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Let m, n and ! be positive integers satisfying m = n = | = 3. Denote by
h(m,n,l) the largest integer with the property that from every n-subset of
{1,2,---,m} one can select h(m,n,l) integers no ! of which are in arithmetic
progression. Let f(n,]) = h(n,n,l) and let g(n,l) = min, h(m,n,l). In what
follows, by a P,-free set we shall mean a set of integers not containing an arithmetic
progression of length 1.

It has been conjectured that f(n,I) = o(n) for each fixed [, but this has been
proved only in the cases ! =3 and 4, by Roth [8] and Szemerédi [8] res-
pectively. Szekeres had conjectured (see [3; p. 223]) that to each I there corre-
sponds a number o, < 1 such that f(n,]) = O(n™"). This however was proved false
by Salem and Spencer [9] who proved that f(n,3) > n !~ (e 2¥a)/leloe" for every
e> 0 provided n is large enough. Improvements, refinements and extensions
of this result were obtained by Behrend [2], Moser [5] and Rankin [6]. Rankin
proved that if

) 2°< 1 <2 and c(s,8) = (s +1)2*(log2)’C* V(1 + &)
then
(2) f(n, l) > nl-—c(s,e)/(log n)s/(s+“

provided n is sufficiently large.

As far as the function g 1is concerned, Riddell [7] proved that
g(n,D) > cn*~*" and that g(n,3) > cn'/?. Erdds has informed us that Sze-
merédi has recently proved g(n, 3) > n' ~* for every £ > 0 provided n is sufficiently
large. Szemerédi’s proof has not yet been published. We observe that while
g(n, 1) < f(n, 1), it is only in the case | = 3, with n = 5 or 14, that strict inequality
is known to hold. The sets 1,3,4,5,7 and 1,3,4,5,7,8,9,11,12,13,15,16,17,19
illustrate that g¢(5,3) = 3<f(5,3) =4 and ¢(14,3) £ 7 < f(14,3) = 8. The
values of f(n,3) for n < 52 have been computed by Wagstaff [11].

With regard to the function h, Riddell [7] proved that if a > 1,
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(3) h([na] n 3) > nl -3 \/Zn log 2/logn ~ 3 log 2/logn
b 3 .

In {7] Riddell proves also that if m = n® then almost all n-subsets of
{1,2,-.-,m} contain a Ps-free subset of cardinality at least n' = Vetog2 +oyViogn,

The arguments used in [7] do not generalize to the case [ > 3. It is to this
question that we turn our attention in this paper. We prove the following two
results which improve and extend the results in [7].

THEOREM 1. Let | = 3 be given and let s and c(s,&) be defined by (1).
Then for m = my(s, ¢)

4 h(m, n, 1) > nm~ ) dogmeizr D
, .

THEOREM 2. Almost all sets of n integers from {1,2,---,m} contain a
P-free subset of cardinality at least nl~ /NI D pusiided m = nt*®
and n is sufficiently large.

PrOOF OF THEOREM 1. Let A be a Pp-free subset of {1,2,---,m}. We assume
that A4 is maximal so that IA ] = f(m, ). If 1 is an integer then by A+ 1 is meant
{a+ A|aeA}. Let A, = 0, and after numbers 4,,4,,---,4, have been defined,
select 4, so that A+ 4, contains the largest number of elements in {1, 2, ---, m}
that do not belong to A + 4; for j = 1,2, .-, r. Let k be the first integer such that
Uf-14+4;2{1,2,---,m}. It was proved in [1], using a modification of an
argument of Lorentz [4], that

< 2m + 17mb g
“fm) ;5

Since the argument is not long we present the proof of (5) here. Let
M= {1,2,--,m} and let A, = MN(A+ 2). Let B, = 4,,, and for r = 2 let
B, = A; — iZ14,,. Let z = f(m,]) and define numbers #(z), #(z — 1), -+, (1),
#(0) recursively as follows: 1(z) is the largest integer such that |B,| = z for
u=12,--,4z). After the numbers #(z), t(z — 1),---,#(u + 1) have been defined
(u 2 1) let t(u) be the largest positive integer for which |B,| = u for

&)

z z

T o<p s I i),
i=u+1 i=u
provided such a positive integer exists. If there is no such positive integer, put
t(u) = 0. Finally put #(0) = 0. It is clear that

z

(6) k= X tu).
1

H=

Now define a sequence of subsets M, M, _,,---, M, My of M as follows: M, = M
andforl Su=<z—1,
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z

M, = {a|aeM,a¢AL. for i =1,2,-, X t(j)-}

j=u+1
Let M, be the empty set. Then clearly, for 1 £ u < z,
| M,_, | = |M,| — ut(u).
Equivalently,
1
&) ) = (| M| = | My-4]).
From (6) and (7) we get
0 AR
(8) k=u§1 7(|Mu'_lMu-l|)=u§1 u(u+1) z
For each A, |l| < m, we have |A,1 nM,,|§ u and hence
9) 3 |4, M, | £ @m + Du.
A==m

Since each re M, belongs to exactly z of the sets 4, we have
(10) T |4 0M,|=z|M,.

A=—m
From (9) and (10) we get

(an |M,| < 2m + 1

u z

and from (8) and (11) it follows that

k< £l
u

2m +1 i

z u=1

which is (5).

Now let S= M, |S| = n. Then for some j, 1 £j £ k we must have
|S N (4 +A)| 2 n/k. Since arithmetic progressions are invariant under trans-
lation S N(A + 1)) is P-free. Hence we have

(12) h(m,n, ) = n/k.
It now follows from (2), (5) and (12) that (4) holds and hence Theorem 1 is proved.
REMARK 1. If we take m = [n"] and | = 3 in (4) we get
h([n®],n,3) > nl_z\/m,

which is an improvement over (3).
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REMARK 2. One can also ask questions of the following type: What is
the size of a maximal P,-free set that can be chosen from some set of integers that
arises in a ‘‘natural way’’? We mention only one example. It follows from our
theorem that one can select from the set of the first n primes a P,-free subset of
cardinality at least n'~®®/(Em*“* D “Thic can be seen by taking m to be the
nth prime and appealing to the prime number theorem.

Before proving Theorem 2 we shall need to prove some lemmas which are
extensions of results given in [7]. By a P set of intervals we shall mean a set of
intervals

Xj = (u +(x1— 1)0, u +xjv],j = 1,2,"',"

where {x,, X,, -+, X,} is a Pi-free set of integers and where u and v are real numbers,
v>0. Put X; =@+ (x;— v, u+(x;—3Hv] and put X; = (u + (x; — v,
u + x;v].

LeMMA 1. {Jj=; X; contains no I-term arithmetic progression with terms in
different intervals; similarly for |Jj-4 X;.

Proof. The proof in the case I = 3 is given in [7]. The argument for I 2 3
is similar. Suppose |J;-;X; contains an [-term arithmetic progression. If two
terms of this arithmetic progression lie in an interval X; then all of the terms
must belong to X; since the common difference of the arithmetic progression
is less than the distance between intervals. The only other possibility is that the [
terms of the arithmetic progression are in ! different intervals, say X; , X, ,---, X ;.
However, this implies that x; ,x; , .-, x;, form an arithmetic progression and this
is a contradiction. The same argument applies to {J;-, X;.

LEMMA 2. If a set of numbers has elements in each interval of a P set of
r intervals, then it contains a P-free subset of cardinality at least [(r+ 1)/2].

Proor. This follows easily from Lemma 1.

LEMMA 3. Let t be an integer, t < m. Let w = mt™*. Let b(k,n) be the
number of n-subsets of {1,2,---,m} that have elements appearing in fewer than
k of the intervals

(13) 0, w], (w,2w], (2w, 3w}, ---,((t — Dw, tw].

Then

(W + 1) ”tkkn+1

(14) b(k,n) < ]

ProOOF. Denote by f(j) the number of n-subsets of {1,2,---,m} which have
elements in exactly j of the intervals (13). Then
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fU)g(;)m+h+§;h="UW2}”)GW§;”)'“([Wilﬁ

J

where the summation is over all compositions of n into exactly j parts. From the
b

inequality N < d < a’and the multinomial theorem we get
b b!

w+ 1 < w + D"y
= n!

fH=sr >

bitbyt+e+b;=n b1!b2! bj!

Now we can estimate b(k,n). We have

e k-1 . 1"tk +1
O S e
n- j=1 n-

k-1
bk,m) = X f(j) =
=1

i
and this 1s (14). Hence Lemma 3 is proved.

If we take ¢t = [n'"¢] in Lemma 3, put k = [en/(1 + ¢)] and impose the
condition 0 < ¢ < 1/(2e — 1), we get, after some routine calculations,

b(k, n) = o(('::)) :

Thus we have a further lemma.

LeMMA 4. Let 0<e < 1/2e—1). Let k = [enj(1+¢)], t = [n'**],
m =t and w = mt~'. Then almost all n-subsets of {1,2,---,m} have elements
occurring in at least k of the intervals (13).

PrOOF OF THEOREM 2. Let ¢, m, t, n and k satisfy the conditions of Lemma 4.
Let S be an n-subset of {1,2,---,m}, and suppose S has elements in at least k of
the intervals (13). By Lemma 4, almost all n-subsets S will have the latter property.
At least h(t, k,I) ofthese ¢ intervals form a P® set of intervals, and hence, by
Lemma 2, S contains a P,-free set of cardinality at least [{h(t, k, 1) + 1}/2].
It follows from this and Theorem 1 that S contains a P,-free set of cardinality at
least (k/2)r~<(s:9)/0oe*/"* 1 Thig implies Theorem 2.

ReMARK. 3. If we take /| = 3 we find that almost all n-subsets of {1,2, ---, m}

contain a P,-free set of cardinality at least nt~2V?2le20+alogn nroyided
3 y p

m = n'** and n is sufficiently large. This result is sharper than the corresponding
result in [7].
References
f1] H. L. Abbott and A. C. Liu, ‘On partitioxiing integers into progression free sets’, J. Comb. T.
(to appear).

[2] F. A. Behreng, ‘On sets of integers which contain no three terms in arithmetical progression’,
Proc. Nat. Acad. Sci. U. S. A. 32 (1946), 331-332.

https://doi.org/10.1017/5144678870001990X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001990X

[6] Arithmetic progressions 193

[3] P. Erdos, ‘Some recent advances and current problems in number theory’, Lectures on Modern
Mathematics, Vol. 3, T. L. Saaty, ed. (Wiley, New York, 1963).

[4] G. G. Lorentz, ‘On a problem of additive number theory’, Proc. Amer. Mcth. Soc. 5 (1954),
838-841.

[5] L. Moser, ‘On non-averaging sets of integers’, Can. J. Math. 5 (1953), 245-252.

[6] R. A. Rankin, ‘Sets of integers containing not more than a given number of terms in arithme-
tical progression’, Proc. Roy. Soc. Edin, A, 65 (1962) 332-344.

[7]1 J. Riddell, ‘On sets of integers containing no / terms in Arithmetic progression’, Neiuw Arch.
voor Wisk. (3), 17 (1969), 204-209.

[8] K. F. Roth, ‘Sur quelques ensembles d’entiers’, C. R. Acad. Sci. Paris. 234 (1952), 388-390.

[9] R. Salem and D. C. Spencer, ‘On sets of irtegers which contain no three terms in arithmetical
progression’, Proc. Nat. Acad. Sci. U. S.A. 28 (1942), 561-563.

[10] E. Szemerédi, ‘On sets of integers containing no four terms in arithmetic progression’, Acta.
Math. Acad. Sci. Hung. 20 (1969), 89-104.

[11] S. S. Wagstaff, Jr., ‘On sequences of integers with no 4, or no 5 numbers in arithmetical
progression’, Math. Comp. 21 (1967), 695-699.

University of Alberta, Edmonton, Alberta

University of Victoria, Victoria, British Columbia

https://doi.org/10.1017/5144678870001990X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001990X

