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Abstract
We study homotopy groups of spaces of long links in Euclidean space of codimension at least three. With multiple
components, they admit split injections from homotopy groups of spheres. We show that, up to knotting, these
account for all the homotopy groups in a range which depends on the dimensions of the source manifolds and
target manifold and which roughly generalizes the triple-point-free range for isotopy classes. Just beyond this range,
joining components sends both a parametrized long Borromean rings class and a Hopf fibration to a generator of
the first nontrivial homotopy group of the space of long knots. For spaces of equidimensional long links of most
source dimensions, we describe generators for the homotopy group in this degree in terms of these Borromean
rings and homotopy groups of spheres. A key ingredient in most of our results is a graphing map which increases
source and target dimensions by one.
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1. Introduction

This paper concerns homotopy groups of spaces of links of various dimensions, where the source
and target manifolds are either Euclidean spaces or spheres. We focus mainly on spaces L𝑛

𝑝1 ,..., 𝑝𝑚 :=
Emb𝑐

(∐𝑚
𝑖=1 R

𝑝𝑖 , R𝑛
)

of long links, meaning smooth embeddings
∐𝑚

𝑖=1 R
𝑝𝑖 ↩→ R𝑛 with fixed compact

support. For the most part, we will assume 𝑝1, . . . , 𝑝𝑚 ≤ 𝑛 − 3. Extensive progress that has been made
on the rational homotopy type of these spaces, but less is known over the integers, and less is known
about explicit ‘geometric’ generators of these homotopy groups than about their ranks.

We study map 𝐺 : ΩL𝑛
𝑝1 ,..., 𝑝𝑚 → L𝑛+1

𝑝1+1,..., 𝑝𝑚+1 given by graphing, in the sense of the graph of
a function. It produces an embedding from a based loop of embeddings by incorporating the loop
parameter into both the source and target; see Definition 2.4. It is most easily visualized when 𝑛 = 2 and
𝑝1 = · · · = 𝑝𝑚 = 0. Extending work of Budney [Bud08] from one component to multiple components,
we use it to determine the homotopy groups of L𝑛

𝑝1 ,..., 𝑝𝑚 in a range, with the key ingredient being
Goodwillie’s connectivity estimates for pseudoisotopy embedding spaces [Goo90b, Goo90a, GK15].
Then we explicitly describe generators for these groups, up to describing those for homotopy groups of
spheres. Our main results are organized as follows:

◦ Theorem A concerns injectivity on homotopy groups of graphing. It is an easy generalization of a
theorem on isotopy classes of links to higher homotopy groups of spaces of links. We use it to prove
other main results.

◦ Theorems B and C calculate, modulo knotting, the homotopy groups 𝜋𝑖 of spaces L𝑛
𝑝1 ,..., 𝑝𝑚 of long

links, in roughly the ‘metastable’ or ‘triple-point-free’ range. If 𝑝1 = · · · = 𝑝𝑚 = 𝑝, this range is just
below 𝑖 = 2𝑛 − 3𝑝 − 3; there is no knotting in this range (see Corollary 4.5); and all the classes are in
the image of the map induced by iterated graphing from spheres. Theorem D extends this calculation
to 𝑖 = 2𝑛 − 3𝑝 − 3 for 𝑝1 = · · · = 𝑝𝑚 = 𝑝 with mild lower bounds on p.

◦ Theorem E gives explicit generators for the group 𝜋2𝑛−3𝑝−3L𝑛
𝑝,..., 𝑝 calculated in Theorem D. They

are described for 𝑝 ≥ 3 and any number m of components, as well as for 𝑝 = 2 and 2 components.
Modulo torsion, we obtain generators for 𝑝 ≥ 1 and any m. For the space K𝑛

𝑝 := Emb𝑐 (R𝑝 ,R𝑛) of
long knots, generators of the previously known group 𝜋2𝑛−3𝑝−3K𝑛

𝑝 are described in terms of 2- and
3-component links and homotopy groups of spheres. Ultimately, all the generators in Theorem E
come from either 𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1 or an analogue of the Borromean rings.

Each batch of results is proven using a different method. Before describing them in more detail, we
survey some earlier related work.

1.1. Previous related results

In all of the following previous results, the codimensions of the embeddings are assumed to be at
least 3. An early antecedent of our approach here is the work of Zeeman [Zee60], who established an
injection of 𝜋𝑝 (𝑆𝑛−𝑝−1) into the set 𝜋0Emb(𝑆𝑝 � 𝑆𝑝 , 𝑆𝑛) of isotopy classes of spherical links. Shortly
afterwards, Haefliger [Hae67] determined this set in a range of values of 𝑝, 𝑞 and n and showed that it
is an abelian group. This range was improved slightly by M. Skopenkov [Sko09]. Their result applies
in the 2-metastable range. This is roughly the quadruple-point-free range, meaning that if 𝑝 = 𝑞, then
roughly 𝑝 < 3𝑛/4. More precisely, their range is 3𝑛 − 2𝑝 − 2𝑞 ≥ 6. Crowley, Ferry and M. Skopenkov
[CFS14] computed rational isotopy classes of spherical links with an arbitrary number of components.
Songhafouo Tsopméné and Turchin [STT18b, Theorem 3.2] described rational isotopy classes of long
links in terms of trivalent trees. They conjectured an extension to all rational homotopy groups of spaces
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of long links in terms of the homology of a graph complex, which was proven in the extensive work of
Fresse, Turchin and Willwacher [FTW, Section 5.5].

Haefliger [Hae66] showed that the group 𝜋0Emb(𝑆𝑝 , 𝑆𝑛) (which is isomorphic to 𝜋0K𝑛
𝑝) is trivial

in the metastable range, which is roughly the triple-point-free range 𝑝 < 2𝑛/3. More precisely, there is
no knotting if 2𝑛 − 3𝑝 ≥ 4. He also computed this group for the first family of dimensions (𝑝, 𝑛) where
they are nontrivial – namely, where 2𝑛 − 3𝑝 = 3. Using iterates of the graphing map, Budney [Bud08]
generalized these results from isotopy classes to families of knots, specifically from 𝜋0K𝑛

𝑝 to 𝜋𝑖K𝑛
𝑝

where 0 ≤ 𝑖 ≤ 2𝑛 − 3𝑝 − 3. He showed that 𝜋𝑖K𝑛
𝑝 = 0 if 𝑖 ≤ 2𝑛 − 3𝑝 − 4 and calculated 𝜋2𝑛−3𝑝−3K𝑛

𝑝 .

1.2. Main results and organization

Our results use the same iterated graphing construction, adapted easily from long knots to long links. To
get nontrivial classes for knots from iterated graphing, one must start with at least 1-dimensional knots,
whereas in our setting of links, we can start with links where one or both components have dimension 0.
The space of such links has a subspace homeomorphic to a sphere, and most of our results involve
classes from homotopy groups of spheres. Though some of our results hold in codimension less than 3,
they say nothing new in these cases.

Our first main result gives nontrivial homotopy classes in spaces of 2-component links from homotopy
groups of spheres with little restriction on the dimensions involved:

Theorem A. If 0 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 − 1 and 𝑖 ≥ 0, then 𝜋𝑖Emb𝑐 (R𝑝 � R𝑞 , R𝑛) contains a direct summand
of 𝜋𝑖+𝑝𝑆𝑛−𝑞−1. An inclusion of this summand is given by composing maps induced by a based homotopy
equivalence 𝑆𝑛−𝑞−1→ R𝑛−𝑝 −R𝑞−𝑝 , the inclusion Emb𝑐 (∗,R𝑛−𝑝 −R𝑞−𝑝) ↩→ Emb𝑐 (∗ �R𝑞−𝑝 , R𝑛−𝑝)
and the p-fold graphing map 𝐺 𝑝 : Ω𝑝Emb𝑐 (∗ � R𝑞−𝑝 , R𝑛−𝑝) → Emb𝑐 (R𝑝 � R𝑞 , R𝑛).

Theorem A appears in the main body as Theorem 3.2. In the Appendix, we prove Theorem A.4 and
Theorem A.6, which are analogues of it for spherical links and for link maps (i.e., smooth maps such that
the images of the components are disjoint). Putting 𝑖 = 0 gives the above-mentioned result of Zeeman.
The case 𝑖 = 0 and 𝑝 + 𝑞 = 𝑛 − 1 corresponds to classes dual to the generalized linking number. See
Example 3.3. Theorem A clearly yields many nontrivial torsion classes in spaces of links. The proof of
Theorem A relies on showing that graphing is the inclusion of a retract up to homotopy.

In our second set of results, we determine certain homotopy groups. The first among them mutually
extends to 𝜋𝑖Emb𝑐 (R𝑝 �R𝑞 , R𝑛) both Budney’s result on 𝜋𝑖Emb𝑐 (R𝑝 , R𝑛) and the result of Haefliger
and M. Skopenkov on 𝜋0Emb(𝑆𝑝�𝑆𝑞 , R𝑛). Indeed, Lemma 4.9 identifies spherical isotopy classes with
long isotopy classes. The next theorem applies in a range that generalizes the triple-point-free range for
isotopy classes to i-parameter families. There are, however, many nontrivial groups for links in this range,
in contrast to the setting of knots. Recall that L𝑛

𝑝, 𝑞 := Emb𝑐 (R𝑝 �R𝑞 , R𝑛) and K𝑛
𝑝 := Emb𝑐 (R𝑝 , R𝑛).

Theorem B appears as Theorem 4.4 in the main body of the paper.

Theorem B. If 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 − 3 and 𝑖 ≤ 2𝑛 − 𝑝 − 2𝑞 − 4, then in the sequence of maps

𝜋𝑖+𝑝L𝑛−𝑝
0, 𝑞−𝑝

𝐺∗−→ 𝜋𝑖+𝑝−1L𝑛−𝑝+1
1, 𝑞−𝑝+1

𝐺∗−→ . . .
𝐺∗−→ 𝜋𝑖L𝑛

𝑝, 𝑞

𝐺∗−→ . . .
𝐺∗−→ 𝜋0L𝑖+𝑛

𝑖+𝑝, 𝑖+𝑞

induced by graphing, each map is an isomorphism, except possibly the first. The first map is always a
surjection, and it is an isomorphism if 𝑖 ≤ 2𝑛 − 𝑝 − 2𝑞 − 5 or 𝑝 = 𝑞.

Graphing preserves the quantity 2𝑛− 𝑝−2𝑞−4−𝑖; that is, replacing 𝑖, 𝑝, 𝑞 and n by the corresponding
four parameters in any term in the sequence gives the same number and thus preserves the assumed
inequality involving them. Corollary 4.5 describes 𝜋𝑖L𝑛

𝑝, 𝑞 as 𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 ⊕ 𝜋0K𝑖+𝑛

𝑖+𝑞 . If 𝑛 − 𝑞 ≥ 2, then
we can identify 𝜋0K𝑖+𝑛

𝑖+𝑞 with isotopy classes of spherical knots in the sphere or Euclidean space. This
group vanishes if 2𝑛 − 3𝑞 ≥ 4; hence, it vanishes in the assumed range if 𝑝 = 𝑞. It is also known if
2𝑛 − 3𝑞 is 3 or 2, by work of Haefliger [Hae66] and Milgram [Mil72]. The latter further identifies the
2-primary part of this group for some smaller values of this quantity. See the exposition by A. Skopenkov
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[Skob]. The proof of Theorem B uses Goodwillie’s connectivity results on pseudoisotopy embedding
spaces, much like the result of Budney’s that it generalizes. The iterated graphing in Theorems A and
B becomes simpler when 𝑝 = 𝑞, in which case the source space L𝑛−𝑝

0, 𝑞−𝑝 is just the configuration space
of two points in R𝑛−𝑝 .

Theorem C appears as Theorem 4.8 in the main body. It says that for spaces of links with m
components, in a range analogous to that in Theorem B, all elements of those homotopy groups come
from links with at most 2 components. More specifically, for 𝑖 ≤ 2𝑛 − 𝑝1 − 𝑝𝑚−1 − 𝑝𝑚 − 4, it allows
us to describe all classes in 𝜋𝑖L𝑛

𝑝1 ,..., 𝑝𝑚 as in Corollary 4.5. Its proof uses the Hilton–Milnor theorem,
restriction fibrations, and a homotopy retract as in the proof of Theorem A

Theorem C. Suppose that 0 ≤ ℓ ≤ 𝑚, 1 ≤ 𝑝1 ≤ · · · ≤ 𝑝𝑚 ≤ 𝑛− 3, and 0 ≤ 𝑖 < 1− 𝑝1 +
∑𝑚

𝑘=𝑚−ℓ+1(𝑛−
𝑝𝑘 − 2). Then every class in 𝜋𝑖L𝑛

𝑝1 ,..., 𝑝𝑚 is in
∑

𝑆⊂{1,...,𝑚}, |𝑆 | ≤ℓ
im(𝜄𝑆)∗, where 𝜄𝑆 is the inclusion of the

subspace of links with components labeled by a subset S of {1, . . . , 𝑚}.

Next, methods like those used to prove Theorem B yield a calculation of homotopy groups of
equidimensional 2-component links of dimension at least 2 in the degree where graphing from spheres
ceases to be surjective. Theorem D is a slightly abbreviated version of Theorem 4.11.

Theorem D. Suppose 1 ≤ 𝑝 ≤ 𝑛 − 3.

(a) For 2-component links, consider the sequence of maps induced by graphing:

𝜋2𝑛−3𝑝−3L𝑛
𝑝, 𝑝 → 𝜋2𝑛−3𝑝−4L𝑛+1

𝑝+1, 𝑝+1→ . . . → 𝜋0L3𝑛−3𝑝−3
2𝑛−2𝑝−3, 2𝑛−2𝑝−3.

If 𝑝 ≥ 2, then all the maps are isomorphisms, and these groups are isomorphic to

Z3 ⊕ 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1 if 𝑛 − 𝑝 is odd

(Z/2)3 ⊕ 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1 if 𝑛 − 𝑝 is even.

If 𝑝 = 1, then the first map is surjective, and the remaining maps are isomorphisms.
(b) For 3-component links, consider the sequence of maps induced by graphing:

𝜋2𝑛−3𝑝−3L𝑛
3·𝑝 → 𝜋2𝑛−3𝑝−4L𝑛+1

3· (𝑝+1) → . . . → 𝜋0L3𝑛−3𝑝−3
3· (2𝑛−2𝑝−3) .

If 𝑝 ≥ 3, then all the maps are isomorphisms, and these groups are isomorphic to

Z7 ⊕
(
𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1)3 if 𝑛 − 𝑝 is odd
Z ⊕ (Z/2)6 ⊕

(
𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1)3 if 𝑛 − 𝑝 is even.

If 𝑝 = 2, then the first map is surjective, and the remaining maps are isomorphisms.

Our last main result gives explicit generators of these groups for equidimensional long links. It
connects spaces of 2- and 3-component pure braids to spaces of long knots and 2-component long links,
in the homotopy group just outside the ranges of Theorems B and C (i.e., the group 𝜋2𝑛−3𝑝−3, which
appeared in Theorem D).

For (spherical) 1-dimensional links inR3, joining all three components of the Borromean rings yields
a trefoil knot, and joining just two of the three components yields the Whitehead link. (Figure 1 shows
long links which have the same Vassiliev invariants of order at most 2 as long versions of these links.) A
generalization to isotopy classes of higher-dimensional spherical links is also known [Skoa]. Theorem
E generalizes this fact to higher homotopy groups. Certain classes in it can be viewed as analogues of
the trefoil, Borromean rings and Whitehead link. Indeed, Theorem 5.7 says that the ‘parametrized long
Borromean rings’ maps via graphing and closure to the high-dimensional spherical Borromean rings
defined by Haefliger [Hae62b, Section 4.1]. (Using Theorem 5.7 and Theorem E, we also establish in
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Figure 1. Picture of the long Borromean rings (i.e., a pure braid commutator) [𝑏21, 𝑏31] and the results
of joining its components in the classical setting where 𝑝 = 1 and 𝑛 = 3.

Corollary 5.8 that the Haefliger trefoil generates 𝜋0K3𝑘
2𝑘−1 for k odd, the analogue of a fact proven by

Haefliger for k even.)
For equidimensional links, the domain of the graphing map 𝐺 𝑝 : L𝑛−𝑝

𝑚·0 → L𝑛
𝑚·𝑝 is the configuration

space Conf (𝑚,R𝑛−𝑝), denoted in this way in Theorem E. For 𝑚 = 2, we pre-compose by a homotopy
equivalence 𝑆𝑛−𝑝−1→Conf (2,R𝑛−𝑝). Theorem E involves a map J (defined in Definition 2.6) that joins
components. More specifically, it joins the last two components, and when 𝑝 = 1, component 𝑚 − 1 is
traversed before component m. Of course, J can be iterated. Theorem E appears as Theorem 5.3 in the
main body.

Theorem E. Suppose 1 ≤ 𝑝 ≤ 𝑛 − 3 and 2𝑛 − 3𝑝 − 3 ≥ 0.

(a) If 𝑛−𝑝 is odd, then the map 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1→ 𝜋2𝑛−3𝑝−3K𝑛

𝑝 (� Z) given by p-fold graphing followed
by joining the two link components sends the Whitehead square [1𝑛−𝑝−1,1𝑛−𝑝−1] of the identity to
twice a generator. Thus, if 𝑛 − 𝑝 = 3, 5, or 9, it sends the Hopf fibration to a generator.

(b) The map 𝜋2𝑛−3𝑝−3Ω𝑝Conf (3,R𝑛−𝑝) → 𝜋2𝑛−3𝑝−3K𝑛
𝑝 (� Z or Z/2) induced by the composition of

p-fold graphing followed by joining the three components together maps the ‘parametrized long
Borromean rings’ class [𝑏21, 𝑏31] to a generator.

(c) For 𝑝 = 1, there is a basis for 𝜋2𝑛−6L𝑛
1, 1 modulo torsion, consisting of the images of a generator

of 𝜋2𝑛−6K𝑛
1 under the inclusions 𝜄1, 𝜄2 : K𝑛

1 → L𝑛
1, 1; the result of graphing and then joining two

components of [𝑏21, 𝑏31]; and for 𝑛 − 𝑝 odd, the result of graphing [1𝑛−2,1𝑛−2].
If 𝑝 ≥ 2, then 𝜋2𝑛−3𝑝−3L𝑛

𝑝, 𝑝 is generated by the two inclusions of a generator of 𝜋2𝑛−3𝑝−3K𝑛
𝑝;

the result of graphing and then joining two components of [𝑏21, 𝑏31]; and the image of a generating
set of 𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1 under graphing.
If 𝑝 ≥ 3 and 𝑚 ≥ 3, then 𝜋2𝑛−3𝑝−3L𝑛

𝑚·𝑝 is generated by the m inclusions of a generator of
𝜋2𝑛−3𝑝−3K𝑛

𝑝; the result of graphing and then joining two components of [𝑏21, 𝑏31] for every pair
of components (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚; the image under graphing of a generating set of
𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1 for every (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚; and the result of graphing [𝑏21, 𝑏31] for every
(𝑖, 𝑗 , 𝑘) with 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑚.

Recall that the first nontrivial homotopy group of K𝑛
𝑝 occurs in dimension 2𝑛 − 3𝑝 − 3. This is also

the lowest dimension in which a class not detected by the first two stages of the Goodwillie–Weiss
Taylor tower can appear. Equivalently, it is the lowest dimension of classes dual to analogues of type-2
Vassiliev invariants. Remark 5.9 is a detailed discussion of this analogy in terms of the construction
used in the proof. The branching of part (c) into several cases according to the value of p is not ideal,
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6 R. Koytcheff

and Conjecture 5.11 is that the statement for 𝑝 ≥ 3 extends to 𝑝 ≥ 1. By recent results on rational
homotopy of these spaces [FTW], the only hurdle is ruling out any other torsion.

Theorem E is proven via cohomology classes from configuration space integrals for long
1-dimensional links in R𝑛 [CCRL02, KMV13] and dual homology classes from resolving singular
links. These integrals are indexed by graphs as in formulas (5.1) through (5.8), and the singular links
we use are illustrated in Figures 2, 3, 4, 5, 6 and 7. We represent all the homotopy classes in the
Theorem by such resolutions and their images under graphing. In previous joint work of ours, we re-
lated the restriction to 1-dimensional pure braids in R𝑛 of these integrals to Chen’s integrals for based
loop spaces [KKV20]. We then determined the values of Chen integrals on iterated pure braid com-
mutators (i.e., Whitehead products) [KKV]. These two results of ours help us identify 𝐺∗ [𝑏21, 𝑏31]
and 𝐺∗ [1𝑛−𝑝−1,1𝑛−𝑝−1] with resolved singular links. We also rely on a calculation of 𝜋2𝑛−6L𝑛

1, 1 ⊗ Q
[AT15, STT18a] to understand 2-component link classes that come from neither braiding nor knotting.
We use Budney’s work [Bud08] to obtain a generator of 𝜋2𝑛−6K𝑛

1 and importantly to bootstrap from
1-dimensional links to p-dimensional links.

Theorem E suggests the possibility of obtaining arbitrary classes of long links from pure braids,
generalizing known results on obtaining isotopy classes and n-equivalence classes of knots via pure
braids; see Questions 5.12 and 5.13.

The paper is organized as follows. In Section 2, we define various spaces of links and various maps
between them. Readers familiar with the subject matter may wish to initially skip this section and refer
back to it as needed. The remaining sections are mostly independent of each other, except that results
from previous sections are used, as noted. In Section 3, we prove Theorem 3.2 (Theorem A) about
the injectivity of homotopy groups of spheres into homotopy groups of spaces of long 2-component
links. Section 4 contains Theorem 4.4 (Theorem B) and Theorem 4.8 (Theorem C), which determine
homotopy groups of spaces of long links, up to knotting, in a certain range. Their proofs use Theorem A.
In Section 5, we prove Theorem 5.3 (Theorem E) on nontrivial classes in spaces of long knots and links
from classes in spaces of pure braids, including classes from spheres. Its proof uses Theorems A, C and
D. We conclude this section with conjectures and questions to explore in future work. In Appendix A, we
prove the injectivity of graphing for spaces of 2-component spherical links and 2-component link maps.

2. Key definitions

In Section 2.1, we define a handful of spaces of smooth embeddings or smooth maps. In Sections 2.2
and 2.3, we define a number maps involving these spaces. We begin with some basic conventions and
notation.

For any 𝑘 ≥ 0, let 𝐷𝑘 denote the closed k-dimensional unit disk in R𝑘 . Let 𝐼 := 𝐷1 = [−1, 1]. For
a smooth manifold X with a basepoint x, we write Ω𝑘𝑋 for the space of smooth based k-fold loops in
X. We take these to be smooth maps R𝑘 → 𝑋 which are constant at x outside 𝐼𝑘 . We may sometimes
allow the role of 𝐼𝑘 to be played by 𝐷𝑘 , or by a product of disks whose dimensions sum to k, via a
homeomorphism that is a diffeomorphism between the interiors. One can define 𝜋𝑘𝑋 as 𝜋0Ω𝑘𝑋 , and
𝜋𝑖Ω 𝑗𝑋 � 𝜋𝑖+ 𝑗𝑋 for any nonnegative integers i and j. We may also represent a k-fold loop in X by a
based map 𝑆𝑘 → 𝑋 . We write 𝜋𝑠𝑖 for the i-th stable homotopy group of spheres, i.e., 𝜋𝑠𝑖 := colim

𝑘 → ∞
𝜋𝑘+𝑖𝑆

𝑘 .

2.1. Spaces of embeddings, link maps and pseudoisotopy embeddings

For smooth manifolds P and N, we write Emb(𝑃, 𝑁) for the space of smooth embeddings of P into N. Let
𝑃1, . . . , 𝑃𝑚 be the path components of P. A link map is a smooth map ( 𝑓1, . . . , 𝑓𝑚) :

∐𝑚
1 𝑃𝑖→ 𝑁 such

that the images of the 𝑓𝑖 are pairwise disjoint. We denote the space of such link maps by Link
(∐𝑚

1 𝑃𝑖 , 𝑁
)
.

We will usually use the term links for embeddings
∐𝑚

1 𝑃𝑖 → 𝑁 , especially when 𝑚 > 1, though we
may occasionally use it for link maps when there is no risk of confusion.

If the components of P have basepoints 𝑏1, . . . , 𝑏𝑚 and 𝑦1, . . . , 𝑦𝑚 are fixed distinct points in N,
we define Emb∗(𝑃, 𝑁) as the space of based embeddings, meaning embeddings 𝑓 : 𝑃→ 𝑁 such that
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𝑓 (𝑏1) = 𝑦1, . . . , 𝑓 (𝑏𝑚) = 𝑦𝑚. We write Emb𝑐 (𝑃, 𝑁) for a space of compactly supported embeddings
of P into N, which we will define more precisely in Definition 2.1. We use the notation Link∗(𝑃, 𝑁)
and Link𝑐 (𝑃, 𝑁) for similarly defined spaces of based link maps and compactly supported link maps,
respectively. For spaces X and Y, we write Map∗(𝑋,𝑌 ) for the space of based continuous maps 𝑋 → 𝑌 .

All spaces of smooth maps are equipped with the Whitney 𝐶∞-topology, while spaces of continuous
maps have the compact-open topology. In this paper, N will often be a sphere or Euclidean space, while
P will often be a disjoint union of finitely many spheres or Euclidean spaces.

Definition 2.1. Let m and n be positive integers and 𝑝1, . . . , 𝑝𝑚 be nonnegative integers less than n. Let
𝑡∗1, . . . , 𝑡

∗
𝑚 be points with −1 < 𝑡∗1 < 𝑡∗2 < · · · < 𝑡∗𝑚 < 1 and with equal gaps between each successive

pair; that is, 𝑡∗𝑖 = −1 + 2𝑖/(𝑚 + 1). We define the space Emb𝑐 (R𝑝1 � · · · � R𝑝𝑚 , R𝑛) of long links in
R𝑛 as follows. An element f of this embedding space is required to map

∐𝑚
1 (−1, 1) 𝑝𝑖 into (−1, 1)𝑛.

Outside of
∐𝑚

1 (−1, 1) 𝑝𝑖 , f must agree with the embedding

𝑒 = (𝑒1, . . . , 𝑒𝑚) :
𝑚∐
1
R𝑝𝑖 ↩→ R𝑛

𝑒𝑖 : (𝑡1, . . . , 𝑡𝑝𝑖 ) ↦→ (𝑡∗𝑖 , 0, . . . , 0, 𝑡1, . . . , 𝑡𝑝𝑖 ).

We take e to be the basepoint of Emb𝑐
(∐𝑚

1 R
𝑝𝑖 , R𝑛

)
. A long knot is a long link with one component.

We define the space Link𝑐
(∐𝑚

1 R
𝑝𝑖 , R𝑛

)
of long link maps similarly, just replacing embeddings by

link maps.

We sometimes abbreviate L𝑛
𝑝1 ,..., 𝑝𝑚 := Emb𝑐

(∐𝑚
1 R

𝑝𝑖 , R𝑛
)

and write L𝑛
𝑚·𝑝 when 𝑝1 = · · · = 𝑝𝑚 =

𝑝. Many authors use the term ‘string links’ instead of ‘long links’. Our convention of using the last
rather than first 𝑝𝑖 coordinates of R𝑛 in Definition 2.1 is chosen to match our conventions in Definition
2.4 of the graphing map. Any other choice of standard long link e produces a space of long links
homeomorphic to the one in Definition 2.1. Above each 𝑒𝑖 depends on m, which is suppressed from the
notation when there is no risk of confusion.

If 𝑝1 = · · · = 𝑝𝑚 = 0 in Definition 2.1, one obtains the configuration space of m points in R𝑛, which
we also denote Conf (𝑚,R𝑛). Applying Definition 2.1, we obtain ((𝑡∗1, 0, . . . , 0), . . . , (𝑡∗𝑚, 0, . . . , 0)) as
the basepoint of Conf (𝑚,R𝑛). For a finite set S, we will also write Conf (𝑆,R𝑛) for Emb(𝑆,R𝑛). We call
an element of the space Ω𝑝Conf (𝑚,R𝑛−𝑝) a p-dimensional, m-component pure braid in R𝑛. Using the
graphing map (see Definition 2.4 below), we may sometimes view such an element as lying in L𝑛

𝑚·𝑝 .
For any i and j with 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚, let 𝑏𝑖 𝑗 ∈ 𝜋𝑛−1Conf (𝑚,R𝑛) be the cycle obtained from the map

𝑆𝑛−1→ Conf (𝑚,R𝑛)
𝑣 ↦→ (𝑥1, . . . , 𝑥𝑖−1, 𝑥 𝑗 + 𝜀𝑣, 𝑥𝑖+1, . . . , 𝑥𝑚),

where 𝜀 < min𝑖 (𝑡∗𝑖 − 𝑡∗𝑖−1). More precisely, we get a based map by conjugating by a path which takes
the i-th point from its position at the basepoint to the image of the sphere above. For 𝑚 = 2, the map
𝑏12 (or 𝑏21) is a homotopy equivalence.

Definition 2.2. If 𝑚 ≥ 1 and 1 ≤ 𝑝1, . . . , 𝑝𝑚 < 𝑛, we define the space PEmb
(∐𝑚

𝑖=1 R
𝑝𝑖 , R𝑛

)
of

pseudoisotopy embeddings as the subspace of embeddings 𝑓 = ( 𝑓1, . . . , 𝑓𝑚) :
∐𝑚

𝑖=1 R
𝑝𝑖 ↩→ R𝑛 such

that

◦ f agrees with the standard embedding 𝑒 = (𝑒1, . . . , 𝑒𝑚) outside of
∐𝑚

𝑖=1 𝐼 𝑝𝑖−1 × [−1,∞) and
◦ there is a long link 𝑔 = (𝑔1, . . . , 𝑔𝑚) ∈ L𝑛−1

𝑝1−1,..., 𝑝𝑚−1 such that if 𝑡𝑝𝑖 ∈ [1,∞), then 𝑓𝑖 (𝑡1, . . . , 𝑡𝑝𝑖 ) =
(𝑔𝑖 (𝑡1, . . . , 𝑡𝑝𝑖−1), 𝑡𝑝𝑖 ).

We will often abbreviate this space by P𝑛
𝑝1 ,..., 𝑝𝑚 := PEmb

(∐𝑚
𝑖=1 R

𝑝𝑖 , R𝑛
)
.

Some authors write PE(𝐼 𝑝−1, 𝐼𝑛−1) or CE(𝐼 𝑝−1, 𝐼𝑛−1) to denote a similarly defined space of embed-
dings 𝐼 𝑝 ↩→ 𝐼𝑛. This space is homeomorphic to P𝑛

𝑝 via restriction and extension maps. One can think
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8 R. Koytcheff

of a pseudoisotopy embedding as an embedding that is fixed on the bottom and sides of the domain
cubes and takes the top faces of the domain into the top face of the codomain.

2.2. Stacking, graphing, closure and joining maps

We now define various maps between spaces of links, starting with a multiplication on spaces of long
links.

Definition 2.3. Let 𝑚 ≥ 1 and 1 ≤ 𝑝1, . . . , 𝑝𝑚 < 𝑛. There is a product on Emb𝑐
(∐𝑚

1 R
𝑝𝑖 , R𝑛

)
called

stacking which sends ( 𝑓 , 𝑔) ∈
(
Emb𝑐

(∐𝑚
1 R

𝑝𝑖 , R𝑛
) )2 to the map 𝑓 #𝑔 ∈ Emb𝑐

(∐𝑚
1 R

𝑝𝑖 , R𝑛
)

defined
on

∐𝑚
1 [−1, 1] 𝑝𝑖 by

( 𝑓 #𝑔)𝑖 (𝑡1, . . . , 𝑡𝑝𝑖 ) :=
{
(1𝑛−1 × 𝜌−1

− ) ◦ 𝑓𝑖 ◦ (1𝑝𝑖−1 × 𝜌−) on [−1, 1] 𝑝𝑖−1 × [−1, 0]
(1𝑛−1 × 𝜌−1

+ ) ◦ 𝑓𝑖 ◦ (1𝑝𝑖−1 × 𝜌+) on [−1, 1] 𝑝𝑖−1 × [0, 1]

for each 𝑖 = 1, . . . , 𝑚, where 𝜌±(𝑡) := 2𝑡 ∓ 1 and where 1𝑘 denotes the identity map on R𝑘 .

This map gives the space of long links the structure of a homotopy-associative H-space. An analogous
operation gives a homotopy associative H-space structure on Link𝑐

(∐𝑚
1 R

𝑝𝑖 , R𝑛
)
. If all the codimen-

sions are at least 3, then 𝜋0 of either of these spaces is an abelian group under stacking [Hae62a].
The next map appears in most of our main results. In contrast with the usual conventions for graphs,

we put the range coordinates of f before its domain coordinates because for 𝑛 = 2 and 𝑝1 = · · · = 𝑝𝑚 = 0,
we view braids as flowing vertically rather than horizontally.

Definition 2.4. For any 𝑚 ≥ 1, 0 ≤ 𝑝1, . . . , 𝑝𝑚 < 𝑛, define the graphing map

𝐺 : ΩEmb𝑐

(
𝑚∐
1
R𝑝𝑖 , R𝑛

)
→ Emb𝑐

(
𝑚∐
1
R𝑝𝑖+1, R𝑛+1

)
(𝑡 ↦→ 𝑓 (𝑡) = ( 𝑓1(𝑡), . . . , 𝑓𝑚(𝑡))) ↦→ (𝐺 ( 𝑓 )1, . . . , 𝐺 ( 𝑓 )𝑚)

by

𝐺 ( 𝑓 )𝑖 (𝑡1, . . . , 𝑡𝑝𝑖+1) := ( 𝑓𝑖 (𝑡𝑝𝑖+1) (𝑡1, . . . , 𝑡𝑝𝑖 ), 𝑡𝑝𝑖+1)

for 𝑖 = 1, . . . , 𝑚.

Iterating such graphing maps gives rise to maps of the form

𝐺𝑘 : Ω𝑘Emb𝑐

(
𝑚∐
1
R𝑝𝑖 , R𝑛

)
→ Emb𝑐

(
𝑚∐
1
R𝑝𝑖+𝑘 , R𝑛+𝑘

)
.

More precisely, 𝐺𝑘 is the composition of the maps induced on various iterated loop spaces by various
graphing maps, all of which by abuse of notation we will denote G.

The next map lets us pass from long links to spherical (based) links in a Euclidean space. It will be
used to relate isotopy classes of the two types in Lemma 4.9 and to prove variants of the injectivity of
graphing in Appendix A. It is roughly given by fixing disjoint disks in the complement of [−1, 1]𝑛 and
gluing these ‘closing disks’ to the parts of the long link in [−1, 1]𝑛.

First, for any 𝑘 ≥ 1 and any subspace 𝑆 ⊂ R𝑘 , let 𝑟𝑆 be the result of scaling S by r. In particular,
[−1, 1]𝑘 is a cube inscribed in

√
𝑘𝑆𝑘−1.
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Definition 2.5. For 𝑚 ≥ 1 and 1 ≤ 𝑝1, . . . , 𝑝𝑚 ≤ 𝑛 − 2, define the closure map

·̂ : Emb𝑐

(
𝑚∐
1
R𝑝𝑖 , R𝑛

)
→ Emb∗

(
𝑚∐
1

𝑆𝑝𝑖 , R𝑛

)
𝑓 = ( 𝑓1, . . . , 𝑓𝑚) ↦→ �̂� = ( �̂�1, . . . , �̂�𝑚),

(2.1)

where for each 𝑖 = 1, . . . , 𝑚, �̂�𝑖 is given by

◦ fixing a homeomorphism 𝑆𝑝𝑖 →
√
𝑛𝐷 𝑝𝑖 ∪

√
𝑛𝐷 𝑝𝑖 ,

◦ taking the union of 𝑓𝑖 |√𝑛𝐷𝑝𝑖 with an embedding 𝑔𝑖 of another copy of
√
𝑛𝐷 𝑝𝑖 whose image is the

hemisphere {
(𝑡∗𝑖 , 0, . . . , 0, 𝑡𝑛−𝑝𝑖 , . . . , 𝑡𝑛) : 𝑡2

𝑛−𝑝𝑖 + · · · + 𝑡2
𝑛 = 𝑛

}
,

◦ and smoothing the resulting injection 𝑆𝑝𝑖 ↩→ R𝑛 in a fixed small neighborhood of the intersection of
the two disks

√
𝑛𝐷 𝑝𝑖 using a fixed partition of unity.

The codomain of the map ·̂ is the space of based embeddings where we take the basepoint 𝑏𝑖 in each
copy of 𝑆𝑝𝑖 to be any point in the image of 𝑔𝑖 , and we take the image of 𝑏𝑖 in R𝑛 to be the base value 𝑦𝑖 .

Each �̂�𝑖 has image in 𝑡∗𝑖 ×0𝑛−𝑝𝑖−2 ×R𝑝𝑖+1 ⊂ R𝑛, so the assumption that 𝑛− 𝑝𝑖 ≥ 2 for all i guarantees
that their images are disjoint. Moreover, the closure �̂� of the standard long link e is a trivial link, meaning
that its components bound disjoint (𝑝𝑖 + 1)-dimensional disks in R𝑛. We take �̂� to be the basepoint of
Emb∗

(∐𝑚
𝑖=1 𝑆𝑝𝑖 , R𝑛

)
. We can also use it as the basepoint of the space Emb

(∐𝑚
𝑖=1 𝑆𝑝𝑖 , R𝑛

)
of unbased

embeddings. With different choices of embeddings 𝑔𝑖 , one could define a closure map where one allows
𝑛− 𝑝𝑖 = 1, but it cannot take a standard long link to a trivial link if 𝑛− 𝑝𝑖 = 1 for three or more values of i.

We will use similarly defined closure maps denoted by the same symbol:

·̂ : Link𝑐

(
𝑚∐
𝑖=1
R𝑝𝑖 , R𝑛

)
→ Link∗

(
𝑚∐
𝑖=1

𝑆𝑝𝑖 , R𝑛

)
, ·̂ : Emb𝑐

(
𝑚∐
1
R𝑝𝑖 , R𝑛

)
→ Emb

(
𝑚∐
1

𝑆𝑝𝑖 , 𝑆𝑛

)
.

The second one is obtained by post-composing the map (2.1) by the map induced by a fixed inclusion
R𝑛 ↩→ 𝑆𝑛, and forgetting that the resulting embeddings are based.

The upcoming definition of the joining map is lengthy, but the payoff is the facilitation of compatibility
with graphing. That compatibility is crucial in proving Theorem E. The idea is indicated in Figure 1,
though without the modifications needed to obtain a based map of spaces of links. Roughly, the joining
map closes the m-th component and then connect sums the (𝑚 − 1)-th component, which could be done
with a tube 𝑆𝑝−1 ×𝐷1. Instead, we will essentially use a tubular neighborhood of a path in R𝑛 and apply
a flow of R𝑛 along this path. The tube implicitly lies in the boundary of the tubular neighborhood.

We begin the precise definition by fixing auxiliary data for each m and each codimension 𝑛 − 𝑝 ≥ 2.
Recall that 𝑡∗1, . . . , 𝑡

∗
𝑚 are the first coordinates of the components 𝑒1, . . . , 𝑒𝑚 of the standard link e.

◦ Fix 𝜀 < 1/𝑚. Find a real number 𝑘 > 2 and a smooth embedding 𝛾 : [0, 1] → R𝑛−𝑝+1 such that
– 𝛾(0) = 𝑃 := (𝑡∗𝑚, 0, . . . , 0); 𝛾(1) = 𝑄 := (𝑡∗𝑚−1, 0, . . . , 0, 𝑘); 𝛾′(0), 𝛾′(1) ⊥ 0𝑛−𝑝 × R; and
– 𝛾 has a tubular neighborhood 𝜂 of radius 1 + 𝜀 whose interior is contained in

[−1, 1] × [−2𝑘, 2𝑘]𝑛−𝑝 −
(
[−1, 𝑡∗𝑚−1 + 𝜀] × [−1, 1]𝑛−𝑝 ∪ 𝑒

(
𝑚−1∐

1
R𝑝

))
.
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10 R. Koytcheff

◦ Fix a framing 𝜂
�−→ 𝛾 × R𝑛−𝑝 which restricts to orientation-preserving affine-linear maps

(𝑡∗𝑚, 0, . . . , 0) × [−1, 1] → 𝑃 × 0𝑛−𝑝−1 × [−1, 1] and
(𝑡∗𝑚−1, 0, . . . , 0) × [𝑘 − 1, 𝑘 + 1] → 𝑄 × 0𝑛−𝑝−1 × [−1, 1] .

This is possible because up to homotopy, such a framing is given by a path in 𝑂 (𝑛− 𝑝) with prescribed
last vectors at the endpoints, and we assume 𝑛 − 𝑝 ≥ 2.

◦ Let 𝐻 ⊂ 𝜂 be the preimage of 𝛾 × 0𝑛−𝑝−1 × [−1, 1] under the framing.
◦ Fix a diffeotopy 𝜑𝑠 : R𝑛−𝑝+1→ R𝑛−𝑝+1, 𝑠 ∈ [0, 1], such that

– 𝜑0 = 1𝑛−𝑝+1,
– 𝜑1 (𝑃) = 𝑄, and for each 𝑠 > 0, 𝜑𝑠 |𝐻 is defined by flowing along 𝛾, using the framing of 𝜂,
– for each 𝑠 ∈ [0, 1], 𝜑𝑠 is supported in the set of points with distance at most 𝜀 from H, and
– for each 𝑠 ∈ [0, 1] and points x within 𝜀 of H, 𝜑𝑠 (𝑥) is given by an interpolation (via a partition of

unity) between flowing along 𝛾 and the identity map.
See [Hir76, Chapter 8.1] for constructions of maps similar to but more general than 𝜑𝑠 , which flows
along an embedded path.

Because of the condition on the framing, 𝜑1 takes (𝑡∗𝑚, 0, . . . , 0) × [−1, 1] onto (𝑡∗𝑚−1, 0, . . . , 0) ×
[𝑘 − 1, 𝑘 + 1] by the unique orientation-preserving affine linear map between them. Since 𝜑𝑠 flows
along 𝛾 and since int(𝜂) ∩ 𝑒(

∐𝑚−1
1 R𝑝) = ∅, we have 𝜑1((𝑡∗𝑚−1, 1] × [−1, 1]𝑛−1) ∩ 𝑒(

∐𝑚−1
1 R𝑝) =

𝜑1 ((𝑡∗𝑚, 0, . . . , 0) × [−1, 1] 𝑝).
Recall that L𝑛

𝑚·𝑝 stands for L𝑛
𝑝1 ,..., 𝑝𝑚 = Emb𝑐

(∐𝑚
𝑖=1 R

𝑝𝑖 R𝑛
)

where each 𝑝𝑖 = 𝑝. To disambiguate
between standard links of different numbers of components, we denote the m-component standard link
by 𝑒𝑚 = (𝑒𝑚1 , . . . , 𝑒𝑚𝑚) and the first coordinates of 𝑒𝑚1 , . . . , 𝑒𝑚𝑚 by (𝑡𝑚1 )

∗, . . . , (𝑡𝑚𝑚)∗ for the rest of this
Section.

Definition 2.6. For 𝑚 ≥ 2 and 1 ≤ 𝑝 ≤ 𝑛 − 2, we define the joining map

𝐽 : L𝑛
𝑚·𝑝 → L𝑛

(𝑚−1) ·𝑝

on a link 𝑓 = ( 𝑓1, . . . , 𝑓𝑚) in L𝑛
𝑚·𝑝 in two steps, using the diffeotopy 𝜑𝑠 and the number k fixed above:

1. First define an embedding
∐𝑚−1

1 R𝑝 → R𝑛 as

(𝜑1 × 1𝑝−1) ◦ 𝑓 ∪ (𝜑1 × 1𝑝−1) ◦ 𝑓 ◦ 𝑇 ∪ 𝑒𝑚

on 𝐴 ∪ 𝐵 ∪ 𝐶, where

𝐴 :=
𝑚−1∐

1
[−1, 1] 𝑝 , 𝐵 :=

𝑚−2∐
1
∅ �

(
[𝑘 − 1, 𝑘 + 1] × [−1, 1] 𝑝−1

)
,

𝐶 :=
𝑚−2∐

1
(R𝑝 − [−1, 1] 𝑝) � (R𝑝 − ([−1, 1] 𝑝 ∪ [𝑘 − 1, 𝑘 + 1] × [−1, 1] 𝑝−1)),

and T is the affine-linear map taking B onto [−1, 1] 𝑝 in the m-th component. The maps and all
their derivatives agree on the intersections because of the behavior of long link components outside
[−1, 1] 𝑝 and because of the behavior of 𝜑1 on (𝑡∗𝑚, 0, . . . , 0) × [−1, 1] 𝑝 . The above-mentioned
property of 𝜑1((𝑡∗𝑚−1, 1] × [−1, 1]𝑛−1) guarantees that we get an embedding.

2. Pre-compose the embedding
∐𝑚−1

1 R𝑝→ R𝑛 from step (1) by the map 2𝑘 ×1𝑝−1 : R𝑝→ R𝑝 in each
summand. Post-compose it by the map (𝑆, 1/(2𝑘), . . . , 1/(2𝑘)) ×1𝑝−1 : R𝑛→ R𝑛, where 𝑆 : R→ R
is the affine-linear map that sends (𝑡𝑚1 )

∗, . . . , (𝑡𝑚𝑚−1)
∗ to (𝑡𝑚−1

1 )∗, . . . , (𝑡𝑚−1
𝑚−1)

∗.
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Step (2) ensures that outside of
∐𝑚−1

1 [−1, 1] 𝑝 , 𝐽 ( 𝑓 ) agrees with 𝑒𝑚−1, so 𝐽 ( 𝑓 ) is a long link.
Regarding basepoints, applying step (1) to 𝑓 = 𝑒𝑚 yields a link where every component is affine-
linear and has derivative (0𝑛−𝑝 ,1𝑝) : R𝑝 → R𝑛. The effect of step (2) when 𝑓 = 𝑒𝑚 is only to
alter the first coordinate in each component, thus yielding 𝑒𝑚−1. Hence, J preserves basepoints (i.e.,
𝐽 ((𝑒𝑚1 , . . . , 𝑒𝑚𝑚)) = (𝑒𝑚−1

1 , . . . , 𝑒𝑚−1
𝑚−1)). As with graphing, we denote by abuse of notation all of the

joining maps for various m, n and p by the same symbol J. A generalization of J to joining different
pairs of components is possible but not needed for our purposes. We now show that graphing commutes
with joining components:

Proposition 2.7. Suppose 𝑚 ≥ 2 and 1 ≤ 𝑝 ≤ 𝑛 − 2. The composites 𝐽 ◦𝐺 and 𝐺 ◦Ω𝐽 are homotopic
as maps ΩL𝑛

𝑚·𝑝 → L𝑛+1
(𝑚−1) ·(𝑝+1) .

Proof. The key point is that J is defined by maps that use only the first coordinate of the domain∐𝑚
1 R

𝑝 and the first 𝑛 − 𝑝 + 1 coordinates of the codomain R𝑛. Let 𝜔 ∈ ΩL𝑛
𝑚·𝑝 . Applying either of

the two maps to 𝜔 gives an embedding
∐𝑚−1

1 R𝑝+1 → R𝑛+1. We view 𝜔 as a family of embeddings
𝜔𝑡 :

∐𝑚
1 R

𝑝×𝑡→R𝑛×𝑡, 𝑡 ∈ [−1, 1], and hence,Ω𝐽 (𝜔) as a family of embeddings
∐𝑚−1

1 R𝑝×𝑡→R𝑛×𝑡,
𝑡 ∈ [−1, 1]. In these terms, 𝐺 ◦ Ω𝐽 (𝜔) :

∐𝑚−1
1 R𝑝+1 → R𝑛+1 is obtained from Ω𝐽 (𝜔) by first taking

the union of the latter family over both the domain and codomain and then extending by the standard
link (𝑒1, . . . , 𝑒𝑚−1) for 𝑡𝑝+1 ∉ [−1, 1]. Thus, we must essentially compare the union of the family
Ω𝐽 (𝜔) with the embedding

∐𝑚−1
1 R𝑝 × [−1, 1] → R𝑛 × [−1, 1] obtained by restricting the domain and

codomain of 𝐽 ◦ 𝐺 (𝜔).
Let A, B and C be the subspaces in the definition of joining p-dimensional links in R𝑛. Then each of

Ω𝐽 (𝜔) and 𝐽 ◦𝐺 (𝜔) is obtained by gluing embeddings of 𝐴× [−1, 1], 𝐵× [−1, 1], and 𝐶 × [−1, 1]. On
𝐶 × [−1, 1], both are given by the restriction of the standard (𝑝 + 1)-dimensional (𝑚 − 1)-component
long link, since the combined effect of the pre- and post-compositions by the affine-linear maps of the
domain and codomain leaves the standard long link fixed. Recall that 𝜑1 is a diffeomorphism of R𝑛−𝑝+1.
On 𝐴 × [−1, 1], 𝐽 ◦ 𝐺 (𝜔) is given by

((𝑆, 1/(2𝑘), . . . , 1/(2𝑘)) × 1𝑝) ◦ ((𝜑1 × 1𝑝) ◦ 𝐺 (𝜔)) ◦ (2𝑘 × 1𝑝). (2.2)

On each slice 𝐴 × 𝑡, Ω𝐽 (𝜔) is given by

((𝑆, 1/(2𝑘), . . . , 1/(2𝑘)) × 1𝑝−1) ◦ ((𝜑1 × 1𝑝−1) ◦ 𝜔𝑡 ) ◦ (2𝑘 × 1𝑝−1). (2.3)

Applying G to (2.3) means taking the union over 𝑡 ∈ [−1, 1], which has the effect of replacing 𝜔𝑡

by 𝐺 (𝜔) and replacing each instance of 1𝑝−1 by 1𝑝 , thus yielding (2.2). On 𝐵 × [−1, 1], we have a
similar comparison of two expressions, except that the second factors are (𝜑1 × 1𝑝) ◦ 𝐺 (𝜔) ◦ 𝑇 and
(𝜑1 × 1𝑝−1) ◦ 𝜔𝑡 ◦ 𝑇 , respectively. �

We have actually shown that 𝐽 ◦ 𝐺 = 𝐺 ◦ Ω𝐽, but in Section 5.4, we will consider an alternative
description of J that may agree only up to homotopy with Definition 2.6.

Remark 2.8. One can show that J depends only on the isotopy ℎ𝑠 × 1𝑝−1 of the m-th copy of [−1, 1] 𝑝
into the (𝑚 − 1)-th component, where ℎ𝑠 is the restriction of 𝜑𝑠 to (𝑡𝑚𝑚)∗ × 0𝑛−𝑝−1 × [−1, 1]. If we
generalize the construction from ℎ𝑠 × 1𝑝−1 to any isotopy of [−1, 1] 𝑝 in R𝑛 coming from an embedded
path 𝛾 in R𝑛, then the space of possible choices in this construction is homotopy equivalent to

(R𝑝 − [−1, 1] 𝑝)) �
(
Emb𝑐

(
R,R𝑛 −

(
[−1, 1]𝑛 ∪ 𝑒

(
𝑚−1∐

1
R𝑝

)))
×Ω𝑉𝑝 (R𝑛−1)

)
,

where 𝐵 � 𝐹 is imprecise notation for a bundle with base B and fiber F, and where 𝑉𝑝 (R𝑛−1) is the
Stiefel manifold of p-frames in R𝑛−1. If we restrict to paths 𝛾 lying in R𝑛−𝑝+1 × 0𝑝−1 and isotopies
ℎ𝑠 × 1𝑝−1 (as we do to ensure compatibility with graphing), then the space of possible choices is as
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12 R. Koytcheff

above but with every instance of n replaced by 𝑛 − 𝑝 + 1 and every instance of p replaced by 1. In either
setting, the possible homotopy classes of J depend only on 𝜋0 of this space.

2.3. Restriction and inclusion maps

We now define restriction and inclusion maps between spaces of links of different numbers of compo-
nents. Let 𝑆 ⊂ {1, . . . , 𝑚}. Our link components are always ordered, and accordingly, we view S as an
ordered set using the standard order on {1, . . . , 𝑚}. Let 𝑡∗𝑖 ∈ (−1, 1), 𝑖 ∈ {1, . . . , 𝑚} and 𝑠∗𝑖 ∈ (−1, 1),
𝑖 ∈ 𝑆 be the basepoints’ first coordinates for L𝑛

𝑝1 ,..., 𝑝𝑚 and L𝑛
𝑝𝑖 :𝑖∈𝑆 , respectively. Fix a diffeomorphism

𝑔 : R2 → R2 isotopic to the identity such that 𝑔([−1, 1]2) ⊂ [−1, 1]2 and 𝑔(𝑡∗𝑖 , 0) = (𝑠∗𝑖 , 0) for all
𝑖 ∈ 𝑆. Fix a diffeomorphism ℎ : R2 → R2 isotopic to the identity such that ℎ([−1, 1]2) ⊂ [−1, 1]2,
ℎ(𝑠∗𝑖 , 0) = (𝑡∗𝑖 , 0) for all 𝑖 ∈ 𝑆, and (𝑡∗𝑗 , 0) ∉ ℎ([−1, 1]2) for all 𝑗 ∉ 𝑆. If S is a consecutive subset of
{1, . . . , 𝑚}, then each of g and h can be taken to be the product of an affine-linear map R → R with
1 : R→ R. It is convenient now to extend Definition 2.1 to allow 𝑚 = 0, that is, an empty list ( ) of
source dimensions, in which case L𝑛

( ) := {∗} (where the point may be viewed as the embedding of the
empty set).

Definition 2.9. Let 𝑚 ≥ 1 and 1 ≤ 𝑝1, . . . , 𝑝𝑚 ≤ 𝑛 − 1. Let 𝑆 ⊂ {1, . . . , 𝑚}. Define the restriction 𝜌𝑆
as the map

Emb𝑐
���

∐
𝑝𝑖 :𝑖∈{1,...,𝑚}−𝑆

R𝑝𝑖 , R𝑛 −
∐
𝑖∈𝑆
R𝑝𝑖

���→ L𝑛
𝑝1 ,..., 𝑝𝑚

𝜌𝑆−→ L𝑛
𝑝𝑖 :𝑖∈𝑆 , (2.4)

which first restricts a link to the components indexed by S and then applies 𝑔 × 1𝑛−2, where the fiber is
taken over the standard long link 𝑒 = (𝑒𝑖)𝑖∈𝑆 . Above R𝑛 −

∐
𝑖∈𝑆 R

𝑝𝑖 is shorthand for R𝑛 −
∐

𝑖∈𝑆 𝑒𝑖 (R𝑝𝑖 ).

The map 𝜌𝑆 is a fibration by work of Palais or Lima [Pal60, Lim64].

Definition 2.10. Let 𝑚 ≥ 1 and 1 ≤ 𝑝1, . . . , 𝑝𝑚 ≤ 𝑛 − 2. Let 𝑆 ⊂ {1, . . . , 𝑚}. Define the inclusion

𝜄𝑆 : L𝑛
𝑝𝑖 :𝑖∈𝑆 → L𝑛

𝑝1 ,..., 𝑝𝑚

by setting 𝜄𝑆 ( 𝑓 ) to be the standard embedding (𝑒𝑖)𝑖∈{1,...,𝑚}−𝑆 together with (ℎ × 1𝑛−2) ◦ 𝑓 .

We continue to suppress the ambient set containing S from the notation for 𝜌𝑆 and 𝜄𝑆 . Though this
set varies below between {1, . . . , 𝑚} and subsets thereof, it should be clear from the context.

Proposition 2.11. Let 𝑚 ≥ 1 and 1 ≤ 𝑝1, . . . , 𝑝𝑚 ≤ 𝑛 − 2. Let 𝑆, 𝑇 ⊂ {1, . . . , 𝑚}.

(a) The map 𝜄𝑆 is a section of 𝜌𝑆 up to homotopy.
(b) The composite 𝜌𝑇 ◦ 𝜄𝑆 is is homotopic to the composite L𝑛

𝑝𝑖 :𝑖∈𝑆
𝜌𝑆∩𝑇−−−−→ L𝑛

𝑝𝑖 :𝑖∈𝑆∩𝑇
𝜄𝑆∩𝑇−−−−→ L𝑛

𝑝𝑖 :𝑖∈𝑇 .
Thus, the induced maps on homotopy groups satisfy im(𝜌𝑇 ◦ 𝜄𝑆)∗ ⊂ im(𝜄𝑆∩𝑇 )∗.

(c) If 𝑇 ⊂ 𝑆, the composite of the inclusions associated to 𝑇 ⊂ 𝑆 and 𝑆 ⊂ {1, . . . , 𝑚} is homotopic
to the inclusion associated to 𝑇 ⊂ {1, . . . , 𝑚}. An analogous statement holds for the restrictions.
Thus, im(𝜄𝑇 )∗ ⊂ im(𝜄𝑆)∗ and ker(𝜌𝑆)∗ ⊂ ker(𝜌𝑇 )∗.

Proof. For part (a), 𝜌𝑆 ◦ 𝜄𝑆 takes a long link f to (𝑔 ◦ ℎ × 1𝑛−2) ◦ 𝑓 . By assumption, 𝑔 ◦ ℎ : R2→ R2 is
isotopic to 12, and an isotopy to 12 produces a homotopy from 𝜌𝑆 ◦ 𝜄𝑆 to the identity map on L𝑝𝑖 :𝑖∈𝑆 .
Similar homotopies yield the statements about maps in parts (b) and (c), from which the statements
about the induced maps are immediate. �
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Corollary 2.12. Let 𝑚 ≥ 1, 1 ≤ 𝑝1, . . . , 𝑝𝑚 ≤ 𝑛−3, and 𝑖 ≥ 0. Let S be any set of subsets of {1, . . . , 𝑚}.
Then

𝜋𝑖L𝑛
𝑝1 ,..., 𝑝𝑚 �

⋂
𝑆∈S

ker(𝜌𝑆)∗ ⊕
∑
𝑆∈S

im(𝜄𝑆)∗. (2.5)

Proof. The left-hand side is an abelian group for all 𝑖 ≥ 0 because every 𝑝 𝑗 ≤ 𝑛 − 3. By Proposition
2.11 (a), for any 𝑆 ⊂ {1, . . . , 𝑚}, 𝜄𝑆 gives a splitting of the long exact sequence in homotopy of the
fibration 𝜌𝑆 , and hence, 𝜋𝑖L𝑛

𝑝1 ,..., 𝑝𝑚 � ker(𝜌𝑆)∗ ⊕ im(𝜄𝑆)∗. Repeatedly applying this decomposition for
every 𝑆 ∈ S shows that 𝜋𝑖L𝑛

𝑝1 ,..., 𝑝𝑚 is the sum of the intersection and the sum on the right-hand side.
One can show that this sum is direct by using induction on the cardinality of S and all three parts of
Proposition 2.11. �

Corollary 2.13. For 𝑚 = 2, the restriction fibration

Emb𝑐 (R𝑝 , R𝑛 − R𝑞)
𝜖−→ L𝑛

𝑝, 𝑞

𝜌2−→ K𝑛
𝑞 (2.6)

induces an isomorphism

𝜋𝑖L𝑛
𝑝, 𝑞 � 𝜋𝑖Emb𝑐 (R𝑝 , R𝑛 − R𝑞) ⊕ 𝜋𝑖K𝑛

𝑞 , (2.7)

where the inclusion of 𝜋𝑖Emb𝑐 (R𝑝 , R𝑛 − R𝑞) is induced by the inclusion 𝜖 of the fiber of 𝜌2 and the
inclusion of 𝜋𝑖K𝑛

𝑞 is induced by the section 𝜄2 of 𝜌2. In addition,

𝜋𝑖L𝑛
𝑝, 𝑞 � (ker(𝜌1)∗ ∩ ker(𝜌2)∗) ⊕ 𝜋𝑖K𝑛

𝑝 ⊕ 𝜋𝑖K𝑛
𝑞 , (2.8)

where the inclusions of the last two summands are induced by 𝜄1 and 𝜄2.

Proof. The decomposition (2.7) follows from Corollary 2.13 with S = {{2}}. We obtain the decom-
position (2.8) from Corollary 2.13 with S = {{1}, {2}}, using the fact that im(𝜄1)∗ ∩ im(𝜄2)∗ = 0. The
latter fact holds because (𝜌 𝑗 ◦ 𝜄 𝑗 )∗ is the identity and (𝜌 𝑗 ◦ 𝜄𝑘 )∗ = 0 if 𝑗 ≠ 𝑘 , by Proposition 2.11 (a)
and (b), respectively. �

The graphing, restriction and inclusion maps are maps of H-spaces, whereas the maps that join
components are not. Graphing commutes with both restriction and inclusion. Analogues of the stacking,
joining, restriction and inclusion maps for closed links appear in work of Haefliger [Hae62a], where
they are respectively called addition, contraction, projection and inclusion.

3. Injectivity of graphing for spaces of 2-component long links

We now prove Theorem 3.2 (a.k.a. Theorem A), the injectivity of graphing into spaces of 2-component
links, which produces elements of homotopy groups in arbitrarily high degrees.

Recall that there is a diffeomorphism

ℎ = ℎ𝑛𝑞 : R𝑛 − 0𝑛−𝑞 × R𝑞 = (R𝑛−𝑞 − 0𝑛−𝑞) × R𝑞 → 𝑆𝑛−𝑞−1 × R𝑞+1

(𝑡1, . . . , 𝑡𝑛) ↦→
( (𝑡1, . . . , 𝑡𝑛−𝑞)
|(𝑡1, . . . , 𝑡𝑛−𝑞) |

, ln | (𝑡1, . . . , 𝑡𝑛−𝑞) |, 𝑡𝑛−𝑞+1, . . . , 𝑡𝑛

)
.

(3.1)

We can use it to define a homotopy equivalence

𝑆𝑛−𝑞−1→ R𝑛 − 0𝑛−𝑞 × R𝑞

𝑠 ↦→ ℎ−1 (𝑠, 0𝑞+1).
(3.2)
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14 R. Koytcheff

We can similarly define a based homotopy equivalence 𝑆𝑛−𝑞−1 → R𝑛 − 𝑒2(R𝑞), where 𝑒1(0) is the
basepoint in the codomain, by post-composing by the appropriate affine-linear map in the first coordinate.
By taking the one-point compactification of R𝑛, we obtain from h a diffeomorphism

𝑆𝑛 − 𝑆𝑞 → 𝑆𝑛−𝑞−1 × R𝑞+1. (3.3)

We will now show there is a homotopy retraction from a space of long links to a wedge of spheres.
This next lemma can be viewed as an adaptation to long links of the 𝜆-invariant given in Definition A.2
below.

Lemma 3.1. Let 𝑚 ≥ 2 and 1 ≤ 𝑝1 ≤ · · · ≤ 𝑝𝑚 ≤ 𝑛 − 1. Then Ω𝑝1
(∨𝑚

𝑘=2 𝑆𝑛−𝑝𝑘−1) is a retract up to
homotopy of Emb𝑐

(
R𝑝1 , R𝑛 −

∐𝑚
𝑘=2 R

𝑝𝑘
)
, and a section of it is given by Ω𝑝1 𝑗 followed by the graphing

map 𝐺 𝑝1 , where 𝑗 :
∨𝑚

𝑘=2 𝑆𝑛−𝑝𝑘−1→ R𝑛 −
∐𝑚

𝑘=2 R
𝑝𝑘 is a homotopy equivalence.

Proof. First, there is a map

𝑟 : Emb𝑐

(
R𝑝1 , R𝑛 −

𝑚∐
𝑘=2
R𝑝𝑘

)
→ Ω𝑝1

(
R𝑛−𝑝1 −

𝑚∐
𝑘=2
R𝑝𝑘−𝑝1

)
(3.4)

given by viewing an embedding as a smooth map and projecting onto the first 𝑛 − 𝑝1 coordinates. As in
Definition 2.9, R𝑝𝑘 and R𝑝𝑘−𝑝1 are shorthand for their images under the standard embeddings 𝑒𝑘 . We
claim that graphing gives a section of r. Indeed, by a slight abuse of notation, consider the map

𝐺 𝑝1 : Ω𝑝1

(
R𝑛−𝑝1 −

𝑚∐
𝑘=2
R𝑝𝑘−𝑝1

)
→ Emb𝑐

(
R𝑝1 , R𝑛 −

𝑚∐
𝑘=2
R𝑝𝑘

)
given by first viewing a point in Ω𝑝1 𝑋 as a 𝑝1-fold loop in Emb𝑐 ({∗}, 𝑋) and then applying the 𝑝1-fold
graphing map. Then 𝑟 ◦ 𝐺 𝑝1 is the identity

𝑓
𝐺↦−→

(
(𝑡1, . . . , 𝑡𝑝1) ↦→

(
𝑓 (𝑡1, . . . , 𝑡𝑝1), 𝑡𝑛−𝑝1+1, . . . , 𝑡𝑛

)
∈ R𝑛

)
𝑟↦−→
(
(𝑡1, . . . , 𝑡𝑝1) ↦→ 𝑓 (𝑡1, . . . , 𝑡𝑝1)

)
.

Thus, Ω𝑝1
(
R𝑛−𝑝1 −

∐𝑚
𝑘=2 R

𝑝𝑘−𝑝1
)

is a homotopy retract of Emb𝑐
(
R𝑝1 , R𝑛 −

∐𝑚
𝑘=2 R

𝑝𝑘
)
. A based ho-

motopy equivalence 𝑗 :
∨𝑚

𝑘=2 𝑆𝑛−𝑝𝑘−1 �−→ R𝑛−𝑝1 −
∐𝑚

𝑘=2 R
𝑝𝑘−𝑝1 , where 𝑒1(0) is the basepoint in the

codomain, can be obtained along similar lines to formula (3.2), though an explicit formula is not as
easily obtained for 𝑚 > 2 as for 𝑚 = 2. Pre-composing 𝐺 𝑝1 by Ω𝑝1 ( 𝑗) yields the desired section, since
post-composing r by the 𝑝1-fold looping of the homotopy inverse of j gives its one-sided inverse. �

Theorem 3.2. If 0 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛− 1 and 𝑖 ≥ 0, then 𝜋𝑖Emb𝑐 (R𝑝 �R𝑞 , R𝑛) contains a direct summand
of 𝜋𝑖+𝑝𝑆𝑛−𝑞−1. An inclusion of it is given by composing maps induced by a based homotopy equivalence
𝑗 : 𝑆𝑛−𝑞−1→R𝑛−𝑝−𝑒2 (R𝑞−𝑝), the inclusion 𝜖 : Emb𝑐 (∗,R𝑛−𝑝−𝑒2(R𝑞−𝑝)) ↩→ Emb𝑐 (∗�R𝑞−𝑝 , R𝑛−𝑝),
and the p-fold graphing map 𝐺 𝑝: Ω𝑝Emb𝑐 (∗ � R𝑞−𝑝 , R𝑛−𝑝) → Emb𝑐 (R𝑝 � R𝑞 , R𝑛).

Here, the basepoint for R𝑛−𝑝 − 𝑒2(R𝑛−𝑞) is defined to be (𝑡∗1, 0, . . . , 0).

Proof. There is a commutative square

Ω𝑝Emb𝑐 (∗, R𝑛−𝑝 − 𝑒2(R𝑛−𝑞)) �
� 𝜖 ��

𝐺𝑝

��

Ω𝑝Emb𝑐 (∗ � R𝑞−𝑝 , R𝑛−𝑝)

𝐺𝑝

��
Emb𝑐 (R𝑝 , R𝑛 − 𝑒2(R𝑞)) �

� 𝜖 �� Emb𝑐 (R𝑝 � R𝑞 , R𝑛)

(3.5)

so we may consider 𝜖 ◦ 𝐺 𝑝 ◦ Ω𝑝 𝑗 instead of 𝐺 𝑝 ◦ 𝜖 ◦ Ω𝑝 𝑗 . By Corollary 2.13, for each row of the
square, the inclusion 𝜖 of the fiber of the restriction 𝜌2 induces an inclusion of the homotopy groups of
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the left-hand side as a direct summand of those of the right-hand side. The theorem follows from the
fact that by Lemma 3.1, 𝐺 𝑝 ◦Ω𝑝 𝑗 induces the inclusion of a direct summand on homotopy groups. �

Example 3.3 (Generalized linking numbers). One of the simplest cases of Theorem 3.2 and A.4 is
when 𝑝 = 𝑞 = 1, 𝑛 = 3 and 𝑖 = 0, where the theorem reduces to the injection of 𝜋1 (𝑆1) � Z, the
group of 2-strand classical pure braids, into the monoid of isotopy classes of classical 2-component
long, or closed, links. More generally, if 𝑖 + 𝑝 + 𝑞 = 𝑛 − 1, then a generator of the resulting copy of
Z in 𝜋𝑖Emb𝑐 (R𝑝 � R𝑞 ,R𝑖+𝑝+𝑞+1) is dual to the linking number of manifolds of dimensions, say 𝑖 + 𝑝
and q in R𝑖+𝑝+𝑞+1, by combining the domain of an element of 𝜋𝑖 and the source manifold R𝑝 into an
embedded (𝑖 + 𝑝)-dimensional manifold.

4. Bijectivity of graphing in a range

We will now give a complete calculation, at least up to knotting, of homotopy groups of spaces of long
links in a certain range. We will consider spaces of long (knots and) links, such as K𝑛

𝑝 and L𝑛
𝑝, 𝑞 , as well

as spaces of pseudoisotopy embeddings, such as P𝑛
𝑝 and P𝑛

𝑝, 𝑞 . The key ingredients, given in Section
4.1, are a fibration sequence involving spaces of long links and a space of pseudoisotopy embeddings,
together with a lower bound on the connectivity of the latter space. In Section 4.2, we prove Theorem 4.4
(a.k.a. Theorem B), establishing bijectivity in a range for graphing of 2-component links. In this range,
we will see in Theorem 4.8 (a.k.a. Theorem C) that this determines the homotopy groups of any space
of long links. The main result of Section 4.3 is Theorem 4.11, which extends the bijectivity result to one
degree higher for equidimensional links by starting with 2-dimensional rather than 0-dimensional links.
This requires the identification in Lemma 4.9 of isotopy classes between spherical links and long links.

4.1. Lemmas on pseudoisotopy embedding spaces

Restriction of a 2-component pseudoisotopy embedding R𝑝 � R𝑞 ↩→ R𝑛 to the hyperplanes
{(𝑡1, . . . , 𝑡𝑝) ∈ R𝑝 : 𝑡𝑝 = 1} � {(𝑡1, . . . , 𝑡𝑞) ∈ R𝑞 : 𝑡𝑞 = 1} gives the following fibration:

L𝑛
𝑝, 𝑞

𝑖 �� P𝑛
𝑝, 𝑞

𝜌 �� L𝑛−1
𝑝−1, 𝑞−1.

In turn, this leads to the sequence

ΩL𝑛−1
𝑝−1, 𝑞−1

𝜕 �� L𝑛
𝑝, 𝑞

𝑖 �� P𝑛
𝑝, 𝑞 ,

which up to homotopy is a fibration. To be somewhat explicit, we review the general construction of the
connecting map 𝜕 for a fibration in this special case. It comes from the following homotopy-commutative
diagram:

ΩL𝑛−1
𝑝−1, 𝑞−1

𝜕 ����� L𝑛
𝑝, 𝑞

𝑖 �� P𝑛
𝑝, 𝑞

hofib(𝑖)
𝑗 ��

𝑝 �

��

L̃𝑛
𝑝,𝑞

𝜋 �

��

𝑘 �� P𝑛
𝑝, 𝑞

(4.1)

The space L̃𝑛
𝑝,𝑞 is defined by

L̃𝑛
𝑝,𝑞 :=

{
( 𝑓 , 𝛾) : 𝑓 ∈ L𝑛

𝑝, 𝑞 , 𝛾 : [−1, 1] → P𝑛
𝑝, 𝑞 , 𝛾(1) = 𝑖( 𝑓 )

}
.
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16 R. Koytcheff

The homotopy equivalence 𝜋 : L̃𝑛
𝑝,𝑞→L𝑛

𝑝, 𝑞 is the projection 𝜋 : ( 𝑓 , 𝛾) ↦→ 𝑓 . The map 𝑘 : L̃𝑛
𝑝,𝑞→P𝑛

𝑝, 𝑞

is given by 𝑘 : ( 𝑓 , 𝛾) ↦→ 𝛾(−1), and it is homotopic to 𝑖 ◦ 𝜋. One defines hofib(𝑖) as its fiber; that is,

hofib(𝑖) :=
{
( 𝑓 , 𝛾) : 𝑓 ∈ L𝑛

𝑝, 𝑞 , 𝛾 : [−1, 1] → P𝑛
𝑝, 𝑞 , 𝛾(−1) = 𝑒, 𝛾(1) = 𝑖( 𝑓 )

}
.

The homotopy equivalence 𝑝 : hofib(𝑖) → ΩL𝑛−1
𝑝−1, 𝑞−1 is given by ( 𝑓 , 𝛾) ↦→ 𝜌 ◦ 𝛾, and for h homotopy

inverse to p, we can define 𝜕 := 𝜋 ◦ 𝑗 ◦ ℎ.

Lemma 4.1. The graphing map 𝐺 : ΩL𝑛−1
𝑝−1, 𝑞−1→ L𝑛

𝑝, 𝑞 agrees with 𝜕.

Proof. We will specify a map ℎ : ΩL𝑛−1
𝑝−1, 𝑞−1→ hofib(𝑖) homotopy inverse to p so that with 𝜕 = 𝜋◦ 𝑗 ◦ℎ,

we get 𝐺 = 𝜕. We thus need to construct out of a loop of long links a path of pseudoisotopy embeddings
in one dimension higher, which starts at the standard embedding e and ends at a long link. Write a map
𝑓 ∈ ΩL𝑛−1

𝑝−1, 𝑞−1 as

𝑓 = ( 𝑓1, 𝑓2) : R × (R𝑝−1 � R𝑞−1) → R𝑛−1

𝑓1 : (𝑠, (𝑡1, . . . , 𝑡𝑝)) ↦→ 𝑓1 (𝑠) (𝑡1, . . . , 𝑡𝑝−1)
𝑓2 : (𝑠, (𝑡1, . . . , 𝑡𝑞)) ↦→ 𝑓2 (𝑠) (𝑡1, . . . , 𝑡𝑞−1)

by identifying R × (R𝑝−1 � R𝑞−1) with (R × R𝑝−1) � (R × R𝑞−1). We define h by the formula

ℎ( 𝑓 ) = (ℎ( 𝑓 )1, ℎ( 𝑓 )2) : [−1, 1] × (R𝑝 � R𝑞) → R𝑛

ℎ( 𝑓 )1 : (𝑠, (𝑡1, . . . , 𝑡𝑝)) ↦→
(
𝑓1(𝑔(𝑠, 𝑡𝑝)) (𝑡1, . . . , 𝑡𝑝−1), 𝑡𝑝

)
ℎ( 𝑓 )2 : (𝑠, (𝑡1, . . . , 𝑡𝑞)) ↦→

(
𝑓2(𝑔(𝑠, 𝑡𝑞)) (𝑡1, . . . , 𝑡𝑞−1), 𝑡𝑞

)
,

where 𝑔(𝑠, 𝑡) = (𝑠 + 1)𝜌(𝑡) − 1 and 𝜌 : R→ R is a smooth cutoff function that is −1 for 𝑡 ≤ −1/2 and
1 for 𝑡 ≥ 1/2. We conclude the proof by noting that the function 𝑔 : R2 → R satisfies the following
properties:

◦ g is a smooth function of t for all 𝑠 ∈ [−1, 1],
◦ 𝑔(−1, 𝑡) ≤ −1, so that ℎ( 𝑓 ) starts at e,
◦ 𝑔(𝑠, 𝑡) ≤ −1 if 𝑡 ≤ −1, so that at every time s, ℎ( 𝑓 ) is a pseudoisotopy embedding (standard on the

bottom face of 𝐼 𝑝 � 𝐼𝑞 and all slices of (𝐼 𝑝−1 � 𝐼𝑞−1) × R below it),
◦ 𝑔(1, 𝑡) ≥ 1 if 𝑡 ≥ 1, so that ℎ( 𝑓 ) ends at a long knot,
◦ 𝑔(𝑠, 𝑡) is independent of t for all 𝑡 ≥ 1, so that at every time s, ℎ( 𝑓 ) is a pseudoisotopy embedding

(given by the same long knot on the top face of 𝐼 𝑝� 𝐼𝑞 and all slices of (𝐼 𝑝−1� 𝐼𝑞−1) ×R above it), and
◦ 𝑔(𝑠, 1) = 𝑠, so that 𝜋 ◦ 𝑗 ◦ ℎ = 𝐺.

�
Lemma 4.2. If 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 − 3, then the space P𝑛

𝑝, 𝑞 is (2𝑛 − 2𝑞 − 5)-connected.

Proof. Consider the square

P𝑛
𝑝, 𝑞

��

��

P𝑛
𝑝

��
P𝑛
𝑞

�� ∗

(4.2)

where the maps with domain P𝑛
𝑝, 𝑞 are obtained by restricting an embedding to each of the two

components. This square is (2𝑛 − 𝑝 − 𝑞 − 4)-cartesian. This fact is the improved version of Morlet’s
disjunction lemma due to Goodwillie [Goo90b, p. 6], who further generalized this result [Goo90b, p. 12,
Theorem D] [GK15, Lemma 7.4]. One can see that the statement about the square (4.2) is equivalent to
the improved version of Morlet’s disjunction lemma by considering the connectivity of the map between
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the fibers of the rows or columns. This property of the square means the map from P𝑛
𝑝, 𝑞 to the homotopy

limit of the rest of the square is (2𝑛−𝑝−𝑞−4)-connected. This homotopy limit consists of a point inP𝑛
𝑝 , a

point inP𝑛
𝑞 , and a pathΔ1→∗ joining their images; hence, it is homeomorphic toP𝑛

𝑝×P𝑛
𝑞 . Another result

of Goodwillie implies that the spaceP𝑛
𝑝 is (2𝑛−2𝑝−5)-connected [Goo90b, pp. 9-10] [Goo90a, Lemma

3.16]. Thus,P𝑛
𝑝, 𝑞 has connectivity at least min{2𝑛−𝑝−𝑞−5, 2𝑛−2𝑝−5, 2𝑛−2𝑞−5} = 2𝑛−2𝑞−5. �

Lemma 4.3. If 1 ≤ 𝑝 ≤ 𝑛 − 3, then the space P𝑛
𝑝,𝑝, 𝑝 is (2𝑛 − 2𝑝 − 6)-connected.

Proof. Consider the 3-cube of spaces

P𝑛
𝑝,𝑝

��

����
���

�
P𝑛
𝑝

���
��

��
�

P𝑛
𝑝,𝑝, 𝑝

���������
��

����
���

�
P𝑛
𝑝,𝑝

		������

����
���

�
P𝑛
𝑝

�� ∗

P𝑛
𝑝,𝑝

��

		������
P𝑛
𝑝



������

This cube is (3𝑛 − 3𝑝 − 6)-cartesian [GK15, Lemma 7.4] (i.e., the map from P𝑛
𝑝,𝑝, 𝑝 to the homotopy

limit X of the rest of the cube is (3𝑛− 3𝑝 − 6)-connected). The space X consists of three points in P𝑛
𝑝, 𝑝 ,

three paths Δ1 → P𝑛
𝑝 joining pairs of images of these points, and a map Δ2 → ∗ whose three faces

are the images of the three paths. The last piece of data is superfluous, so X fibers over (P𝑛
𝑝,𝑝)3 with

fiber (ΩP𝑛
𝑝)3. Since both P𝑛

𝑝 and P𝑛
𝑝,𝑝 are (2𝑛 − 2𝑝 − 5)-connected (by [Goo90a, Lemma 3.16] and

Lemma 4.2), X is (2𝑛 − 2𝑝 − 6)-connected, hence so is P𝑛
𝑝,𝑝, 𝑝. �

4.2. Bijectivity of graphing and homotopy groups of spaces of long links in a range

We now calculate homotopy groups of 2-component long links, at least up to knotting, in a certain range.

Theorem 4.4. If 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 − 3 and 0 ≤ 𝑖 ≤ 2𝑛 − 𝑝 − 2𝑞 − 4, then in the sequence of maps

𝜋𝑖+𝑝L𝑛−𝑝
0, 𝑞−𝑝

𝐺∗−→ 𝜋𝑖+𝑝−1L𝑛−𝑝+1
1, 𝑞−𝑝+1

𝐺∗−→ . . .
𝐺∗−→ 𝜋𝑖L𝑛

𝑝, 𝑞

𝐺∗−→ . . .
𝐺∗−→ 𝜋0L𝑖+𝑛

𝑖+𝑝, 𝑖+𝑞 (4.3)

induced by graphing, each map except possibly the first is an isomorphism. The first map is always a
surjection, and it is an isomorphism if 𝑖 ≤ 2𝑛 − 𝑝 − 2𝑞 − 5 or 𝑝 = 𝑞.

The inequality involving i, p, q and n is precisely the condition that 𝜋𝑖+𝑝𝑆𝑛−𝑞−1 lies within the stable
range of the homotopy groups of 𝑆𝑛−𝑞−1.

Proof. The maps of spaces underlying the sequence (4.3) are

Ω𝑖+𝑝L𝑛−𝑝
0, 𝑞−𝑝 → Ω𝑖+𝑝−1L𝑛−𝑝+1

1, 𝑞−𝑝+1→ . . . → Ω𝑖L𝑛
𝑝, 𝑞 . . . → ΩL𝑖+𝑛−1

𝑖+𝑝−1, 𝑖+𝑞−1→ L𝑖+𝑛
𝑖+𝑝, 𝑖+𝑞 . (4.4)

We are interested in the maps they induce on 𝜋0. By Lemma 4.1, each such graphing map G fits into a
fibration

Ω 𝑗+1L𝑖+𝑛− 𝑗−1
𝑖+𝑝− 𝑗−1, 𝑖+𝑞− 𝑗−1

𝐺−→ Ω 𝑗L𝑖+𝑛− 𝑗
𝑖+𝑝− 𝑗 , 𝑖+𝑞− 𝑗 → Ω 𝑗P 𝑖+𝑛− 𝑗

𝑖+𝑝− 𝑗 , 𝑖+𝑞− 𝑗 , (4.5)

where 0 ≤ 𝑗 ≤ 𝑖 + 𝑝 − 1. By Lemma 4.2, the connectivity c of the base space in this case satisfies

𝑐 ≥ (2(𝑖 + 𝑛 − 𝑗) − 2(𝑖 + 𝑞 − 𝑗) − 5) − 𝑗 = 2𝑛 − 2𝑞 − 𝑗 − 5 ≥ 2𝑛 − 𝑖 − 𝑝 − 2𝑞 − 4.

If 𝑖 ≤ 2𝑛− 𝑝−2𝑞−5, then 𝑐 ≥ 1. Thus, each map in the sequence (4.4) is 1-connected and hence induces
isomorphisms on 𝜋0. If 𝑖 = 2𝑛 − 𝑝 − 2𝑞 − 4, then 𝑗 = 𝑖 + 𝑝 − 1 yields 𝑐 ≥ 0, while 𝑗 ≤ 𝑖 + 𝑝 − 2 yields
𝑐 ≥ 1. Hence in this case, the first map in the sequence (4.4) induces a surjection in 𝜋0, and the remaining
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maps induce isomorphisms on 𝜋0. Finally, if 𝑝 = 𝑞, then the first instance of 𝐺∗ is the graphing map
from 𝜋𝑖+𝑝L𝑛−𝑝

0, 0 � 𝜋𝑖+𝑝𝑆
𝑛−𝑝−1 to 𝜋𝑖+𝑝−1L𝑛−𝑝+1

1, 1 , which by Theorem 3.2 is also injective. �

We will see in Remark 5.5 that if 𝑝 = 𝑞, the range of values for i in Theorem 4.4 is sharp, even
if one ignores knotting. That is, the map 𝜋2𝑛−3𝑝−3Ω𝑝𝑆𝑛−𝑝−1 → 𝜋2𝑛−3𝑝−3L𝑛

𝑝, 𝑝 does not surject even
onto the factor that does not come from knotting. However, the sequence of graphing maps involving
𝜋2𝑛−3𝑝−3L𝑛

𝑝, 𝑝 consists of isomorphisms if one starts with 2-dimensional instead of 0-dimensional links,
as we will see in Theorem 4.11.

Corollary 4.5. If 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 − 3 and 0 ≤ 𝑖 ≤ 2𝑛 − 𝑝 − 2𝑞 − 4, then

𝜋𝑖L𝑛
𝑝, 𝑞 � 𝜋𝑖+𝑝𝑆

𝑛−𝑞−1 ⊕ 𝜋0K𝑖+𝑛
𝑖+𝑞 , (4.6)

where the inclusion of the first summand is given by the composite

𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 𝑗∗

� 𝜋𝑖+𝑝 (R𝑛−𝑝 − R𝑞−𝑝)
𝜖∗

↩−→ 𝜋𝑖+𝑝L𝑛−𝑝
0, 𝑞−𝑝

𝐺
𝑝
∗−→𝜋𝑖L𝑛

𝑝, 𝑞 (4.7)

with j and 𝜖 as in Theorem 3.2, and where the projection onto the second summand is given by the
composite

𝜋𝑖L𝑛
𝑝, 𝑞 � 𝜋0Ω

𝑖L𝑛
𝑝, 𝑞

𝐺𝑖
∗−→𝜋0L𝑖+𝑛

𝑖+𝑝, 𝑖+𝑞
(𝜌2)∗−−−−→ 𝜋0K𝑖+𝑛

𝑖+𝑞 . (4.8)

For the case where 𝑝 = 𝑞, we have 𝜋𝑖L𝑛
𝑝, 𝑝 � 𝜋𝑖+𝑝𝑆

𝑛−𝑝−1 for all 𝑖 ≤ 2𝑛 − 3𝑝 − 4.

Proof. By Corollary 2.13, the restriction fibration 𝜌2 and the inclusion 𝜖 of its fiber yield a direct sum
decomposition of 𝜋0 of each space in the sequence (4.4), starting with

𝜋𝑖+𝑝L𝑛−𝑝
0, 𝑞−𝑝 � 𝜋𝑖+𝑝Emb𝑐 ({∗}, R𝑛−𝑝 − R𝑞−𝑝) ⊕ 𝜋𝑖+𝑝K𝑛−𝑝

𝑞−𝑝

� 𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 ⊕ 𝜋𝑖+𝑝K𝑛−𝑝

𝑞−𝑝
(4.9)

and ending with

𝜋0L𝑖+𝑛
𝑖+𝑝, 𝑖+𝑞 � 𝜋0Emb𝑐 (R𝑖+𝑝 , R𝑖+𝑛 − R𝑖+𝑞) ⊕ 𝜋0K𝑖+𝑛

𝑖+𝑞 . (4.10)

Each graphing map 𝐺∗ preserves the direct sum decomposition and hence can be written as 𝐺∗ =
𝐺 ′∗ ⊕ 𝐺 ′′∗ . We now apply Theorem 4.4. If 𝑖 ≤ 2𝑛 − 𝑝 − 2𝑞 − 5, each instance of 𝐺 ′∗ and 𝐺 ′′∗ is an
isomorphism, so we can decompose 𝜋𝑖L𝑛

𝑝, 𝑞 as the first summand of (4.9) plus the second summand of
(4.10). If 𝑖 = 2𝑛 − 𝑝 − 2𝑞 − 4, the last p instances of 𝐺 ′′∗ are still isomorphisms because 𝑝 ≥ 1, and all
but the first instance of 𝐺 ′∗ are isomorphisms. The first instance of 𝐺 ′∗ is surjective, and by Theorem
3.2, it is also injective, so we obtain the direct-sum decomposition in this case too. The claim about the
maps in (4.7) and (4.8) is immediate from this direct-sum decomposition.

The simplification of the group for 𝑝 = 𝑞 holds because 𝜋𝑖K𝑛
𝑝 = 0 if 𝑖 ≤ 2𝑛 − 3𝑝 − 4 [Bud08,

Proposition 3.9 (2)]. (This fact, together with the assumption on i, also explains the absence of a
summand of 𝜋𝑖K𝑛

𝑝 in the decomposition (4.6)). �

One can easily extend Corollary 4.5 to the case where 0 = 𝑝 ≤ 𝑞 ≤ 𝑛 − 2, while still assuming
0 ≤ 𝑖 ≤ 2𝑛 − 𝑝 − 2𝑞 − 4. In that case, the splitting (2.6) gives 𝜋𝑖L𝑛

0, 𝑞 � 𝜋𝑖𝑆
𝑛−𝑞−1 ⊕ 𝜋𝑖K𝑛

𝑞 .
Here is a variation on Theorem 4.4 and Corollary 4.5. It allows a higher upper bound on i at the cost

of not addressing the graphing map on the factor that comes from knotting. The proof similarly relies
on a disjunction result. The upper bound on i here and the one in Corollary 4.5 coincide for 𝑝 = 𝑞.

Proposition 4.6 (Improved range of graphing isomorphisms on the linking summands). If 𝑖 ≤ 2𝑛 −
2𝑝 − 𝑞 − 4, then 𝜋𝑖L𝑛

𝑝, 𝑞 � 𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 ⊕ 𝜋𝑖K𝑛

𝑞 , where an inclusion of the first summand is given by a
composite involving the graphing map 𝐺 𝑝

∗ , as in (4.7).
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Proof. A result of Klein and Williams [KW07, Theorem 11.1], proven in further generality by Good-
willie and Klein [GK15, Theorem E], states that the square

Emb(𝑃, 𝑁 −𝑄) ��

��

Emb(𝑃, 𝑁)

��
Map(𝑃, 𝑁 −𝑄) �� Map(𝑃, 𝑁)

is (2𝑛 − 2𝑝 − 𝑞 − 3)-cartesian. We apply it to long links (or maps) of 𝑃 � 𝑄 = R𝑝 � R𝑞 in 𝑁 = R𝑛,
where Map(𝑃, 𝑁) � ∗. Proceeding as in the proof of Lemma 4.2, we get that for 𝑖 ≤ 2𝑛 − 2𝑝 − 𝑞 − 4,

𝜋𝑖Emb𝑐 (R𝑝 , R𝑛 − R𝑞) � 𝜋𝑖𝑆
𝑛−𝑞−1 ⊕ 𝜋𝑖K𝑛

𝑝 � 𝜋𝑖𝑆
𝑛−𝑞−1,

where 𝜋𝑖K𝑛
𝑝 = 0 because 𝑖 ≤ 2𝑛 − 3𝑝 − 4. An application of the splitting (2.7) yields the desired direct

sum. The left-hand map in the square above is the map r from formula (3.4), of which 𝐺 𝑝 is a section.
This verifies the claim about the inclusion of the first summand. �

Remark 4.7 (Isotopy classes of links). Lemma 4.9 below implies that for 𝑖 = 0, Theorem 4.4 reduces
to the result of Haefliger [Hae67] and M. Skopenkov [Sko09]. Their result applies in a larger range –
namely, 3𝑛 − 2𝑝 − 2𝑞 − 6 ≥ 0 (roughly, the quadruple-point-free range) – in which the group is a direct
sum of four factors. There is one factor for knotting of each of the components, a third factor 𝜋𝑝𝑆

𝑛−𝑞−1,
and a fourth factor 𝜋𝑝+𝑞+2−𝑛𝑉𝑀 (R𝑀+𝑛−𝑝−1) where 𝑉𝑀 (R𝑀+𝑘 ) is the Stiefel manifold of M-frames in
R𝑀+𝑘 and M is large enough for this group to be stable (or more precisely, 𝑀 ≥ 2𝑝 + 𝑞 + 5− 2𝑛). In the
range 2𝑛− 𝑝 − 2𝑞 − 4 ≥ 0 of Theorem 4.4, there is no knotting of the R𝑝 component, and the homotopy
group of the Stiefel manifold is zero.

Putting ℓ = 2 in the next result shows that Theorem 4.4 describes the homotopy groups of any space
of long links with m components in a certain range. If 𝑝1 = · · · = 𝑝𝑚 = 𝑝, this range coincides with the
range in Theorem 4.4 when 𝑞 = 𝑝.

Theorem 4.8. Suppose that 0 ≤ ℓ ≤ 𝑚, 1 ≤ 𝑝1 ≤ · · · ≤ 𝑝𝑚 ≤ 𝑛−3, and 0 ≤ 𝑖 < 1− 𝑝1+
∑𝑚

𝑘=𝑚−ℓ+1(𝑛−
𝑝𝑘 − 2). Then every class in 𝜋𝑖L𝑛

𝑝1 ,..., 𝑝𝑚 is in
∑

𝑆⊂{1,...,𝑚}, |𝑆 | ≤ℓ
im(𝜄𝑆)∗, where 𝜄𝑆 is as in Definition 2.10.

Proof. We proceed by induction on m, with 𝑚 = ℓ as the basis case. Suppose we know the theorem to
be true for links with 𝑚 − 1 components. Consider the restriction fibration 𝜌𝑆 , 𝑆 = {2, . . . , 𝑚}:

Emb𝑐

(
R𝑝1 , R𝑛 −

𝑚∐
𝑘=2
R𝑝𝑘

)
→ L𝑛

𝑝1 ,..., 𝑝𝑚

𝜌𝑆−−→ L𝑛
𝑝2 ,..., 𝑝𝑚 .

By the direct-sum decomposition from Corollary 2.12 (with S = {𝑆}) and the induction hy-
pothesis, it suffices to prove the analogue of the theorem where L𝑛

𝑝1 ,..., 𝑝𝑚 is replaced by
Emb𝑐

(
R𝑝1 , R𝑛 −

∐𝑚
𝑘=2 R

𝑝𝑘
)
.

Our strategy for proving the latter statement is to first separate knotting and braiding phenomena,
and then translate braiding phenomena into Whitehead products on wedges of spheres. From Lemma
3.1, we have a retraction

𝑟 : Emb𝑐

(
R𝑝1 , R𝑛 −

𝑚∐
𝑘=2
R𝑝𝑘

)
→ Ω𝑝1

(
R𝑛−𝑝1 −

𝑚∐
𝑘=2
R𝑝𝑘−𝑝1

)
.

Because r and its section induce a splitting of homotopy groups, it suffices to show that classes in the
codomain and homotopy fiber of r are in im

(⊕
|𝑆 | ≤ℓ (𝜄𝑆)∗

)
=
∑
|𝑆 | ≤ℓ im(𝜄𝑆)∗.
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Let F be the homotopy fiber of r, which consists of pairs ( 𝑓 , 𝛾) such that f is in the domain of r and 𝛾
is a path from 𝑟 ( 𝑓 ) to the standard embedding 𝑒𝑝1 . Similarly, define 𝐹 ′ as the homotopy fiber of the map

𝑟 ′ : Emb𝑐 (R𝑝1 , R𝑛) → Ω𝑝1 (R𝑛−𝑝1).

There is a homotopy equivalence 𝐹 → 𝐹 ′ induced by the inclusion R𝑛 −
∐𝑚

𝑘=2 R
𝑝𝑘 → R𝑛 and the

affine-linear map that sends (𝑡∗1, 0, . . . , 0) to 0𝑛. Its inverse is induced by an affine-linear inclusion
R𝑛→R𝑛−

∐𝑚
𝑘=2 R

𝑝𝑘 whose image lies in (−∞, 𝑡∗2)×R
𝑛−1. (Recall that 𝑡∗1, . . . , 𝑡

∗
𝑚 are the first coordinates

of the components 𝑒1, . . . , 𝑒𝑚 of the standard long link.) Since the codomain of 𝑟 ′ is contractible, we
have homotopy equivalences Emb𝑐 (R𝑝1 , R𝑛) → 𝐹 ′ → 𝐹. In particular, any element in 𝜋∗𝐹 comes from
knots (i.e., is in the image of 𝜄1).

The codomain of r is homotopy equivalent to Ω𝑝1
(∨𝑚

𝑘=2 𝑆𝑛−𝑝𝑘−1) . By the Hilton–Milnor theorem
[Hil55] (which we may apply since 𝑛 − 𝑝𝑘 ≥ 3) and the assumed upper bound on i, any element of 𝜋𝑖
of the latter space is in the image of the map

⊕
𝑆⊂{2,...,𝑚}, |𝑆 | ≤ℓ−1

𝜋𝑖+𝑝1

(∨
𝑘∈𝑆

𝑆𝑛−𝑝𝑘−1

)
→ 𝜋𝑖+𝑝1

(
𝑚∨
𝑘=2

𝑆𝑛−𝑝𝑘−1

)
;

indeed, if a Whitehead product of classes from ℓ different summands lies in 𝜋𝑖+𝑝1 , then 𝑖 + 𝑝1 ≥
1 +

∑𝑚
𝑘=𝑚−ℓ+1(𝑛 − 𝑝𝑘 − 2). A wedge-sum of ℓ − 1 spheres corresponds to a link with ℓ components, so

the proof is complete. �

4.3. Spherical links and further calculations for long links

Theorem 4.11, the last result of this section, extends the range of Theorem 4.4, provided we start with
2-dimensional links. The graphing sequence ends with isotopy classes of long links, so we first digress
to relate those to isotopy classes of spherical links, which are known in the range we will consider.

Lemma 4.9. If 1 ≤ 𝑝 ≤ 𝑛 − 3, then the closure map

·̂ : L𝑛
𝑚·𝑝 → Emb

(
𝑚∐
1

𝑆𝑝 , 𝑆𝑛

)
induces a bijection on path components.

Proof. We first check that closure induces a surjection on path components. Given a spherical embedding
f, let 𝑓+ be its restriction to

∐𝑚
1 𝐷 𝑝 , where 𝐷 𝑝 is the upper hemisphere of 𝑆𝑝 . Find an isotopy

𝐹+ = 𝐹+(𝑥, 𝑡) of 𝑓+ to the embedding used to construct the closure of a long link (called 𝑔 = (𝑔1, . . . , 𝑔𝑚)
in Definition 2.5). By the isotopy extension theorem, 𝐹+ extends to an isotopy F of spherical embeddings
starting at f. Then 𝐹 (−, 1) is in the image of the closure map and is isotopic to f, so ·̂ is surjective on 𝜋0.

For injectivity, we will use an intermediate space, which we will show has the same path components
as L𝑛

𝑚·𝑝 . Fix a diffeomorphism 𝜑 :
∐𝑚

1 𝐷 𝑝→
(∐𝑚

𝑖=1{(𝑡∗𝑖 , 0𝑛−𝑝−1)} × 𝐷 𝑝
)
, where each summand of 𝐷 𝑝

in the domain is the upper hemisphere of 𝑆𝑝 . We define the space DbEmb
(∐𝑚

1 𝑆𝑝 , 𝑆𝑛
)

of disk-based
embeddings as the space of pairs ( 𝑓 , 𝑔) where 𝑓 ∈ Emb

(∐𝑚
1 𝑆𝑝 , 𝑆𝑛

)
and 𝑔 : 𝐷𝑛 → 𝑆𝑛 is a smooth,

orientation-preserving embedding such that

◦ 𝑔𝜑 is the restriction of f to
∐𝑚

1 𝐷 𝑝 , and
◦ 𝑔(𝐷𝑛) ∩ im 𝑓 = 𝑓

(∐𝑚
1 𝐷 𝑝

𝑖

)
.

We topologize it as a subspace of Emb
(∐𝑚

1 𝑆𝑝 , 𝑆𝑛
)
×Emb(𝐷𝑛, 𝑆𝑛). This definition is motivated by the

d-based links used by Habegger and Lin [HL90, Definition 2.1] for link maps with 𝑝 = 1 and 𝑛 = 3.
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We start by establishing a bijection on isotopy classes between disk-based embeddings and long
links. The projection ( 𝑓 , 𝑔) ↦→ 𝑔 to the second factor is a fibration

L𝑛
𝑚·𝑝 → DbEmb

(
𝑚∐
1

𝑆𝑝 , 𝑆𝑛

)
→ Emb+(𝐷𝑛, 𝑆𝑛), (4.11)

where Emb+(𝐷𝑛, 𝑆𝑛) is the space of orientation-preserving embeddings 𝐷𝑛 → 𝑆𝑛. (The fact that this
projection and (4.12) below satisfy the homotopy lifting property can be seen by lifting a homotopy to
the space of embeddings of the n-manifold with boundary obtained from a neighborhood of 𝑔(𝐷𝑛) ∪
𝑓
(∐𝑚

1 𝑆𝑝
)
.) The inclusion of the fiber over g is 𝑓 ↦→ ( �̂� , 𝑔), where �̂� is the closure obtained via the

images of 𝐷 𝑝 under g. The base space is homotopy equivalent to 𝑆𝑂 (𝑛+1) by shrinking and linearizing.
In particular, it is path-connected.

It now suffices to check that the boundary map 𝜋1𝑆𝑂 (𝑛 + 1) → 𝜋0L𝑛
𝑝 ·𝑚 in the long exact sequence

of the fibration (4.11) is trivial. Find a neighborhood of 𝑔(𝐷𝑛) homeomorphic to 𝐷𝑛−1 × 𝐼 such that the
induced inclusion 𝐷𝑛→ 𝐷𝑛−1 × 𝐼 is the standard one. The generator of 𝜋1𝑆𝑂 (𝑛 + 1) in this context can
be represented by a loop of rotations of the 𝐷𝑛−1 factor through an angle of 2𝜋. The effect on a long
link f in the fiber is to send it to (the isotopy class of) the long link obtained by rotating the factor of 𝐼𝑛

in 𝐼𝑛 = 𝐼𝑛−1 × 𝐼 by 2𝜋, that is, to f itself. Thus, the action is trivial on 𝜋0, so the inclusion of the fiber
in (4.11) is a bijection on 𝜋0.

We now connect to isotopy classes of spherical links. The projection ( 𝑓 , 𝑔) ↦→ 𝑓 of a disk-based
embedding to the first factor is a fibration

DbEmb

(
𝑚∐
1

𝑆𝑝 , 𝑆𝑛

)
→ Emb

(
𝑚∐
1

𝑆𝑝 , 𝑆𝑛

)
. (4.12)

We will show that it is injective on 𝜋0 by showing that its fibers are path connected. Since the closure
map factors through the map (4.12), this will establish injectivity on 𝜋0 of the closure map.

Because 𝑛 − 𝑝 ≥ 3, 𝜋0 of the base space in (4.12) is a group, so its path components are homotopy
equivalent to each other. Therefore, it suffices to consider the fiber F over a standard trivial link. By
considering a small neighborhood of the interval [𝑡∗1, 𝑡

∗
𝑚] × 0𝑛−1 =

⋃𝑚
𝑖=2 [𝑡∗𝑖−1, 𝑡

∗
𝑖 ] × 0𝑛−1 in 𝐷𝑛, we see

that F is homotopy equivalent to the space of framed embeddings of 𝑚 − 1 intervals with interiors lying
in 𝑀 := 𝐷𝑛 −

(∐𝑚
1 𝑆𝑝

)
and prescribed values and p-frames at the endpoints. In turn, F fibers over the

space E of unframed such embeddings in M, with fiber 𝐹 given by the space of such framings. By a
linearization argument again, 𝜋0𝐹 is (𝜋1 (𝑂 (𝑛 − 1), 𝑂 (𝑛 − 𝑝 − 1)))𝑚, which is trivial since 𝑛 − 𝑝 ≥ 3.

It remains to show that E is path-connected. Note that M has a handle decomposition with one n-disk
and m handles of index 𝑛 − 𝑝 − 1. Let 𝐴 ∈ 𝐸 . Since 𝑛 − 𝑝 − 1 ≥ 2, we can perform an isotopy of each
sub-arc of A that lies in a handle, fixing its endpoints, so that it ends up in the n-disk. Since 𝑛 ≥ 4,
we can take each such isotopy to be an isotopy of A (i.e., we can avoid self-intersections). By a similar
argument using that 𝑛 ≥ 4, we can find a further isotopy to a fixed standard arc in the n-disk. Thus, E
is path-connected. Hence, so is F, so the map (4.12) is injective on 𝜋0, and the closure map is bijective
on 𝜋0. �

The work of Budney [Bud08, Proposition 3.9 (3)] gives a stronger analogue of Lemma 4.9 for K𝑛
𝑝 –

namely, that the closure map is (𝑛 − 𝑝 − 2)-connected.

Remark 4.10 (Closure of classical long links). For 𝑝 = 1 and 𝑛 = 3, the closure map is not injective
on isotopy classes for 𝑚 ≥ 2. For example, long links differing by conjugation by a pure braid have the
same closure. In the proof above, we would accordingly have 𝜋0𝐸 ≠ {∗} (That is, there are multiple
isotopy classes of based embeddings of arcs in 𝑆3 −

(∐𝑚
1 𝑆1) , including for 𝑚 ≥ 3 distinct classes lying

in the image of a 2-disk. For such an embedding of arcs 𝐴1 ∪ · · · ∪ 𝐴𝑚−1 = 𝐴 in 𝐷2 − {𝑞1, . . . , 𝑞𝑚} with
𝑚 ≥ 3, a corresponding pure braid 𝛽 can be found by ‘thickening’ 𝐴𝑖 to an unbased loop 𝐿𝑖 enclosing

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2024.114
Downloaded from https://www.cambridge.org/core. IP address: 13.58.60.78, on 15 Feb 2025 at 04:09:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2024.114
https://www.cambridge.org/core


22 R. Koytcheff

both of its endpoints. Then take 𝛽 to be any preimage in Aut(𝐹𝑚) of the element of Out(𝐹𝑚) that sends
𝑥𝑖𝑥𝑖+1 to 𝐿𝑖 .) For 𝑚 = 2, conjugation by pure braids is trivial, but the failure of injectivity of closure
can be seen from the fact that 𝜋0𝐹 would be nontrivial. One need only look at long links with 2 and 3
crossings to find an example of two non-isotopic long links with isotopic closure that arises in this way.

Theorem 4.11. Suppose 1 ≤ 𝑝 ≤ 𝑛 − 3.

(a) For 2-component links, consider the sequence of maps induced by graphing:

𝜋2𝑛−3𝑝−3L𝑛
𝑝, 𝑝 → 𝜋2𝑛−3𝑝−4L𝑛+1

𝑝+1, 𝑝+1→ . . . → 𝜋0L3𝑛−3𝑝−3
2𝑛−2𝑝−3, 2𝑛−2𝑝−3.

If 𝑝 ≥ 2, then all the maps are isomorphisms, and these groups are isomorphic to

Z3 ⊕ 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1 if 𝑛 − 𝑝 is odd

(Z/2)3 ⊕ 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1 if 𝑛 − 𝑝 is even,

with im(𝜄 𝑗 )∗ � Z (respectively Z/2) for each 𝑗 ∈ {1, 2} if 𝑛 − 𝑝 is odd (respectively even).
If 𝑝 = 1, then the first map is surjective, and the remaining maps are isomorphisms.

(b) For 3-component links, consider the sequence of maps induced by graphing:

𝜋2𝑛−3𝑝−3L𝑛
3·𝑝 → 𝜋2𝑛−3𝑝−4L𝑛+1

3· (𝑝+1) → . . . → 𝜋0L3𝑛−3𝑝−3
3· (2𝑛−2𝑝−3) .

If 𝑝 ≥ 3, then all the maps are isomorphisms, and these groups are isomorphic to

Z7 ⊕
(
𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1)3 if 𝑛 − 𝑝 is odd
Z ⊕ (Z/2)6 ⊕

(
𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1)3 if 𝑛 − 𝑝 is even,

with im(𝜄 𝑗 )∗ � Z (respectively Z/2) for each 𝑗 ∈ {1, 2, 3} if 𝑛 − 𝑝 is odd (respectively even) and⋂
|𝑆 | ≤2 ker(𝜌𝑆)∗ � Z.
If 𝑝 = 2, then the first map is surjective, and the remaining maps are isomorphisms.

We will see in Theorem 5.3 that the first graphing map is not an isomorphism for 𝑝 = 1. Conjecture
5.11 suggests how to complete these descriptions for 𝑝 = 1 and 𝑝 = 2.

Proof. We use the fibration

ΩL𝑛+ 𝑗−1
𝑝+ 𝑗−1, 𝑝+ 𝑗−1→ L𝑛+ 𝑗

𝑝+ 𝑗 , 𝑝+ 𝑗 → P𝑛+ 𝑗
𝑝+ 𝑗 , 𝑝+ 𝑗 ,

where 1 ≤ 𝑗 ≤ 2𝑛−3𝑝−3. By Lemma 4.2, the pseudoisotopy embedding spaceP𝑛+ 𝑗
𝑝+ 𝑗 , 𝑝+ 𝑗 is (2𝑛−2𝑝−5)-

connected. Thus,

𝜋𝑖L𝑛+ 𝑗−1
𝑝+ 𝑗−1, 𝑝+ 𝑗−1→ 𝜋𝑖−1L𝑛+ 𝑗

𝑝+ 𝑗 , 𝑝+ 𝑗

is an isomorphism if 𝑖 ≤ 2𝑛 − 2𝑝 − 5 and surjective if 𝑖 = 2𝑛 − 2𝑝 − 4. The claims about the sequence
itself follow because 𝑝 ≥ 2 implies 2𝑛−3𝑝−3 ≤ 2𝑛−2𝑝−5, and 𝑝 = 1 yields 2𝑛−3𝑝−3 = 2𝑛−2𝑝−4.
By Lemma 4.9, 𝜋0L3𝑛−3𝑝−3

2𝑛−2𝑝−3, 2𝑛−2𝑝−3 � 𝜋0Emb
(∐2

1 𝑆2𝑛−2𝑝−3, 𝑆3𝑛−3𝑝−3
)
. The proof of the statement

for 2-component links is completed using the calculation of the latter group from Haefliger’s results
[Hae67, Théorème 10.7] [Hae66, Corollary 8.14]. Each 3-fold direct sum comes from two summands of
𝜋0Emb(𝑆2𝑛−2𝑝−3, 𝑆3𝑛−3𝑝−3) � 𝜋0K3𝑛−3𝑝−3

2𝑛−2𝑝−3 and one summand of 𝜋𝑛−𝑝−1𝑉𝑀 (R𝑀+𝑛−𝑝−1) where 𝑀 ≥ 2.
This also proves the claim about im(𝜄 𝑗 )∗.

In the setting of 3 components, we have an analogous fibration

ΩL𝑛+ 𝑗−1
3· (𝑝+ 𝑗−1) → L𝑛+ 𝑗

3· (𝑝+ 𝑗) → P𝑛+ 𝑗
3· (𝑝+ 𝑗) .
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By Lemma 4.3, the base space is (2𝑛 − 2𝑝 − 6)-connected. Thus,

𝜋𝑖L𝑛+ 𝑗−1
3· (𝑝+ 𝑗−1) → 𝜋𝑖−1L𝑛+ 𝑗

3· (𝑝+ 𝑗)

is an isomorphism if 𝑖 ≤ 2𝑛 − 2𝑝 − 6 and surjective if 𝑖 = 2𝑛 − 2𝑝 − 5. If 𝑝 ≥ 3, then 2𝑛 − 3𝑝 − 3 ≤
2𝑛 − 2𝑝 − 6, while if 𝑝 = 2, then 2𝑛 − 3𝑝 − 3 = 2𝑛 − 2𝑝 − 5. By Lemma 4.9, 𝜋0L3𝑛−3𝑝−3

3· (2𝑛−2𝑝−3) �

𝜋0Emb
(∐3

1 𝑆2𝑛−2𝑝−3, 𝑆3𝑛−3𝑝−3
)
. Finally, since 4(2𝑛 − 2𝑝 − 3) < 3((3𝑛 − 3𝑝 − 3) − 2), we can apply

another result of Haefliger [Hae67, Théorème 9.4], which says that the latter group is given by the direct
sum of isotopy classes of knots and links with fewer than 3 components together with one summand
of 𝜋3𝑛−3𝑝−3𝑆

3𝑛−3𝑝−3. The remaining 6 summands of Z or Z/2 come from knots on each of the 3
components and links on each of the 3 pairs of components, and the 3 summands of 𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1

come from links on each of the 3 pairs of components. This yields the claimed groups in both parities
as well as the claims about im(𝜄 𝑗 )∗ and

⋂
|𝑆 |<3 ker(𝜌𝑆)∗. �

The following rational result of other authors is for comparison with Theorem 4.11 and for later use
in Section 5 in the case where 𝑝 = 1.

Theorem 4.12. [STT18a, FTW] If 1 ≤ 𝑝 ≤ 𝑛 − 3, then

𝜋2𝑛−3𝑝−3L𝑛
𝑝, 𝑝 ⊗ Q �

⎧⎪⎪⎨⎪⎪⎩
Q4 𝑛 − 𝑝 odd,
Q3 𝑛 − 𝑝 even and 𝑝 = 1
0 else.

Proof. This follows from a result of Fresse, Turchin and Willwacher [FTW], a special case of which was
obtained by Songhafouo Tsopméné and Turchin [STT18a] in higher codimensions, including all cases
where 1 = 𝑝 ≤ 𝑛−3. They describe these groups via a complex of graphs with leaves labeled by the link
components. It is roughly dual to the graph complex described below in Section 5.1, except that there
are no link strands, only labels by them, and the graphs are required to be connected. It generalizes work
of Arone and Turchin [AT15] from one component to multiple components. If all source components
have dimension p and the target has dimension n, the degree of a graph is (𝑛−1) |𝐸 | −𝑛|𝐼 | − 𝑝 |𝐿 |, where
|𝐸 |, |𝐼 | and |𝐿 | are the numbers of edges, internal (i.e., non-leaf) vertices and leaves, respectively.

From this, one can deduce that only two types of graphs can contribute to 𝜋2𝑛−3𝑝−3L𝑛
𝑝,𝑝 . One type is

the ‘tripod’ graph (the trivalent tree with 3 leaves) in degree 2𝑛−3𝑝−3, with the 4 possible leaf-labelings
by {1, 2}, for 𝑛− 𝑝 odd. The other type is the ‘2-hair hedgehog’ graph (the trivalent graph with 2 leaves
and one double edge) in degree 2𝑛 − 2𝑝 − 4, with the 3 possible leaf-labelings by {1, 2}, for 𝑛 − 𝑝 even
and 𝑝 = 1. (Each of these graphs is 2-torsion in one parity of 𝑛− 𝑝, due to certain orientation relations.)
These are the first two graphs shown in [AT15, Section 3.2, Table B]. (In addition, by [AT15, Theorem
3.1], these are the only graphs that contribute to 𝜋𝑖L𝑛

𝑝,𝑝 ⊗ Q, 𝑖 ≤ 2𝑛 − 3𝑝 − 3, apart from a single edge
with distinct leaf-labels in degree 𝑛 − 2𝑝 − 1, where we know 𝜋𝑛−2𝑝−1L𝑛

𝑝,𝑝 � Z by Corollary 4.5.) �

5. Homotopy classes in spaces of long knots and links from joining pure braids

Our main purpose now is to prove the last main result, Theorem E. where we describe generators for the
homotopy groups of spaces of links that we have calculated. In it, we also relate the image of graphing
from spheres and configuration spaces to the previously known first nontrivial homotopy groups of
spaces of long knots.

In Section 5.1, we briefly review configuration space integrals, which produce cohomology classes
in spaces of links from a certain cochain complex of graphs (a.k.a. diagrams). We specify a handful of
graph cocycles in Section 5.2. In Section 5.3, we describe how to produce dual homology classes by
resolving singular links. The proof of Theorem 5.3 (a.k.a. Theorem E), given in Section 5.4, involves
identifying certain such homology classes with the homotopy classes in the Theorem statement, or
more precisely their images under the Hurewicz map. It also relies on known results for long knots

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2024.114
Downloaded from https://www.cambridge.org/core. IP address: 13.58.60.78, on 15 Feb 2025 at 04:09:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2024.114
https://www.cambridge.org/core


24 R. Koytcheff

of various dimensions and the compatibility of graphing and joining components. We discuss possible
future directions in Section 5.5.

5.1. Configuration space integrals for cohomology of spaces of long 1-dimensional links

The proof of the last result will use several cohomology classes in spaces of long links that we will
describe via configuration space integrals. We now digress for a brief overview of these integrals for long
m-component, 1-dimensional links. Full details are given in our previous joint work [KMV13], which
extended work of Cattaneo, Cotta-Ramusino and Longoni [CCRL02] and Bott and Taubes [BT94] from
knots to long links.

The classes produced by this construction are indexed by linear combinations of link diagrams,
which are graphs on m oriented line segments – for example, as in formulas (5.1) through (5.8) below.
Such a diagram Γ consists of a vertex set 𝑉 (Γ) and an edge set 𝐸 (Γ). The vertices are partitioned into
sets 𝑉seg(Γ) and 𝑉free(Γ) of segment vertices and free vertices. An edge joining two segment vertices is
called a chord. Diagrams where all the edges are chords, which play a somewhat special role, are called
a chord diagrams. A part of one of the m segments between two vertices is called an arc. All vertices
are required to have valence at least 3, where both edges and arcs count towards valence. For brevity,
we will say ‘graph’ or ‘diagram’ to mean ‘link diagram’.

For a smooth manifold X, the configuration space Conf (𝑚, 𝑋) has a compactification Conf [𝑚, 𝑋] due
to Fulton and Macpherson. It is a smooth manifold with corners homotopy equivalent to Conf(𝑚, 𝑋).
For any graph Γ, one defines a bundle 𝜉Γ over the space L𝑛

𝑚·1 of m-component 1-dimensional links. To
be able to compactify at infinity, one uses a version ofL𝑛

𝑚·1 where the standard link has all m components
approach infinity in different directions. The total space of 𝜉Γ is the pullback of the diagram

L𝑛
𝑚·1 × Conf0

[
𝑉seg(Γ),

𝑚∐
1
R

]
→ Conf

[
𝑉seg(Γ),R𝑛

]
← Conf [𝑉 (Γ),R𝑛] .

In the left-hand configuration space, the subscript 0 indicates that the segment vertices are required lie on
the components and in the order given by the graph Γ. Thus, the fiber of 𝜉Γ over a link f is the subspace
ConfΓ of Conf [𝑉 (Γ),R𝑛] where the points in 𝑉seg(Γ) lie in the image of f, on certain components and
in the order determined by Γ. Each pair of vertices 𝑖, 𝑗 determines a map 𝜑𝑖 𝑗 : Conf (𝑉 (Γ),R𝑛) → 𝑆𝑛−1

given by the unit vector from point i to point j. Let 𝜔 be a unit volume form on 𝑆𝑛−1. One sends a graph
Γ to a differential form via the map

𝐼 : Γ ↦→
∫

ConfΓ

∧
𝑒∈𝐸 (Γ)

𝜑∗𝑖 𝑗𝜔,

where the integration is along the fiber ConfΓ of the bundle 𝜉Γ over the space of links.
To orient the configuration space over which one integrates and determine the sign of the form to be

integrated, one needs certain labelings on the graphs Γ, which depend on the parity of n. For n odd, one
needs an ordering of the vertices and an orientation of each edge. For n even, one needs an ordering of
the segment vertices and an ordering of the edges. Changing the labeling changes the integral only by a
sign, so if two labeled graphs Γ and Γ′ differ by a permutation 𝜎 of labels and (for n odd) r edge reversals,
one sets Γ = (−1)sign(𝜎)+𝑟Γ′. An equivalence class of labeling is viewed as an orientation of a graph.

There is a coboundary operator 𝛿 on such graphs that makes the space of graphs into a cochain
complex. On a graph Γ, it is defined as the signed sum of edge contractions

𝛿Γ :=
∑
𝑒

𝜀(𝑒)Γ/𝑒

over all arcs e and all edges e that are not chords or self-loops. We first define the sign 𝜀(𝑒) for n odd.
If e is an edge or arc with endpoints 𝑖 < 𝑗 , then
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𝜀(𝑒) :=
{
(−1) 𝑗 if 𝑒 = (𝑖→ 𝑗)
(−1) 𝑗+1 if 𝑒 = (𝑖 ← 𝑗).

If n is even and e is an arc with endpoints 𝑖 < 𝑗 , define 𝜀(𝑒) as above (where the arc orientation comes
from the orientation of the segments). If n is even and e is an edge, set

𝜀(𝑒) = (−1)𝑒+1+|𝑉𝑠𝑒𝑔 (Γ) | ,

where by abuse of notation, e also denotes the label on this edge.
With this coboundary operator, the integration map I is a cochain map if 𝑛 ≥ 4. At the level of

cohomology, I is known to be injective on the subspace of trivalent graphs [CCRL02]. It produces all
of the real cohomology of the space of braids in dimension at least 4 [KKV20].

5.2. Some low-dimensional graph cocycles

We will focus on a handful of graph cocycles, which for 𝑚 = 1, 2, 3 yield cohomology classes in
dimension 2𝑛 − 6 in the space of m-component 1-dimensional long links in R𝑛 for any 𝑛 ≥ 4.

The graphs below are oriented using the following shorthand: segment vertices are ordered first by
their order on the components (with, for example, all those on the first component coming first), a free
vertex is last, edges are oriented from smaller to larger label, and edges are ordered by the smallest label
of an endpoint. With this convention, some of the formulas giving cocycles are the same in both parities
of n except for some signs; for these classes (𝜅, 𝜇, and the 𝜈𝑖), we list the sign for n odd above the sign
for n even. For the other classes (𝜂 and 𝜆), we separately list the formulas for the two parities (indicated
by subscripts), but we later use these symbols without the subscripts to refer to both parities at once.

𝜅 := ∓ . (5.1)

𝜂odd := − (5.2)

𝜆odd := − − + + (5.3)
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𝜂even := + + + + (5.4)

𝜆even := + − + − (5.5)

𝜇 := + + ∓ (5.6)

𝜈1 := ∓ 𝜈2 := ∓ (5.7)

𝜈3 := ∓ (5.8)

We will use these classes above to identify families of 1- , 2- and 3-component long links. Recall the
restriction maps 𝜌𝑖 : L𝑛

1,1→ K𝑛
1 , 𝑖 = 1, 2 and 𝜌𝑖 𝑗 : L𝑛

1,1,1→ L𝑛
1,1, 1 ≤ 𝑖 < 𝑗 ≤ 3 from Definition 2.9.

Lemma 5.1.
(a) The space 𝐻2𝑛−6 (K𝑛

1 ; R) is spanned by 𝐼 (𝜅).
(b) The class 𝐼 (𝜂) spans a subspace of 𝐻2𝑛−6(L𝑛

1,1; R) which pulls back via the graphing map Ω𝑆𝑛−2 �
ΩConf(2,R𝑛−1) →L𝑛

1,1 isomorphically onto 𝐻2𝑛−6 (ΩConf (2,R𝑛−1);R). If n is even, the evaluation
of 𝐼 (𝜂) on the image of this graphing map (pre-composed with the Hurewicz map) is up to a sign
the Hopf invariant of a class in 𝜋2𝑛−5𝑆

𝑛−2.
(c) The set {𝐼 (𝜂), 𝐼 (𝜆), 𝜌∗1𝐼 (𝜅), 𝜌

∗
2𝐼 (𝜅)} is a basis for 𝐻2𝑛−6(L𝑛

1,1; R).
(d) The set {𝐼 (𝜇), 𝐼 (𝜈1), 𝐼 (𝜈2), 𝐼 (𝜈3), 𝜌∗12𝐼 (𝜂), 𝜌

∗
13𝐼 (𝜂), 𝜌

∗
23𝐼 (𝜂)} is a basis for a subspace of

𝐻2𝑛−6(L𝑛
1,1,1; R) that maps isomorphically onto 𝐻2𝑛−6 (ΩConf (3,R𝑛−1); R) via the graphing map

ΩConf(3,R𝑛−1) → L𝑛
1,1,1.
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Proof. The definition of the coboundary operator ensures that with our conventions for graph orienta-
tions, these cochains are cocycles. They lie in a dimension which admits no nonzero coboundary map,
so they represent nontrivial and moreover linearly independent cohomology classes.

Part (a) then follows from the fact that 𝐻2𝑛−6 (K𝑛
1 ; Z) � Z, established in work of Turchin [Tur07].

For parts (b) and (d), we use the description of 𝐻∗(ΩConf (𝑚,R𝑛−1);R), due to Cohen and Gitler
[CG02, Theorem 2.3], as the space of horizontal chord diagrams modulo the 4T relations, where each
chord has degree 𝑛 − 3. (The cohomology is thus isomorphic to Vassiliev invariants of pure braids.)
Write a horizontal chord between strand i and j as 𝑡𝑖 𝑗 , where 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, and write a horizontal
chord diagram as a product of 𝑡𝑖 𝑗 . A basis of horizontal chord diagrams in dimension 𝑑 (𝑛 − 3) (before
the quotient by 4T) is given by all degree-d monomials in the 𝑡𝑖 𝑗 , and we visualize the dual basis of
functionals by the same types of diagrams. The 4T relations are the homogeneous degree-2 elements
[𝑡𝑖 𝑗 , 𝑡 𝑗𝑘 + 𝑡𝑖𝑘 ] with 𝑖, 𝑗 , 𝑘 distinct. Thus, 𝐻2𝑛−6 (ΩConf (𝑚,R𝑛−1);R) is isomorphic to the subspace of
functionals in span{(𝑡𝑖 𝑗 𝑡𝑘ℓ)∗}𝑖< 𝑗,𝑘<ℓ which vanish on all elements [𝑡𝑖 𝑗 , 𝑡 𝑗𝑘 + 𝑡𝑖𝑘 ].

By a theorem on graphing braids in previous joint work [KKV20, Theorem 5.19], the graphing
map 𝐺 : ΩConf (𝑚,R𝑛−1) → L𝑛

𝑚·1 induces a surjection 𝐺∗ in cohomology. That theorem also implies
that for the link diagrams

∑
𝑐𝑖Γ𝑖 in parts (b) and (d), 𝐺∗ ◦ 𝐼 (

∑
𝑐𝑖Γ𝑖) ∈ 𝐻∗(ΩConf (𝑚,R𝑛−1);R)

corresponds to the result of remembering only the (duals of) horizontal chord diagrams. Hence, for
𝑚 = 2, 𝜂 ↦→ (𝑡12𝑡12)∗, and (𝑡12𝑡12)∗ forms a basis for 𝐻2𝑛−6 (ΩConf (2,R𝑛−1);R). The fact that 𝐼 (𝜂) is
the Hopf invariant is established in our joint work [KKV, Example B.2]. Thus, part (b) is proven.

For 𝑚 = 3, there are the diagrams 𝜇, 𝜈1, 𝜈2, 𝜈3, 𝜌
∗
12𝜂, 𝜌

∗
13𝜂 and 𝜌∗23𝜂, where 𝜌∗𝑖 𝑗𝜂 is the result of

putting 𝜂 on strands labeled i and j with no edges incident to the remaining third component (so
𝜌∗𝑖 𝑗 𝐼 (𝜂) = 𝐼 (𝜌∗𝑖 𝑗𝜂)). We have 𝜇 ↦→ (𝑡12𝑡13)∗ + (𝑡12𝑡23)∗ + (𝑡13𝑡23)∗, 𝜈𝑖 ↦→ (𝑡𝑖 𝑗 𝑡𝑖𝑘 )∗ − (𝑡𝑖𝑘 𝑡𝑖 𝑗 )∗ (where
𝑖, 𝑗 , 𝑘 are distinct), and 𝜌∗𝑖 𝑗𝜂 ↦→ (𝑡𝑖 𝑗 𝑡𝑖 𝑗 )∗. By the theorem on graphing braids [KKV20, Theorem 5.19],
each of these must vanish on the 4T relations. One can directly check their linearly independence
in span{(𝑡𝑖 𝑗 𝑡𝑘𝑙)∗}𝑖< 𝑗,𝑘<ℓ . We now check the dimension of the space of horizontal 2-chord diagrams
modulo 4T for 𝑚 = 3. There are nine diagrams 𝑡𝑖 𝑗 𝑡𝑘ℓ , with 1 ≤ 𝑖 < 𝑗 ≤ 3, 1 ≤ 𝑘 < ℓ ≤ 3. The three
4T relations (each determined by the pair 𝑖 < 𝑗) span a dimension-2 subspace, so the quotient by them
has rank 7. Thus, for 𝑚 = 3, our 7 cocycles form a basis for 𝐻2𝑛−6 (ΩConf (𝑚,R𝑛−1);R), and part (d) is
proven. (The class 𝐼 (𝜇) is an analogue of the triple linking number, while 𝜌∗𝑖 𝑗 𝐼 (𝜂) is an analogue of the
square the linking number between strands i and j, and 𝐼 (𝜈𝑖) is an analogue of the product of the two
different pairwise linking numbers involving strand i.)

Finally, for part (c), by Theorem 4.12 for 𝑝 = 1, we have that 𝜋2𝑛−6L𝑛
1, 1 ⊗ Q has dimension 3 or

4 according to whether n is odd or even. Since L𝑛
1,1 is a homotopy-associative H-space, the Milnor–

Moore theorem [MM65] says that its rational homology is the universal enveloping algebra on its
rational homotopy. Let a denote a generator of 𝜋𝑛−3L𝑛

1,1 ⊗ Q as well as its image in rational homology
under the Hurewicz map. Under this map, the Whitehead product in homotopy corresponds, up to a
sign, to the graded commutator [−, −] under the Pontryagin product · in homology. If n is even, then
[𝑎, 𝑎] = ±2𝑎 · 𝑎, while if n is odd, [𝑎, 𝑎] = 0 so 𝑎 · 𝑎 is not primitive. Thus, in either parity, the rational
homology (or cohomology) in degree 2𝑛 − 6 is 4-dimensional. Hence, the linearly independent set in
question is a basis. �

5.3. Homology classes dual to configuration space integrals

We now describe a process for constructing a family F of 1-dimensional links out of an immersion with
k double-points. Lemma 5.2 below will show that such a family F is dual to a certain chord diagram Γ
with k chords.

The family F is constructed as follows. Let f be an immersion 𝑓 :
∐𝑚

1 R → R𝑛 with a finite
number k of double-points and no intersections of higher multiplicity. We require that the tangent
vectors are linearly independent at each double-point of f. Suppose the double-points are given by
𝑓 (𝑠1) = 𝑓 (𝑡1), . . . , 𝑓 (𝑠𝑘 ) = 𝑓 (𝑡𝑘 ). The 𝑠𝑖 may lie in different components, as may the 𝑡𝑖 , and we make
no assumptions on the order in which they lie even if some of them do lie on the same component. The
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unit sphere in the orthogonal complement to the two tangent vectors at each double-point is 𝑆𝑛−3. Build
a 𝑘 (𝑛 − 3)-parameter family F of (nonsingular) m-component links by varying the strand on which 𝑡𝑖
lies through a normal sphere 𝑆𝑛−3

𝑖 of a small radius within a small neighborhood 𝑁𝑖 in R𝑛 of the i-th
double-point for 𝑖 = 1, . . . , 𝑘 . More precisely, parametrize the family by (𝐷𝑛−3)×𝑘 and define it using
degree-1 maps (𝐷𝑛−3, 𝜕𝐷𝑛−3) → (𝑆𝑛−3

𝑖 , ∗) around 𝑡𝑖 for each i. We can arrange for its support to lie in
neighborhoods of 𝑡1, . . . , 𝑡𝑘 , interpolating between the degree-1 maps and constant maps within these
neighborhoods.

Lemma 5.2. Let F be the family constructed out of a singular link f as just described, and let Γ be
a graph. Then 〈𝐼 (Γ), 𝐹〉 is nonzero if and only if Γ is the chord diagram with chords corresponding
exactly to the singularities in f.

For example, if 𝑓 = ( 𝑓1, 𝑓2) has two double points, one where 𝑓1(𝑠1) = 𝑓2(𝑡1) and another where
𝑓1(𝑠2) = 𝑓2(𝑡2), with 𝑠1 < 𝑠2 and 𝑡1 < 𝑡2, then F pairs nontrivially with the first graph in formula (5.2),
but trivially with the second graph in that formula. This F would also pair trivially with all the graphs
in formula (5.3), including the three chord diagrams in that formula.

Sketch of proof of Lemma 5.2. The proof is based on that of a result of Cattaneo, Cotta-Ramusino and
Longoni [CCRL02, Theorem 6.1]. First, on the space of configurations where fewer than 2 points lie in
some neighborhood 𝑁𝑖 , any integral vanishes because on that space, the variation of F through the i-th
copy of 𝑆𝑛−3 admits a homotopy back to the original singular link, thus yielding a degenerate family.
This implies that if Γ is not a chord diagram, then 〈𝐼 (Γ), 𝐹〉 = 0.

It remains to consider the integrals of chord diagrams on the space C of configurations where each
𝑁𝑖 contains exactly two points. The configuration points in a chord diagram can be identified by their
order on the link components, so there is only one way for each 𝑁𝑖 to contain a pair of points (i.e., C is
connected). If points j and k do not lie in the same 𝑁𝑖 , then 𝜑 𝑗𝑘 restricted to C is nullhomotopic. Thus,
for a chord diagram Γ, 〈𝐼 (Γ), 𝐹〉 ≠ 0 only if the chords of Γ correspond exactly to the singularities
resolved in F.

Finally, consider a factor 𝜑∗𝑗𝑘𝜔 in 𝐼 (Γ). Its integral over the configuration space 𝐼 × 𝐼 of two points
on segments of the link in some 𝑁𝑖 produces an (𝑛− 3)-form. The pairing of this form with the (𝑛− 3)-
parameter family coming from the resolution of the i-th double point is the same as the linking number
of the sphere 𝑆𝑛−2 obtained from the (𝑛−3)-parameter family that varies one segment and (a closure of)
the other segment. Then by construction, if the chords in Γ correspond to the resolved singularities of
F, 〈𝐼 (Γ), 𝐹〉 is product of factors ±1, and hence is itself ±1.

This argument can be made more precise by taking the limit as the diameters of the neighborhoods
𝑁𝑖 and the spheres 𝑆𝑛−3 inside them approaches zero.

5.4. Long Borromean rings, the Hopf map and classes of long links and knots

In this section, we will use the map J from Definition 2.6 that joins the last two components of a long link
inL𝑛

𝑚·𝑝 . For 𝑝 = 1, we will use the following alternative description of J. Given 𝑓 = ( 𝑓1, . . . , 𝑓𝑚) ∈ L𝑛
𝑚·1,

remove 𝑓𝑚−1((2,∞)) and 𝑓𝑚((−∞,−2)). Then join 𝑓𝑚−1(2) to 𝑓𝑚(−2) by an arc outside [−1, 1]𝑛.
Perform an isotopy of this arc and what remains of the image of 𝑓𝑚, and pre-compose and post-
compose the resulting embedding with diffeomorphisms of R and R𝑛, respectively, so that the required
conditions for a long link are satisfied and so that the standard m-component link is taken to the standard
(𝑚 − 1)-component link. Although we will consider 𝑛 ≥ 4, the arc and isotopy may be taken to lie
in a 3-dimensional subspace of R𝑛. One can show that this description agrees up to homotopy with
Definition 2.6 for a suitable choice of path 𝛾: the arc corresponds to 𝛾 × 0𝑛−2 ×−1 in the framed tubular
neighborhood of 𝛾, and the restriction of the isotopy to the point 𝑡∗𝑚×0𝑛−2×1 corresponds to 𝛾×0𝑛−2×1.
Since we will assume 𝑛 − 𝑝 ≥ 3, Remark 2.8 implies that it suffices for 𝛾 to end on the positive side of
the (𝑚 − 1)-th component. We are now ready to prove our last main result, Theorem E:

Theorem 5.3. Suppose 1 ≤ 𝑝 ≤ 𝑛 − 3 and 2𝑛 − 3𝑝 − 3 ≥ 0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2024.114
Downloaded from https://www.cambridge.org/core. IP address: 13.58.60.78, on 15 Feb 2025 at 04:09:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2024.114
https://www.cambridge.org/core


Forum of Mathematics, Sigma 29

Figure 2. (a) The singular 3-strand braid 𝑓 = ( 𝑓1, 𝑓2, 𝑓3) used to build the family F. (b) The singular
3-strand braid 𝑓 ′ = ( 𝑓 ′1 , 𝑓 ′2 , 𝑓 ′3 ) used to build the family 𝐹 ′.

(a) If 𝑛−𝑝 is odd, then the map 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1→ 𝜋2𝑛−3𝑝−3K𝑛

𝑝 (� Z) given by p-fold graphing followed
by joining the two link components sends the Whitehead square [1𝑛−𝑝−1,1𝑛−𝑝−1] of the identity to
twice a generator. Thus, if 𝑛 − 𝑝 = 3, 5, or 9, it sends the Hopf fibration to a generator.

(b) The map 𝜋2𝑛−3𝑝−3Ω𝑝Conf (3,R𝑛−𝑝) → 𝜋2𝑛−3𝑝−3K𝑛
𝑝 (� Z or Z/2) induced by the composition of

p-fold graphing followed by joining the three components together maps the ‘parametrized long
Borromean rings’ class [𝑏21, 𝑏31] to a generator.

(c) For 𝑝 = 1, there is a basis for 𝜋2𝑛−6L𝑛
1, 1 modulo torsion, consisting of the images of a generator

of 𝜋2𝑛−6K𝑛
1 under the inclusions 𝜄1, 𝜄2 : K𝑛

1 → L𝑛
1, 1; the result of graphing and then joining two

components of [𝑏21, 𝑏31]; and for 𝑛 − 𝑝 odd, the result of graphing [1𝑛−2,1𝑛−2].
If 𝑝 ≥ 2, then 𝜋2𝑛−3𝑝−3L𝑛

𝑝, 𝑝 is generated by the two inclusions of a generator of 𝜋2𝑛−3𝑝−3K𝑛
𝑝;

the result of graphing and then joining two components of [𝑏21, 𝑏31]; and the image of a generating
set of 𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1 under graphing.
If 𝑝 ≥ 3 and 𝑚 ≥ 3, then 𝜋2𝑛−3𝑝−3L𝑛

𝑚·𝑝 is generated by the m inclusions of a generator of
𝜋2𝑛−3𝑝−3K𝑛

𝑝; the result of graphing and then joining two components of [𝑏21, 𝑏31] for every pair
of components (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚; the image under graphing of a generating set of
𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1 for every (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚; and the result of graphing [𝑏21, 𝑏31] for every
(𝑖, 𝑗 , 𝑘) with 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑚.

Proof. The overall strategy is to first prove all the statements for 𝑝 = 1 and then use diagram (5.11) to
prove the statements for larger values of p. The work of Budney will imply that the bottom row, which
involves only spaces of knots, consists almost entirely of isomorphisms; Theorems 3.2 and 4.11 give
crucial information about the rows of graphing maps involving multiple components.

To prove the statements for 𝑝 = 1, we will define families of 1-dimensional m-component long links,
for 𝑚 = 1, 2, 3, by resolving singular links and joining components. These families will be called F and
𝐹 ′ (for 𝑚 = 3), H, L, and 𝐿 ′ (for 𝑚 = 2), and K (for 𝑚 = 1). Via maps J that join components, we will
have (𝐹 ± 𝐹 ′) ↦→ (𝐿 ± 𝐿 ′) ↦→ 𝐾 and 𝐻 ↦→ 𝐾 by construction. Our first main task is to identify the
homology classes of these four cycles using Lemmas 5.1 and 5.2, which includes showing that 𝐹 ± 𝐹 ′

is (up to a sign) the image of [𝑏21, 𝑏31], H is (up to a sign) the image of the Hopf map, and K is a
generator of 𝐻2𝑛−6K𝑛

1 .
Families F and 𝐹 ′ of 3-component 1-dimensional pure braids: Take a singular 3-strand braid

𝑓 = ( 𝑓1, 𝑓2, 𝑓3) :
∐3

1 R ↩→ R𝑛 with two double-points, given by 𝑓1(𝑠1) = 𝑓2 (𝑡) and 𝑓1(𝑠2) = 𝑓3(𝑢) with
𝑠1 < 𝑠2. One can construct f by starting with a singular braid in R3 – for example, as in Figure 2 – and
taking its image under an inclusion of coordinates 𝑖 : R3 ↩→ R𝑛. Then construct a (2𝑛 − 6)-parameter
family F by resolving the singularities, as described before Lemma 5.2.

Next, repeat this process, but with a singular 3-strand braid 𝑓 ′ = ( 𝑓 ′1 , 𝑓 ′2 , 𝑓 ′3 ) with two double-points,
given by 𝑓 ′1 (𝑠1) = 𝑓 ′3 (𝑢) and 𝑓 ′1 (𝑠2) = 𝑓 ′2 (𝑡) with 𝑠1 < 𝑠2. Let 𝐹 ′ be the (2𝑛 − 6)-parameter family
obtained by resolving the singularities of 𝑓 ′. We orient it by ordering the parameters as 𝑠1, 𝑠2, 𝑡, 𝑢 and
ordering the spheres of resolution in the order that the double-points are listed.
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Figure 3. The singular 2-component long link ℓ = (ℓ1, ℓ2)obtained by joining strand 2 to strand 3 in the
singular braid 𝑓 = ( 𝑓1, 𝑓2, 𝑓3). An isotopy takes this singular long link to a singular 2-strand pure braid.

Figure 4. The singular 2-component long link ℓ′ = (ℓ′1, ℓ
′
2) obtained by joining strand 2 to strand 3 in

the singular braid 𝑓 ′ = ( 𝑓 ′1 , 𝑓 ′2 , 𝑓 ′3 ).

Both F and 𝐹 ′ can be taken to be families of pure braids, rather than arbitrary long links. As a result,
we can use Lemma 5.1 (d). There, we noted that the graphing map ΩConf (3,R𝑛−1) → L𝑛

1,1,1 induces
an injection in homology [KKV20], and we gave a basis for the dual of its image. We apply Lemma
5.2 to the cycles F and 𝐹 ′ and to the seven graph cocycles 𝛾 in that basis. Only the first graph in the
expressions for 𝜇 and 𝜈1 pairs nontrivially with F, and the same is true for the second graph in the

expression for 𝜈1 and 𝐹 ′. Diagrammatically, F is dual to and 𝐹 ′ is dual to . That is, we have that

〈𝐼 (𝜇), 𝐹〉 = 1
〈𝐼 (𝜈1), 𝐹〉 = 1
〈𝐼 (𝜈𝑖), 𝐹〉 = 0 for 𝑖 = 2, 3
〈𝜌∗𝑖 𝑗 𝐼 (𝜂), 𝐹〉 = 0 for 1 ≤ 𝑖 < 𝑗 ≤ 3

〈𝐼 (𝜇), 𝐹 ′〉 = 0
〈𝐼 (𝜈1), 𝐹 ′〉 = ∓1
〈𝐼 (𝜈𝑖), 𝐹 ′〉 = 0 for 𝑖 = 2, 3
〈𝜌∗𝑖 𝑗 𝐼 (𝜂), 𝐹 ′〉 = 0 for 1 ≤ 𝑖 < 𝑗 ≤ 3,

(5.9)

where as before, the sign for n odd is shown above the sign for n even. The class [𝑏21, 𝑏31] is known
to generate 𝜋2𝑛−6ΩConf (3,R𝑛−1) ⊗ Q. From our previous joint work [KKV, Example 4.8], we have
〈𝐼 (𝜇), [𝑏21, 𝑏31]〉 = 1 (possibly up to a sign) and 〈𝐼 (𝛾), [𝑏21, 𝑏31]〉 = 0 for all the other graph cocycles 𝛾
appearing in (5.9). Hence, 𝐹 ± 𝐹 ′ (for n odd, respectively even) is homologous to [𝑏21, 𝑏31], as desired.

Families L and 𝐿 ′ of 2-component 1-dimensional long links by joining components: We next
define (2𝑛 − 6)-dimensional families L and 𝐿 ′ of 2-component long links as the images of F and
𝐹 ′ under the map that joins the second and third components, as described just before the Theorem
statement. We can also describe L and 𝐿 ′ as the resolutions of the singular links ℓ and ℓ′ obtained
by joining components of the singular links f and 𝑓 ′. (That is, joining components commutes with
resolving singularities.) These singular links are shown in Figures 3 and 4.
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Figure 5. The singular 2-component braid ℎ = (ℎ1, ℎ2) used to construct the family H.

By Lemma 5.2,

〈𝐼 (𝜂), 𝐿〉 = 1
〈𝐼 (𝜆), 𝐿〉 = 0
〈𝜌∗𝑖 𝐼 (𝜅), 𝐿〉 = 0 for 𝑖 = 1, 2

〈𝐼 (𝜂), 𝐿 ′〉 =
{
−1 if 𝑛 is odd
0 if 𝑛 is even

〈𝐼 (𝜆), 𝐿 ′〉 = 1
〈𝜌∗𝑖 𝐼 (𝜅), 𝐿 ′〉 = 0 for 𝑖 = 1, 2.

Indeed, L pairs nontrivially with only the first diagram in formulas (5.2) and (5.4) for 𝜂, and 𝐿 ′ pairs
nontrivially with only the first diagram in formulas (5.3) and (5.5) for 𝜆. Diagrammatically, L is dual to

and 𝐿 ′ is dual to .
A family H of 2-component 1-dimensional pure braids: Next, we construct a (2𝑛 − 6)-parameter

family H of 2-component 1-dimensional long links. Start with an immersion ℎ = (ℎ1, ℎ2) which is
an embedding except at two double-points, where the double-points are given by ℎ1 (𝑠1) = ℎ2(𝑡1) and
ℎ1 (𝑠2) = ℎ2 (𝑡2) where 𝑠1 < 𝑠2 and 𝑡1 < 𝑡2. See Figure 5. Resolve the singularities to obtain a (2𝑛 − 6)-
parameter family H out of h. We orient it by ordering the parameters as 𝑠1, 𝑠2, 𝑡1, 𝑡2 and ordering the
resolution spheres in the order that the double-points are listed. By Lemma 5.2,

〈𝐼 (𝜂), 𝐻〉 = 1
〈𝐼 (𝜆), 𝐻〉 = 0
〈𝜌∗𝑖 𝐼 (𝜅), 𝐻〉 = 0 for 𝑖 = 1, 2.

(5.10)

Diagrammatically, H is dual to and 𝐿 ′ is dual to . Thus, 𝐿±𝐿 ′ and H represent linearly independent
elements of 𝐻2𝑛−6 (L𝑛

1, 1; Z), though L and H represent the same element.
We now identify H with the image of a better known element in the homotopy groups of spheres.

Recall that if n is even, then the free part of 𝜋2𝑛−5 (𝑆𝑛−2) maps isomorphically onto 𝐻2𝑛−6 (Ω𝑆𝑛−2),
which via graphing injects into 𝐻2𝑛−6 (L𝑛

1, 1). Lemma 5.1 (b) and the pairings in (5.10) show that if
𝑛 − 2 = 2, 4 or 8, then H represents (up to a sign) the class of the pure braid coming from the Hopf
fibration. More generally, this shows that 2𝐻 and ±[1𝑛−2,1𝑛−2] represent the same class, since the
Whitehead square of an even-dimensional identity map has Hopf invariant ±2.

A family K of 1-dimensional long knots: Finally, we define a (2𝑛 − 6)-dimensional family K
of long knots in R𝑛 as the image of the family H of 2-component pure braids under the map 𝐽 :
L𝑛

1, 1 → K𝑛
1 described just before the Theorem statement. As noted earlier, joining commutes with

resolving singularities. Thus, we can alternatively define K by applying an obvious extension of the
map J to the singular link h to get a singular knot k, as shown in Figure 6(b), and then resolving the
singularities of k. One could also obtain K without reference to multiple-component links, defining

k directly as a singular knot prescribed by (or dual to) the first diagram in formula (5.1). Thus, K
generates 𝜋2𝑛−6K𝑛

1 because the latter definition matches the construction of a generator of 𝜋2𝑛−6K𝑛
1 in
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Figure 6. The singular knot k obtained by joining the two components of the singular 2-component
braid h.

Figure 7. The singular knot obtained by joining the two components of the singular link ℓ′ = (ℓ′1, ℓ
′
2).

Budney’s work [Bud08], where a quadrisecant counting argument is used to prove that it is a generator.
(By Lemma 5.2, 〈𝐼 (𝜅), 𝐾〉 = 1, but this implies only that K is nonzero in 𝐻2𝑛−6 (K𝑛

1 ; Z) � 𝜋2𝑛−6K𝑛
1 , so

we need to use Budney’s result.)
Since 𝐻 ↦→ 𝐾 and 2𝐻 was identified with ±[1𝑛−2,1𝑛−2], part (a) is proven in the case that 𝑝 = 1.

In particular, if the ambient dimension n is 4, 6 or 10, graphing the pure braid associated to the Hopf
fibration gives a generator of the first nontrivial homotopy group of the space of long knots in R𝑛.

We next prove part (b) for 𝑝 = 1. We just have to consider the result of joining the two components
in the cycle 𝐿 ± 𝐿 ′. We saw that L is homologous to H and hence maps to K, so it remains to check that
the result 𝐾 ′ of joining the components of 𝐿 ′ pairs trivially with 𝜅. Indeed, the singularities of 𝐾 ′ do
not coincide with the chords of 𝜅, so by Lemma 5.1 (a) and Lemma 5.2, 𝐾 ′ is zero in homology, and
part (b) is proven for 𝑝 = 1. A picture of 𝐾 ′ is shown in Figure 7.

We now prove the statement for 𝑝 = 1 in part (c). Recall that for 𝑗 = 1, 2, we have sections
𝜄 𝑗 : K𝑛

1 → L𝑛
1, 1, as in Definition 2.10, of the restrictions 𝜌 𝑗 : L𝑛

1, 1 → K𝑛
1 from Definition 2.9. The

classes (𝜄1)∗(𝐾), (𝜄2)∗(𝐾) and 𝐿 ± 𝐿 ′ are all in the image of the Hurewicz map because they are the
images of [𝑏21, 𝑏31] under maps induced by maps of spaces. For n even, we likewise identified H with
the image of an element in a homotopy group. Next, it is easy to see that

〈𝜌∗𝑗 𝐼 (𝜅), (𝜄𝑖)∗(𝐾)〉 = 𝛿𝑖 𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 2
〈𝐼 (𝜂), (𝜄𝑖)∗(𝐾)〉 = 0
〈𝐼 (𝜆), (𝜄𝑖)∗(𝐾)〉 = 0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2024.114
Downloaded from https://www.cambridge.org/core. IP address: 13.58.60.78, on 15 Feb 2025 at 04:09:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2024.114
https://www.cambridge.org/core


Forum of Mathematics, Sigma 33

Thus, for n odd (respectively even), these 3 (respectively 4) classes are linearly independent. Recall
from Theorem 4.12 dim 𝜋∗(L𝑛

1, 1) ⊗ Q is 3 (respectively 4) for n odd (respectively even). Furthermore,
(𝜄1)∗(𝐾), (𝜄2)∗(𝐾) and 𝐿 ± 𝐿 ′ cannot be proper multiples of other classes because each one maps to a
generator of 𝜋2𝑛−6K𝑛

1 . The same is true for H because by Theorem 3.2, graphing from a sphere is a split
injection. So part (c) is proven for 𝑝 = 1.

To prove parts (a), (b) and (c) in the case of arbitrary p, we use diagram (5.11) below. Each horizontal
arrow is a graphing map, and each vertical arrow is given by joining two components. By Proposition
2.7, each square commutes.

𝜋2𝑛−3𝑝−3Ω𝑝Conf (3,R𝑛−𝑝) 𝐺∗ �� 𝜋2𝑛−2𝑝−4L𝑛−𝑝+1
1,1,1

𝐺∗ ��

𝐽∗
��

𝜋2𝑛−2𝑝−5L𝑛−𝑝+2
2,2,2

𝐺∗ ��

𝐽∗

��

. . .
𝐺∗ �� 𝜋2𝑛−3𝑝−3L𝑛

𝑝,𝑝, 𝑝

𝐽∗

��
𝜋2𝑛−3𝑝−3Ω𝑝Conf (2,R𝑛−𝑝) 𝐺∗ �� 𝜋2𝑛−2𝑝−4L𝑛−𝑝+1

1, 1
𝐺∗ ��

𝐽∗
��

𝜋2𝑛−2𝑝−5L𝑛+2
2, 2

𝐺∗ ��

𝐽∗

��

. . .
𝐺∗ �� 𝜋2𝑛−3𝑝−3L𝑛

𝑝, 𝑝

𝐽∗

��
𝜋2𝑛−2𝑝−4K𝑛−𝑝+1

1
𝐺∗ �� �� 𝜋2𝑛−2𝑝−5K𝑛+2

2 �

𝐺∗ �� . . . �

𝐺∗ �� 𝜋2𝑛−3𝑝−3K𝑛
𝑝

(5.11)

By work of Budney [Bud08], the horizontal maps in the bottom row are isomorphisms except possibly
the first one. For odd codimension 𝑛 − 𝑝, all the groups in the bottom row are Z and all the maps there
are isomorphisms. For even codimension 𝑛− 𝑝, the first group is Z, while the remaining groups are Z/2,
and the first map is surjective while the rest are isomorphisms. By commutativity, the compositions
from the groups 𝜋2𝑛−3𝑝−3Ω𝑝Conf (𝑚,R𝑛−𝑝) (with 𝑚 = 2, 3) to 𝜋2𝑛−3𝑝−3K𝑛

𝑝 through 𝜋2𝑛−2𝑝−4K𝑛−𝑝+1
1

are equal to the compositions through 𝜋2𝑛−3𝑝−3L𝑛
𝑝, 𝑝 and 𝜋2𝑛−3𝑝−3L𝑛

𝑝,𝑝, 𝑝 , respectively. Thus, we obtain
parts (a) and (b) in the case of arbitrary p from the case of 𝑝 = 1.

To prove the statement for 𝑝 ≥ 2 in part (c), recall that by Theorem 4.11 (a), the graphing maps
𝜋2𝑛−2𝑝−4L𝑛−𝑝+1

1, 1 → 𝜋2𝑛−3𝑝−3L𝑛
𝑝,𝑝 take the form of surjections

Z4 ⊕ 𝑇 (𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1) ⊕ 𝐹 → Z4 ⊕ 𝑇 (𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1), 𝑛 − 𝑝 odd, (5.12)

Z3 ⊕ 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1 ⊕ 𝐹 ′ → (Z/2)3 ⊕ 𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1, 𝑛 − 𝑝 even, (5.13)

where 𝑇 (𝐴) denotes the torsion subgroup of A, and where F and 𝐹 ′ are possibly nontrivial finite abelian
groups. We just need to check that their restrictions to the summands complementary to F and 𝐹 ′ are
also surjective, since by diagram (5.11) and part (c) for 𝑝 = 1, the claimed generators are the images of
generators for the domains of these restrictions.

By Theorem 3.2, the restriction of graphing to 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1 is injective, as is the restriction to its

torsion subgroup. From this fact, it is easy to deduce the desired surjectivity for 𝑛 − 𝑝 odd.
For 𝑛 − 𝑝 even, note that 𝑇 (𝜋2𝑛−2𝑝−4L𝑛−𝑝+1

1, 1 ) � 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1 maps to zero in 𝜋2𝑛−3𝑝−3K𝑛

𝑝

because it factors through 𝜋2𝑛−2𝑝−4K𝑛−𝑝+1
1 � Z. By part (b), each of [𝑏21, 𝑏31], (𝜄1)∗(𝐾) and (𝜄2)∗(𝐾)

maps downward to the generator of 𝜋2𝑛−3𝑝−3K𝑛
𝑝 � Z/2 in diagram (5.11). Thus, the image of the Z3

summand under the map (5.13) is complementary to the image of 𝜋2𝑛−2𝑝−3𝑆
𝑛−𝑝−1. The 3 generators

under consideration are linearly independent because they lie in distinct summands in the decomposition
(2.8). Considering the minimal cardinality of the image of their span gives the desired surjectivity.

We now prove the statement for 𝑝 ≥ 3 in part (c). By Theorem 4.8, any class in 𝜋2𝑛−3𝑝−3L𝑛
𝑚·𝑝 is in∑

|𝑆 | ≤3 im(𝜄𝑆)∗. By Corollary 2.12, the subgroup
⋂
|𝑆 | ≤2 ker(𝜌𝑆)∗ of 𝜋2𝑛−3𝑝−3L𝑛

3·𝑝 is complementary to∑
|𝑆 | ≤2 im(𝜄𝑆)∗ (which we just described for 𝑝 ≥ 2), and by Theorem 4.11 (b),

⋂
|𝑆 | ≤2 ker(𝜌𝑆)∗ � Z. The

image of [𝑏21, 𝑏31] under the map 𝜋2𝑛−3𝑝−3Ω𝑝Conf (3,R𝑛−𝑝) → 𝜋2𝑛−3𝑝−3L𝑛
3·𝑝 lies in this subgroup.

By part (b), it maps to a generator of 𝜋2𝑛−3𝑝−3K𝑛
𝑝 , so it must generate this subgroup. �
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Remark 5.4 (Sharpness of Theorem 5.3 (a)). We cannot extend part (a) of Theorem 5.3 on graphing
spheres, joining 2-component links, and knots to the case where 𝑛 − 𝑝 is even. In that case, although
the target is Z/2 for 𝑝 ≥ 2, we deduce the failure of this extension from the facts (used in the proof of
Theorem 5.3 (c)) that 𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1 is finite, 𝜋2𝑛−2𝑝−4K𝑛−𝑝+1
1 � Z, and diagram (5.11) commutes.

Remark 5.5 (Sharpness of Theorem 4.4 for 𝑝 = 𝑞). Theorem 5.3 (c) shows that Theorem 4.4 does not
extend to 𝜋2𝑛−6L𝑛

1, 1, even modulo knotting. Indeed, the class 𝐿±𝐿 ′, obtained by joining two components
of the parametrized long Borromean rings, comes neither from 𝜋2𝑛−5𝑆

𝑛−2 nor from knots. Relatedly,
Budney’s description of the bottom row of diagram (5.11) and the splitting (2.6) shows that the graphing
map from 𝜋2𝑛−6L𝑛

0, 1 is not an isomorphism, and hence, Theorem 4.4 is also sharp when 𝑝 = 𝑞 − 1.
Remark 5.6 (Other ways of joining long Borromean rings). We may join a pair of the three components
of 𝐹 ±𝐹 ′ = [𝑏21, 𝑏31] ∈ 𝜋2𝑛−6ΩConf (3,R𝑛−1) in any other of the six possible ways and ask whether we
get different classes for 𝐿±𝐿 ′ ∈ 𝜋2𝑛−6L𝑛

1, 1. Arguments as in the proof of Theorem 5.3 show that in even
codimension (n odd), we get the same class for 𝐿+𝐿 ′. In odd codimension (n even), the resulting classes
𝐿−𝐿 ′ all yield ±1 when paired with 𝐼 (𝜂) or 𝐼 (𝜆). Since H yields 1 and 0, respectively, when paired with
these classes, Theorem 5.3 holds for any of these joining maps, though one may obtain different bases.

The next result has been independently obtained in forthcoming work of Gauniyal and Turchin.
Theorem 5.7. For any 𝑘 ≥ 2, let B be the high-dimensional spherical Borromean rings

∐3
1 𝑆2𝑘−1 ↩→

𝑆3𝑘 , defined by

�𝑥 = �0 and | �𝑦 |2/4 + |�𝑧 |2 = 1,

�𝑦 = �0 and |�𝑧 |2/4 + |�𝑥 |2 = 1,

and �𝑧 = �0 and | �𝑥 |2/4 + |�𝑦 |2 = 1,

where (�𝑥, �𝑦, �𝑧) = (𝑥1, . . . , 𝑥𝑘 , 𝑦1, . . . , 𝑦𝑘 , 𝑧1, . . . , 𝑧𝑘 ) are coordinates on R3𝑘 and where 𝑆3𝑘 is its one-
point compactification. Up to a sign, B is isotopic to the image of (a representative of) [𝑏21, 𝑏31] under
the composition of the (2𝑘 − 1)-fold graphing map Ω2𝑘−1Conf (3,R𝑘+1) → L3𝑘

3· (2𝑘−1) followed by the
closure map.
Proof. Put 𝑝 = 3 and 𝑛 = 𝑘 + 4. By Theorem 4.11 (b), graphing maps 𝜋2𝑛−3𝑝−3L𝑛

𝑝,𝑝, 𝑝 iso-
morphically onto 𝜋0L3𝑘

3· (2𝑘−1) . By Lemma 4.9, closure takes the latter group isomorphically onto

𝜋0Emb
(∐3

1 𝑆2𝑘−1, 𝑆3𝑘
)
. As noted in the last paragraph of the proof of Theorem 5.3, iterated graphing

maps [𝑏21, 𝑏31] to a generator of the subgroup given by the intersections of the kernels of the restrictions
𝜌𝑆 to fewer than 3 components. Since B generates this subgroup of 𝜋0Emb

(∐3
1 𝑆2𝑘−1, 𝑆3𝑘

)
[Mas69],

the result follows. �

It is known that for k even, 𝜋0Emb(𝑆2𝑘−1, 𝑆3𝑘 ) is generated by the Haefliger trefoil, which is defined
as the result of joining all three components of the high-dimensional Borromean rings B [Hae62b]. For k
odd, where this group is Z/2, the Manifold Atlas Project website [Skob, §2] suggests that the analogous
question is open. Theorem 5.7 allows us to answer it affirmatively:
Corollary 5.8. For k odd, the Haefliger trefoil generates the group 𝜋0Emb(𝑆2𝑘−1, 𝑆3𝑘 ) � Z/2.
Proof. By Theorem 5.3 (b), 𝐽∗𝐽∗𝐺

2𝑘−1
∗ [𝑏21, 𝑏31] represents a generator of 𝜋0K3𝑘

2𝑘−1 :=
𝜋0Emb𝑐 (R2𝑘−1,R3𝑘 ), where J and G are joining and graphing maps. By Lemma 4.9, the closure of
this long link thus represents a generator of 𝜋0Emb(𝑆2𝑘−1, 𝑆3𝑘 ). Joining components commutes with
closure, so this class is the result of joining components in the closure of 𝐺2𝑘−1

∗ [𝑏21, 𝑏31]. By Theorem
5.7, that closed link is isotopic to the result of joining together all three components of B. �

Remark 5.9 (Knots, links and braids in R3 and Vassiliev invariants). The constructions in the proof of
Theorem 5.3 can be applied when 𝑛 = 3. In fact, for the specific cocycles considered, the configuration
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space integral map I gives link invariants in this setting. The dual families are parametrized by (𝑆0)2, so
each of the classes 𝐹+𝐹 ′, 𝐿+𝐿 ′, H, and K in 𝐻0L3

𝑚·1 is an alternating sum of four links. More generally,
one can view a link with i double points as an alternating sum of 2𝑖 links. Now 𝐻0 (L3

𝑚·1; R) = R[𝜋0L3
𝑚·1]

fits into the Vassiliev–Goussarov filtration

R[𝜋0L3
𝑚·1] = 𝐽0 ⊃ 𝐽1 ⊃ · · · ⊃ 𝐽𝑖 ⊃ . . . ,

where 𝐽𝑖 is the ideal generated by singular m-component links with at least i double-points. A Vassiliev
invariant of type r is a link invariant which vanishes on 𝐽𝑟+1. A similar setup applies to pure braids, in
which case 𝐽𝑖 is the i-th power of the augmentation ideal in the group ring on the pure braid group.

The only invariants of type 1 are linking numbers 𝜇𝑖 𝑗 of strands i and j. There is one knot invariant
of type 2, called the Casson knot invariant (corresponding to 𝜅). The only invariants of type 2 for pure
braids are triple linking numbers (corresponding to 𝜇) and 2-fold products of pairwise linking numbers
(corresponding to 𝜂 and the 𝜈𝑖). There is an invariant of 2-component long links of type 2 corresponding
to 𝜆. For any m, the dual space (R[𝜋0L3

𝑚·1]/𝐽3)∗ can be given a basis consisting of the appropriate
collection of these invariants.

One extends link invariants linearly to linear combinations of links. Then for any m, one can obtain
a basis for R[𝜋0L3

𝑚·1]/𝐽3 by choosing the appropriate elements out of 𝐹 + 𝐹 ′, 𝐿 + 𝐿 ′, H and K and
their images under including components. The classes 𝐹 + 𝐹 ′, 𝐿 + 𝐿 ′ and K are equivalent to classes
in 𝜋0L3

𝑚·1 ⊂ 𝐻0L3
𝑚·1 in this stage of the Goussarov–Vassiliev filtration. (We neglect signs in what

follows.) A long trefoil is equivalent to K, as it has Casson invariant 1. A nontrivial 3-component pure
braid commutator, whose closure will be the Borromean rings, is equivalent to 𝐹 + 𝐹 ′, since it has the
same type-2 invariants. A long Whitehead link is equivalent to 𝐿 + 𝐿 ′. The class of 𝐻 ∈ 𝐻0(Ω𝑆1) is
not primitive because there is of course no 2-strand pure braid (or long link) which has zero pairwise
linking number but a nonzero square of its pairwise linking number. This mirrors what happens for
other odd values of n.

5.5. Conjectured extensions and questions

We now turn to some conjectures and questions. We begin with extensions of Theorem 5.3 (c). Recall
Theorem 4.12 and the description of generators in its proof as ‘tripod’ and ‘2-hair hedgehog’ graphs.
Conjecture 5.10.
(a) For 𝑛−𝑝 even and 𝑝 = 1, the class in 𝜋2𝑛−3𝑝−3L𝑛

𝑝, 𝑝 obtained by graphing and joining 2 components
of [𝑏21, 𝑏31] corresponds, up to sign, to the 2-hair hedgehog graph with leaves labeled 1, 2.

(b) For 𝑛 − 𝑝 odd, the class in 𝜋2𝑛−3𝑝−3L𝑛
𝑝, 𝑝 obtained by graphing and joining 2 components of

[𝑏21, 𝑏31] corresponds, up to a sign, to the difference of two tripods with leaves labeled 1, 1, 2
and 1, 2, 2, respectively. The class in 𝜋2𝑛−3𝑝−3L𝑛

𝑝, 𝑝 obtained by graphing [1𝑛−𝑝−1,1𝑛−𝑝−1] corre-
sponds, up to a sign, to the sum of two tripods with leaves labeled 1, 1, 2 and 1, 2, 2, respectively.

The two classes in part (a) agree up to a scalar multiple, since they both generate the 1-dimensional
Q-vector space ker(𝜌1)∗ ∩ ker(𝜌2)∗. Similarly, in part (b), the two tripods and the two classes coming
from graphing generate the 2-dimensional Q-vector space ker(𝜌1)∗ ∩ ker(𝜌2)∗.

To calculate 𝜋2𝑛−3𝑝−3L𝑛
𝑝, 𝑝 for all p and n with 𝑝 ≤ 𝑛 − 3, one would just need to calculate the

torsion subgroup for 𝑝 = 1. To calculate 𝜋2𝑛−3𝑝−3L𝑛
𝑚·𝑝 for all p and n with 𝑝 ≤ 𝑛 − 3, it suffices by

Theorem 4.8 to calculate 𝜋2𝑛−9L𝑛
2,2,2, and by Theorem 4.12, it remains only to calculate the torsion

subgroup. (Indeed, that result and the proof of Theorem 5.3 (c) imply that the non-torsion generators
that we described for 𝜋2𝑛−3𝑝−3L𝑛

𝑚·𝑝 , 𝑝 ≥ 3, generate the corresponding rational homotopy group for all
𝑝 ≥ 1.) Theorem 3.2 says that the torsion subgroup contains at least 𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1 in both cases, and
we suspect that this lower bound is sharp:
Conjecture 5.11. If 𝑚 ≥ 2 and 1 ≤ 𝑝 ≤ 𝑛 − 3, then a minimal generating set for 𝜋2𝑛−3𝑝−3L𝑛

𝑚·𝑝 is
given by the m inclusions of a generator of 𝜋2𝑛−3𝑝−3K𝑛

𝑝; the result of graphing and then joining two
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components of [𝑏21, 𝑏31] for every pair of components (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚; the image under
graphing of a minimal generating set of 𝜋2𝑛−2𝑝−3𝑆

𝑛−𝑝−1 for every pair (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑚; and
if 𝑚 ≥ 3, the result of graphing [𝑏21, 𝑏31] for every triple (𝑖, 𝑗 , 𝑘) with 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑚.

Potential future work includes studying the realization of classes of long links and long knots by
graphing braids and joining components.

Question 5.12. (a) Can all classes in 𝜋𝑖L𝑛
𝑚·𝑝 be obtained by graphing and then joining components of

pure braids (i.e., representatives of elements in 𝜋𝑖Ω𝑝Conf (𝑞,R𝑛−𝑝) for some 𝑞 ≥ 𝑚)? (b) If so, how
does one find such a representative?

An affirmative answer to part (a) would be a higher-dimensional analogue of a theorem of Alexander
[Ale23, CG01] that any knot can be obtained by joining components of a pure braid. It would also be an
analogue of a result of Stanford [Sta]. His result says that knots are equivalent in the Vassiliev filtration
quotient 𝐽0/𝐽𝑟 (described in Remark 5.9) if and only if they differ by a pure braid in the r-th stage of
the lower central series of the pure braid group.

In higher dimensions, results on embedding spaces and graph complexes [FTW] suggest that the
rational homology groups of spaces of links with codimension at least 3 can be viewed as generalizations
of terms 𝐽𝑟−1/𝐽𝑟 , with larger values of r corresponding to homology groups in higher degrees and with
the homotopy groups consisting of the primitive elements. The following facts also support this analogy:
for a space of embeddings of codimension at least 3, the Taylor tower converges to that space, while for
classical knots, the Taylor tower is conjectured to be a universal Vassiliev invariant over Z [BCSS05].
Indeed, after some progress in previous joint work [BCKS17], the conjecture was proven over Q by
Kosanović [Kosa] and up to p-torsion for (roughly) small primes p by Boavida de Brito and Horel
[BdBH21].

However, a negative answer to part (a) seems likely. Elements with cycles in the graph complex
computing rational homotopy (such as the ‘2-hair hedgehog’ mentioned in the proof of Theorem 4.12)
lie in degrees incompatible with the graphing map. Indeed, Turchin conjectures that the graphing map is
rationally zero on graphs with cycles. (Theorem 5.3 (c) implies that graphing sends the hedgehog class
to a nontrivial class, but it is torsion.) Together with Proposition 2.7, this suggests a negative answer to
part (a).

However, one could restrict Question 5.12 to 𝑖 = 0. Over Q, isotopy classes are given by trivalent
trees modulo the Jacobi relation [STT18b]. Our previous joint work [KKV] shows that graphing realizes
a proper subspace of these groups, though we did not check that our identification in terms of trees
agrees with that of [STT18b]. Here, we conjecture that all elements of 𝜋0L𝑛

𝑚·𝑝 ⊗ Q can be obtained
by graphing elements of 𝜋𝑖Ω𝑝Conf (𝑞,R𝑛−𝑝) and joining components. Over Z, isotopy classes are less
tractable, but perhaps our question can be answered without a full description of these groups. It would
also be interesting to compare any progress on this question to the work of Kosanović on realizing
isotopy classes of knots via graspers [Kosb].

In contrast to joining components of braids, one can also build m-component links out of links with
fewer than m components. One type of such map is given by the inclusion maps 𝜄𝑆 from Definition 2.10.
In the classical setting where 𝑝1 = · · · = 𝑝𝑚 = 1 and 𝑛 = 3, an element in im(𝜄𝑆 ⊕ 𝜄𝑇 ) for some proper,
nonempty 𝑆 ⊂ {1, . . . , 𝑚} with 𝑇 := {1, . . . , 𝑚} − 𝑆, is called a split link. For 𝑚 = 2 or 3, Theorems
4.11 and 5.3 (c) implement the decompositions (2.5) and (2.8) in terms of split links, and the latter
further decomposes the first summand in terms of braids and another type of link. Our methods may
extend to arbitrary 𝑝1, . . . , 𝑝𝑚, though we focused on equidimensional source manifolds for simplicity.

Another map that increases the number of components is cabling, where parallel components are
added to a knot. We omit a precise space-level definition of a cabling map. Clearly such a map, like
the inclusion maps, cannot produce braids out of knots, and in the classical case, there are links that
are neither split, nor cables, nor braids. Thus, it is too much to ask for a decomposition in terms of just
split links and cables. Batelier and Ducoulombier [BD] used the Swiss cheese operad to decompose the
space of 2-component long links in R3 in terms of cables, split links, braids and a remaining subspace,
extending our previous work on 2-component long links [BK15, BBK15]. In higher dimensions, one
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could consider families of links obtained by split links, cables and pure braids, where these classes no
longer form distinct components but instead subspaces.
Question 5.13. Is there a systematic decomposition of the space of links L𝑛

𝑝1 ,..., 𝑝𝑚 , 𝑛 ≥ 4, in terms of
the following: pure braids, split links, cables, and/or the results of graphing them and (in the case of
pure braids) joining their components?

Such a decomposition could lead to constructions of explicit geometric representatives of homotopy
and homology classes in those spaces of links. The example of the 2-hair hedgehog class, which suggested
a negative answer to Question 5.12, does not immediately suggest a negative answer to Question 5.13;
from a purely dimensional viewpoint, it could be the cabling a knot class corresponding to the same
graph but with the same label on both leaves.
Remark 5.14. Preliminary computations similar to the ones in the proof of Theorem 5.3 suggest that
in the bases given in part (c), one can use a cable of the generator in 𝜋2𝑛−6K𝑛

1 to replace 𝐽∗ [𝑏21, 𝑏31]
for n odd. However, for n even, this cable spans the same subgroup as the image under graphing of
[1𝑛−2,1𝑛−2] so in this parity, 𝐽∗ [𝑏21, 𝑏31] is neither split, nor a cable, nor a braid.

A. Injectivity of graphing for other spaces of 2-component links

We now cover some variants of Theorem A, the injectivity of graphing for spaces of 2-component links.
In Section A.1, we prove Theorem A.4, an analogue of Theorem A for spaces of spherical links in a
sphere. In Section A.2, we prove Theorem A.6, which is the analogue for spaces of long link maps,
using the 𝛼-invariant. Injectivity in the latter setting applies only to homotopy groups in a range.

A.1. Injectivity of graphing for spherical links

For Theorem A.4, the analogue of Theorem 3.2 for spherical links in a sphere, we need to define the
following subspace of links. This is because for spherical links, the restriction to one component does
not in general admit a section. (For example, for 𝑝 = 𝑞 = 1 and 𝑛 = 3, the component of the Hopf
link is homotopy equivalent to 𝑆𝑂 (4) [HK21, Corollary 4.4(e)], while the component of the unknot
is homotopy equivalent to 𝑆𝑂 (4)/𝑆𝑂 (2) [Hat83]. The long exact sequence in homotopy at 𝜋2 and 𝜋1
shows that the projection 𝑆𝑂 (4) → 𝑆𝑂 (4)/𝑆𝑂 (2) admits no section.)
Definition A.1. Define the space of Brunnian long links BrEmb𝑐

(∐𝑚
1 R

𝑝𝑖 , R𝑛
)

as the the subspace
of links f in Emb𝑐

(∐𝑚
1 R

𝑝𝑖 , R𝑛
)

such that the restriction of f to any 𝑚 − 1 of its components is isotopic
to a standard link (𝑒1, . . . , 𝑒𝑚−1). Define the space BrEmb

(∐𝑚
1 𝑆𝑝𝑖 , 𝑆𝑛

)
of Brunnian spherical links

in a sphere as the subspace of spherical links f in Emb
(∐𝑚

1 𝑆𝑝𝑖 , 𝑆𝑛
)

such that f is isotopic to a trivial
link, where a spherical link is trivial if each component 𝑆𝑝𝑖 bounds a disk 𝐷 𝑝𝑖+1 in 𝑆𝑛.

Thus, BrEmb𝑐
(∐𝑚

1 R
𝑝𝑖 , R𝑛

)
is a union of path components of Emb𝑐

(∐𝑚
1 R

𝑝𝑖 , R𝑛
)
. In many of the

cases we consider, the latter space is path-connected, in which case all embeddings are Brunnian. The
graphing and closure maps preserve the Brunnian property.

A version of the next map, sometimes called the linking coefficient, appears at least as far back
as work of Zeeman [Zee60, Zee62] and Haefliger [Hae62a]. In fact, the section given by graphing is
sometimes called the Zeeman map.
Definition A.2. For 𝑝 ≤ 𝑞 < 𝑛, define a map

𝜋0BrEmb(𝑆𝑝 � 𝑆𝑞 , 𝑆𝑛) 𝜆−→ 𝜋𝑝𝑆
𝑛−𝑞−1

as follows. Denote an element of the domain by 𝑏 = (𝑏1, 𝑏2). Take any isotopy of 𝑏2 to the standard
embedding �̂�2, and extend it to an isotopy from b to a link 𝑏′ = (𝑏′1, �̂�2). Define 𝜆(𝑏) as the composite

𝑆𝑝
𝑏′1−→ 𝑆𝑛 − 𝑆𝑞 −→ 𝑆𝑛−𝑞−1 × R𝑞+1 −→ 𝑆𝑛−𝑞−1,

where the second map is the diffeomorphism (3.3) and the third map is projection onto the first factor.
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Lemma A.3 [Hae67, Théorème 7.1]. The map 𝜆 is well-defined.
Proof. We need to show that 𝜆(𝑏) is independent of the choice of isotopy from 𝑏2 to �̂�2 and the choice
of an extension of it to the first component. Suppose 𝑏′ and 𝑏′′ are the endpoints of two such isotopies
starting at b. Then 𝑏′ and 𝑏′′ are isotopic links, each restricting to �̂�2 on 𝑆𝑞 (though the links throughout
the isotopy need not satisfy this property).

An isotopy from 𝑏′ to 𝑏′′ can be extended to a path of diffeomorphisms of 𝑆𝑛 starting at the identity.
Restrict this path to a disk 𝐷𝑛 which contains 𝑏′1(𝑆

𝑝) and which intersects �̂�2(𝑆𝑞) in a disk 𝐷𝑞 ⊂ 𝐷𝑛.
The endpoints 𝑔0 and 𝑔1 of this path lie in the space Emb+(𝐷𝑛, 𝑆𝑛; 𝐷𝑞) of orientation-preserving
embeddings 𝐷𝑛 ↩→ 𝑆𝑛 which agree with the fixed inclusion on 𝐷𝑞 . By a shrinking and linearization
argument, Emb+(𝐷𝑛, 𝑆𝑛; 𝐷𝑞) � 𝑆𝑂 (𝑛 − 𝑞). In particular, it is path-connected, so there is a path in
Emb+(𝐷𝑛, 𝑆𝑛; 𝐷𝑞) from 𝑔0 to 𝑔1.

Lift this path to the space Diff+(𝑆𝑛; �̂�2(𝑆𝑞)) of diffeomorphisms of 𝑆𝑛 which fix �̂�2(𝑆𝑞) pointwise.
We can do so by the isotopy extension theorem [Hir76, Theorem 8.1.3] or more generally the fact that the
restriction Diff+(𝑆𝑛; �̂�2(𝑆𝑞)) → Emb+(𝐷𝑛, 𝑆𝑛; 𝐷𝑞) is a fibration [Pal60, Lim64]. Restricting the latter
path to the image of 𝑏′ gives an isotopy from 𝑏′ to 𝑏′′ which leaves the second component fixed. �

Theorem A.4. Let 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 − 2, and let 𝑖 ≥ 0. Then 𝜋𝑖Emb(𝑆𝑝 � 𝑆𝑞 , 𝑆𝑛) has a direct
summand of 𝜋𝑖+𝑝𝑆

𝑛−𝑞−1, the inclusion of which is induced by a based homotopy equivalence 𝑗 :
𝑆𝑛−𝑞−1 → 𝑅𝑛−𝑝 − R𝑞−𝑝 , the inclusion Emb𝑐 (∗, R𝑛−𝑝 − R𝑞−𝑝) ↩→ Emb𝑐 (∗ � R𝑞−𝑝 , R𝑛−𝑝) and the
composition Ω𝑝Emb𝑐 (∗�R𝑞−𝑝 , R𝑛−𝑝) → Emb𝑐 (R𝑝�R𝑞 , R𝑛) → Emb𝑐 (𝑆𝑝�𝑆𝑞 , 𝑆𝑛) of the graphing
map followed by the closure map.

Theorem A.4 is valid for 𝑞 = 𝑛 − 1 but trivial because we assume 𝑝 ≥ 1. We impose that hypothesis
because we defined the closure map only for codimension at least 2.

Proof. To prove the theorem, it suffices to prove the analogous statement where Emb(𝑆𝑝 � 𝑆𝑞 , 𝑆𝑛) is
replaced by BrEmb(𝑆𝑝 � 𝑆𝑞 , 𝑆𝑛) because the former space is a union of path components of the latter
space. We will show that the following composition of maps is the identity

𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 �−→

Ω𝑝 ( 𝑗)∗
𝜋𝑖Ω

𝑝 (R𝑛−𝑝 − 0𝑛−𝑞 × R𝑞−𝑝) �−→ 𝜋𝑖Ω
𝑝BrEmb𝑐 ({∗} � R𝑞−𝑝 , R𝑛−𝑝)

𝐺
𝑝
∗−→ 𝜋𝑖BrEmb𝑐 (R𝑝 � R𝑞 , R𝑛)
·̂−→ 𝜋𝑖BrEmb(𝑆𝑝 � 𝑆𝑞 , 𝑆𝑛)
𝐺𝑖
∗−→ 𝜋0BrEmb(𝑆𝑖+𝑝 � 𝑆𝑖+𝑞 , 𝑆𝑖+𝑛)
𝜆−→ 𝜋𝑖+𝑝𝑆

𝑛−𝑞−1.

(A.1)

The first map comes from a homotopy equivalence as in formula (3.2). The arrow just above 𝐺∗𝑝 involves
an affine-linear map to obtain the required behavior at the boundary of (−1, 1)𝑛. The map denoted 𝐺𝑖

(by abusing notation already used for long links) is the composition of i maps, starting with

ΩBrEmb(𝑆𝑝 � 𝑆𝑞 , 𝑆𝑛) → BrEmb(𝑆𝑝+1 � 𝑆𝑞+1, 𝑆𝑛+1).

To obtain this first map, start by graphing a loop restricted to I to get an embedding 𝑆𝑝×𝐼�𝑆𝑞×𝐼→ 𝑆𝑛×𝐼.
Then attach two disks 𝐷𝑛+1 to 𝑆𝑛× 𝐼 using diffeomorphisms 𝜕𝐷𝑛+1→ 𝑆𝑛×{±1}. In each copy of 𝐷𝑛+1,
fix smooth proper embeddings of 𝐷 𝑝+1 and 𝐷𝑞+1 and glue two copies of each of these to the embeddings
of 𝑆𝑝 × 𝐼 and 𝑆𝑞 × 𝐼 to obtain smooth embeddings of 𝑆𝑝+1 and 𝑆𝑞+1. We can use fixed embeddings of
𝐷 𝑝+1 and 𝐷𝑞+1 independent of the embeddings of 𝑆𝑝 and 𝑆𝑞 because the loop of embeddings is based
at the standard trivial link �̂�. The remaining 𝑖 − 1 maps needed to obtain 𝐺𝑖 are defined similarly.

We next apply the Pontryagin–Thom correspondence to 𝜋𝑖+𝑝𝑆
𝑛−𝑞−1. A homotopy class is identified

with a bordism class of framed manifolds by taking the preimage of a regular value of a smooth
representative R𝑖+𝑝 → 𝑆𝑛−𝑞−1. Recall from Definition 2.5 that the closure map uses disks of radii

√
𝑛
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contained in 𝑡∗𝑖 × R𝑛−1 and that 𝑡∗2 − 𝑡∗1 = 2/3. We fix a regular value 𝑦 ∈ 𝑆𝑛−𝑞−1 far from the first
coordinate axis and more specifically in the neighborhood of vectors whose angle with (0, 1, 0, . . . , 0)
is less than arctan(1/(3

√
𝑛)). This guarantees that the disks used in the closure do not contribute to the

bordism class, or more precisely that the framed submanifold representing a bordism class in the target
copy of 𝜋𝑖+𝑝𝑆

𝑛−𝑞−1 lies in R𝑖 × 𝐷 𝑝 ⊂ R𝑖+𝑝 .
By this choice of regular value, we need only consider the restrictions 𝐷𝑖+𝑝 � 𝐷𝑖+𝑞 → 𝐷𝑖+𝑛 of

elements of BrEmb(𝑆𝑖+𝑝 � 𝑆𝑖+𝑞 , 𝑆𝑖+𝑛) to evaluate their image under 𝜆. This allows us to essentially
reduce the composite (A.1) to a composite of maps involving long links. In this setting, 𝜆 is homotopic
to the composite of the homotopy left-inverse r to 𝐺𝑖+𝑝 from formula (3.4) followed by an iterated
looping of the homotopy inverse to j. Thus, the composite (A.1) is indeed the identity. �

A.2. Injectivity of graphing for link maps in a range

Our next main result is proven using the 𝛼-invariant of spherical links in Euclidean space. It is essen-
tially a Gauss map and appears at least as early as the work of Massey and Rolfsen [MR85]. Further
developments on it include work of Koschorke [Kos88, Kos97] and A. Skopenkov [Sko00].
Definition A.5. We define 𝛼 as the map

𝛼 : Link∗(𝑆𝑝 � 𝑆𝑞 , R𝑛) −→ Map∗(𝑆𝑝 × 𝑆𝑞 , Conf (2,R𝑛))
𝑔 = (𝑔1, 𝑔2) ↦−→ ((𝑡, 𝑢) ↦→ (𝑔1 (𝑡), 𝑔2 (𝑢))).

Now Conf (2,R𝑛) � 𝑆𝑛−1, so if 𝑝, 𝑞 ≤ 𝑛− 2, then the restriction of any map 𝑆𝑝 × 𝑆𝑞→ Conf (2,R𝑛)
to 𝑆𝑝 ∨ 𝑆𝑞 is nullhomotopic. Thus, the map induced by 𝛼 on 𝜋𝑖 for any 𝑖 ≥ 0 can be written as

𝛼∗ : 𝜋𝑖Link∗(𝑆𝑝 � 𝑆𝑞 , R𝑛) → 𝜋𝑖Map∗((𝑆𝑝 × 𝑆𝑞)/(𝑆𝑝 ∨ 𝑆𝑞), Conf (2,R𝑛))
� 𝜋𝑖+𝑝+𝑞Conf (2,R𝑛)
� 𝜋𝑖+𝑝+𝑞𝑆

𝑛−1.

Theorem A.6. Suppose 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 − 2 and 𝑖 ≥ 0. Consider the map 𝜋𝑖+𝑝𝑆
𝑛−𝑞−1→ 𝜋𝑖Link𝑐 (R𝑝 �

R𝑞 , R𝑛) induced by a based homotopy equivalence 𝑗 : 𝑆𝑛−𝑞−1 → 𝑅𝑛−𝑝 − R𝑞−𝑝 , the inclu-
sion 𝜖 : Link𝑐 (∗, R𝑛−𝑝 − R𝑞−𝑝) ↩→ Link𝑐 (∗ � R𝑞−𝑝 , R𝑛−𝑝), and graphing 𝐺 𝑝 : Link𝑐 (∗ �
R𝑞−𝑝 , R𝑛−𝑝) → Link𝑐 (R𝑝 � R𝑞 , R𝑛). Let 𝐸𝑞 : 𝜋𝑖+𝑝𝑆

𝑛−𝑞−1 → 𝜋𝑖+𝑝+𝑞𝑆
𝑛−1 be the q-fold suspension

map. Then (𝐺 𝑝 ◦ 𝜖 ◦ Ω𝑝 ( 𝑗))∗ is injective, nonzero or split injective if the q-fold suspension map is,
respectively, injective, nonzero or an isomorphism.

Putting 𝑖 = 0 above gives a result of Scott [Sco68], which was improved upon by Massey and Rolfsen
[MR85], Koschorke [Kos90], and Habegger and Kaiser [HK98]. Like Theorem A.4, Theorem A.6 is
valid for 𝑞 = 𝑛 − 1 but trivial because we assume 𝑝 ≥ 1. Again, we impose that hypothesis because we
defined the closure map only for codimension at least 2.

Proof. The main idea is to check that the composite 𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 → 𝜋𝑖+𝑝+𝑞𝑆

𝑛−1, shown below in the
composite (A.2), agrees with the q-fold iterated suspension 𝐸𝑞 . For notational ease, we will suppress
Ω𝑝 ( 𝑗)∗ and 𝜖∗ from the notation and write 𝐺 𝑝 to denote the p-fold graphing 𝐺 𝑝 followed by the closure
map ·̂. Thus, we write the composite below as [ 𝑓 ] ↦→ 𝛼∗𝐺

𝑝
∗ [ 𝑓 ].

𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 �−→ 𝜋𝑖Ω

𝑝 (R𝑛−𝑝 − R𝑞−𝑝) −→ 𝜋𝑖Ω
𝑝Link𝑐 ({∗} � R𝑞−𝑝 , R𝑛−𝑝)

𝐺
𝑝
∗−−→ 𝜋𝑖Link𝑐 (R𝑝 � R𝑞 , R𝑛)

( ·̂ )∗−→ 𝜋𝑖Link∗(𝑆𝑝 � 𝑆𝑞 , R𝑛)
𝛼∗−→ 𝜋𝑖+𝑝+𝑞𝑆

𝑛−1

(A.2)

All of the above maps are homomorphisms, even if 𝑖 = 0, because 𝐺 𝑝 is a map of H-spaces.
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We will use the Pontryagin–Thom theorem to identify elements of the first and last homotopy groups
in the composite (A.2) with bordism classes of manifolds. In particular, we will identify [ 𝑓 ] with a
bordism class of framed submanifold of R𝑖+𝑝 of dimension 𝑖 + 𝑝 + 𝑞 − 𝑛 + 1, and we will identify
𝛼∗𝐺

𝑝
∗ [ 𝑓 ] with a class of framed submanifold of R𝑖+𝑝+𝑞 , also of dimension 𝑖 + 𝑝 + 𝑞 − 𝑛 + 1. As in the

proof of Theorem A.4, let 𝑦 ∈ 𝑆𝑛−𝑞−1 be a regular value of f that lies in the neighborhood of vectors
making an angle of less than arctan(1/(3

√
𝑛)) with (0, 1, 0, . . . , 0). This will simplify a consideration

related to the closure map. Let 𝑋 := 𝑓 −1{𝑦} be the framed bordism class corresponding to [ 𝑓 ].
The result of applying the first map in the composite (A.2) to a map 𝑓 : R𝑖+𝑝 → 𝑆𝑛−𝑞−1 is more

explicitly written as the composition

R𝑖 × R𝑝
𝑓 �� 𝑆𝑛−𝑞−1 � � 𝑖

�
�� 𝑆𝑛−𝑞−1 × R𝑞−𝑝+1 ℎ−1

�
�� R𝑛−𝑝 − R𝑞−𝑝 ,

where i maps 𝑆𝑛−𝑞−1 to 𝑆𝑛−𝑞−1 × 0𝑞−𝑝+1. Above h is the diffeomorphism (3.1). Note that ℎ−1𝑖(𝑆𝑛−𝑞−1)
is the unit sphere in R𝑛−𝑞 × 0𝑞−𝑝 ⊂ R𝑛−𝑝 .

The second arrow in the composite (A.2) comes from mapping R𝑛−𝑝−R𝑞−𝑝 homeomorphically onto
the subspace of Link𝑐 ({∗} �R𝑞−𝑝 , R𝑛−𝑝) where the R𝑞−𝑝 component is standard. Thus, the restriction
to the first component of the image of [ 𝑓 ] in 𝜋𝑖Link𝑐 (R𝑝 � R𝑞 , R𝑛) is represented by the map

R𝑖 × R𝑝 −→ (R𝑛−𝑝 − R𝑞−𝑝) × R𝑝

(𝑠, 𝑡) ↦−→ (ℎ−1𝑖 𝑓 (𝑠, 𝑡), 𝑡).

Hence, on the subspace 𝐷 𝑝 × 𝐷𝑞 ⊂ 𝑆𝑝 × 𝑆𝑞 , the class 𝛼∗(𝐺 𝑝
∗ [ 𝑓 ]) is represented by the composite

R𝑖 × 𝐷 𝑝 × 𝐷𝑞 �� Conf (2,R𝑛) � �� 𝑆𝑛−1

(𝑠, 𝑡, 𝑢) 	 �� ((ℎ−1𝑖 𝑓 (𝑠, 𝑡), 𝑡), (0𝑛−𝑞 , 𝑢)
)
.

(A.3)

One can check that (𝑦, 0𝑞) ∈ 𝑆𝑛−1 ⊂ R𝑛 is a regular value of the composite (A.3). Because of Definition
2.5 of the closure map and our choice of regular value y, the preimage of (𝑦, 0𝑞) under 𝛼𝐺 𝑝 𝑓 is
contained in R𝑖 × 𝐷 𝑝 × 𝐷𝑞 ⊂ R𝑖 × 𝑆𝑞 × 𝑆𝑞 . Let 𝑍 := (𝛼𝐺 𝑝 𝑓 )−1{(𝑦, 0𝑞)}. From the formula in (A.3)
and the fact that ℎ−1𝑖(𝑆𝑛−𝑞−1) is the unit sphere in R𝑛−𝑞 × 0𝑞−𝑝 ⊂ R𝑛−𝑝 , we deduce that

𝑍 = {(𝑠, 𝑡, 0𝑞−𝑝 , 𝑡) : ℎ−1𝑖 𝑓 (𝑠, 𝑡) = ℎ−1𝑖(𝑦)}
= {(𝑠, 𝑡, 0𝑞−𝑝 , 𝑡) : 𝑓 (𝑠, 𝑡) = 𝑦},

where the second equality comes from the fact that ℎ−1𝑖 is injective.
The iterated suspension 𝐸𝑞 [ 𝑓 ] corresponds to the image of X under the inclusion 𝜄R𝑖+𝑝 ,R𝑖+𝑝+𝑞 :

R𝑖+𝑝 ↩→ R𝑖+𝑝+𝑞 of the first 𝑖 + 𝑝 coordinates. Now

𝜄R𝑖+𝑝 ,R𝑖+𝑝+𝑞 (𝑋) = {(𝑠, 𝑡, 0𝑞) : 𝑓 (𝑠, 𝑡) = 𝑦}.

This submanifold (with its induced framing) is bordant to Z (with its induced framing) via the ambient
isotopy

R𝑖+𝑝+𝑞 × [0, 1] → R𝑖+𝑝+𝑞

((𝑡1, . . . , 𝑡𝑖+𝑝+𝑞), 𝑟) ↦→ (𝑡1, . . . , 𝑡𝑖+𝑞 , 𝑡𝑖+𝑞+1 + 𝑟𝑡𝑖+1, . . . 𝑡𝑖+𝑞+𝑝 + 𝑟𝑡𝑖+𝑝).

Thus, the composition 𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 → 𝜋𝑖+𝑝+𝑞𝑆

𝑛−1 shown in (A.2) is the q-fold suspension 𝐸𝑞 , so
the map 𝐺 𝑝

∗ : 𝜋𝑖+𝑝𝑆
𝑛−𝑞−1 → 𝜋𝑖Link𝑐 (R𝑝 � R𝑞 , R𝑛) is injective or nonzero if 𝐸𝑞 is, and if 𝐸𝑞 is an

isomorphism, 𝐺 𝑝
∗ maps isomorphically onto a direct summand. �
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One can immediately adapt Example 3.3 on linking number classes from Theorem 3.2 to Theorem
A.6 (i.e., from embeddings to link maps).

Remark A.7 (Spaces of based spherical link maps in Euclidean space). An analogue of Theorem A.6
also holds for the space Link∗(𝑆𝑝 � 𝑆𝑞 , R𝑛). Indeed, the proof applies to 𝐺 𝑝

∗ just as well as it does to
𝐺 𝑝
∗ .

Remark A.8 (Spaces of embeddings and the 𝛼-invariant). Theorem A.6 and its proof are equally valid
for spaces of embeddings rather than link maps. However, for spaces of embeddings, Theorem 3.2
already gives a stronger result.
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