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Electromagnetic field effect on a conducting
liquid film flowing down an inclined or vertical
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The effect of magnetic as well as electromagnetic fields on the stability of an electrically
conducting viscous liquid film flowing down an inclined plane has been investigated for
the full range of inclination angles θ (0 < θ ≤ 90◦) in association with a given value of
the Reynolds number Re (0 < Re ≤ 100), and vice versa. A nonlinear evolution equation
is derived by using the momentum-integral method, which is valid for both small and
large values of Re. Use of the normal mode approach on the linearized surface evolution
equation gives the stability criterion and the critical value of the wavenumber kc (for
which the imaginary part of the complex frequency ω+

i is zero) which conceive the
electric parameter E, magnetic parameter M, Reynolds number Re, Weber number We and
inclination angle θ . The nonlinear stability analysis based on the second Landau constant
J2 helps to demarcate all four possible distinct flow zones (explosive, supercritical,
unconditional and subcritical) of this problem. A novel result of this analysis is a simple
relationship between the critical values of kc and kj (for which J2 is zero) that basically
gives the necessary conditions for the existence of the range of k for an explosive unstable
zone, which is either one or two accordingly as kj > kc or kj < kc, and the non-existence
of an unconditional stable zone is kj ≤ kc depending upon the values of M. The analysis
confirms the existence of two critical values of M, namely, Mc (for which kc is zero) and Mj
(for which kj is zero). Here, Mj > Mc except for θ = 90◦; and we have found the existence
of all four or two (unconditional and subcritical) or one (subcritical) zone(s) of this flow
problem accordingly, as 0 ≤ M < Mc or Mc ≤ M < Mj and M > Mj or M = Mj.
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1. Introduction

The stability problem of a liquid film flowing down an inclined or vertical plane is of
increasing importance owing to its widespread applications in various areas of applied
science and engineering, such as in heavy casting technology, precision coating, laser
cutting processes and the processes of paint finishing, etc. A microscopic instability
can cause catastrophic conditions for the film flow problems, therefore it is desirable
to investigate this flow problem properly and accurately for making successful designs
of fluid devices so that homogeneous fluid flow as per the required conditions can be
made. Here, it is important to mention that enormous mathematical calculations, as well
as various numerical programs that are required for exploring this type of flow problem
theoretically or experimentally, must be correct.

Kapitza & Kapitza (1949) were the first to investigate experimentally the wave motions
of a viscous fluid layer flowing down a vertical cylinder, where they recorded the existence
of several wavy regimes, including a series of nearly solitary waves. After this pioneering
work, several experimental studies on liquid films flowing down an inclined or vertical
plane under various conditions have been carried out by many researchers (e.g. Ishihara,
Iwagaki & Ishihara 1952; Greenberg 1956; Binnie 1957, 1959; Fulford 1964; Massot,
Irani & Lightfoot 1966; Whitaker & Jones 1966; Liu, Paul & Gollub 1993; Liu & Gollub
1994; and the references therein). Benjamin (1957) was the first to investigate theoretically
the linear instability of a liquid film flowing down an inclined plane being bounded on
the other side by a free surface. Yih (1963) presented Benjamin’s theoretical results in
more simplified forms by considering separately the limits of small Reynolds and small
wavenumber. In these analyses, they derived the stability criterion in terms of Reynolds
number Re and angle of inclination θ , which fairly agrees with the experimental results for
small values of θ (Alekseenko, Nakoryakov & Pokusaev 1994).

Finite-amplitude wave solutions and nonlinear stability analysis of a viscous liquid
film flowing down an inclined plane were initiated by Benney (1966). He derived the
free-surface evolution equation in terms of film thickness by employing the long-wave
expansion method (small Reynolds number approach). Following Benney’s analysis,
investigation of the long-wave surface evolution equations for various orders of Re and
We can be found in the works of Gjevik (1970), Lin (1974), Chang (1989) and Pumir,
Manneville & Pomeau (1983), among others. By contrast, the large Reynolds number
approach (momentum-integral method) has been employed by Prokopiou, Cheng & Chang
(1991) and Lee & Mei (1996) to examine the instability of a viscous liquid film flowing
down an inclined plane. It is noticeable that all the above studies are restricted to a
definite value of θ or in a specific range of θ in which θ is small. Recently, using the
momentum-integral method, Dholey & Gorai (2021) examined thoroughly the linear and
nonlinear stability analysis of a viscous liquid film falling down an inclined plane for the
full range of the inclination angle θ (0 < θ ≤ 90◦).

Flow of an electrically conducting liquid film has several practical applications, such
as in nuclear energy equipment, different cooling systems and laser cutting processes
(Glukhikh, Tananaev & Kirilov 1987; Blum, Mayorov & Tsebers 1989). The effects of
an electric field on the falling film problems have been found in the works of Rohlfs
et al. (2021), Papageorgiou (2019), Tseluiko & Papageorgiou (2006), Wray, Matar &
Papageorgiou (2017), and the references therein. Conroy & Matar (2017) investigated the
stability of three-dimensional ferrofluid films in a magnetic field. However, there exist
many recently published papers on linear and nonlinear stability analysis of an electrically
conducting liquid film falling down an inclined or vertical plane. Here, we mention those
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Electromagnetic field effect on a conducting liquid film

by Gonzalez & Castellanos (1996), Korsunsky (1999), Dandapat & Mukhopadhyay (2003),
Mukhopadhyay, Dandapat & Mukhopadhyay (2008) and Dholey (2017). Among these
studies, only Mukhopadhyay et al. (2008) considered the momentum-integral method for
investigating the problem under a fixed value θ = 75◦. The nonlinear evolution equation
(4.5) of our present study may be the same as the corresponding equation (19) in
Mukhopadhyay et al. (2008), but the results obtained from figures 3–8 of their analysis
are not correct, as the curves kc and ks (in those figures) do not follow the known relation
kc = 2ks (Dholey & Gorai 2021). Dandapat & Mukhopadhyay (2003) have shown the
existence of two critical values of M, namely, Mc and M̄c, in figure 3 of their analysis. The
value of M̄c (analogous to Mj) is not correct as the curve J2 = 0 decreases continuously
with the increase of M (see figures 17 and 18). For this, the present authors claim that
the results of Dandapat & Mukhopadhyay (2003) and Mukhopadhyay et al. (2008) are of
doubtful validity.

The aim of this study is therefore to extend the work of Dholey & Gorai (2021) by
considering the flow of an electrically conducting liquid film down an inclined plane in the
presence of an electromagnetic field. The linear stability analysis reveals that the magnetic
parameter M has a stabilizing influence up to the value E ≈ 2.45, independent of θ , and
after this value of E, the (slowly) destabilizing influence of M has been found up to the
value M ≈ 0.73635, and then continuously follows the stabilizing influence. Here, our
main interest in the nonlinear stability analysis is discussed by showing all four possible
distinct flow zones of this problem in Re–k, θ–k, E–k and M–k planes. The value of Mj

(analogous to M̄c ≈ 1.253 of Dandapat & Mukhopadhyay 2003) is obtained numerically
as Mj ≈ 3.99730, independent of the values of E, Re and θ . The novelty of this analysis
is the existence of a new explosive unstable zone that arises only in the presence of a
magnetic field depending upon the values of the other parameters. The physical reason for
this fact has been confirmed by delineating the curves ω+

i and J2 against k for several
values of M, since the demarcations of different flow zones of this problem depend
essentially on the values (positive or negative) of ω+

i and J2. Various numerical results in
the form of figures, especially the range of k for different flow zones of this problem, are
presented in the results and discussion sections of this paper to authenticate the solutions
and to manifest the effectiveness of the proposed modelling. The non-availability of the
experimental evidences does not allow us to compare our numerical results with the
experimental predictions.

2. Mathematical formulation

We consider the two-dimensional gravity-driven flow of an electrically conducting viscous
fluid layer of mean thickness h0 down an inclined plane of inclination θ (0 < θ ≤ 90◦)
with the horizon, in the presence of an electromagnetic field. We introduce a Cartesian
coordinates system such that the x-axis coincides with the plane surface, and the z-axis
points vertically upwards from this surface, as shown in figure 1. Here, the constant electric
and magnetic fields are acting along the normal to the x–z and x–y planes, respectively.

The basic equations governing this flow problem are the continuity equation and the
Navier–Stokes equations with the Lorentz (electromagnetic body) force J × B:

∇ · v = 0, (2.1)

ρ {∂tv + (v · ∇)v} = −∇p + μ ∇2v + ρg + J × B, (2.2)
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Figure 1. Physical sketch of the problem.

where v = (u, 0, w) and g = (g sin θ, 0, −g cos θ) are liquid film velocity and
gravitational acceleration, respectively, and p, ρ and μ are pressure, density and dynamic
viscosity of the fluid, respectively. Here, ∇ = (∂x, 0, ∂z), and ∇2 is the Laplacian with
respect to x and z. The current density J is given by Ohm’s law, without the Hall effect as
(Shercliff 1965)

J = σ(E + v × B), (2.3)

where σ is the electrical conductivity of the fluid. The above magnetic and electric fields
(B and E) are defined by Maxwell’s equations as

∇ · B = 0, ∇ × B = μeJ and ∇ × E = −∂tB, (2.4a–c)

where μe is the magnetic permeability. We neglect the displacement current in Maxwell’s
equations since we are not concerned with the consequences that are related in any
way to the propagation of electromagnetic waves (Chandrasekhar 1961). As the magnetic
Reynolds number is small, one can obtain the electric and magnetic fields as E = E0 and
B = B0, respectively (Mukhopadhyay et al. 2008; Dholey 2016, 2017; and the references
therein).

The boundary conditions related to this flow problem are

v = 0 at z = 0 (no-slip condition). (2.5)

We define the perturbed interface as F(x, z, t) = z − h(x, t), and then the kinematic
condition on the free surface is obtained as (see figure 1)

DF
Dt

= ∂th + v · ∇(h − z) = 0 at z = h(x, t), (2.6)

where D/Dt is the total derivative of the film thickness with respect to time t. Here, the
dynamic influence of gas above the liquid film is neglected, and the effect of surface
tension is included for which the tangential stress vanishes and the normal stress just
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balances with the surface tension:

τ · n · t = 0 at z = h(x, t), (2.7)

p0 + (τ · n) · n = −σ0 ∇ · n at z = h(x, t), (2.8)

where n = (−hx, 1, 0)/
√

1 + h2
x and t = (1, hx, 0)/

√
1 + h2

x are the outward-drawn unit
normal and unit tangent vectors to the interface, respectively. Also, τ = −pI + 2μe is the
stress tensor, where e = (∇v + ∇vT)/2 is the rate-of-strain tensor, and I is the identity
tensor. Moreover, p0 is the pressure of the ambient gas and σ0 is the surface tension
coefficient.

To rewrite the basic equations and the boundary conditions in dimensionless form, we
introduce the dimensionless variables with a bar sign as

x = l0x̄, (h, z) = h0(h̄, z̄), t = (l0/u0)t̄, u = u0ū, w = (u0h0/l0)w̄, p = (ρu2
0)p̄,

(2.9a–f )

where we consider l0 as the characteristic longitudinal length scale whose order may be
considered the same as the wavelength, h0 as the length scale in the transverse direction
and the Nusselt velocity u0 = gh2

0 sin θ/3ν as the velocity scale along the longitudinal
direction.

Using (2.9a– f ) in (2.1)–(2.8), removing the bar sign over the variables, and retaining
the terms up to O(ε), we obtain the reduced governing hydromagnetic equations as

ux + wz = 0, (2.10)

ε Re (ut + uux + wuz) = −ε Re px + uzz + 3 + M2(E − u), (2.11)

0 = −Re pz − 3 cot θ + εwzz. (2.12)

The reduced boundary conditions at the plate surface (z = 0) are

u = 0 and w = 0, (2.13a,b)

and on the free surface (z = h(x, t)) are

w = ht + uhx, (2.14)

uz = 0 (2.15)

and
p − pa + ε2 We hxx = 0. (2.16)

The dimensionless parameters associated with this problem are as follows: ε = h0/l0 is
the aspect ratio, which is very small (� 1) as the fluid film is thin; Re = u0h0/ν is the
Reynolds number, which measures the strength of the Nusselt flow; M = B0h0

√
σ/ρν is

the Hartmann number, which measures the strength of the magnetic field; E = E0/(B0u0)

is the electric parameter, which measures the strength of the electric field; pa = p0/(ρu2
0)

is the atmospheric pressure; and We = σ0/(ρu2
0h0) is the Weber number, which measures

the surface tension.
Indeed, the strength of the parameters E, M, Re and We can vary widely depending upon

numerous factors, including the types of fluids, angle of inclination θ , flow layer thickness
h0, source values of B0 and E0, and the specific conditions of the environment. However,
to estimate the realistic physical values of the parameters E, M, Re and We for the most
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Fluid u0 (m s−1) E M Re We

Mercury at 20 ◦C 0.07250 1.37934 0.77619 37.92423 113.892407
Liquid sodium at 400 ◦C 0.02928 3.41528 3.04225 6.18596 3656.39321

Table 1. Values of E, M, Re and We for different electrically conducting fluids.

common electrically conducting fluids, such as mercury and liquid sodium, we have taken
g = 9.8 m s−2, h0 = 0.6 × 10−4 m, θ = 45◦, E0 = 0.05 V m−1 and B0 = 0.5T , and then
computed the values of E, M, Re and We presented in table 1. It is well known that for
mercury at 20 ◦C, ρ = 13545 kg m−3, ν = 1.147 × 10−7 m2 s−1, σ = 1.04 × 106 S m−1

and σ0 = 0.4865 N m−1; and for liquid sodium at 400 ◦C, ρ = 856 kg m−3, ν = 2.840 ×
10−7 m2 s−1, σ = 2.50 × 106 S m−1 and σ0 = 0.1610 N m−1. Observing the values of E,
M, Re and We, we have assumed that E ≈ O(1) ≈ M, Re ≈ O(ε−1) and We ≈ O(ε−2).

The nonlinear system of equations (2.10)–(2.16) admits a steady basic solution (u, w) ≡
(U, 0), independent of x and t, which is obtained as follows:

u(z) = 1
δ1

(m
h

)
U(Z), (2.17)

where

U(Z) = a0

M2

(
1 − cosh{M(Z − 1)}

cosh(M)

)
, m =

∫ h

0
u dz = a0h

M2

(
1 − tanh(Mh)

Mh

)

and δ1 =
∫ 1

0
U(Z) dZ = a0

M2

(
1 − tanh M

M

)
, with a0 = 3 + EM2 and Z = z

h
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.18)

Equations (2.11) and (2.18) confirm that the magnetic field can be applied without any
electric field, but the electric field acts only in the presence of a magnetic field. In fact,
the electromagnetic field in a fluid medium is the combination of an electric field with
a magnetic field. For E = 0 and M → 0, U(Z) → (3Z − 1.5Z2) as well as (m, δ1) →
(h3, 1), which are exactly the same as the corresponding results reported by Dholey &
Gorai (2021).

3. Momentum-integral equations

Integrating (2.12) and then using (2.16), we obtain the dimensionless pressure p(x, z, t) as

p = pa − ε2 We hxx + 3 Re−1 cot θ(h − z). (3.1)

Integrating the continuity equation (2.10) and the x-momentum equation (2.11), after using
(3.1), with respect to z from 0 to h by the Leibnitz rule, and using the boundary conditions
(2.13a,b)–(2.15), we have

ht + mx = 0, (3.2)

mt + α

(
m2

h

)
x
= ε2 We hhxxx −

(
3 cot θ

Re

)
hhx + 3h

ε Re
− Am

ε Re h2 − M2

ε Re
(Eh − m),

(3.3)

977 A42-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.965


Electromagnetic field effect on a conducting liquid film

where the expressions of the shape factors A and α are given by

A =
(

dU
dZ

)
Z=0

= M2
(

tanh M
M − tanh M

)
and α = δ2

δ2
1

= M
2

3(M − tanh M) − M tanh2 M
(M − tanh M)2 ,

with δ2 =
∫ 1

0
U2(Z) dZ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3.4)

Equation (3.4) confirms that the shape factors A and α depend only on the values of M.
For M → 0, (A, α) → (3.0, 1.2), which are exactly the same as the values obtained by
Dholey & Gorai (2021). The full range of α can be obtained as 1 ≤ α ≤ 1.2 since α → 1
as M → ∞.

Equations (3.2) and (3.3) have a known solution

m0 = δ1 = a0

M2

(
1 − tanh M

M

)
, h = 1, (3.5)

which is the Nusselt flat-film solution in the presence of an electromagnetic field, which
has the property that as M → 0, m0 → 1 irrespective of the values of E.

4. Stability analysis

The results of both linear and nonlinear stability analysis will be deduced from the free
surface evolution equation. To obtain the nonlinear evolution equation of this problem, we
assume

h(x, t) = 1 + η(x, t) and m(x, t) = m0 + m̄(x, t), (4.1a,b)

where η � 1 and m̄ � 1 are the dimensionless perturbations of the film thickness and
flow rate, respectively. Substituting (4.1a,b) into (3.2) and (3.3), retaining the terms up to
the second-order fluctuations, and then dropping the bar sign, we get

ηt + mx = 0, (4.2)

mt + α
(

2m0mx − m2
0ηx

)
− ε2 We ηxxx +

(
3 cot θ

Re

)
ηx −

{
9 + M2(3E − 2m0)

ε Re

}
η

+ (A + M2)m
ε Re

= −2mtη − 2α(mmx + m0mxη − m0 mηx) −
(

9 cot θ
Re

)
ηηx

+
{

9 + M2(3E − m0)

ε Re

}
η2 −

(
2mM2

ε Re

)
η + 3ε2 We ηηxxx. (4.3)

Assuming O(m) = O(η) = ε, we obtain the zeroth-order approximation from (4.3) as

m = cη with c = 9 + M2(3E − 2m0)

A + M2 , (4.4)

which is the linear phase velocity that depends highly on the values of E and M. For
M → 0, whatever may be the value of E, (4.4) takes the form m = 3η, which is exactly
the same as reported by Alekseenko et al. (1994) and Dholey & Gorai (2021).

Differentiating (4.3) with respect to x, eliminating m for linear terms by using (4.2)
and for nonlinear terms by using the relationship ∂t = −c ∂x obtained from (4.2) and (4.4),
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making the transformation (x, t) = ε(x̃, t̃), and finally dropping the tilde sign, the nonlinear
evolution equation in terms of η is obtained as

ηt + a1ηx + a2ηtt + a3ηxt + a4ηxx + a5ηxxxx + a6ηηx + a7ηηt + a8(ηηt)t

+ a9(ηηx)x + a10(ηηxxx)x = 0, (4.5)

where the expressions of the unknown coefficients a1–a10 are obtained as follows:

a1 = 9 + M2(3E − 2m0)

A + M2 = c, a2 = Re
A + M2 , a3 = 2α Re m0

A + M2 ,

a4 = Re
A + M2 (αm2

0 − 3 Re−1 cot θ), a5 = Re We
A + M2 , a6 = 18 + M2(6E − 2m0)

A + M2 ,

a7 = 4M2

A + M2 , a8 = 2 Re (1 − α)

A + M2 , a9 = − 9 cot θ
A + M2 , a10 = 3 Re We

A + M2 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

The nonlinear evolution equation for an incompressible viscous fluid was derived by
Dholey & Gorai (2021) (see their equation (29)) where they presented the same equation
in the format as (4.5) for the present study. For M → 0, a7 → 0, (4.5) corroborates (29)
of Dholey & Gorai (2021) after reducing one of the subscript values of the coefficients
a8, a9 and a10. It is noticeable that each and every coefficient of (4.5) conceives the
magnetic parameter M, while the electric parameter E has been involved only with the
coefficients a1, a3, a4 and a6. This phenomenon confirms that the magnetic as well as
the electromagnetic field has a significant impact on the linear as well as on the nonlinear
stability of the thin film flow problems. Therefore, the objective of the present study is to
estimate the effects of E and M in association with Re and θ on the linear as well as on
the nonlinear stability analysis of an electrically conducting liquid film flowing down an
inclined or vertical plane.

4.1. Results and discussion for linear stability analysis
In this subsection, we will examine the linear response of the film flow by assuming the
sinusoidal perturbation in the form

η = Λ exp [i(kx − ωt)] + c.c., (4.7)

where Λ is the amplitude of the disturbance, k is the wavenumber, ω (= ωr + iωi) is the
complex frequency and c.c. represents the complex conjugate of the term preceding it.
Substituting (4.7) into the linearized portion of (4.5), we have

D(ω, k) = −iω + ia1k − a2ω
2 + a3ωk − a4k2 + a5k4 = 0, (4.8)

i.e. the dispersion relation whose solutions are given by

ω± = 1
2 a−1

2
[
(a3k − i) ± √

b + id
]
, (4.9)

where

b = 4a2(a5k4 − a4k2) + a2
3k2 − 1 and d = 2(2a1a2 − a3)k. (4.10a,b)
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The real and imaginary parts of (4.9) are obtained as

ω±
r = 1

2
a−1

2

⎡
⎣a3k ±

√
b + √

b2 + d2

2

⎤
⎦ and ω±

i = 1
2

a−1
2

⎡
⎣−1 ±

√
−b + √

b2 + d2

2

⎤
⎦ .

(4.11a,b)

It is noticeable that ω−
i is always negative, which gives stability, and ω+

i secures stability
only when ω+

i < 0, which yields the stability criterion

Re < 3 cot θ
[ {

a0

M2

(
1 − tanh M

M

)}2 {(
1 + 2 tanh M

M

)2

− α

(
1 + 4 tanh M

M

) }
− We k2

]−1

.

(4.12)
The neutral state ω+

i = 0 provides the linear phase velocity

cr = ωr

k
= a1, (4.13)

independent of k, indicating that the wave is non-dispersive, but depends highly on the
values of E and M (see (4.6)). When M = 0, cr = 3, which coincides with the result
reported by Dholey & Gorai (2021). Besides this, the neutral state yields the relations

k = 0 (4.14a)

and

kc =

√√√√√
{

a0

M2

(
1 − tanh M

M

)}2 { (
1 + 2 tanh M

M

)2

− α

(
1 + 4 tanh M

M

) }
Re − 3 cot θ

Re We
,

(4.14b)

which represent the two branches of neutral curves inside which the flow is unstable.
The parameters E, Re and θ have a destabilizing influence, while the parameter M has a
stabilizing influence on this film flow problem (see figures 4–7). Therefore, the minimum
values of E, Re and θ (or M) at which instability (or stability) sets in may be considered as
the critical values of the corresponding parameters. For example, the critical value of the
Reynolds number Rec is obtained from (4.14) by putting kc = 0 as

Rec = 3 cot θ
[ {

a0

M2

(
1 − tanh M

M

)}2 { (
1 + 2 tanh M

M

)2

− α

(
1 + 4 tanh M

M

) }]−1

,

(4.15)

which is highly dependent on the values of θ as well as on the values of E and M. For
M → 0 (i.e. in the absence of an electromagnetic field), (4.14) and (4.15) reduce to (38)
and (39) of Dholey & Gorai (2021), where they examined the influence of Re and θ on
the stability of a viscous liquid film flowing down an inclined or vertical plane. Here, our
main objective is to explore how the critical value of any one of the parameters changes
with the values of the others, especially for the full range of θ (0 < θ ≤ 90◦).

Before obtaining the numerical results of this analysis for various values of E, M and θ ,
we look at the second curly braces term of (4.15), which tends to zero as M → 4.62924,
confirming the singularity of Rec at M ≈ 4.62924, independent of the values of E and
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Figure 2. Variation of Rec with M for some values of E when (a) θ = 30◦ and (b) θ = 75◦. For θ = 90◦, the
value of Rec is always zero whatever the values of E and M (see (4.15)).

θ (0 < θ < 90◦). This result is manifested clearly in figures 2(a,b), which display the
variation of Rec against M for two distinct values of E (= 1 and 3) when θ = 30◦ and 75◦,
respectively. From these figures, it is easy to say that the realistic (positive) value Rec will
exist up to the value M ≈ 4.62924. However, this value M ≈ 4.62924 is practically very
large for thin film flow problems since most of the common liquids are poorly conducting.
Thus to obtain the numerical results of this problem, we will consider (generally) the
value of M, without loss of generality, in the range 0 ≤ M ≤ 1 for the ranges 0 ≤ E ≤ 3,
0 < Re ≤ 100 and 0 < θ ≤ 90◦. Here, we will consider a fixed value We = 450 as it is
very large for practical applications.

A noteworthy result that can be found from figures 2(a,b) is that for a given value of θ

(< 90◦) and up to the value E ≈ 2.45, the value of Rec increases continuously with the
increase of M, while for a large value of E (above the value E ≈ 2.45), first the value
of Rec decreases up to a certain minimum (dependent on E and θ ) at a certain value
of M (e.g. Mm, independent of θ ), and then it increases and finally reaches infinity (a
very large positive value of Rec depending upon the values of E and θ ) owing to the
fulfilment of the singularity condition of Rec at M ≈ 4.62924. Hence we can conclude
that the magnetic field will show the stabilizing influence on this flow field up to the value
E ≈ 2.45 independent of θ , and after that value it follows (slowly) the destabilizing role
but up to the value of Mm, and then continuously follows the stabilizing effect on this flow
field. Another remarkable observation that can also be found from these figures is that for
a smaller value of E (or θ ), the (positive) value of Rec is always higher than for a larger
value of E (or θ ), and this result is more pronounced for a higher value of M, confirming
the destabilizing influence of E and θ on this flow field. Here, for E = 3 and for both
values θ = 30◦ and 75◦, we have found the value Mm ≈ 0.73635, which will increase for
an increasing value of E since it has a destabilizing influence on this flow field.

The magnetic field reduces (depresses) the steady basic flow velocity owing to the
formation of the Lorentz resistive force by the interaction of the fluid velocity and the
magnetic field inside the flow layer. By contrast, the Lorentz force, which is produced
by the electric field (in the presence of a magnetic field), assists the downstream flow,
resulting in the enhancement (uplifting) of the basic flow (see (2.11)). Indeed, the
depression of the flow velocity causes the increase in the normal pressure on the plate
surface, which essentially increases the attachment of the flow to the surface. In the sequel,
the frictional force of the adjacent layer to the plate surface increases. Besides this, the
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Figure 3. Variation of Rec with E for several values of M when (a) θ = 30◦ and (b) θ = 75◦.
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Figure 4. Rec versus θ for some values of (a) M when E = 0, and (b) E when M = 1.

deviation of the mean flow due to the perturbation is suppressed by the magnetic field
as the magnetic line of force acts like an elastic string. The combined influence of these
two forces stabilizes the liquid film flowing down an inclined plane in the presence of a
magnetic field. An opposite explanation holds true for the application of an electric field
(in the presence of a magnetic field) in the thin film flow problems. The opposite effects of
electric and magnetic field go into competition inside the film flow layers, and ultimately,
a mutually stable position originates in between the values of E and M, depending upon
the values of θ . In this stable position, the critical value Rec will be the same for both
magnetic and non-magnetic cases. Here, we denote the values of E and M corresponding
to the mutually stable position as Em and Me. The value of Em is independent of θ but
depends highly on the values of M. Obviously, the value of Em will be increased with an
increasing value of M owing to maintaining this mutually stable position, which one can
perceive from figures 3(a,b). A comparative study of these two figures reveals that the
value of Rec is always lower for a higher value of θ , irrespective of the values of E and M,
confirming the destabilizing influence of θ on this flow field.

In order to illuminate the above results more clearly, we depict the variation of Rec
against θ for several values of M and E in figures 4(a,b), respectively. It is well known
that for the non-magnetic case (i.e. for M = 0), the value of Rec decreases continuously
with the increase of θ , and ultimately vanishes at θ = 90◦ (see figure 3 of Dholey & Gorai
2021). Here, both the parameters E and M follow the above trend but in opposite styles.
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Figure 5. Variation of kc against Re for four distinct M values at (a) θ = 15◦ and (b) θ = 75◦, when E = 0.
For θ = 90◦, the value of kc is maximum and independent of Re, and we have found kc = 0.08161, 0.06764,
0.05470 and 0.04203 for M = 0.001, 0.50, 0.75 and 1.0, respectively.

For any given value of θ (0 < θ < 90◦), the value of Rec decreases (or increases)
continuously with the increase of E (or M), confirming the destabilizing (or stabilizing)
influence of E (or M) on this flow field. Besides this, the decreasing (or increasing) rate of
Rec with E (or M) is always higher for a lower value of θ , which confirms the destabilizing
effect of θ in the presence of magnetic as well as electromagnetic fields.

The variation of kc against Re for four distinct values of M (= 0.001, 0.50, 0.75 and
1) is delineated in figures 5(a,b), corresponding to two fixed values, θ = 15◦ and 75◦,
respectively. Here, we have considered two representative values of θ (= 15◦ and 75◦)
from which one can estimate easily the effect of the other values of θ on kc as well as on
Rec, especially on the stable and unstable zones in the Re–kc plane, except for θ = 90◦,
for which Rec = 0 irrespective of the values of E and M, and kc is independent of Re but
depends highly on the values of E and M (see (4.14) and (4.15)). For a given value of θ and
for an increasing value of M, the critical value kc decreases while Rec increases, resulting
in the increase of the linear stable zone, which ensures the stabilizing influence of M on
this flow field. The opposite impacts have been found for an increasing value of E, which
can be observed readily from figures 6(a,b). A closer scrutiny at these figures reveals that
for given values of E and M, and for an increasing value of θ , the critical value kc (and
hence the linear unstable zone) increases with a concomitant decrease of Rec. This result
ensures that the value of Rec will be least (zero), and the value of kc (and hence the linear
unstable zone) will be maximum, at θ = 90◦, depending upon the values of E and M (see
figures 11 and 13). The physical reason behind such behaviour of the flow is the direct
involvement of cot θ (with a negative sign) in the expression for kc.

Focusing on the fact that the maximum value of kc occurs at θ = 90◦ independent of
Re and dependent on the values of E and M, we plot the variation of kc against θ for two
distinct values of Re (= 1 and 10), and for some values of E and M, in figures 7(a) and
7(b), respectively. Here, the critical value kc increases continuously with the increase of
θ after reaching the bifurcation point (θc, 0), dependent on the values of E, M and Re,
and attains its maximum value at θ = 90◦. To maintain the mutually stable position, an
increased value of M increases the value of θc along with the decrease of kc resulting in
the increase of the linear stable zone. An opposite result has been found for an increasing
value of E as well as Re. Finally, we can conclude that the maximum linear unstable zone in
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Figure 6. Variation of kc against Re for four distinct E values at (a) θ = 15◦ and (b) θ = 75◦, when M = 1.
For θ = 90◦, the value of kc is maximum and independent of Re, and we have found kc = 0.04203, 0.05604,
0.07005 and 0.08406 for E = 0, 1, 2 and 3, respectively (see (4.14)).
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Figure 7. Variation of kc against θ for two distinct values of Re (= 1 and 10), and for several values of (a) E
when M = 1, and (b) M when E = 0.

the Re–k plane, as well as the M–k and E–k planes, will be occurring at the value θ = 90◦,
dependent on the values of E and M, as the cut-off wavenumber kc is the maximum thereat
(see figures 8a and 9a).

For M → 0 (i.e. for M = 0.001), kc has a fixed value, dependent on Re and θ but
independent of E, which decreases continuously with the increase of M, and ultimately
vanishes at a definite value of M, for example, Mc depending upon the values of E, Re and
θ . Indeed, it is the critical value of M below which the film flow is unstable, and beyond
that value the flow will be stable. The above results are manifested clearly in figures 8(a,b).

Figure 8(a) displays the variation of kc against M for three different values of θ (= 30◦,
60◦ and 90◦) corresponding to two fixed values of Re (= 2 and 3) when E = 0. For a given
value of θ (< 90◦) and for an increasing value of Re, the unstable zone increases along
with the increase of kc and Mc owing to its destabilizing impact on this flow field. The
unstable zone also increases with the increase of θ , and finally covers the most unstable
zone in θ = 90◦ independent of the values of Re (see also figure 17b). For θ = 90◦, kc
is independent of Re but relies on the values of E, M and We (see figures 11 and 13,
and (4.14)). Besides this, the term within the second curly braces of (4.14) is zero for
M ≈ 4.62924, independent of the values of E and We (see also figure 2). Hence we see that
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Figure 8. The M–kc neutral curves for some values of (a) Re and θ when E = 0, and (b) E and Re when
θ = 45◦. The curve for θ = 90◦ is independent of Re. Here, we have considered the values of θ that are greater
than θc ≈ 5.71597◦, 18.45127◦ and 26.58679◦ for Re = 10, 3 and 2, respectively.

for a vertical plane (i.e. for θ = 90◦), the value of kc will be zero at M ≈ 4.62924, which
is manifested clearly in figure 8(a). We have found earlier that the electric field is active
only in the presence of a magnetic field. Hence we can conclude that the most unstable
zone that occurs in θ = 90◦ will be increased (or decreased) with an increasing value of E
(or We) without changing the values of kc (non-magnetic) and Mc, as the parameter E (or
We) has a destabilizing (or stabilizing) effect on this flow field.

On the other hand, for given values of Re and θ (< 90◦), and for an increasing value
of E, the unstable zone increases with a concomitant increase of Mc, dependent on Re
and θ , but without changing the initial (non-magnetic) values of kc (which depend on the
values of Re and θ ), as the electric field effect is zero in the non-magnetic case. These
results are manifested clearly in figure 8(b). From figures 8(a,b), it is clear that the value
of Mc increases with the increase of E as well as Re and θ owing to their destabilizing
influence on this flow field. Here, the stabilizing influence of M balances (neutralizes)
the destabilizing influence of the other parameters (E, Re and θ ) separately or jointly, and
therefore, for an increasing value of any one of the destabilizing parameters, the value of
Mc increases. Finally, we conclude that in the presence of an electric field, the magnetic
field effect prevails in the competition (means provide only the stable zone) only for a
value greater than Mc, while Mc depends on the values of Re and θ .

From the foregoing analysis, it is clear that for the given values of any three of the
parameters E, M, Re and θ , the other parameter would have a critical value. Indeed,
these are the four mutually critical values in the system for which the total stabilizing
and destabilizing influences are balancing each other. To be more precise, a given value
of a parameter, whatever may be its effect (stabilizing or destabilizing), and an increasing
value of a parameter that has a stabilizing (or destabilizing) influence, essentially increases
(or decreases) the parameter, which has a destabilizing influence for adjusting the total
stabilizing and destabilizing influences on this flow field. In order to clarify this result, we
show the variation of kc with E for several values of θ and M in figures 9(a) and 9(b),
respectively.

For an increasing value of θ , the critical value Ec decreases continuously, and it
becomes zero after a definite value of θ , for example θ0, that is dependent on M and
Re; after this value θ0, the value of Ec will be negative, which one can guess easily from
figure 9(a). Here, for M = 1 and Re = 10, the value of θ0 is obtained as θ0 ≈ 20.6740316◦.
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Figure 9. The E–kc neutral curves for some values of (a) θ when M = 1, and (b) M when θ = 15◦, with a
fixed value Re = 10. Here, we are not presenting the curves kc for θ = 0.2◦, 0.5◦, 1◦, 2◦ and 5◦ for which we
have found Ec = 28.19171, 16.72716, 10.94868, 6.86170 and 3.23043, respectively.

Besides this, the value of kc increases with the increase of θ as well as E owing to their
destabilizing effect on this flow field. As a result, the unstable zone in the E–k plane
increases with the increase of θ , and finally it becomes maximum in θ = 90◦. An increased
value of θ strengthens the destabilizing influence of the film flow, which essentially
decreases the destabilizing influence of E (the value of Ec) for balancing the mutually
stable condition owing to the fixed values of other parameters M (= 1) and Re (= 10).
Similar results can also be found for an increasing value of Re without changing the values
of M and θ since the parameter Re has the same (destabilizing) influence found in the
parameter E. And obviously, the opposite phenomenon has been found for an increasing
value of M, which is manifested clearly in figure 9(b). Here, for θ = 15◦ and Re = 10, the
value of M0 is obtained as M0 ≈ 0.84205415, for which Ec = 0. From the above analysis,
we come to the conclusion that the linear stable as well as unstable (and hence the range
of all four distinct flow) zone(s) of this problem can be controlled easily by adjusting by a
suitable amount the parameters E, M, Re and θ .

Dandapat & Mukhopadhyay (2003) examined the stability of a conducting liquid film
flowing down an inclined plane in the presence of an electromagnetic field. They have
analysed this problem only for the fixed values Re = 10 and θ = 75◦, and reported that
the magnetic field stabilizes the film flow but not for too large values of E. However, the
present analysis confirms that the value of Ec is very sensitive (large) especially for the
small values of Re and θ in combination with a large value of M, which one can perceive
easily from figures 9(a,b) (see also the figure’s caption). Hence their result may be true
for some particular values of Re and θ , but not in general, which we have claimed in this
paper.

4.2. Results and discussion for weakly nonlinear stability analysis
Lin (1974) investigated the finite-amplitude side-band stability of a viscous film flowing
steadily down an inclined plane where he stated that in the neighbourhood of the upper
branch of the neutral curve k = kc, a thin band of width ς (� 1) of unstable mode develops
over a time O(ς−2) and over a distance O(ς) such that ω+

i ∼ O(ς2). This phenomenon
ensures that in the marginal state (ω+

i = 0), all modes of the perturbation are neither stable
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nor unstable, which implies that the linear stability analysis can no longer predict the
ultimate behaviour of the flow, therefore the nonlinear stability analysis is necessary for
understanding the proper characteristics of the thin film flow down an inclined plane.

Weakly nonlinear stability analysis allows one to examine whether the nonlinear
finite-amplitude disturbance in a linear stable zone creates instability (subcritical
instability), and the nonlinear evolution of the disturbance decelerates the growth of linear
disturbance for which a finite amplitude stable state may arise (supercritical stability),
or it accelerates the growth of the linear disturbance, which causes an explosion. Here,
we have used the multiple scale method for deriving the complex Ginzburg–Landau type
equation (4.5), from which one can characterize easily the proper behaviour of the flow. In
order to do this, we consider two sets of mutually independent variables, (x1, x2, . . .) and
(t1, t2, . . .), which are

x1 = ςx, x2 = ς2x, . . . and t1 = ς t, t2 = ς2t, . . . , (4.16a–c)

where ς (� 1) provides the smallness of the corresponding variables. Here, (x, t) are fast
scales, while (x1, t1), and so on, are slow scales. The temporal and spatial derivatives are
obtained as

∂t ≡ ∂t + ς ∂t1 + ς2 ∂t2 + · · · and ∂x ≡ ∂x + ς ∂x1 + · · · . (4.17a,b)

Here, we consider the asymptotic form of the surface elevation η(x, t) as

η(ς, x, x1, x2, . . . , t, t1, t2, . . .) = ςη1 + ς2η2 + ς3η3 + · · · . (4.18)

Using (4.16a–c)–(4.18) in (4.5), we get

(L0 + ςL1 + ς2L2 + · · ·)(ςη1 + ς2η2 + ς3η3 + · · ·) = −ς2N2 − ς3N3 − · · · , (4.19)

where L0, L1, L2, . . . are the operators, and N2, N3, . . . are the nonlinear terms of (4.19),
which are given in Appendix A. From (4.19), one can obtain the lowest-order equation of
ς as

L0η1 = 0, (4.20)

which has a solution of the form

η1 = Λ(x1, t1, t2) exp{iΘ} + c.c., (4.21)

where Θ = kx − ωrt, and c.c. denotes the complex conjugates. The dispersion relation
D(ωr, k) of (4.21) will be the same as (4.8), except that ω would be ωr since in the
neighbourhood of k = kc, ω+

i ∼ O(ς2), for which exp(ω+
i t) is slowly varying and may

be assimilated in Λ(x1, t1, t2).
From (4.19), the second-order equation of ς is obtained as

L0η2 = −L1η1 − N2. (4.22)

Using (4.21) in (4.22), we get

L0η2 = −i
[
∂D(ωr, k)

∂ωr

∂Λ

∂t1
− ∂D(ωr, k)

∂k
∂Λ

∂x1

]
exp{iΘ} − QΛ2 exp{2iΘ} + c.c., (4.23)

where Q = i(a6k − a7ωr) − 2a8ω
2
r − 2a9k2 + 2a10k4. From (4.23), the uniform valid

solution for η2 is given by

η2 = Q1Λ
2 exp{2iΘ} + c.c., (4.24)

where Q1 = −Q/D(2ωr, 2k). Introducing the coordinate transformations ξ = (x1 − cgt1)
and τ = t2, where cg (= −Dk/Dωr ) is the group velocity in the x-direction, and using the
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solvability condition in the third-order equation of ς , we have

∂Λ

∂τ
− i

2
c′

g(k)
∂2Λ

∂ξ2 − ς−2(Fr + iFi)ωiΛ + (J2 + iJ4) |Λ|2Λ = 0, (4.25)

which is the complex Ginzburg–Landau type equation. For M → 0, (4.25) corroborates
(49) of Dholey & Gorai (2021) as the values of the coefficients c′

g, Fr, Fi, J2 and J4 (which
are given in Appendix B) reduce to the same as presented in (50) of Dholey & Gorai
(2021).

For a filtered wave,

∂Λ

∂τ
− ς−2(Fr + iFi)ωiΛ + (J2 + iJ4) |Λ|2Λ = 0. (4.26)

The solution of (4.26) may be written as

Λ = a exp[−ib(τ ) τ ], (4.27)

which on substitution in (4.26), and then equating the real and imaginary parts, gives

∂a
∂τ

= (
ς−2Frωi − J2a2)a (4.28)

and
∂{b(τ ) τ }

∂τ
= (

J4a2 − ς−2Fiωi
)
. (4.29)

The sign of J2 (second Landau constant) that appears in (4.28) due to nonlinearity in the
system plays a significant role in determining the varied flow zones of this problem. A
positive value of J2 ensures the saturation of the amplitude of the disturbance, which
essentially helps one to delimit the supercritical stability in the linear unstable zone
(ω+

i > 0) and the unconditional stability in the linear stable zone (ω+
i < 0). By contrast,

saturation of the amplitude does not occur in a negative value of J2, which helps one
to demarcate the explosive state in the linear unstable zone (ω+

i > 0) and the subcritical
instability in the linear stable zone (ω+

i < 0).
The perturbed wave speed induced by the infinitesimal disturbances appearing in the

nonlinear system can be modified by using (4.29). Finally, the threshold amplitude and
nonlinear phase velocity are given by

ςa = (Frωi/J2)
1/2 (4.30)

and

Ncr = cr + ci(J4Fr/J2 − Fi), where ci = ωi/k. (4.31)

Mukhopadhyay et al. (2008) investigated the influence of an electromagnetic field on
the stability of a conducting liquid film flowing down an inclined plane, where they have
demarcated four different flow zones of this problem under various values of E and M
when θ = 75◦ (see figures 3–9 there). However, the demarcations of four different flow
zones that are found in their paper are not correct for the following reason. It is noticeable
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that the curve J2 (E, k, M, Re, We, θ ), which will be obtained from the relations as given
in (B1), has a singular point only when the relationship (singularity condition)[

a0

M2

(
1 − tanh M

M

)]2 [ (
1 + 2 tanh M

M

)2

− α

(
1 + 4 tanh M

M

)]
Re

− 3 cot θ − 4Re We k2 = 0 (4.32)

is fulfilled. For given values of any five of the parameters E, k, M, Re, We and θ , (4.32)
gives the value of the other at which a singularity of J2 occurs. For example, if one deals
with the values E = 0, M = 0.001 (i.e. M → 0), Re = 100, We = 450 and θ = 45◦, then
one gets ks ≈ 0.04060, which completely agrees with the result represented in figure 19(b).
From this figure it is clear that below the value of ks, the curve J2 is always negative.
Besides this, a close relationship between ks and kc is obtained from (4.32) and (4.14) as

ks = 1
2

√√√√√
{

a0

M2

(
1 − tanh M

M

)}2 { (
1 + 2 tanh M

M

)2

− α

(
1 + 4 tanh M

M

) }
Re − 3 cot θ

Re We

= kc

2
, (4.33)

which one can check easily from figure 19(a,b). Equation (4.33) ensures that the curve ks

separates the existing linear unstable zone (ω+
i > 0) into two equal parts without changing

the critical values of Rec or θc or Mc or Ec. Hence the lower region of the curve ks is entirely
an explosive zone as there J2 is negative, while the upper region may be either wholly a
supercritical zone or partly supercritical and partly an explosive zone. This depends on
whether the curve J2 = 0 would not cross the curve kc or cross it (see figures 10–18).
From the above analysis, it is confirmed that the graphical representation, especially the
demarcations of four different flow zones of this problem presented by Mukhopadhyay
et al. (2008), are not correct, therefore the results based on these figures have doubtful
validity, as claimed earlier.

Considering the relationship (4.33) as well as the signs of ω+
i and J2, we have

demarcated all the (correct) four distinct flow zones of this problem in figures 10–18
for the prescribed ranges of E, M and θ . Here, we have included the curves (figures) for
M = 0.001 (i.e. for M → 0) only to validate the present (non-magnetic) results with the
corresponding results reported by Dholey & Gorai (2021) (see figures 6, 10c and 13d
there). In comparison, a negligible discrepancy is found owing to consideration of the
value M = 0.001 instead of M = 0.

For the non-magnetic case (i.e. for M = 0.001) and for the given values E = 0 and θ =
45◦, all four distinct zones in the Re–k plane exist only after the critical value Rec,and all
the zones remain practically constant after a certain value of Re as the curves ω+

i = 0 and
J2 = 0 get their corresponding asymptotic nature after that value of Re (see figure 10a).
By contrast, for a given value of M (not too small), the curve J2 = 0 does not follow the
asymptotic behaviour with Re, and while following the same asymptotic behaviour, the
curve ω+

i = 0 depresses gradually towards the Re-axis with a concomitant increase of Rec
for which the unconditional stable zone increases (but up to the value Rec) along with the
decrease of the supercritical stable as well as the explosive unstable zone, which confirms
the stabilizing effect of M on this flow field. For a given value of Re, the curve J2 = 0
decreases continuously with the increase of M, resulting in the increase of the subcritical
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Figure 10. Neutral stability curves in the Re–k plane showing four different flow zones at four different values
(a) M = 0.001, (b) M = 0.25, (c) M = 0.50 and (d) M = 1.0, when E = 0, We = 450 and θ = 45◦. The four
different zones found in (a) agree well with the corresponding zones reported by Dholey & Gorai (2021) in
figure 6 of their analysis. A small discrepancy is found in the values of k and Rec owing to the consideration of
M = 0.001 instead of M = 0.

unstable zone. The above results are observed directly from figures 10(b–d). Here, in the
presence of a magnetic field, the curve J2 = 0 decreases continuously with the increase of
Re, and finally it crosses the curve ω+

i = 0 after a certain value Re0 of Re, dependent on M,
at which the stabilizing influence of M dies out because of the destabilizing influence of
Re (see figure 10d). Hence we see that the unconditional stable zone of this flow problem
will exist only up to the value Re0, and beyond that value, a new explosive unstable zone
will arise that increases with the increase of Re owing to the destabilizing influence of Re
on this flow field. Finally, we come to the conclusion that in the presence of a magnetic
field, all four distinct flow zones of this problem will exist in a definite range (Rec, Re0) of
Re, and the unconditional stable zone will vanish after the value Re0 depending upon the
values of E, M and θ .

The corresponding variations of the curves ω+
i = 0 and J2 = 0 for a vertical plane (i.e.

for θ = 90◦) are delineated in figures 11(a–d) with the same values of E, M and We as
considered in figures 10(a–d). In this case, the curve ω+

i = 0 is free from Re, and the
value of Rec is zero irrespective of the values of E and M (see (4.14) and (4.15)). By
contrast, the curve J2 = 0 depends highly on the values of Re. Here, the parameters M
and Re, especially for the curve J2 = 0, follow the same behaviour as we have found in
figures 10(a–d). A comparative study (of the corresponding parts) of figures 10 and 11
reveals that for an increasing value of θ , the unconditional stable zone decreases along
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Figure 11. Neutral stability curves in the Re–k plane showing four different flow zones at four different values
(a) M = 0.001, (b) M = 0.25, (c) M = 0.50 and (d) M = 1.0, when E = 0, We = 450 and θ = 90◦. The four
different zones found in (a) agree well with the corresponding zones reported by Dholey & Gorai (2021) in
figure 13(d) of their analysis.
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Figure 12. Neutral stability curves in the Re–k plane showing four different flow zones at two different values
(a) E = 1 and (b) E = 3. The other parameters are chosen as M = 1, We = 450 and θ = 45◦. For E = 0, the
variation of the same flow zones can be found from figure 10(d).

with the increase of the explosive unstable zone. An increased value of θ increases the
destabilizing influence in the film flow dynamics, which essentially reduces the existing
destabilizing influence of Re for neutralizing the stabilizing influence of M (which is now
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Figure 13. Neutral stability curves in the Re–k plane showing four different flow zones at two different values
(a) E = 1 and (b) E = 3. The other parameters are chosen as M = 1, We = 450 and θ = 90◦. For E = 0, the
variation of the same flow zones can be found from figure 11(d).

fixed at a given value), resulting in the decrease of the value of Re0, the upper limit of Re
for the existence of four distinct flow zones of this problem.

Next, let us look at figures 12(a,b), which are depicted for the same values of M, We
and θ as considered in figure 10(d), and convey the information about the range (Rec, Re0)
of Re for four distinct flow zones of this problem for various values of E. An increased
value of E decreases the values of Rec and Re0, indicated on the figures, along with the
increase of the values of kc and kj. Actually, an inclusion of E enhances the destabilizing
influence in the flow system, which is the essential cause of the decrease of Rec and Re0
as well as the increase of kc and kj. As a result, the unconditional stable zone decreases
along with the increase of the explosive unstable zone. Besides this, the new explosive
unstable zone arises after the value of Re0 increases with the increase of E owing to its
destabilizing influence on this flow dynamics. Quite notably, if one increases the value of
θ without changing the values of other parameters, then one gets more effective results
than we have found from figures 12(a,b) (see figures 13a,b). When E is added with θ (or
θ is increased with a given value of E), they are united and act jointly on the flow system,
and the resulting destabilizing influence makes the flow more unstable, which decreases
the range (Rec, Re0) of Re for four distinct flow zones of this problem.

However, the new information that comes from figures 10–13 is that for an increasing
value of M, the unconditional stable zone increases up to the value Rec, and then decreases
and finally vanishes at the value Re0, depending upon the values of E and θ . Hence, for
the given values of E, M and θ , we can divide the whole Re range into the following
subintervals, from which one can easily recognize the number of different flow zones of
this problem.

(i) For 0 < Re ≤ Rec, two zones exist, namely subcritical unstable and unconditional
stable. This result is true for all values of θ except θ = 90◦, for which Rec = 0.

(ii) For Rec < Re < Re0, all four distinct zones of this flow problem are found for any
given value of θ in 0 < θ ≤ 90◦.

(iii) For Re = Re0, all four zones, except the unconditional stable zone, of this flow
problem exist for the full range of θ (0 < θ ≤ 90◦).

(iv) For Re0 < Re ≤ 100, the unconditional stable zone does not exist, while the
existence of the other three zones is found for all values of θ considered in the
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Figure 14. Neutral stability curves in the θ–k plane showing four different flow zones at four different values
(a) M = 0.001, (b) M = 0.25, (c) M = 0.50 and (d) M = 1.0, when E = 0, Re = 10 and We = 450. The four
different zones that are found in (a) agree well with the corresponding zones reported by Dholey & Gorai
(2021) in figure 10(c) of their analysis.

present study. Here, a new explosive unstable zone (instead of an unconditional
stable zone) originates after the value Re0, which increases with the increase of
E as well as Re and θ .

We conclude our discussion by making some comments on the existence of four distinct
flow zones of this problem under various values of the parameters E, M, Re and θ . The
relation kc = 0 yields not only the critical value Rec but also the critical value Ec, as well
as Mc and θc. The critical value of any one of the parameters E, M, Re and θ can be
obtained by imposing the values of the other three parameters into the relation kc = 0, and
these are the four mutually critical values of the system. Hence, for a given value of Re in
(Rec, Re0), there is a critical value θc, dependent on the values of E and M, after which the
linear instability arises in the flow system and one finds the existence of all four distinct
flow zones of this problem (see condition (ii)). Similar results can also be found after the
value Ec since both the parameters E and θ have the same (destabilizing) characteristic
features on this flow dynamics. By contrast, all four distinct zones of this problem will be
found up to the value Mc since the magnetic field has a stabilizing influence on this flow
field.

In order to clarify the above results, we have plotted the curves ω+
i = 0 and J2 = 0

in the θ–k, E–k and M–k planes for a fixed value Re = 10, which obviously belongs to
the range Rec < Re < Re0 for the ranges 0 ≤ E ≤ 3, 0 ≤ M ≤ 1 and 0 < θ ≤ 90◦ (see
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Figure 15. Neutral stability curves in the θ–k plane showing four different flow zones at two different values
(a) E = 1 and (b) E = 3. The other parameters are chosen as Re = 10, M = 1 and We = 450. For E = 0, the
variation of the same flow zones can be found from figure 14(d).

0.12

0.08

0.04

0

0.12

0.08

0.04

0

k

(a) (b)

0 1 2 3
E

0 1 2 3
E

Values of k at E = 3 are 0.03383,

0.06767 and 0.08442

Values of k at E = 0 are 0.02102,
0.04203 and 0.06055
Values of k at E = 3 are 0.04203,
0.08406 and 0.08636

Ec = 0.56014

ks
ωi = 0
J2 = 0

Subcritical
Subcritical

Unconditional
Unconditional0.05829

Explosive
Explosive

Supercritical

k = 0 k = 0

Supercritical

Figure 16. Neutral stability curves in the E–k plane showing four different flow zones at two distinct values
(a) θ = 15◦ and (b) θ = 90◦, when M = 1, Re = 10 and We = 450.
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Figure 17. Neutral stability curves in the M–k plane showing four different flow zones at two different values
(a) θ = 75◦ and (b) θ = 90◦, when E = 0, Re = 10 and We = 450. We have found Mc ≈ 0.84205 and 1.40676
for θ = 15◦ and 45◦, respectively.
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Figure 18. Neutral stability curves in the M–k plane showing four different flow zones at two different values
(a) E = 1 and (b) E = 2, when Re = 10, We = 450 and θ = 60◦. We have found Mc = 1.62591 and 3.90578
for E = 0 and 3, respectively.

figures 10–13), in figures 14–18. Figures 14(a–d), which are delineated for E = 0, show
that for a given value of M and for an increasing value of θ , the explosive unstable zone
increases after reaching the critical value θc, and simultaneously the unconditional stable
zone decreases (slowly), confirming the destabilizing impact of θ on this flow dynamics.
For an increasing value of M, the curves ω+

i = 0 and J2 = 0 depress towards the θ -axis
with a concomitant increase of θc, resulting in the increase of the unconditional stable
zone along with the decrease of the explosive unstable zone, which again confirms the
stabilizing influence of the magnetic field on this flow problem. The opposite phenomena
have been found for an increasing value of E, which one can perceive easily from
figures 14(d) and 15(a,b). This is compatible with the fact that for an increasing value of E
as well as θ , the destabilizing influence of the film flow is intensified, and simultaneously
the stabilizing influence of M (which is now fixed at a given value) becomes
more and more feeble in comparison with the growing destabilizing influence of E
and θ .

We have already shown in figure 9(a) that for M = 1 and Re = 10, and for an increasing
value of θ , the value of Ec decreases continuously and ultimately vanishes at the value
θ0 ≈ 20.6740316◦. This phenomenon ensures that for the same values of M and Re, all
four distinct zones of this flow problem will exist in the range Ec < E ≤ 3 or 0 ≤ E ≤ 3
of E, accordingly as θ < θ0 or θ > θ0, as manifested clearly in figures 16(a) and 16(b),
respectively. Here, for a given value of θ , the increasing rate of the critical value kc (related
to the curve ω+

i = 0) with E is always higher than that of kj (related to the curve J2 =
0), resulting in the decrease of the unconditional stable and subcritical unstable zones,
with a concomitant increase of the other two zones of this flow problem. This result is
more pronounced for a higher value of θ , which confirms our earlier results presented in
figures 12, 13 and 15.

Each of figures 10, 11 and 14 ensures that for any given values of E, Re and θ within their
prescribed ranges, the curves ω+

i = 0 and J2 = 0 decrease continuously with an increasing
value of M. This fact confirms that the critical values of kc (related to the curve ω+

i =
0) and kj (related to the curve J2 = 0) will be zero separately after a definite (generally
different) value of M, depending upon the values of E, Re and θ . For this reason, one finds
the existence of two distinct critical values of M: one for kc = 0 denoted Mc, and the other

977 A42-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.965


Electromagnetic field effect on a conducting liquid film

0.016 3

0

–3

0.008

0

0 0.05 0.10 0.15 0 0.05

ks = 0.02873

ks = 0.02062

ks = 0.04060

Values of k at which J2 = 0 are

0,0.03790, 0.05757 and 0.09047

Values of k at which ωi = 0 are

0,0.04123, 0.05757 and 0.08120

J2

k k

ω i
+

0.10 0.15

–0.008

–0.016

M = 0.001

M = 0.68497

M = 1.00

M = 2.33

M = 0.001

M = 0.68497

M = 1.00

M = 3.99730(b)(a)

Figure 19. Variation of (a) ω+
i and (b) J2 with k for some values of M when E = 0, Re = 100, We = 450 and

θ = 45◦. We have kj > kc, kj = kc or kj < kc accordingly as M < 0.68497, M = 0.68497 or M > 0.68497.

for kj = 0 denoted Mj. Focusing on this fact, we plot the curves ω+
i = 0 and J2 = 0 in the

M–k plane for two fixed values θ = 75◦ and 90◦ when E = 0 in figures 17(a,b), and for two
fixed values E = 1 and 2 when θ = 60◦ in figures 18(a,b), respectively. A review of these
figures discloses that the wavenumber kj is zero at Mj ≈ 3.99730 irrespective of the values
of E, Re and θ , confirming that the value of Mj is constant for this problem. By contrast, the
value of Mc increases continuously with the increase of any one of the parameters E, Re
and θ , owing to their destabilizing influence on this flow field. An increased value of θ (or
E or Re) increases the value of kc, which in turn leads to an increase in the value of Mc for
vanishing this increased value of kc (see figures 10, 12 and 14–16). For θ = 90◦, the value
of cot θ is zero, and for M ≈ 4.62924, the second curly braces term in the expression for
kc is zero (see (4.14)). Hence for the values θ = 90◦ and M ≈ 4.62924, the value of kc will
be zero irrespective of the values of E and Re, which is manifested clearly in figure 17(b),
confirming our earlier result presented in figure 2.

Now we will explain graphically the reason for the existence of two distinct critical
values of M in this problem. For this purpose, we depict the curves ω+

i and J2 against k for
some values of M (= 0.001, 0.68497 and 1.0) in figures 19(a) and 19(b), respectively. For
an increasing value of M, the values of kc and kj decrease along with the increase of the
negative portions of the curves ω+

i and J2. More precisely, we can say that the values of kc

and kj come close to zero, and the curves ω+
i and J2 depress towards their negative axes.

This phenomenon suggests that the values of kc and kj will separately be zero (generally)
for two distinct (but definite) values of M, ensuring the existence of two critical values of
M in this flow problem.

(i) One value of M, for which kc = 0, is denoted by Mc, which depends highly on the
values of E, Re and θ . Here, for the given values E = 0, Re = 100 and θ = 45◦,
we have obtained Mc ≈ 2.33, which one can easily and directly appreciate from
figure 19(a). Interestingly enough, the curve ω+

i will be wholly negative after the
value of Mc, therefore there is no way for the occurrence of explosive unstable and
supercritical stable zones of this flow problem (see figures 17 and 18).

(ii) The other value of M, for which kj = 0, is denoted by Mj, which is obtained as
Mj ≈ 3.99730, independent of the values of E, Re and θ (see figure 19b). At the
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value Mj, the unconditional stable zone vanishes, and one finds only the existence
of a subcritical unstable zone. After the value Mj, a new unconditional stable zone
originates in the system that increases (slowly) with the increase of M (see figures 17
and 18).

Dandapat & Mukhopadhyay (2003) examined the stability of a conducting liquid
film flowing down an inclined plane in the presence of an electromagnetic field using
the long-wave approximation method. They have shown the existence of two distinct
critical values of M, namely, Mc and M̄c in their figure 3, which is same as figure 17(a)
of the present study. A comparative study between these two figures reveals that the
characteristic features of the curve ω+

i = 0 with respect to M are the same; nevertheless,
a small discrepancy has been found in the values of Mc due to the employment of
different numerical methods. On the contrary, the features of the curve J2 = 0 that are
found from figure 17(a) are completely different from those in figure 3 of Dandapat &
Mukhopadhyay (2003). From their figure 3, it seems that they have considered the value
M̄c ≈ 1.253 for which the curve J2 = 0 has a point of discontinuity, which is doubtful.
For clarity, we have checked many times the mathematical calculations and the numerical
program for the expression of the curve J2 = 0, and finally obtained (tested) the results
(numerically) for all values of M (0 ≤ M ≤ 5) in combination with the values of E, Re
and θ considered for this study. It is found that the curve J2 = 0 decreases continuously
with the increase of M, and finally vanishes at Mj ≈ 3.99730, independent of the values
of E, Re and θ , which is shown in figures 17 and 18. Hence the curve J2 = 0 that
was plotted by Dandapat & Mukhopadhyay (2003) in their figure 3 is not correct as
claimed.

Finally, we conclude our discussion by stating the reason for the existence of the second
range of k for an explosive unstable zone that occurs after the value of Re0, depending
upon the values of E, M, We and θ . Quite notably, this occurs only in the presence of a
magnetic field. For M = 1, two ranges of k for the explosive unstable zone are found in
figures 10–13. The first occurs only when the singularity condition (4.32) of J2 is fulfilled.
Equation (4.33) confirms the existence of a singularity of J2 at the value k = ks (= kc/2),
below which J2 is negative and ω+

i is positive always, therefore 0 < k < ks is the range
of k for an explosive unstable zone generally found in the papers published by the authors
concerned (see figures 5 and 12 of Dholey & Gorai 2021).

An increased value of M decreases the values of kj and kc in which the decreasing rate
of kj is higher than that of kc (see figures 19a,b). As a result, the value of kj crosses the
value of kc after a certain value of M, dependent on E, Re and θ , which obviously follows
the relationship

kj ≤ kc. (4.34)

(i) When kj = kc, we denote the parameters related to this case as the same parameters
with a zero subscript. For example, if one considers figures 19(a,b), then one gets
kj = kc = 0.05757 for E0 = 0, M0 = 0.68497, Re0 = 100, We0 = 450 and θ0 = 45◦.
In this case, the unconditional stable zone vanishes, and one finds the existence of
the other three zones of this problem.

(ii) When kj < kc, a new range kj < k < kc of k is found in which J2 is negative
and ω+

i is positive always (see figures 19a,b). Indeed, it is the range of k for
an explosive unstable zone that newly arises (in place of unconditional stable
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zone) under a suitable value of M depending upon the values of the other
parameters.

Hence we can conclude that the condition for the existence of the number of the range
of k for an explosive unstable zone is one or two accordingly as kj > kc or kj < kc,
and for the non-existence of an unconditional stable zone, the condition is kj ≤ kc.
Most importantly, the first condition (kj > kc) occurs in both magnetic and non-magnetic
cases, while the other two conditions (kj ≤ kc) occur only in the presence of a magnetic
field.

5. Conclusion

We have examined in detail the effect of a magnetic as well as an electromagnetic field
on the linear and weakly nonlinear stability of an electrically conducting viscous fluid
film flowing down an inclined plane by assuming the magnetic Reynolds number to be
small. A normal mode technique and multiple-scale method have been used to derive the
results of linear and nonlinear stability analysis of this problem, respectively. Both results
confirm the stabilizing influence of M and We, and the destabilizing influence of E, Re
and θ on this flow dynamics as well. A new feature that emerges from this analysis is the
separation of all four distinct (explosive, supercritical, unconditional and subcritical) flow
zones in the Re–k, θ–k, M–k and E–k planes, from which one can easily recognize the
proper zone of this flow problem under any given values of E, k, M, Re and θ . However,
all four distinct flow zones of this problem exist prior to (or next to) the critical value of
a stabilized (or destabilized) parameter provided that the curve J2 = 0 does not cross the
curve ω+

i = 0. Especially in the Re–k plane, for a suitable value of M, dependent on E
and θ , the curve J2 = 0 crosses the curve ω+

i = 0 for which the unconditional stable zone
vanishes at the crossing point (Re0, k0). And after the value Re0, a new (second) explosive
unstable zone originates in the flow system, which increases with the increase of Re as
well as E and θ . The new information that comes from this analysis is the conditions
for the non-existence of an unconditional stable zone, as well as the existence of one
or two numbers in the range of k for an explosive unstable zone, which are essentially
the relations between kc and kj that depend highly on the values of M. Besides this, the
existence of two critical values of M are found: one is Mc, which depends on the values
of E, Re and θ , while the other is constant, which is Mj ≈ 3.99730. Finally, we conclude
that the destabilizing influence of an electric (or Reynolds number or angle of inclination)
parameter on this flow field can be controlled by applying a suitable amount of a magnetic
(stabilizing) parameter, depending upon the values of the other parameters related to the
problem.

Acknowledgements. We would like to thank the editors and reviewers for their useful comments that helped
to improve the quality of the paper. Thanks are also due to Dr J. Dangar, S. Dholey and A. Dholey for their
kind cooperation during the work.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
S. Dholey https://orcid.org/0000-0002-8928-6249;
S. De https://orcid.org/0000-0001-8988-3679.

977 A42-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

96
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-8928-6249
https://orcid.org/0000-0002-8928-6249
https://orcid.org/0000-0001-8988-3679
https://orcid.org/0000-0001-8988-3679
https://doi.org/10.1017/jfm.2023.965


S. Dholey, S. Gorai and S. De

Appendix A

Expressions for L0, L1, L2 and N2, N3 are

L0 ≡ ∂t + a1∂x + a2∂
2
t + a3∂x∂t + a4∂

2
x + a5∂

4
x ,

L1 ≡ ∂t1 + a1∂x1 + 2a2∂t∂t1 + a3(∂x∂t1 + ∂x1∂t) + 2a4∂x∂x1 + 4a5∂
3
x ∂x1,

L2 ≡ ∂t2 + a2(∂
2
t1 + 2∂t∂t2) + a3(∂x∂t2 + ∂x1∂t1) + a4∂

2
x1

+ 6a5∂
2
x ∂2

x1
,

N2 = a6(η1η1x) + a7(η1η1t) + a8(η1η1t)t + a9(η1η1x)x + a10(η1η1xxx)x,

N3 = a6(η1η1x1 + η1η2x + η2η1x) + a7(η1η1t1 + η1η2t + η2η1t)

+ a8
{
(η1η1t1 + η1η2t + η2η1t)t + (η1η1t)t1

}
+ a9

{
(η1η1x1 + η1η2x + η2η1x)x + (η1η1x)x1

}
+ a10

{
(η1η2xxx + 3η1η1xxx1 + η2η1xxx)x + (η1η1xxx)x1

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

Appendix B

Expressions for the various coefficients present in (4.25) are

c′
g(k) = −(D2

ωr
c2

g + 2Dωrkcg + D2
k)

Dωr

,

Fr = 1
1 + (a3k − 2a2ωr)2 , Fi = 2a2ωr − a3k

1 + (a3k − 2a2ωr)2 ,

J2 = ErQ1r − EiQ1i, J4 = EiQ1r + ErQ1i,

Er = (a6k − a7ωr)(a3k − 2a2ωr) − (a8ω
2
r + a9k2 − 7a10k4)

1 + (a3k − 2a2ωr)2 ,

Ei = (a6k − a7ωr) + (a3k − 2a2ωr)(a8ω
2
r + a9k2 − 7a10k4)

1 + (a3k − 2a2ωr)2 ,

Q1r = MQr + NQi

M2 + N2 , Q1i = MQi − NQr

M2 + N2 ,

Qr = 2a8ω
2
r + 2a9k2 − 2a10k4, Qi = −(a6k − a7ωr),

M = 4(−a2ω
2
r + a3kωr − a4k2 + 4a5k4), N = 2(a1k − ωr).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)
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