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Abstract

Klebsiella pneumoniae are opportunistic pathogens which can cause mastitis in dairy cattle.
K. pneumoniae mastitis often has a poor cure rate and can lead to the development of chronic
infection, which has an impact on both health and production. However, there are few studies
which aim to fully characterizeK. pneumoniae by whole-genome sequencing from bovinemastitis
cases. Here, K. pneumoniae isolates associated with mastitis in dairy cattle were identified using
matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS)
and whole-genome sequencing. Furthermore, whole-genome sequence data were used for phylo-
genetic analyses and both virulence and antimicrobial resistance (AMR) prediction, in parallelwith
phenotypic AMR testing. Forty-two isolates identified as K. pneumoniae were subject to whole-
genome sequencing, with 31 multi-locus sequence types being observed, suggesting the source of
these isolates was likely environmental. Isolates were examined for key virulence determinants
encoding acquired siderophores, colibactin, and hypermucoidy. Themajority of these were absent,
except for ybST (encoding yersiniabactin) which was present in six isolates. Across the dataset,
there were notable levels of phenotypic AMR against streptomycin (26.2%) and tetracycline (19%),
and intermediate susceptibility to cephalexin (26.2%) and neomycin (21.4%). Of importance was
the detection of two ESBL-producing isolates, which demonstrated multi-drug resistance to
amoxicillin-clavulanic acid, streptomycin, tetracycline, cefotaxime, cephalexin, and cefquinome.

Introduction

Mastitis is a prevalent and important disease in cattle worldwide, which has significant health,
welfare, and economic impacts [1–3]. Mastitis control programmes have primarily focussed on
contagious mastitis pathogens and not environmental opportunists [4]. Environmental mastitis
can be caused by a large range of bacteria, with one of the most predominant and clinically
significant being K. pneumoniae [4–6]. K. pneumoniae is one of the most common coliforms
causing clinical bovine mastitis, but has been found to be one of the most damaging when
considering milk production [7], treatment costs [4], and mortality rate [5]. K. pneumoniae
mastitis has a poor cure rate after antimicrobial treatment [5, 8, 9], and although it is commonly
an environmental opportunist, lateral spread from diseased to healthy cattle is possible [10].

Antimicrobial resistance (AMR) is an ongoing concern in both animal and humanhealth settings.
Due to the ubiquitous nature ofK. pneumoniae, there are varied reports on theAMRpotential in these
strains. In some previous work, it has been shown thatK. pneumoniae isolates frommilk showed low
levels of AMR [11–13]. However, there have been reports of multi-drug resistant K. pneumoniae
isolated from bovine mastitis cases from several countries [14–16], including the United Kingdom
[17], most of which are extended-spectrum beta-lactamase producers. More concerning reports have
also emerged describing carbapenem resistance in K. pneumoniae isolates from cattle milk [18, 19],
highlighting the importance of ongoing disease and AMR surveillance.

Whole-genome sequencing, in combination with diagnostic laboratory identification and
antimicrobial sensitivity testing (AST), gives a comprehensive insight into bacterial epidemi-
ology, virulence potential, and AMR. Here, these methodologies are used to characterise
K. pneumoniae isolates from mastitis cases in Scotland between 2009 and 2021.

Materials and methods

Isolates and primary identification

Forty-two isolates, previously identified asK. pneumoniae from clinical or sub-clinicalmastitis cases
that had been stored on glycerol beads (SRUC Veterinary Services’ Pathogen Bank) at�80 °C, were
revived by culture on Columbia agar supplemented with sheep blood (Oxoid, United Kingdom),
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incubated aerobically at 37°C for 24 h. Isolates were obtained from
cattle showing signs of sub-clinical or clinical mastitis between 2009
and 2021. Further details of these isolates and a summary of clinical
histories are available in Supplementary Table S1.

Isolates were identified on initial isolation using API 20E strips
(Biomerieux, France) according to the manufacturer’s instructions.
As part of this study, isolates were also identified post hoc by
matrix-assisted laser desorption/ionisation time-of-flight mass
spectrometry using a Microflex LT/SH Biotyper (MALDI-TOF
MS) (Bruker, Germany). Briefly, single and well-isolated colonies
were spotted directly in duplicate onto Disposable MBT Biotarget
96 target plates (Bruker, Germany) using the direct transfer
method. Spots were then overlaid with 1 μl of α-Cyano-4-hydro-
xycinnamic acid (HCCA) matrix and allowed to dry, prior to
transfer to the instrument. The generated spectra were then subject
to best match identification and confidence scoring, with scores of
≥2.00 deemed as good identifications.

Whole-genome sequencing

Whole-genome sequencing was performed by Microbes NG
(University of Birmingham, UK), as described previously [20]. Briefly,
genomic DNA was extracted using solid-phase reversible immobilisa-
tion beads, and genomic DNA libraries were prepared using the
Nextera XT Library Prep Kit (Illumina) following the manufacturer’s
protocol with the following modifications: input DNA is increased by
twofold, and PCR elongation time is increased to 45 s. Libraries were
sequencedusing Illumina sequencers (HiSeq/NovaSeq) using a 250-bp
paired-end protocol. Reads were trimmed using Trimmomatic ver-
sion 0.30 [21], using a sliding window quality cut-off of 15. Genome
assembly was carried out de novo using SPAdes, version 3.7, with
default parameters for 250 bp Illumina reads [22] and annotated by the
National Center for Biotechnology Information (NCBI) Prokaryotic
Genome Annotation Pipeline v6.6 [23]. Contigs <200 bp were manu-
ally removed, and contaminant sequenceswere automatically removed
during upload to NCBI via the NCBI Foreign Contamination Screen
[24].Genome assemblieswere uploaded and analysedusingPathogen-
watch [25] v22.1.1 (https://pathogen.watch/) andKleborate v2.3.0 [26]
incorporated therein. Resultant trees were annotated using the Inter-
active Tree of Life (iTOL) [27, 28].

Antimicrobial sensitivity testing

AST using nine antimicrobials – amoxicillin–clavulanic acid 30 μg,
ertapenem 10 μg, streptomycin 10 μg, enrofloxacin 5 μg, tetracyline
30 μg, cefotaxime 5 μg, cephalexin 30 μg, neomycin 30 μg, and
cefquinome 30 μg (Oxoid, United Kingdom). The EUCAST disc
diffusion method was used on Mueller–Hinton Agar (Oxoid,
United Kingdom) using EUCAST [29], CLSI Vet [30], and CASFM
Vétérinaire [31] guidelines. Namely, antimicrobial sensitivity was
assessed for amoxicillin–clavulanic acid, ertapenem, streptomycin,
enrofloxacin, tetracycline, cefotaxime, cephalexin, neomycin, and
cefquinome. Isolates that were highlighted as potential extended-
spectrum beta-lactamase (ESBL) producers by AST were subject to
ESBL screening using a commercially available ESBL, AmpC, and
carbapenemase activity kit (MAST, United Kingdom).

Results

Species identification of bovine mastitis isolates

Forty-two bovine mastitis isolates initially identified by MALDI-
TOF MS and API 20E as being K. pneumoniae were subject to

whole-genome sequencing by Illumina technology, and the result-
ant assemblies were analysed via Kleborate. The 42 isolates were
confirmed, based on Kleborate and Type Strain Genome Server
analysis [32] of their genome sequence, as being K. pneumoniae
(Supplementary Table S1).

Antimicrobial sensitivity testing

All isolates were susceptible to ertapenem and enrofloxacin
(Table 1). Of note were two ESBL-producing isolates, which
showed multi-drug resistance to amoxicillin–clavulanic acid,
streptomycin, tetracycline, cefotaxime, cephalexin, and cefqui-
nome. Excluding the ESBL-producing isolates, there was a preva-
lence of streptomycin (26.2%) and tetracycline (19.0%) resistance,
with a notable number of isolates showing intermediate suscepti-
bility to cephalexin (26.2%) and neomycin (21.4%).

Molecular characterisation of isolates

The 42 K. pneumoniae isolates originated from 28 dairy herd prem-
ises, 7 isolates came from the same farm, 4 from another farm, 2 from
five other farmswith the rest being single isolates from the remaining
21 premises. Their genome size varied from 5236065 to 5764556Mb
with a mean of 5454345 Mb (Supplementary Table S2). The G + C
content ranged from 56.6 to 57.6 mol% with a mean of 57.2 mol%
(Supplementary Table S2). The 42 isolates belonged to 31 different
multi-locus sequence types (https://bigsdb.pasteur.fr/) each of which
was represented by one or two isolates with the exception of seven
ST107 isolates. One isolate (30881_C069646/2) belonged to a new
sequence type – ST6855. The mean pairwise single nucleotide poly-
morphism (SNP) distance between isolates was 9234 SNPs (range
0–10665) (Supplementary Table S2). There were seven pairs of
identical/near-identical isolates (separated by 0–7 SNPs). In four of
these cases, the two isolates came from different farms (Figure 1).

AMR determinants

Ten different acquired AMR genes were present among the 42 iso-
lates with the aminoglycoside phosphotransferases strA/APH(300)-
Ib and strB/APH(6)-Id being the most abundant (present in 12
isolates) (Figure 1). All but one isolate carried the chromosomally
encoded SHV β-lactamase with eight different alleles being present.
None of these alleles carry known class-modifying mutations,

Table 1. Number and percentage of studied isolates which showed sensitive,
intermediate, or resistant susceptibility profiles against the listed antimicrobial
agents

Susceptibility profile

Antibiotic Sensitive Intermediate Resistant

Cefquinome 40 (95.2%) 0 (0%) 2 (4.8%)

Cefotaxime 40 (95.2%) 0 (0%) 2 (4.8%)

Streptomycin 28 (66.7%) 3 (7.1%) 11 (26.2%)

Tetracycline 34 (81.0%) 0 (0%) 8 (19.0%)

Amoxicillin-clavulanic acid 39 (92.9%) N/A 3 (7.1%)

Cephalexin 29 (69.0%) 11 (26.2%) 2 (4.8%)

Neomycin 33 (78.6%) 9 (21.4%) 0 (0%)

Ertapenem 0 (0%) N/A 0 (0%)

Enrofloxacin 0 (0%) 0 (0%) 0 (0%)
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i.e. conferring resistance to extended-spectrum β-lactams or
β-lactamase inhibitors [26]. Two isolates, 30837_C348868 and
30838_C349123, were ESBL producers and encoded CTX-M-15.
Despite originating from the same premises (Supplementary
Table S2), these isolates are phylogenetically unrelated based on
core genome SNPs (Figure 1).

Virulence determinants

Isolates were examined for the presence of the virulence-related
genes encoding acquired siderophores (yersiniabactin, salmoche-
lin, aerobactin), the genotoxin colibactin, the hypermucoidy
locus rmpADC, and alternative hypermucoidymarker gene rmpA2.
These were absent from all isolates except for ybST (encoding
yersiniabactin) which was present in six isolates, of which only
two are closely related (Figure 1 and Supplementary Table S1).

Prevalence of ST107

The most common multi-locus sequence type was ST107, with
seven isolates being detected from six farms. These were investi-
gated further by phylogenetic comparison with all 92 ST107 isolate
genomes available from Pathogenwatch (accessed 17/01/2023)
(Supplementary Table S3). Metadata showed that these 92 isolates
came from 17 countries and from the continents of Australia

(2 isolates), Africa [1], Asia [11], Europe [27], North America
[50], and South America [1]. These isolates were from cattle
(44 isolates), humans (44 isolates), chickens [1], and unknown
sources [3]. The resultant tree (Figure 2) showed that isolates from
this study did not all cluster together within the ST107 global
population. While each isolate was always most closely related to
another study isolate, theywere all also closely related (10–19 SNPs)
to three bovine isolates from North America (Figure 2).

Discussion

Klebsiella pneumoniae is a well-studied pathogen in the context of
human infection [33, 34], but less research has been carried out on
bovinemastitis isolates [35]. The aim of this study was to carry out a
systematic analysis of K. pneumoniae isolates causing sub-clinical
and clinical mastitis in Scotland, focussing on comprehensive
phenotypic identification, antimicrobial sensitivity, molecular
characteristics, and population structure.

First, there was marked diversity in K. pneumoniae isolates by
MLST, identifying 31 sequence types among the 42 strains. This
finding has been mirrored in previous work, which also showed
high diversity inK. pneumoniae genomes [35, 36].Klebsiella species
are common inhabitants on the teat skin of dairy cattle [37]; thus,
the sample collection method may have a part to play in the
diversity of Klebsiella species found in milk samples [38] and could

Figure 1.Mid-point rooted, neighbour-joining tree showing phylogenetic relationships among K. pneumoniaemastitis isolates from Scotland. Tree constructed using pairwise SNP
distances across 1972 K. pneumoniae core genes and produced by Pathogenwatch [25]. Multiple isolates came from Farms B (7 isolates) and V (5 isolates), and these are highlighted
in green and yellow, respectively. ST107 isolates are highlighted in a black box. The presence of yersiniabactin is denoted by red star and antimicrobial resistance genes are shown
by squares as being either present (filled black square) or absent (empty square).
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also be suggestive of an environmental source of infection [13]. Des-
pite the heterogeneity, the same strains have been implicated in
infections on the same units in this study, and in previous mastitis
studies [39, 40], which may suggest a common source of infection.

Second, despite the diversity in this dataset by MLST, 7 of
42 isolates belonged to ST107. The frequency of the remaining
STs was two or less, highlighting the diversity of K. pneumoniae
strains on-farm. These ST107 strains were observed across six

Figure 2. Mid-point rooted, neighbour-joining tree showing phylogenetic relationships among international isolates K. pneumoniae ST107. Tree constructed using pairwise SNP
distances across 1972 K. pneumoniae core genes and produced by Pathogenwatch [25]. Geographical location of origin and host are indicated by a coloured key. Labels of study
isolates are shaded grey, and UK is differentiated from Europe for the purposes of this figure.
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farms. These isolates were included in a meta-analysis with other
ST107 strains globally, which appeared to bemore related overall to
other bovine isolates than other species. Indeed, other studies have
found that ST107 is predominant [35, 36, 41, 42]. Other work has
shown that ST107 are one of the most common strains associated
with clinical mastitis [43], which could potentially suggest lateral
spread of the infection rather than being strictly environmental
[10]. This could be of clinical significance since it becomesmore of a
risk that infection could occur from other sources, such as milking
equipment, increasing the likelihood of a herd-level infection rather
than sporadic infection.

Third, virulence factors were considered using whole-genome
sequencing data. The study isolates were examined for genes
encoding yersiniabactin, salmochelin, aerobactin, colibactin, the
hypermucoidy locus rmpADC and the alternative hypermucoidy
marker gene rmpA2. Most of these virulence factors were not
observed, except for ybST, which encodes yersiniabactin. This gene
was found in six of the study isolates, from five different STs (ST37,
ST458, ST111, ST1109 (n = 2), and ST976). Previous work has
highlighted that many of the virulence genes mentioned previously
are less common in bovine isolates in comparison to human isolates
[43–45] and are associated with increased virulence. However, we
do not have the data resolution as part of this study to determine the
role of yersiniabactin in virulence.

Fourth, the AMR phenotypes were well predicted by known
AMR genes. Ten different acquired AMR genes were observed
across the dataset, with the aminoglycoside phosphotransferases
strA/APH(300)-Ib and strB/APH(6)-Id being the most prevalent
(present in 28.6% of isolates). Indeed, 26.2% of the study isolates
showed phenotypic resistance to streptomycin and 21.4% showed
intermediate sensitivity to neomycin (both aminoglycoside anti-
biotics). Phenotypic resistance to tetracycline was also prevalent
(19% of isolates), with tetA being observed in 4.8% of isolates, and
both tetB and tetR genes being observed in pairs across 14.3% of
isolates. Intermediate sensitivity to cephalexin was observed in over
a quarter of isolates (26.2%), and all bar one isolates carried the
chromosomally encoded SHV β-lactamase, showing eight different
alleles. None of the eight alleles carry known class-modifying
mutations linked to resistance to extended-spectrum β-lactams or
β-lactamase inhibitors.

Finally, linked to the above, we identified two suspected ESBL-
producing isolates from the same premises (encoding CTX-M-15)
in this dataset by whole-genome sequencing, which was confirmed
phenotypically. These isolates showed multi-drug resistance to
amoxicillin–clavulanic acid, streptomycin, tetracycline, cefotax-
ime, cephalexin, and cefquinome. Critically, no study isolates
showed carbapenemase activity, but there has been a series of
recent work reporting carbapenem resistance in bovine mastitis
isolates [18, 19, 46, 47], highlighting the importance of disease and
AMR surveillance work.

Conclusions

To conclude, the genetic diversity in the described K. pneumoniae
isolates is high with the most dominant ST107 potentially linked to
lateral spread. The number of well-described virulence genes pre-
sent was low, with ybST (encoding yersiniabactin) being observed
in a small number of isolates. Higher levels of AMR to aminoglyco-
sides and tetracycline were present, with two ESBL-producing
isolates being observed. This study highlights the importance of
monitoring bacterial isolates in clinical cases considering concerns

about multi-drug resistance. This work should inform more exten-
sive future studies including a larger number of farm units over a
period of time.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0950268824001754.

Data availability. Whole-genome sequence data are available on Genbank
(BioProject PRJNA943144, accession numbers and genome descriptive statistics
are provided in Supplementary Table S3).
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