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COMPUTING EIGENVALUES OF STURM-LIOUVILLE
SYSTEMS OF BESSEL TYPE

by A. BOUMENIR and B. CHANANE
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In this paper we shall develop a new method for the computation of eigenvalues of singular Sturm-Liouville
problems of the Bessel type. This new method is based on the interpolation of a boundary function in
Paley-Wiener spaces. Numerical results are provided to illustrate the method.

1991 Mathematics subject classification: 34L15.

1. Introduction

In this paper, we shall present the theory of a new method for computing
eigenvalues of a particular class of singular Sturm-Liouville problems and give
numerical results of its use on different problems. The method handles problems that
are perturbations of the Liouville normal form of Bessel's equations of the following
form:

[^ q(x)]y = Xy, 0<x<n (J 1}

\y(n,X) = 0,

where q(.) is real valued, q(.) e LUoc(0, n) and limTJOx2q(x) > 1 - v2.
It is well known that the differential expression given by (1.1), generates a symmetric

operator regular at x = n and in the limit point case at the singular end x = 0. Thus
only one boundary condition, at x = n, is needed to generate a self-adjoint extension
(see [7, p. 1414]). We recall that, when q{x) = 0, the deficiency indices are (1,1) if v > 1
and (2,2) if 0 < v < 1. It is also well known that the spectrum of the self-adjoint
operator defined by (1.1) is discrete, see [7] and ([12, p. 210]).

Due to the importance of eigenvalues in applied mathematics, the problem of
computing eigenvalues Sturm Liouville systems has attracted many researchers, [9, 3,
11, 10, 13, 4 and 2], to cite a few as well as articles based on the well known and
powerful codes SLEDGE, SLEIGN, and SLEIGN2.

In [5] a new method, based on the analytic properties of the boundary function,
was introduced to tackle with success the computation of eigenvalues in the regular
case. The question was whether this idea could be extended to include the singular case.
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We shall see that for equations of Bessel's type, the Shannon sampling theorem, see
[8] and [15], is still applicable and yields satisfactory results.

This paper is organized as follows. In Section 2, we use the semi-classical
approximation to obtain asymptotics to the solution of the differential equation. In
Section 3, Shannon's sampling theorem is used to interpolate the boundary function
which is in a Paley-Wiener space. In Section 4, some numerical results are worked out
to illustrate the theory.

2. Preliminaries

It is well known that the semi-classical approximation method may be used to
estimate the solution of a differential equation for large real values of the parameter X.
We consider the solutions of the differential equation which are square integrable at
x = 0 and which, in the limit circle case, satisfy the Friedrichs boundary condition at
x = 0. These solutions are all scalar multiples of the particular solution which solves
the following integral equation:

G(x, t, n)q(t)y(t, ft)dt (2.1)

where

and

TtZ . . . •>

u(z) := J—J£z) and yr > 1 -

The Green's function is defined by ([6, p. 13])

if— lV
G(x, t, fi) = —-— {wQ/x)w(-f/£) •

where w(z) := i exp(irc/)(f z^H^^z), (for the definition of the Bessel functions see [1]).
The following upper bound

is easily proved using
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where C is a constant, see [14] and [6].
Thus if £ x\q{x)\dx < oo successive approximations, see ([6, (1.5.5)]) yield

»

which means that for each fixed x the solution y(x, ft2) is an entire function in \i of
order one and type x. Furthermore for each fixed x and as \\i\ -> oo we have

I3<x. /i2) - /*-|-I«0«)| = C ^ y - p ^ J e"-^o(l). (2.5)

From the above estimates the following asymptotic holds, see ([6, (1.5.7)])

_Lei"M*0(l) |^| _• oo.

In the sequel we shall need Paley Wiener spaces, which are defined by

PWa := IF(Z) entire : |F(z)| < Cea|""z| and f ° |F(x)|2<ix < ooj.

From now on, we shall assume that fij x\q(x)\dx < oo. In particular, this means that
henceforth we are considering limit-point problems only. From (2.4), we deduce

Theorem 1. If f^ x\q(x)\dx < oo and v > ^ then for each fixed x, y{x, /x2) e PWX as a
function of ft.

The asymptotics in (2.5) will help us to approximate the solution y defined in (2.1)
by the solution yt of the following initial value problem

= iy». s<x<n, ( 2 6 )

*. ̂ ) = J*irj8J,0iS). y'tf, A) = J\iT j u/5 )]

The initial conditions are dictated by the integral equation given by (2.1) and 8 is taken
"small". Recall that
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r G(x, t, n)q(t)y{t, n2)dt 0 < x < rc,

• f G(x,t,(i)q(t)ys(t,fi
2)dl

Ji

(2.7)

5<x<n.

This helps to avoid the singularity at x = 0 for computational purposes.

Theorem 2. If f^ x\q(x)\dx < oo, Im/i = 0 and v > \ then

W«. M2) - *(«. S)\ < C2 \ ,+, / t|«(t)| A
(1 + |/i|7C) Jo

Proof. Let 0(x, /i2) := y(x, /z2) - y,(x, fi1), for «5 < x < n, then

d(x, ft2) — I G(x, t, u)q(t)0(t, ir)dt + I G(x, t,
Ji Jo

It is easily seen that (2.2) and (2.4) imply

fx ( t

- C / (TTS

using Gronwall's inequality

< CCX

(2.8)

hence the result.

3. Sampling

It follows from Theorem 1 that y(n,fi2) e PWn, as a function of \i and so it can be
recovered from a sequence only of its values at the sampling points. We now recall the
well known W.S.K. (Whittaker-Shannon-KotePnikov) sampling Theorem ([8] and
[15]).
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/ / / ePW,, then

and the convergence is uniform in any compact subset of the complex plane and also in
L2

dx.

Clearly the eigenvalues Xn of the problem are the zeros of

B(JJ) '•= y(n< H2) £ PWj,

and therefore by W.S.K. theorem we obtain

, . sm[n(ji - «)]

Similarly let

|n|<JV >l\J* n)

where B6(n) = ys(n, n2).

Theorem 1. For all e > 0 and p > 0 there exist 8 > 0 and a positive integer N such
that

\B(ji) - BNS(n)\ < e, VJI e [-p, p].

Proof. Given e > 0, and k > 0, it follows from Theorem 2 that there exits a 8 > 0
such that

sup ^

Using an estimate of truncation error, see ([15, p. 93]), there is an integer N such
that

TtVl - 4~*(N + 1)' LV̂ V - H JN + n] 2

where E, = / ^ l/i'B^Oi)!2^. Thus the result where p := min(JV, k).
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Remark 2. The truncation error is zero at the sampling points and bounded over
[-N, N].

Corollary 3. (error estimate) For any given e > 0, there exist a 5 > 0 and N e N such
that ifJL and nNi denote the roots of B and BNi respectively, then the following estimates
hold:

- e < BNJ(JM) < e and \fiNiS -n\<j-

Proof. From the above theorem and the fact that \i is a zero of B, we conclude that
\BNS(p)\ < e, which can be written as \BNi(Ji) - BNS(jxN})\ < e and by the mean value
theorem, \J1 — nNs\.\B'Nj(C)\ < £ for some ( between p and nNS\ hence the result. Note
that the zeros of BNi are simple for e small enough and therefore 5 ^ ( 0 / 0 around

Observe that from —e < BNS(Ji) < e and a local inversion of BNi(.) we obtain an
enclosure for the eigenvalues

•p e (BjjJ,(Te). Bj&(±e» (3.2)

depending on the sign of B'NS. Recall that the coefficients yi(n, n2) are computed
numerically from (2.6) and thus the function BNi(.) is known from (3.1). Therefore
(3.2) provides a practical error bound for the obtained eigenvalues.

4. Numerical results

We shall consider the eigenvalue problems given in the examples below where v > 1
(limit point case at x = 0). In each example, we shall compute the sampling values
ys(n, fi2) at the points fi = 0, 1, 2 , . . . . 20, and where 5 = 10~5. These sampling values
are then used to interpolate Bs(ji), and then solve for its zeros. The outputs of
SLEIGN2 have been obtained using a tolerance of 10"6

Example 1. Bessel's Equation (v = 5/2)

= iy. o<x<n

\y(n,X) = 0.

Here the solution is given by y(x, ft2) = y/xJ,(xn) and the eigenvalues satisfy
J=0
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(Eigenvalues /J2)

Sampling N = 20 SLEIGN2

1.834566041
2.895032021
3.922513938
4.938451519
5.948905035

1.834566109
2.895032290
3.922514613
4.938452886
5.948907470

1.834567524
2.895034369
3.922517049
4.938453199
5.948909144

Example 2. (v = 2)

H (Eigenvalues

Sampling N = 20

2.462949030
3.288339398
4.149833151
5.063634795
6.007577378

SLEIGN2

2.462950016
3.288353392
4.149866239
5.063671968
6.007585813

Example 3. (v = 3/2)

-y" 0<x<n

\i (Eigenvalues /z2)

Sampling N = 20 SLEIGN2

1.699674822427
2.604506077325
3.570068095387
4.553053525686
5.543261224280

1.699655059
2.604389293
3.569732553
4.552323791
5.541903482
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Example 4. (v = 5/2)

-y" + (-^ + My = Ay, 0 < x < n

(n, X) = 0.

(Eigenvalues (i2)

Sampling N = 20 SLEIGN2

1.970274439470 1.970276075
3.004360435708 3.004362749
4.015153641332 4.015156884
5.019347630098 5.019351323
6.021006315094 6.021010173

5. Conclusion

In this paper we succeeded in generalizing our approach for the localization and
approximation of eigenvalues for regular Sturm-Liouville problems [5], to the singular
case. The approach is based on the well established technique: Shannon's sampling
theorem. The results obtained are promising and agree with the ones obtained by the
code SLEIGN2 to a high precision. Extension of this work to the limit circle case will
be dealt with in a forthcoming paper where the codes SLEIGN2 and SLEDGE will
be used to check our results.
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