Xnk+1

)
)≤Γ′. Choose any γ ∈Γ′ whose fixed points

in ∂H3 are disjoint from both limit sets Λ(H1) and Λ(H2). Then after conjugating H2 by

some sufficiently high power γm, the first Klein–Maskit combination theorem [17] applies

(note that by [11, Corollary 1.3] a subgroup is relatively quasi-convex if and only if it is
geometrically finite). Since H2 is relatively quasi-convex, the free product H1 ∗γmH2γ

−m

is also a relatively quasi-convex subgroup of Γ′ isomorphic to the abstract group H1 ∗H2.

The proof of the hyperbolic case of Theorem 1.1 for a general finite abelian A then follows
exactly as in the case of a finite cyclic A above.

6. Nonhyperbolic manifolds

We now prove Theorem 1.1 in general. To that end, suppose that M is an irreducible
3-manifold which has at least one hyperbolic piece in its geometric decomposition and

that A is a finite abelian group. By [19, Theorem 1.1], there exists a CAT(0) cube complex

X equipped with a free π1(M)–action so that there are finitely many orbits of hyperplanes

and so that π1(M)

∖
X has a finite special cover. Let Γ1 ≤ π(M) be a finite-index subgroup

corresponding to the finite special cover of π1(M)

∖
X , and let M1 be the finite cover of M

corresponding to Γ1. Let Mh be a hyperbolic piece in the geometric decomposition of M1,

and let Γh := π1(Mh) ≤ π1(M1) (basepoints/conjugacy classes are not important here).

According to the construction in the previous sections, there is a relatively quasi-convex
subgroup H of Γh so that A is a direct factor of H1(H;Z). Theorem 1.1 then follows

immediately from the following result. This result is presumably known to the experts,

but we were unable to find it in the literature.

Proposition 6.1. There is a finite-index subgroup Γ0 ≤ π1(M1) so that H ≤ Γ0 and H
is a retract of Γ0.

Proof. Let M̃h ≤ M̃ be the (Γh–invariant) universal cover of Mh inside the universal

cover of M. The space X is built via a wallspace construction on M̃ as in [13]. As in [13,
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§3.4], we can associate to M̃h a hemiwallspace consisting of those half-spaces in M̃ which

intersect M̃h (see [13, Example 3.20]. This builds a Γh-invariant convex subcomplex Xh

of X by [13, Lemma 3.24].

By [19, Theorem 2.1], the surfaces of the cubulation intersecting Mh all intersect Mh

in a geometrically finite surface. Therefore, by [13, Theorem 7.10], the Γh–action on Xh

is (free and) co-sparse (see [21, Definition 7.1]).

According to [21, Theorem 7.2] inside of Xh there is an H -invariant convex subcomplex

Z upon which H acts co-sparsely. In fact, since H does not intersect any of the parabolic
subgroups of Γh, the subcomplex Z found in [21, Theorem 7.2] is H -cocompact (this

follow immediately from the proof).

Since Γ1

∖
X is special, it follows from [12, Corollary 6.7] (we use the formulation as in

[19, Theorem 6.3]) that H is a virtual retract of Γ1.
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