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Characterizations of Model Manifolds by
Means of Certain Differential Systems

S. Pigola and M. Rimoldi

Abstract. We prove metric rigidity for complete manifolds supporting solutions of certain second or-

der differential systems, thus extending classical works on a characterization of space-forms. Along

the way, we also discover new characterizations of space-forms. We next generalize results concerning

metric rigidity via equations involving vector fields.

1 Introduction

Having fixed a smooth, even function G : R → R, we let Mm
−G denote the m-dimen-

sional (not necessarily complete) model manifold with radial sectional curvature

−G(r). More precisely, we set Mm
−G = ([0, r−G) × S

m−1, dr2 + g(r)2dθ2), where

g : R → R is the unique solution of the problem











g ′ ′
= Gg,

g(0) = 0,

g ′(0) = 1,

and r−G ∈ (0,+∞] is the first zero of g(r) on (0,+∞). Obviously, in case g(r) > 0

for every r > 0, we are using the convention r−G = +∞. In this case, the model is

geodesically complete.

Examples of models come from the standard space-forms.

(i) Let G(r) ≡ −k < 0. Then g(r) = k−1/2 sin(k1/2r), rk = π/k1/2 and Mm
k

is isometric to the standard sphere of constant curvature k punctured at one point.

Equivalently, Mm
k is isometric to the geodesic ball Bπ/

√
k(o) in the standard sphere of

constant curvature k.

(ii) Let G(r) ≡ k > 0. Then g(r) = k−1/2 sinh(k1/2r) and Mm
−k is isometric to the

standard hyperbolic space of constant curvature −k.

(iii) Let G(r) ≡ 0. Then g(r) = r and Mm
0 is isometric to the standard Euclidean

space.

Characterizations of space-forms as complete manifolds supporting solutions of

second order differential systems of the form Hess(u)(x) = (au(x) + b)〈 · , · 〉x have

been classically investigated by M. Obata [5], Y. Tashiro [8], and M. Kanai [4]. The

following theorem encloses in a single statement their results.
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Theorem 1.1 Let (M, 〈 · , · 〉) be a complete, connected Riemannian manifold of di-

mension dim M = m. Then

(i) A necessary and sufficient condition for M to be isometric to the sphere of constant

curvature k > 0 is that M supports a smooth, non trivial solution u : M → R of the

differential system

(1.1) Hess(u)(x) = −ku(x)〈 · , · 〉.

(ii) A necessary and sufficient condition for M to be isometric to the hyperbolic space

of constant curvature −k < 0 is that M supports a smooth, non trivial solution u : M →
R of the differential system

(1.2) Hess(u)(x) = ku(x)〈 · , · 〉,

with precisely one critical point.

(iii) A necessary and sufficient condition for M to be isometric to the Euclidean space

is that M supports a smooth, non trivial solution u : M → R of the differential system

Hess(u)(x) = h〈 · , · 〉,

for some constant h 6= 0.

Recently, E. Garcı́a-Rı́o, D. Kupeli and B. Ünal, [3], were able to extend the met-

ric rigidity established in Theorem 1.1 to complete manifolds supporting vector field

solutions Z of differential systems of the form (DDZ)(X,Y ) = k〈Z,X〉Y for some

constant k 6= 0 and for every vector fields X,Y . Here, the symbol D stands for co-

variant differentiation so that (DDZ)(X,Y ) = DXDY Z − DDXY Z. Note that, in case

Z = ∇u is a gradient vector field, the above equation becomes

D Hess(u) = kdu ⊗ 〈 · , · 〉,

which is a third order system in the unknown function u. The following rigidity

theorem summarizes the main results of [3].

Theorem 1.2 Let (M, 〈 · , · 〉) be a complete, connected Riemannian manifold of di-

mension dim M = m. Then

(i) A necessary and sufficient condition for M to be isometric to the sphere of constant

curvature k > 0 is that M supports a smooth, non trivial solution Z of the differential

system (DDZ)(X,Y ) = −k〈Z,X〉Y, ∀X,Y .

(ii) A necessary and sufficient condition for M to be isometric to the hyperbolic space

of constant curvature −k < 0 is that M supports a smooth, non trivial solution Z of

the differential system (DDZ)(X,Y ) = k〈Z,X〉Y, ∀X,Y satisfying Zo = 0, for some

o ∈ M.

Since space-forms are very special cases of model manifolds, a natural question is

whether a general model manifold Mm
−G can be characterized in the same perspec-

tive of Theorem 1.1 and Theorem 1.2. This note aims to answer the question in

the affirmative. During our investigation, we will also give new characterizations of

space-forms.
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2 Second Order Systems

Quite naturally, one expects that a characterization of the model Mm
−G, in the spirit

of Theorem 1.1 must involve more general differential systems of the form

(2.1) Hess(u)(x) = H(r(x))u(x)〈 · , · 〉,

where r(x) denotes the geodesic distance from a fixed origin o. First of all, we need to

find the right form of the radial coefficient H. Let u(x) = α(r(x)) be a radial solution

of (2.1). We assume u has been normalized in such a way that u(0) = 1, and we

require u to have a critical point at 0. Then, recalling that

(2.2) Hess(r) =
g ′

g
{〈 · , · 〉 − dr ⊗ dr} = gg ′dθ2,

we have Hess(u) = α ′ ′dr ⊗ dr + α ′gg ′dθ2. On the other hand,

Hess(u) = Hα〈 · , · 〉 = Hαdr ⊗ dr + Hαg2dθ2.

Comparing these two equations gives the ordinary differential system

{

α ′ ′
= Hα,

α ′gg ′
= Hαg2,

that is,
{

α ′ ′
= α ′g ′/g,

H = α ′g ′/αg,

where, we recall, α(0) = 1, α ′(0) = 0. Integrating the first equation gives

α(r) = A

∫ r

0

g(s)ds + 1,

with A 6= 0 any constant. Inserting this expression into the second equation we

finally deduce

H(r) =
Ag ′(r)

A
∫ r

0
g(s)ds + 1

.

In order that H is defined on all of [0, r−G), we need to impose that

inf
{

t > 0 : A

∫ t

0

g(s)ds + 1 ≤ 0
}

≥ r−G.

We have thus obtained the following lemma.
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Lemma 2.1 A necessary and sufficient condition for equation (2.1) to possess a radial

solution u on Mm
−G is that

H(r) =
Ag ′(r)

A
∫ r

0
g(s)ds + 1

.

for any constant A 6= 0 such that

inf
{

t > 0 : A

∫ t

0

g(s)ds + 1 ≤ 0
}

≥ r−G.

Note, in particular, the following.

• On the punctured standard sphere Mm
1 = S

m\{point} = Bπ(0), for every A ∈
R\{0} such that A > −1/2, A = −1, there is a smooth function uA with exactly

one critical point at 0 and satisfying the equation

(2.3) Hess(uA)(x) =
A cos r(x)

−A cos r(x) + 1 + A
uA(x)〈 · , · 〉.

As a matter of fact, the function u(x) = −A cos r(x) + 1 + A is well defined and

solves the equation on all of Sm. Note finally that in the special case A = −1, (2.3)

reduces to (1.1).
• On the standard hyperbolic model Mm

−1 = H
m
−1, for every A > 0 there exists a

smooth function uA with exactly one critical point at 0 and satisfying the equation

(2.4) Hess(uA)(x) =
A cosh r(x)

A cosh r(x) + 1 − A
uA(x)〈 · , · 〉.

In the special case A = 1, (2.4) reduces to (1.2).
• On the standard Euclidean space Mm

0 = R
m, for every A > 0, there exists a func-

tion uA with exactly one critical point at 0 and satisfying the equation

(2.5) Hess(uA)(x) =
2A

Ar(x)2 + 2
uA(x)〈 · , · 〉.

We shall prove the following result. Recall that a twisted sphere of dimension n

is a differentiable manifold N, homeomorphic to the standard sphere S
n, which is

obtained by gluing two n-dimensional closed, unit disks Dn ⊂ R
n via a boundary

diffeomorphism.

Theorem 2.2 Let (M, 〈 · , · 〉) be a complete Riemannian manifold of dimension m,

and let o ∈ M be a reference origin. Then a necessary and sufficient condition for the

existence of an isometric imbedding Φ : Mm
−G → M is that there exists a smooth solution

u : Br−G
(o) → R of the problem

(2.6)











Hess(u)(x) = H(r(x))u(x)〈 · , · 〉,

u(o) = 1,

|∇u|(o) = 0,
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where r(x) = dist(M,〈 · , · 〉)(x, o), H : [0,R∗] → R is the smooth function

H(t) =
Ag ′(t)

A
∫ t

0
g(s)ds + 1

for some real number A 6= 0, and

R∗
= sup{T > 0 : H(t) well defined on [0,T]} > r−G.

Furthermore, if u is a solution of (2.6) on all of M, then the following holds

(i) If r−G = +∞, then M is isometric to the model Mm
−G.

(ii) If r−G < +∞ and H(r−G) 6= 0, then cut(o) = {O} for some O ∈ M, and

Φ(Mm
−G) = M\{O}. Furthermore, M is diffeomorphically a twisted sphere.

As a direct consequence of Theorem 2.2 we point out the following result that

generalizes, in some directions, Theorem 1.1.

Corollary 2.3 Let (M, 〈 · , · 〉) be a complete Riemannian manifold, o ∈ M a reference

origin, and r(x) = dist(M,〈 · , · 〉)(x, o).

(i) M is isometric to the standard sphere Sm if and only if M supports a real valued

function u 6≡ 0 with a critical point at o and satisfying the differential system (2.3)

for some A 6= 0 such that either A > −1/2 or A = −1.

(ii) M is isometric to the standard hyperbolic space if and only if M supports a real

valued function u 6≡ 0 with a critical point at o and satisfying the differential

system (2.4) for some A > 0.
(iii) M is isometric to the standard Euclidean space if and only if M supports a real

valued function u 6≡ 0 with a critical point at o and satisfying the differential

system (2.5) for some A > 0.

Before proving Theorem 2.2 we make some observations on case (i) of Corol-

lary 2.3.

(i) First of all, to deduce that M is a standard sphere one simply observes that, as

established in Theorem 2.2(ii), M is simply connected and M\{O} is isometric to a

standard punctured sphere. Therefore, by continuity M itself has positive constant

curvature and we can apply the Hopf classification theorem. Alternatively, we can

recall that a necessary and sufficient condition for the model metric dr⊗dr+g(r)2dθ2

of Mm
−G to smoothly extend to all of [0, r−G] × S

m−1 is that g(2k)(r−G) = 0 and

g ′(r−G) = −1; see [6]. In the present situation we have g(r) = sin(r) and therefore

we deduce that the isometry Φ extends to cover the removed point O.

(ii) Comparing with Theorem 1.1(i), we see that, on the one hand, we enlarge the

class of differential systems characterizing the sphere but, on the other hand, we make

the additional assumption that u has a critical point at o. As first noted by Obata, the

existence of a critical point is automatically guaranteed if H(r) ≡ −k < 0. To see

this, one can argue as follows. By contradiction, suppose u has no critical point at

all. Then the vector field X = ∇u/|∇u| is defined on all of M. Using the differential

system Hess(u) = −ku〈 · , · 〉, it is readily seen that the integral curves γ(t) : R → M
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of X are unit speed, but not necessarily minimizing, geodesics. Indeed,

Dγ̇ γ̇ = Dγ̇Xγ = |∇u|−1 Hess(u)(γ̇, · )# − |∇u|−1 Hess(u)(γ̇,X)X

= −ku|∇u|−1X + ku|∇u|−1X

= 0.

Note that the same argument works if u solves the more general equation Hess(u) =

f 〈 · , · 〉 for any real-valued function f . Now consider y(t) = u◦γ(t). Then y satisfies

the oscillatory o.d.e. y ′ ′
= −ky. Let t0 > 0 be a critical point of y. Since

0 =
dy

dt
(t0) = 〈∇u(γ(t0)),

·
γ(t0)〉 =

〈

∇u(γ(t0)),
∇u

|∇u|
(γ(t0))

〉

= |∇u|(γ(t0)),

we have that γ(t0) is a critical point of u, which is a contradiction. Thus, u has a crit-

ical point p and we can always take p = o as the reference origin in our Theorem 2.2.

In case the coefficient H in the differential equation depends on the distance function

r(x), if we try to adapt the previous argument to the present situation, we encounter

two obvious difficulties.

(a) As observed above, an integral curve γ(t) : R → M of the vector field X is

a geodesic, but it can be non-minimizing. Therefore, for large values of |t|,
H(r(γ(t))) 6= H(t). It follows that the reduction procedure of the P.D.E. to an

o.d.e., via composition with γ, cannot be carried over for large values of |t|.
(b) Even if we were able to prove that u has a critical point at some p ∈ M, since the

coefficient H depends on the distance from the reference origin o, we could not

take p = o.

The rest of the section is entirely devoted to a proof of Theorem 2.2. The ne-

cessity part has been already discussed above. Therefore we may concentrate on the

sufficiency part.

The following density result due to R. Bishop [1] will play a key role in our argu-

ment. For a nice and simplified proof, see F. Wolter [9]. Following Bishop, recall that

given a complete manifold (M, 〈 · , · 〉) and a reference point o ∈ M, then p ∈ cut(o)

is an ordinary cut point if there are at least two distinct minimizing geodesics from

o to p. Using the infinitesimal Euclidean law of cosines, it is not difficult to show

that at an ordinary cut point p the distance function r(x) = dist(M,〈 · , · 〉)(x, o) is not

differentiable [9].

Theorem 2.4 Let (M, 〈 · , · 〉) be a complete Riemannian manifold and let o ∈ M be a

reference point. Then the ordinary cut-points of o are dense in cut(o). In particular, if the

distance function r(x) from o is differentiable on the (punctured) open ball BR(o)\{o},

then BR(o) ∩ cut(o) = ∅.

Proof of Theorem 2.2 To simplify the exposition we will proceed by steps.
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Step 1: First of all, we note that the function u : Br−G
(o) → R must be radial and,

more precisely, u(x) = α(r(x)) , where

α(t) = A

∫ t

0

g(s)ds + 1.

Indeed, fix x and choose a unit speed, minimizing geodesic γ : [0, r(x)] → Br−G
(o)

from o to x. Then composing with γ we deduce that y(t) = u ◦ γ(t) is the solution

of the Cauchy problem











y ′ ′(t) =
Ag ′(t)

A
∫

t
0

g(s)ds+1
y(t),

y(0) = 1,

y ′(0) = 〈∇u(o),
·
γ(0)〉 = 0.

It follows that

y(t) = A

∫ t

0

g(s)ds + 1,

and, taking t = r(x), we get

u(x) = y(r(x)) = A

∫ r(x)

0

g(s)ds + 1.

Step 2: The open ball Br−G
(o) is inside the cut-locus of o. Indeed, recall that u(x) =

α(r(x)) and note that α is a diffeomorphism on (0, r−G) because α ′(t) = Ag(t) 6= 0

on that interval. Therefore, r(x) = α−1 ◦ u(x) is smooth on Br−G
(o)\{o} as a com-

position of smooth functions. By Theorem 2.4, it follows that Br−G
(o)∩ cut(o) = ∅.

Step 3: According to Step 2, we can introduce geodesic polar coordinates on Br−G
(o).

We claim that the corresponding map

Φ(r, θ) = expo(rθ) : Mm
−G ≈ B

m
r−G

(0) ⊆ ToM → Br−G
(o) ⊆ M

is a Riemannian isometry. To see this, let v be the function

v(x) =
u(x) − 1

A
=

∫ r(x)

0

g(s)ds

on Br−G
(o) and note that

(2.7)











Hess(v) = A−1Hu〈 · , · 〉,

v(o) = 0,

|∇v|(o) = 0.

Furthermore,

(2.8) ∇r =
∇v

|∇v|
.
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Using geodesic polar coordinates (r, θ) ∈ (0, r−G) × Sm−1 ≈ Bm
r−G

(0)\{0} ⊆ ToM,

keeping a local orthonormal frame {θα} on Sm−1 ⊂ ToM, and recalling Gauss’

lemma, we now express exp∗
o 〈 · , · 〉 = dr ⊗ dr + σαβ(r, θ)θα ⊗ θβ , where dθ2

=
∑

θα ⊗ θα denotes the standard metric on S
m−1 and the coefficient matrix (σαβ)

satisfies the asymptotic condition

(2.9) σαβ(r, θ) = r2δαβ + o(r2), as r → 0.

By the fundamental equations of Riemannian geometry, we know that within the cut

locus of o L∇r〈 · , · 〉 = 2 Hess(r), where, furthermore, ∇r = ∂r, the radial vector

field. Therefore, on Br−G
(o), we have

(2.10) ∂rσαβ(r, θ) = 2 Hess(r)αβ .

But, according to (2.7) and (2.8), we have for every X,Y ∈ (∇r)⊥,

Hess(r)(X,Y ) =
〈

DX
∇v

|∇v|
,Y

〉

=
1

|∇v|
Hess(v)(X,Y ) =

1

|∇v|
A−1Hu 〈X,Y 〉

=
g ′

g
〈X,Y 〉 .

Using this information into (2.10) and recalling (2.9), we deduce that

(2.11)











∂rσαβ(r, θ) = 2
g ′

g
(r)σαβ(r, θ),

σαβ(r, θ) = r2δαβ + o(r2), as r → 0,

which integrated gives σαβ(r, θ) = g(r)2δαβ . We have thus shown that

exp∗
o 〈 · , · 〉 = dr ⊗ dr + g(r)2dθ2,

proving that expo : Mm
−G\{0} → BR(o)\{o} is a Riemannian isometry. To conclude,

note that by the assumptions on g, this isometry smoothly extends even to the ori-

gin 0.

Step 4: We now assume that u is a solution of (2.6) on all of M. In case r−G = +∞,

then it follows directly from Step 3 that Φ : Mm
−G → M is a Riemannian isometry.

Accordingly, in what follows, we assume r−G < +∞.

Step 5: We show that ∂Br−G
(o) is discrete, hence a finite set. Indeed, for every x ∈

∂Br−G
(o), let γ be a unit speed, minimizing geodesic from o to x. Then |∇u| ◦ γ(t) =

Ag(t) → 0 as t → r−G. Therefore, ∂Br−G
(o) is made up of critical points of u.

Since u satisfies the differential equation Hess(u)(x) = H(r(x))u(x)〈 · , · 〉 and, by

assumption, H(r−G) 6= 0 and u 6= 0 on ∂Br−G
(o), we deduce that such critical points

are non-degenerate, i.e., the quadratic form Hess(u) has no zero eigenvalues. Hence,

by Morse’s Lemma, they are isolated. Accordingly, ∂Br−G
= {p1, . . . , pk}, as claimed.
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Step 6: We prove that cut(o) = {O} = ∂Br−G
(o), for some O ∈ M. Indeed, by

Step 2, the standard m-dimensional ball B
m
r−G

(0) ⊂ ToM of radius r−G lies in the

domain Do ⊂ ToM of the normal coordinates at o. Therefore, it suffices to show that

(2.12) expo(∂B
m
r−G

(0)) = ∂Br−G
(o) = {O}.

If this occurs, then ∂B
m
r−G

(0) is precisely the tangential cut-locus of o and, hence,

cut(o) = {O}. Note that, in particular, all the geodesics issuing from o will meet at

O (and cannot minimize distances past r−G).

Now for the proof of (2.12). Let us observe that expo(∂B
m
r−G

(0)) ⊆ Br−G
(o) and

expo(∂B
m
r−G

(0) ∩ Do) = ∂Br−G
(o) ∩ (M\ cut(o)). Since Br−G

(o) does not contain any

cut-point of o, it follows that also the tangential cut points in ∂Bm
r−G

(0) are mapped

on ∂Br−G
(o) by expo. Thus, expo(∂B

m
r−G

(0)) = ∂Br−G
(o). Now recall from Step 5 that

∂Br−G
(o) is a finite set. Since ∂B

m
r−G

(0) is connected and expo is a continuous map,

we conclude the validity of (2.12).

Step 7: We note that Φ(Mm
−G) = M\{O} = Br−G

(o). Indeed, this follows directly

from Steps 3 and 6.

Step 8: Finally we deduce that M is, diffeomorphically, a twisted sphere. To this

end, recall that by Step 6, M is compact. Moreover, u is a smooth function on M with

precisely two critical points, o and O. According to (2.6) and Step 5, these critical

points are non-degenerate. Therefore, to conclude, we can apply the (differentiable

version of) the classical result by G. Reeb.

This completes the proof of the theorem.

3 Third Order Systems: from Functions to (Gradient) Vector Fields

Recently, much work has been done to characterize space-forms, and also complex

Kähler and quaternionic manifolds, via differential equations involving vector fields

instead of functions. We refer to [2] for a survey of such kind of results. Let us focus

attention on space-forms. It is a nice observation by Garcı́a-Rı́o, Kupeli, and Ünal,

[3], that if the vector field Z on M satisfies

(3.1) (DDZ)(X,Y ) = k〈Z,X〉Y,

for every vector fields X,Y , and for some constant k 6= 0, where D denotes the co-

variant differentiation, then (a) Z has the special form

(3.2) Z =
∇ div Z

mk
,

and, (b) the smooth function u = div Z satisfies

Hess(u) = ku〈 · , · 〉, on M.

Using this latter fact, the authors are able to reduce their characterizations of

space-forms to the scalar cases collected in Theorem 1.1. Note that once we have
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chosen a reference origin o and used polar coordinates with respect to o, the function

u turns out to be radial and hence, by (3.2) Z is a radial gradient vector field.

One may therefore ask whether similar characterizations hold for a generic model

up to considering solutions of

(3.3) (DDZ)(X,Y ) = K(r(x)) 〈Z,X〉Y

for a suitable smooth, real valued function K(t), thus extending Theorem 2.2 to vec-

tor field equations. Inspection of what happens on a generic model suggests that this

is the case. Indeed, suppose we are given a model Mm
−G with corresponding warping

function g. In view of what we observed above, it is quite natural to consider the

radial, gradient vector field

Zx = ∇
(

∫ r(x)

0

y(s)ds + B
)

= y(r(x))∇r,

where B ∈ R is an arbitrary constant. Straightforward calculations show that

〈(DDZ)(X,Y ),W 〉 = y ′ ′dr(X)dr(Y )dr(W )

+ y ′ Hess(r)(X,Y )dr(W ) + y ′ Hess(r)(X,W )dr(Y )

+ y ′ Hess(r)(Y,W )dr(X) + y(DX Hess(r))(Y,W ).

On the other hand, using (2.2), we see that

(DX Hess(r))(Y,W ) =
{ (gg ′) ′

gg ′ − 2
g ′

g

}

Hess(r)(Y,W )dr(X)

−
g ′

g
Hess(r)(X,Y )dr(W ) −

g ′

g
Hess(r)(X,W )dr(Y ),

holds for every vector fields X,Y,W . Whence, we deduce

〈(DDZ)(X,Y ),W 〉 = y ′ ′dr(X)dr(Y )dr(W )

+
(

y ′ − y
g ′

g

)

Hess(r)(X,Y )dr(W )

+
(

y ′ − y
g ′

g

)

Hess(r)(X,W )dr(Y )

+ (y ′ + y
(gg ′) ′

gg ′ − 2y
g ′

g
) Hess(r)(Y,W )dr(X).

Since

K(r)〈Z,X〉〈Y,W 〉 = K(r)ydr(X)dr(Y )dr(W ) + K(r)y
g

g ′ Hess(r)(Y,W )dr(X),
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it follows that (3.3) is verified for the chosen vector fields X and Y if and only if the

equation

0 = (y ′ ′ − Ky)dr(X)dr(Y )dr(W )

+
(

y ′ − y
g ′

g

)

Hess(r)(X,Y )dr(W )

+
(

y ′ − y
g ′

g

)

Hess(r)(X,W )dr(Y )

+
(

y ′ + y
(gg ′) ′

gg ′ − 2y
g ′

g
− Ky

g

g ′

)

Hess(r)(Y,W )dr(X)

is satisfied for every W . Using appropriate choices of X,Y,W , we immediately see

that equation (3.3) is equivalent to











y ′ ′ − Ky = 0

y ′ − yg ′/g = 0

y ′ + y(gg ′) ′/gg ′ − 2yg ′/g − Kyg/g ′
= 0.

Whence, up to imposing y(0) = 0 (which is a natural assumption in order to extend

the above computations to the pole of Mm
−G), we conclude that these conditions imply

K(r) = G(r), y(r) = Ag(r),

for any constant A 6= 0. We have thus obtained the following result.

Lemma 3.1 A necessary and sufficient condition for equation (3.3) on Mm
−G to possess

a (non-trivial) radial gradient vector field solution Z is that K(r) = G(r). In this case,

Zx = ∇(A

∫ r(x)

0

g(s)ds + B),

where A 6= 0 and B ∈ R are arbitrary constants.

Observe that Z is the gradient vector field associated with the radial solution

u(x) = α(r(x)) of the scalar equation (2.1). Also, as we already remarked at the

beginning of the section, if G(r) ≡ k a non-zero constant then, according to (3.2),

any solution Z of (3.1) must be of the form Z = ∇u where u = div Z/mk, and equa-

tion (3.1) becomes (D Hess(u))(X; Y,W ) = k〈∇u,X〉 〈Y,W 〉. According to these

considerations, we are naturally led to state the next rigidity result which represents a

genuine extension of Theorem 1.2 stated in the Introduction. Our approach is rather

different from that presented in [3]. Indeed, the reduction procedure outlined above

cannot be carried over to this more general situation.

Theorem 3.2 Let (M, 〈 · , · 〉) be an m-dimensional, complete Riemannian manifold,

let o ∈ M be a reference origin, and set r(x) = dist(M,〈 · , · 〉)(x, o). A necessary and
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sufficient condition for the existence of an isometric imbedding Φ : Mm
−G → M is that

there exists a non-trivial, smooth solution u : Br−G
(o) → R of the problem

(3.4)











(D Hess(u))(X; Y,W ) = G(r(x))〈∇u,X〉〈Y,W 〉,

Hess(u)(o) = A〈 · , · 〉,

|∇u|(o) = 0,

for some A 6= 0. Furthermore, if u is a solution of (3.4) on all of M, then the following

holds:

(i) If r−G = +∞, then M is isometric to the model Mm
−G.

(ii) In case r−G < +∞, and g ′(r−G) 6= 0, then cut(o) = {O} for some O ∈ M, and

Φ(Mm
−G) = M\{O}. Moreover, M is diffeomorphically a twisted sphere.

Remark 3.3 In case G(s) ≡ k, it can be shown that assumption Hess(u)(o) = A〈, 〉
is unessential. Furthermore, if k < 0, then even the request |∇u|(o) = 0 can be

omitted.

Comparing Theorems 2.2 and 3.2 we see that the characterization of a model Mm
−G

via a third order system seems to be more natural. Indeed, the system involves directly

the radial sectional curvature −G(r) of the model. On the other hand, in the situ-

ation of second order systems, we are able to characterize the same space via a one-

parameter family of differential systems as remarked, e.g., in Corollary 2.3. These

further characterizations are invisible from the third order point of view.

Proof Let us begin by showing that u(x) = α(r(x)) where

α(t) = A

∫ t

0

g(s)ds + B,

for some constant B ∈ R. To this end, fix x ∈ Br−G
(o) and let γ(s) : [0, r(x)] →

Br−G
(o) be a unit speed, minimizing geodesic from γ(0) = o to γ(r(x)) = x. Then

evaluating (3.4) along γ, we readily deduce that y(s) = u ◦ γ(s) solves the Cauchy

problem

(3.5)



















y ′ ′ ′
= G(s)y ′,

y(0) = B,

y ′(0) = 0,

y ′ ′(0) = A,

where B = u(o). Since G = g ′ ′/g, integrating (3.5), we deduce that y(s) = α(s).

Evaluating the latter at s = r(x), we conclude that u(x) = α(r(x)) as desired.

As in Step 2 of the proof of Theorem 2.2, it follows from the Bishop density result

that cut(o)∩Br−G
(o) = ∅. On the other hand, using equation (3.4), we have that the

Riemann curvature tensor of M satisfies

Riem (W,X,∇u,Y ) = (D Hess(u))(W ; X,Y ) − (D Hess(u))(X; W,Y )

= G(r(x)){〈∇u,W 〉〈X,Y 〉 − 〈∇u,X〉〈W,Y 〉},
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for every vector fields X,Y,W . Since ∇u = Ag(r)∇r, choosing X = ∇r and W =

Y ∈ (∇r)⊥, we deduce that the radial sectional curvature of M is given by

Secrad(x) = −G(r(x)).

Therefore, by Hessian comparisons [7],

(3.6) Hess(r) =
g ′

g
{〈 · , · 〉 − dr ⊗ dr}, on Br−G

(o)\{o}.

Now the proof can be easily completed following the arguments of Theorem 2.2.

Indeed, setting

exp∗
o 〈 · , · 〉 = dr ⊗ dr + σαβ(r, θ)θα ⊗ θβ ,

and using (3.6) into (2.10) yields the validity of (2.11) which, once integrated, gives

σαβ(r, θ) = g(r)2δαβ .

We have thus established that Br−G
(o) is isometric to Mm

−G. In particular, u satisfies

(3.7) Hess(u)(x) = Ag ′(r(x))〈 · , · 〉, on Br−G
(o).

Suppose now that u is defined on all of M. In case r−G = +∞ we immediately

conclude that M is isometric to Mm
−G, as stated in (i). On the other hand, assume

that r−G < +∞, hence g(r−G) = 0, and g ′(r−G) 6= 0. Having fixed x ∈ ∂Br−G
(o) and

a unit vector v ∈ TxM, let γ : [0, r−G] → M be a minimizing geodesic from γ(0) = o

to γ(r−G) = x. Obviously, γ(t) ∈ Br−G
(o) for every t < r−G. Next, consider v(t) the

vector field obtained by parallel transport of v along γ. Then according to (3.7),

Hess(u)(x)(v, v) = lim
t→r−G

Hess(u)(γ(t))(v(t), v(t)) = Ag ′(r−G) 6= 0,

proving that ∂Br−G
is made up entirely by non-degenerate critical points. Therefore,

following exactly Steps 5–8 in the proof of Theorem 2.2, we conclude the validity of

the global properties of M collected in (ii).

We conclude the section by stating the following problem.

Problem Suppose that the equation (DDZ)(X,Y ) = G(r(x))〈Z,X〉Y , G 6= 0, has a

non-trivial solution Z with Zo = 0. Is M isometric to Mm
−G? Is it necessary to impose

some further assumption on M?

Observe that even in this more general situation,

Z =
∇ div Z

mG(r)
.

However, this time, it does not follow from this expression that Z is gradient. Need-

less to say, the reduction procedure of [3] cannot be applied directly in the present

situation.

https://doi.org/10.4153/CMB-2011-134-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-134-0


Characterizations of Model Manifolds by Means of Certain Differential Systems 645

References

[1] R. L. Bishop, Decomposition of cut loci. Proc. Amer. Math. Soc. 65(1977), no. 1, 133–136.
http://dx.doi.org/10.1090/S0002-9939-1977-0478066-X
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