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The Carathéodory Reflection Principle
and Osgood-Carathéodory Theorem
on Riemann Surfaces

Paul M. Gauthier and Fatemeh Sharifi

Abstract. The Osgood-Carathéodory theorem asserts that conformal mappings between Jordan do-
mains extend to homeomorphisms between their closures. For multiply-connected domains on Rie-
mann surfaces, similar results can be reduced to the simply-connected case, but we find it simpler
to deduce such results using a direct analogue of the Carathéodory reflection principle.

1 Introduction

The reflection principles of Schwarz and Carathéodory give conditions under which
holomorphic functions extend holomorphically to the boundary and the theorem of
Osgood-Carathéodory states that a one-to-one conformal mapping from the unit disc
to a Jordan domain extends to a homeomorphism of the closed disc onto the closed
Jordan domain. In this note, we study similar questions for holomorphic mappings
on Riemann surfaces. We give a Carathéodory type reflection principle for bordered
Riemann surfaces that are arbitrary. That is, we do not assume that they are compact
nor do we assume that they are of finite genus. From this follows a Schwarz type
reflection principle, as well as an Osgood-Carathéodory type theorem.

The Osgood-Carathéodory theorem was extended by Osgood and Taylor [14] to
domains bounded by finitely many disjoint Jordan curves, where the proof was re-
duced to the simply-connected case. Using a certain amount of cleverness, a similar
approach can be employed for bordered Riemann surfaces. We prefer to deduce the
Osgood-Carathéodory theorem for bordered Riemann surfaces immediately from
the Carathéodory reflection principle for Riemann surfaces, since a holomorphic ex-
tension is obviously a continuous extension. In this manner (to paraphrase Larry
Zalcman), cleverness is rendered superfluous.

When we speak of a conformal mapping f from a domain ; of one Riemann sur-
face R, to a domain Q, in another Riemann surface R;, we always mean an orientation
preserving conformal mapping that is one-to-one, but not necessarily onto. The ex-
pressions “one-to-one conformal mapping onto” and “biholomorphic mapping” will
be used interchangeably. For an overview of conformal mappings in the plane, see
[5,8,13,15,16].
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A Riemann surface is said to be planar if it is homeomorphic to a subset of the
complex plane C. In extending results from the complex plane to Riemann surfaces,
the following general uniformization theorem of Koebe is extremely helpful.

Theorem 1.1  Every planar Riemann surface is conformally equivalent to a plane do-
main.

It will also be helpful to recall that meromorphic functions on Riemann surfaces
are the same as holomorphic mappings to the Riemann sphere C = C U {co}.

For a domain G c C, a function f: G — C and a boundary point { € dG, Carathéo-
dory defines a point « € C to be a boundary value of f at { if there is a sequence z, in
G for which lim,_. o 2y = {, lim,o f(z,) = a. The set of boundary values of f at {
is precisely the cluster set C(f, (). Also, for a subset E c G, we denote

C(f>E)E(%C(f,()~

Foraset E c C,letusset E* = {Z:z € E}, where 0o = oo.
The first part of the following theorem is the Carathéodory reflection principle [4].

Theorem 1.2 Let V be a domain in the open upper half-plane {Jz > 0}. Let I be
the interior of {z € OV : 3z = 0} in the topology of R. Set V.= Vulu V*. Let f
be meromorphic in V and suppose all boundary values of f on I are real or co. Then
[ extends to a surjective meromorphic function f: V- f(V)uC(f,D)u f(V)* and
f(p7)=1(p).

Suppose, moreover, that f (V') is contained in the open upper half-plane
={weC:Tw>0}.

If f is respectively locally conformal, or conformal, then so is f.

A similar version of the reflection principle can be found in [15, p. 4].

Proof The final two sentences are not in Carathéodory’s formulation of the theorem,
but, as we shall see, this final portion follows from the first part.

Suppose then that (V) is contained in the open upper half-plane. Then combin-
ing the first part of the theorem with the Schwarz reflection principle, we conclude
that if f is locally conformal (respectively conformal) in V, then  is locally confor-
mal (respectively conformal) in V*. Suppose for some value p € I that f( p) were
assumed to have multiplicity greater than 1. Then at p all angles would be multiplied
by the multiplicity of p, which contradicts the assumption that the image by f of any
upper half-disc “centred” at p is contained in the open upper half-plane. Thus, fis
locally conformal at each point of I. Now suppose f is conformal. We have already
verified that f is injective on V U V*. Since f(V), f(V*), and f(I) are disjoint, it
is sufficient to show that fis injective on I. Then fwill be injective and hence con-
formal. Suppose, to obtain a contradiction, that f(p) = f(q), for p # g in I. Let Up
and U, be disjoint neighbourhoods of p and g, respectwely, sufficiently small that [ is
conformal, hence injective, in U, and U,. Since f is an open mapping and f F(I) is of
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measure zero, it follows that there are points a and b in U, \ I and U, \ I, respectively,
such that f(a) = f(b). This contradicts the fact that f is injective on V U V*. Thus,
f is injective on I. u

The example f(z) = z* shows that if we omit the assumption that f(V') is con-
tained in the open upper half-plane, it does not always follow that f is locally confor-
mal when f is locally conformal, in fact, not even when if f is conformal.

2 A Few Facts on Conformal Mappings in the Plane

An open (respectively compact) Jordan arc is defined as the homeomorphic image of
the interval (0,1) (respectively the interval [0,1]). A Jordan curve is the homeomor-
phic image of a circle and a Jordan domain in C is a domain whose boundary is a
Jordan curve. By the Jordan curve theorem, if ] is a Jordan curve in C, then its com-
plement C \ J consists of two disjoint Jordan domains, both having J as boundary. A
closed Jordan domain is the closure of a Jordan domain. By the Schoenflies theorem
[15, p. 25], a closed Jordan domain is the homeomorphic image of the closed unit
disc. The Schoenflies theorem could be phrased as follows. A homeomorphism from
the boundary of the disc to the boundary of a Jordan domain extends to a homeo-
morphism of the interiors. The Osgood-Carathéodory theorem goes in the opposite
direction, and has as a consequence that a conformal mapping of the unit disc onto
a Jordan domain (which, of course, is a homeomorphism) extends to a homeomor-
phism of the boundaries.

More precisely, the Osgood-Carathéodory theorem states that a conformal map-
ping from the open unit disc onto a Jordan domain in the Riemann sphere C extends
to a homeomorphism of the closed disc onto the closed Jordan domain. If we think
of aJordan domain U as the complement of a closed Jordan domain V, then a natural
generalization would be to replace Vv by a compact Jordan arc J (thinking of a Jordan
arc as a “compressed” Jordan domain). In this spirit, we shall consider to what extent
we can obtain an analogue of the Osgood-Carathéodory theorem if we are mapping
the unit disc to the complement of a compact Jordan arc. The following discussion
describes the situation.

A topological space is said to be locally connected if every point has a fundamental
system of connected neighbourhoods. The continuous image of a locally connected
space need not be locally connected. For example, the closure of the image of the
curve

e, 0<t<l

y(t) = |sin( 2771)

is not locally connected.

Theorem 2.1 (Continuity theorem [15]) Let f be a conformal mapping of the open
unit disc A onto a domain G c C. The function f has a continuous extension to A if
and only if dG is locally connected.

Lemma 2.2 Let f: A — G be conformal with oG locally connected. Then the contin-
uous extension to A maps the circle T onto 9G.
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Proof If w € 0G, there is a sequence z, € A such that f(z,) - w. By choosing a
subsequence, we may assume that z,, converges to a point { of the unit circle. Then
f({) =w,s0 f(T) 2 9G. Conversely, if { € T and z,, € D converges to {, then f(z,)
is eventually outside of every compact subset of f(A) = G, so f({) € dG. Thus,
f(T) caG. [ |

Lemma 2.3  Let ¢ be a conformal mapping of the open unit disc A onto the comple-
ment ] of a compact Jordan arc ] in C. Then ¢ extends to a continuous mapping of A
onto C, which maps the unit circle T onto J.

Proof Since ] is locally connected, the lemma follows from the previous theorem
and lemma. u

Let E be a locally connected continuum. We say that a € E is a cut point of E
if E \ {a} is no longer connected. For a Jordan arc all points except end points are
cut-points.

Lemma 2.4 Let ¢ be as in the previous lemma. Then for a € ], the set ¢'(a) isa
singleton if and only if a is an end point of J.

Proof By [15, Proposition 2.5], if ¢ is a conformal mapping of A onto a bounded
domain G, where 9G is locally connected, then for each a € 9G, the set f(a) is a
singleton if and only if a is not a cut-point of dG. In our situation, J is not a bounded
domain in C, but the proof can be easily modified to apply to our case. Since a € J is
not a cut-point of J if and only if a is an end point, the lemma follows. ]

Lemma 2.5 Let ¢ be as in the previous lemma. Let p and q be the ends of ] and J°
be the inner points of J. There are points a and b on the unit circle, such that ¢(a) = p,
¢(b) = q and ¢ maps each of the two arcs comprising T \ {a, b} (homeomorphically)
onto J°.

Proof From the previouslemma, ¢ (p) isa singleton {a} and ¢ ' (q) is a singleton
{b}. Let A be one of the two arcs comprising T \ {a, b}. Since ¢(A) is a connected
subset of the (open) Jordan arc J?, it is a point or an arc. It cannot be a point, for then
¢ would be constant on the arc A and hence constant by uniqueness theorems. Hence,
¢(A) is a sub-arc of J°. Since p and g are in the closure of ¢(A), the arc ¢(A) must
be all of J°. |

A cross-cut C of an open set G is an open Jordan arc in G such that C = Cu {a, b}
with a, b € 0G. We allow that a = b (see [1]).

Lemma 2.6 Let ] be a compact Jordan arc in C. Then for every neighbourhood G of
], there is a Jordan domain W c C, such that J° ¢ W ¢ W c G and J is a cross-cut of
W. That is, ] is contained in W, except for the end points, which (of course) lie on 0W.

Proof It follows from the Jordan arc separation theorem that J¢ = C~Jis connected.
For a proof, see [2, Lemma 4]. Let ¢: A - J° be a conformal map. By Lemma 2.3, ¢
extends to a continuous mapping (which we continue to denote by ¢) of A onto C
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that maps T onto J. There are two points a,b € T which are mapped to the end
points of J and the two arcs of T \ {a, b} are mapped onto J°. We can assume that
{a,b} = {-1,+1}. Let G be a neighbourhood of J. The neighbourhood ¢ *(G) of T
containsan annulus A, = {z: r < |z| < 1}, for some r € (0,1). Let L be a “lens domain”
in A such that LT = {~1, +1} and the disc D, = {z : |2| < r} is contained in L. Then
I = ¢(dL) is a Jordan curve in C, which separates C into two Jordan domains with
boundary I'. One of these domains ¢ (L) contains ¢ (D, ), so the other Jordan domain,
call it W, is contained in ¢(A,) c G. Since L c A,, we also have ¢(dL) =T c G.
Hence W = WuT c G. Since ¢ maps the two semicircles T \ {-1, +1} onto J° and
these semicircles are disjoint from 9L, it follows that J® ¢ W. Since ¢(+1) are the end
points of ] and they lie on T = oW, it follows that ] is a cross-cut of W. [ |

A domain W c Cis called a circular domain if 9W consists of finitely many disjoint
spherical circles. A domain is non-degenerate if no component of its complement
is a single point. The following theorem of Koebe states that circular domains are
conformally canonical for the class of non-degenerate n-connected domains.

Theorem 2.7  Every non-degenerate n-connected domain in C is conformally equiv-
alent to a circular domain.

We define a (finitely connected) Jordan region Q in C to be a domain bounded
by finitely many disjoint Jordan curves and, if Q) is a Jordan region, we say that Q is
a closed Jordan region. If there is only one boundary curve, then we call the Jordan
region a Jordan domain.

Occasionally, the Osgood—-Carathéodory theorem is invoked not only for Jordan
domains, but also (implicitly) for Jordan regions (for example in [10]). The following
extension of the Osgood—Carathéodory theorem for Jordan regions in C was proved
in [14] (see also [5, Chapter 15]) and can be deduced from the simply-connected case.

Theorem 2.8 If G and Q) are two Jordan regions and f: Q — G is a conformal equiv-
alence, then f extends to a homeomorphism of Q onto G.

3 Bordered Riemann Surfaces

Let us denote a bordered Riemann surface with interior Q and border bQ by Q =
Q u bQ. A bordered Riemann surface is not necessarily compact. Every bordered
Riemann surface is a bordered surface, so there is an open cover {U, } of ) and cor-
responding homeomorphisms h,:U, — A, that we call closed charts, where each
Ay is either a disc whose closure is contained in the open upper half-plane of C or
an upper half-disc {w : |w — t| < r,Jw > 0} for some real “center” t and positive
radius 7. Points of Q) that correspond to points on the real line form the border bQ)
and the remaining points, which correspond to points of the open upper half-plane,
form the “interior” Q of Q. The changes of charts hl}1 o hy, when defined, preserve
interior points and border points, and are clearly homeomorphisms. If () is not only a
bordered surface, but also a bordered Riemann surface, then we additionally require
these changes of charts to be conformal. At interior points the meaning of conformal
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is obvious and at border points we ask that hlgl o hg be the restriction of a conformal
mapping in an open subset of C. The closed upper half-plane is an example of a bor-
dered Riemann surface. A good introduction to bordered Riemann surfaces can be
found in [1, SIL. 3A].

In a Riemann surface (bordered or not), a (Jordan) arc J is a homeomorphic im-
age of an interval. If the interval is open, we say that ] is an open Jordan arc and
if the interval is closed, we say that J is a compact Jordan arc. A Jordan curve is a
homeomorphic image of a circle.

Lemma 3.1 IfQ = QU bQ is a bordered Riemann surface, then each border point
p € bQ has a neighbourhood system given by closed border charts h,: U, — Z+

r < 1, where A} is the open upper half-disc {z : |z| < r,Jz > 0}. Set U, = h; 1(A+)
Then U, = U,. Each closed neighbourhood U, is thus a closed Jordan domain, where
the Jordan curve U, \ U, consists of an open border arc B, ¢ bQ) and a cross-cut C, of
Q having the same end points as ;.

Proof Fix pebQ.Leth:U — A" be a closed chart at p where
T ={z:|7]<1,3z> 0}

and h sends p to zero. Denote by A} the open upper half-disc {z : |z| < r,Jz > 0}
and U, the inverse image h™'(A}). Since K:, 0 < r < 1, is a neighbourhood system
of 0 in the closed upper half-plane and 4 is a homeomorphism, it follows that the
U,,0 < r < 1are closed Jordan domains and form a neighbourhood system of p. The
Jordan curve dU, consists of the open border arc 8, = h™*{(-r,r)} and the cross-cut
h7'(c,), where c, is the closed semi-circle {z : |z| = r, 3z > 0}. If we denote by h, the
restriction of ki to U,, then h,: U, — E:, 0 < r < lare closed border chartsat p. W

Given a bordered Riemann surface Q = QUbQ, we construct a bordered Riemann
surface Q* called the conjugate of Q (see [1]). The conjugate O* of Q) is a topological
copy of Q. For each «, denote by U? the corresponding topological copy of the Us
and for each p € Q by p* the corresponding point in Q*. The space Q* is endowed
with the complex structure obtained by replacing the closed charts ha: Uy — Ay of
Q by the charts h’: U - Aa, where h%(p*) = —ha(p) and A =hi(U2).

We now form the double Q of the bordered Riemann surface Q by welding Q and
Q* together by the identity mapping on b<2. The double of a bordered Riemann sur-
face is a Riemann surface (not a bordered Riemann surface). The complex structure
of the double Q is given by charts ﬁa: U, » A,, which we now describe. If U, is
contained in the interior of Q, then we set U, = U, and 71\“ = hy. Similarly, if U}
is contained in the interior of %, we set J1,, = h,. There remains to define charts at
points of bQ = bQ*. If U, corresponds to a half-disc, then we denote by U, the set
obtained by welding together U, and U. We define the function T on the closure of
U, by setting iy = hy on Uy and on U, ha(w) = —h%(w) = =(=ha(p)) = ha(p),
where w = p* € U:.
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A manifold need not be second countable (consider the long line), but it is a pro-
found property of Riemann surfaces that they are second countable (Rado’s theorem).
They are therefore o-compact, i.e., they can be represented as a countable union of
compacta. Similar properties hold for bordered Riemann surfaces but, since non-
compact bordered Riemann surfaces are less familiar, we state the following result,
which makes it easier to see these properties (and many others) for bordered Rie-
mann surfaces.

Theorem 3.2  Every bordered Riemann surface is homeomorphic to a closed subset
of R3.

Proof Let Q be a bordered Riemann surface. The remarkable result of Ritedy [17]
states that every Riemann surface admits a smooth proper conformal embedding into
R3. Let h: Q — R? be such an embedding. Since Q) is closed in 0, it follows that 7 ()
is closed in 11(Q) and, since h(Q)) is closed in R?, and closed subsets of closed subsets
are closed, it follows that 4(Q) is also closed in R?. [ |

A subset of a Riemann surface or bordered Riemann surface is said to be bounded
if its closure is compact.

Corollary 3.3  In a bordered Riemann surface Q, a subset is compact if and only if it
is closed and bounded. Hence, a closed subset is non-compact if and only if it contains a
sequence which tends to infinity (the Alexandroff point of Q).

4 A Reflection Principle for Bordered Riemann Surfaces

Various reflection principles for Riemann surfaces are known. For example, see [12,
§6]. In this section we present a reflection principle for holomorphic maps between
bordered Riemann surfaces.

Theorem 4.1 Let Q = QUbQ be a bordered Riemann surface. Let f be meromorphic
in Q and suppose all boundary values of f on bQ are real or co. Then f extends to a
meromorphic function f on Q. Suppose f(Q) is contained in the open upper half-plane.
Then if f is locally conformal, so is fand, if f is conformal, so is f

Proof First, we shall extend f to a point p of the border bQ). At p considered as a
point of O, there is a chart h: U — A, where A is the open unit disc. Set

At ={w:|w|<1,Iw>20} and A™={w:|w|<1,Iw<0}.

Setting U* = h™'(A*) and U™ = h™(A™), we have U = U* U U~. Moreover, A|y+ =
h:U* - A*and hly- = —h* : U™ - —A~ are border charts of p in Q and Q*
respectively.

Denote A = {w : |w| < 1,Jw > 0}. The meromorphic function f oh™k: Ay - C
satisfies the hypotheses of Theorem 1.2 and so extends meromorphically to the open
disc A. Consequently, f extends meromorphically to the neighbourhood U of p.
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If p and q are two border points and ﬁp and ﬁq are corresponding neighbourhoods
as above that intersect, then the corresponding meromorphic extensions agree, since
they agree on ﬁ; n ﬁ;. Setting U, = U{ﬁp : p € bQ}, we obtain a meromorphic
extension ]?, defined on the neighbourhood U, of bQ).

Since this extension to the neighbourhood U, of the common border bQ) is defined
explicitly on Q* n U, by the formula f(p*) = f(p), we may extend f to all of O* by
the same formula. Namely, we set f(p*) = f(p) for all p* € O*. From this formula,
we see that if £ is locally conformal on Q, then f is locally conformal on Q U Q*,

Now suppose f () is contained in the open upper half-plane. The proof that fis
locally conformal or conformal if f is respectively locally conformal or conformal is
the same as the proof of the corresponding portion of Theorem 1.2. ]

We have defined the cluster set earlier for mappings to the Riemann sphere. More
generally, let G be a subset of a metric space X, let f: G — Y be a mapping from G to
a topological space Y, and p € dG \ G. Denote the cluster set of f at p by C(f, p).
Thatis, C(f,p)={qeY:3p, €G,p, = p, f(pn) = q}. For Bc oG \ G, we define
the cluster set at B as

C(f.B)={qeY:3peB,3p,€G,p,—>p,f(pn) > q} = prC(f,p)~

In the sequel, we shall consider the cluster sets C(f, p) and C(f, B) for mappings
f:Q — Y, where Y is a bordered Riemann surface or a Riemann surface, Q is the
interior of a bordered Riemann surface Q = Q U bQ, and both p and B are contained
in the border bQ). In particular, suppose O and Q, are bordered Riemann surfaces,
f:Q — Q, is a continuous mapping, and p € bQ2,. If Q, is compact, then C(f, p)
is not empty, but if O, is not compact, C(f, p) may be empty. For example, this is
the case for C(f,0), when Q; = Q, is the closed upper half-plane and f(z) = 1/z.
We shall say that the mapping f sends the border b(}; to the border b(),, if for every
sequence p; € {); converging to a point of bQ);, the sequence f(p;) has a limit point
in bQ,. If f sends the border to the border, then C(f, p) is a non-empty subset of
bQ,. Moreover, C(f, p) is compact and connected, since

c(f.p)= N 70D,

where h: U — {z:|z| <1, 3z > 0} is a border chart at p and
U'=hz:|z] <1,r>3z>0}.

For B a closed subset of bQ}y, the cluster set C(f, B) may not be closed, even if f
is continuous and sends the border to the border. For example, let (), be the closed
upper half-plane, Q; the closed upper half-plane except the point 0, and f(z) = z
Then for B = bQ), the set B is closed in bQ);, but C(f, B) is not closed in bQ,.

If f sends the border to the border, then C(f, p) is a non-empty subset of bQ),
and since, as we have seen, C(f, p) is connected, it lies in a single component of bQ,.
Similarly, we shall say that f sends a border component B, of b, to the border bQ,
if for every sequence p; € ; converging to a point of By, the sequence f(p;) has a
limit point in b€),. Also, we shall say that f sends a border component B; of bQ); to a
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border component B, of bQ), if for every sequence p; € () converging to a point of
By, the sequence f(p;) has a limit point in B,.

Let S be a topological space, and B a subset of S. Following Brown [3], we say that
B is collared in § if there exists a homeomorphism h from B x [0,1) onto a neigh-
bourhood of B such that h(b,0) = b for all b € B. Moreover, we say that the image
h(B % [0,1)) is a collar of B. If B can be covered by a collection of subsets relatively
open in B each of which is collared in S, then B is said to be locally collared in S.

A bordered n-manifold is a connected metrizable topological space such that each
point has a closed neighbourhood homeomorphic to the closed #-ball.

Theorem 4.2 (Brown [3]) The border of a bordered n-manifold M is collared in M.

Lemma 4.3 Let ﬁj =Q;ubQj, j=1,2 be bordered Riemann surfaces. Let f: Oy —

Q, be a continuous mapping that sends the border to the border and let B c bQ),. If B
is compact or connected, then C(f, B) is compact or connected respectively.

Proof Suppose B is compact. Since each component of bQ); is closed and open in
bQ,, it follows that B is contained in the union by u- - -Ub,, of finitely many components
of (), and that each Bj = Bn b; is compact. Since C(f, B) = Uj_, C(f, Bx), we may
assume that B is contained in a single component b of b);.

Let h:b x [0,1) — H,, be a collar of b in Q;. Let I,, be a nested sequence of open
subsets of b such that each I, is compactand Bc I,, c I, c b, B = N2, I,, and put

U, = h(I,%x(0,1/n]). Then C(f, B) = N;2, f(U,), and we see that C( f, B) is closed.
To see that C(f, B) is compact, it is sufficient to show that f(U;) is compact. Sup-

pose f(Uy) is not compact. Then since m is closed, ), is surely not compact and
there is a sequence g, € f(Uy), such that g, — *,, where x*, is the ideal (Alexandroft)
point of Q,. By a diagonal process, we can construct a sequence p,, € Uj, such that
f(pn) = *2. By choosing a subsequence, if necessary, we can assume that p, con-
verges to a point p € I;. This contradicts the assumption that f sends the border to
the border. Thus, f(U;) is compact. Since C(f, B) is a closed subset of the compact
set f(Uy), it follows that C(f, B) is also compact.

Suppose that B is not only compact, but also connected. Then we can take the I,
to be connected. Recall that, since f sends the border to the border, C(f, B) # @. The

sets f(U,) are connected subsets of the compact Hausdorff space f(U;) and
liminf f(U,) =limsup f(U,) = C(f,B) # @.

It follows [9, Theorem 2-101] that C( f, B) is connected.

We have shown that if B is compact and if B is moreover connected, then C(f, B)
is also connected.

Now we show that if B is connected, then C(f, B) is connected, even if B is not
compact. Since B is connected, it is contained in a single border component b. The
only connected subsets of b are Jordan arcs and Jordan curves. Jordan curves are
compact, so we may assume that B is a Jordan arc, possibly containing one or both
end points. In any case, we may write B as the union of an increasing sequence of
compact Jordan arcs I,,. Since the I,, are compact and connected, we have shown that
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the sets C(f,I,,) are connected. Now C(f,B) = US>, C(f,1,,) and the C(f,I,) are
increasing, so C(f, B) is connected. ]

Lemma 4.4 Let O, and Q, be two bordered Riemann surfaces and f:Q; — Q,a
holomorphic map. Then f sends a border component By to the border bQ), if and only
if it sends By to some border component B, of bQ),.

Proof By the definition, the direction “if” is obvious. Now suppose f sends a border
component B; of b, to the border b<),. It suffices to show that C(f, B;) is connected,
but since B, is a border component, it is connected, and so by the previous lemma,
C(f,By) is connected. ]

The following result extends the Carathéodory reflection principle to bordered
Riemann surfaces.

Theorem 4.5 For j=1,2, let ﬁj = Q; U bQ; be bordered Riemann surfaces with re-
spective interiors () j, respective borders bQ} j, and respective doubles Q j- Let f+ Qg — 0,
be a holomorphic mapping which sends the border bQ); to the border bQ),. Then there
is a holomorphic surjective extension

Filu — () UC(f, b)) U f(Q)* € O,
such that F(bQy) = C(f, bQy).

Proof Fix p € bQ);. By Lemma 4.4, C(f, p) is contained in a single component B, of
the border bQ),. We consider two cases, depending on whether B, is an open Jordan
arc or a Jordan curve. Throughout this proof, when we speak of a compact Jordan
arc [a, ], we mean a compact Jordan arc whose end points are « and f. Similarly
by an “open” Jordan arc (a, f8), we mean the image of the open unit interval by a
homeomorphism 4 such that h(t) tends to the distinct points « and 3, as t tends to
0 and 1, respectively.

Suppose first that B, is a Jordan arc. By the proof of Lemma 4.3, there is some
compact Jordan arc [«, 8] c B, such that C(f, p) is contained in the open Jordan arc
(e, B). We may choose a closed arc [a, b] about p in bQ)y, such that C(f, q) c («, f8),
for each g € [a, b].

Construct a closed Jordan domain G, in Q,, such that the Jordan curve G, \ G,,
consists of the closed arc [a, ] and a cross-cut y, of Q,. To see that this is possible,
use a collar of B,. Similarly, (see also Lemma 3.1) we may construct a closed border
chart G, for p, which is a closed Jordan domain in Q,, such that the Jordan curve
G \ G consists of a closed arc [a,b] in bQ; and a cross-cut y; of Q,. Let ¢ be the
restriction of f to G;. Denote by G, the bordered Riemann surface whose interior is
G, and whose border is («, ). By Lemma 3.1, we may further assume that G; is so
small that ¢(G;) c G, and all boundary values of ¢ on (a, b) lie in (, ).

Let h be a conformal mapping of G, onto the upper half-plane H*. By Theorem 4.1,

h extends to a conformal mapping h: G, — h(G,) c C. The function h o ¢ also sat-
isfies the hypotheses of Theorem 4.1, so h o ¢ extends to a meromorphic function
ho¢:G, - C. Since meromorphic functions on Riemann surfaces are the same as

https://doi.org/10.4153/CMB-2016-051-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-051-1

786 P. M. Gauthier and F. Sharifi

holomorphic maps to the Riemann sphere, this extension can be considered as a holo-
morphic mapping G, — C. On G, we have

p=hohop=(R) oTop= ()" o(hop).

Hence, ¢ extends to a holomorphic mapping ¢: G, — G,. Since ¢ is the restriction of f
to Gy, this gives a holomorphic extension of f which we denote by f, and f,: G, - G,.
Moreover, the value f,(p) lies on B,, since C(f, p) c B,.

Now we need to consider the case that B, is a Jordan curve. Let 52 =CyUB,bea
collar about B, in Q,. The interior C, of C, is planar and so, by Theorem 1.1 and the
Koebe theorem on circular domains (see Theorem 2.7), there is a conformal mapping
h of C, onto a domain A = H* \ K, where K is a closed disc in H*. By Lemma 4.4,
we can assume that & sends B, to R U {co}. By Theorem 4.1, we can extend h to a
meromorphic function #:C, — C. Let B be the border component containing p.
Then by Lemma 4.4, C(f,q) c B,, for each q € B;. Hence, if we fix a sufficiently
small open arc « in B; which contains p and which is pre-compact in B;, then we
can construct a collar C; = C; U a of « in Q;, such that f(G) c C,. Let ¢ be the
restriction of f to C;. As for the case that B, was not compact, the function /s extends
meromorphically to C, and & o ¢ extends meromorphically to C,. Consequently f
extends to a holomorphic mapping f: C, - Cyand fp(p) € B,. By the construction,
C,c Q.

From the preceding, it follows that for every p € b(, there is a closed Jordan
domain, Up c Qy, such that the Jordan curve U}, \ U, consists of an open border
arc a, containing p and a cross-cut ¢, of ;. Furthermore, there is a closed Jordan
domain VP c Q,, such that the Jordan curve VP \ V}, consists of an open border arc
By and a cross-cut 7, of 5, such that, denoting [NIP =U,Ua,and \N/p =V, U By,
f restricted to U, extends to a holomorphic mapping f,: ﬁp - Vp, where Up is the
double of 171, and Vp is the double of Vp. Moreover, f,(«,) c 8,. We can assume that
we have a closed border chart h,: V, — A"

These various holomorphic extensions f,, p € b{}; are compatible. That is, sup-
pose p and g are two arbitrary points in the border bQ; of Q;, with corresponding
holomorphic extensions f: U'P - Vp and f,: ﬁq - Vq. Suppose «, N ag # &. Then
fp=fqon ﬁp n ﬁq by the uniqueness of holomorphic continuation.

It follows that there is an open neighbourhood of b(); in Q,, which is a bordered
surface of the form U = U U bU, with interior U c Q; and border bU = bQ; and
there is a holomorphic extension f Q,uU - Q,, such that f(le) c bQ),. Since, for
p* € U*, this extension is given by f(p*) = f(p)*, we may define the extension on all
of Qf by the same formula. We now have a holomorphic extension f -0, =

As we already mentioned, for maps f:Q; — Q, Theorem 4.5 can be considered as
an extension of the Carathéodory reflection principle to Riemann surfaces. In the fol-
lowing, we consider the particular case that f(Q;) c Q, and obtain a generalization
of the Schwarz reflection principle.
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Theorem 4.6 For j = 1,2, let (NZJ- = Q; U bQ; be bordered Riemann surfaces; let
f:Qy = Qp be a holomorphic map which sends the border bQ), to the border bQ),,
and let f Q1 — Q, be the holomorphic extension given by Theorem 4.5. If f is locally
conformal (respectively conformal), then so is ]?

If f is conformal and onto and C(f, bQy) = by, then [ is a biholomorphic mapping
of Q, onto Q.

Proof Let U, ﬁp, hp, and f, be the same as in the proof of Theorem 4.5. From the
formula f(p*) = f(p)*, it clear that if f is locally conformal on Q, then f is locally
conformal on Q; U Q}, and we claim that it is also locally conformal on U. Tt is
sufficient to show that it is locally conformal on each U,. Clearly, (h, o f,)(U,)
is contained in the open upper half-plane and so, by Theorem 4.1, m is locally
conformal on U,. Consequently f, is also locally conformal on U,. It follows that 7
is locally conformal.

The proof that if f is conformal, then f is also conformal, is similar to that of
the analogous statement in Theorems 1.2 and 4.1. If f is conformal and onto and
C(f,bQy) = bQ,, then fis conformal and onto and hence is a biholomorphic map-
ping of Q, onto Q. [ |

5 Bordered Regions in Riemann Surfaces

We wish to show the equivalence between bordered Riemann surfaces and certain
domains in Riemann surfaces together with a portion of their boundary. We shall call
these bordered domains, and they include Jordan domains as the prime example.

Let ) be a domain in a Riemann surface. An open Jordan arc A c 0Q is called a free
boundary arc of the domain ( if for each point p € A there is an open neighborhood
U of p in ) and ahomeomorphism h: U —> A", where A* is the open upper half-disc
{lz] < 1,3z > 0}, h(U n A) = [-1,+1], and h,(p) = 0. The maps h,, are similar to
border charts in a bordered Riemann surface, where the i, were additionally required
to have a certain analyticity property.

An open arc A c 0Q) is called a doubly free boundary arc of the domain Q if, for
each point p € A, there is an open set U c R and a homeomorphism h: U — A, where
A is the open unit disc, 1(U n A) = (-1, +1), h(U n Q) = A*, and h(p) = 0.

As an example, if Q is a Jordan domain in C, then it follows from the Schoenflies
theorem that 0Q) is doubly free.

Remark  If A is a doubly free boundary arc of a domain Q in a Riemann surface,
then A is a free boundary arc of Q.

Proof Fix p € A. By the definition, there exists an open set N c R, and a homeo-
morphism g: N — A such that g(N n A) = (-1,1), g(Nn Q) = A", and g(p) = 0.
Take U := N n Q and h := gl in the definition of free boundary arc. |

Let us say that a subset E c dQ is a doubly free boundary set of Q if each point of
E is contained in a doubly free boundary arc of E.
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If O is a domain (open connected set) in a Riemann surface R and B is a (non
empty) doubly-free boundary set of ), then we shall say that O = Q U B is a bordered
region in R. We note that a bordered region O = QUB is compact if and only if O = Q
and Q is bounded. In this case, B = dQ) and B consists of finitely many disjoint Jordan
curves. For this reason, we call a compact bordered region a closed Jordan region. A
closed Jordan region of genus zero whose boundary is a single Jordan curve is a closed
Jordan domain. A Jordan region is the interior of a closed Jordan region and a Jordan
domain is the interior of a closed Jordan domain. The following theorem asserts that
every bordered region can be considered to be a bordered Riemann surface, thus giv-
ing us a multitude of bordered Riemann surfaces. It is similar to a result in [1], where
there is the further hypothesis that the border B is a locally analytic arc.

Theorem 5.1  Suppose Q = QUB is a bordered region in a Riemann surface R. Then Q)
admits the structure of a bordered Riemann surface with interior Q and border B. The
complex structures on Q) as interior of the bordered Riemann surface and as domain in
R are the same. In the other direction, if Q) is a bordered Riemann surface, then O may
be considered as a bordered region in the double Q).

Proof Fix a point p € B. Since B is a doubly free boundary set of Q, there is an
open set U c R and a homeomorphism h: U — A, where A is the open unit disc,
h(UnB) = (=L +1), h(Un Q) = A*, and h(p) = 0. Since U is planar, it follows
from Theorem 1.1 that there is a biholomorphic mapping ¢, of U onto a plane do-
main G,. We may assume that ¢,(p) = 0. Let A ¢ U n B be a compact Jordan arc
containing p, not as an end point. Then J = ¢,(A) is a compact Jordan arc in G,
containing 0, not as an end point. By Lemma 2.6, there is a closed Jordan domain
Wp in G, such that Wp N¢,(UNB) =], and J is a cross-cut of W,,. That is, ] is
contained in W), except for its end points that lie on the Jordan curve dW,. By the
Jordan curve theorem, J separates Wp into two closed Jordan domains, whose inter-

section is J. By construction, ¢;1 ‘maps one of these, call it W;, homeomorphically
to a closed Jordan domain V', c Q). We note that V, is a closed neighbourhood of
pinQ, ¢:V, > W; is a homeomorphism, ¢: V;, > W, is biholomorphic, ¢, maps
V,nBonto ], and ¢(p) = 0. By the Riemann mapping theorem and the Osgood-
Carathéodory theorem, there is a conformal mapping o,: W,” — A", which extends
to a homeomorphism W; - A", such that 0,(J) = [-1,+1] and 0,(0) = 0.

Set 77, = 0,0¢,. We may consider the family of maps 77,: V, - A", peB,asclosed
border charts and if, for every p € ), we add to this family a chart #,: V, - A* at p
for the Riemann surface Q, then these combined charts give Q = Q U B the desired
structure of a bordered Riemann surface. Although the subset B of 0Q) is locally an
arc, these arcs may be non-analytic. Nevertheless, the change of border charts 7,0 11;1
is analytic on 77,(Bn (V,nV,)), by the Schwarz reflection principle. This completes
the proof of the first part of the theorem.

In the other direction it is not hard to see that if O = QUbQ is a bordered Riemann
surface, then () is a bordered region in the Riemann surface @ = QUbQUQ*. W
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A particular consequence of the preceding theorem is that every bordered region
Q = QUBin C can be endowed with the structure of a bordered Riemann surface and
the restriction of this structure to Q) is compatible with the given holomorphic struc-
ture on Q. This is striking, considering that the curves which comprise the border of
Q need not be analytic. Nevertheless, the change of border charts

¢qo¢;1, p.q € BcoQ,

which map the real interval ¢, (02N (V,nV,)) to the real interval ¢, (0QN(V,NV,))
is analytic. Of course, an illustration of this is the Riemann mapping theorem (with
the Osgood—-Carathéodory theorem), which sends an arbitrary closed Jordan domain
Q to the closed unit disc. If the Jordan curve dQ is not analytic, the structure of
a bordered Riemann surface we give to Q is definitely not the restriction to Q of the
complex structure of C, although the restrictions to Q of both structures are the same.

Theorem 5.2 If Q = QU B is a bordered region in a Riemann surface R where the
region Q is planar, then Q has a planar neighbourhood.

Proof If A is a component of the exterior R \ Q whose boundary meets B, denote
by By the intersection B n 0A. Then A = A U By is also a bordered region.

Since the border of every bordered manifold is collared [3], each set By is collared
in both Q U B4 and A U B4. Hence, there is an open neighbourhood W of B and a
homeomorphism h: B x (-1, +1) - W, with

h(Bx(-1,0])=QnW, h(p,0)=p, h(Bx[0,+1)) =W~ Q.
The function ¢(t) = -1/2 + 3(¢ + 1/2) defines a homeomorphism

¢:[-1/2,0) = [-1/2,+1),
which induces a homeomorphism ®: Bx[-1/2,0) — Bx[-1/2, +1), givenby ®(p, t) =
(P> ¢(1)). Set
C=h(Bx{-1/2}), V=h(Bx[-1/2,0]), U =h(Bx][-1/2,+1)).

The function G = h o ® o h~! defines a homeomorphism of V onto U, which fixes
points of C. Denoting N = Q u U, we have a homeomorphism H: Q) — N, defined by
setting H(p) = pfor p e QN V and H(p) = G(p) for p € V. Since Q is of genus zero,
it is planar, and since N is homeomorphic to €, the neighbourhood N is also planar,
which completes the proof. ]

The following theorem may be considered as a generalization of the Osgood-Cara-
théodory theorem to bordered regions in Riemann surfaces.

Theorem 5.3 Forj=1,2,let (~)j = QUB; be bordered regions in Riemann surfaces R ;
with respective interiors () and respective borders B;. Let f: Q) — Q, be a holomorphic
mapping, which sends By to B,. Then f extends to a (unique) continuous surjective
mapping f: Q1 — f(Q)UC(f,By) ¢ Q. If f is locally conformal or conformal, then f
is respectively locally injective or injective. If f is conformal and onto and C(f, B;) = B,
then f is a homeomorphism of Oy onto Q.

https://doi.org/10.4153/CMB-2016-051-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-051-1

790 P. M. Gauthier and F. Sharifi

Proof By Theorem 5.1, each O j can be endowed with the structure of a bordered Rie-
mann surface, with interior ; and border Bj, and such that on Q; this structure is
compatible with the given holomorphic structure. This implies that f is also holomor-
phic, when considered as a mapping between the interiors of the bordered Riemann
surfaces. By the Carathéodory reflection principle for bordered Riemann surfaces
(Theorem 4.5), the mapping f extends to a holomorph1c mapping f:Q; - Q.

We claim that the restriction f of f to Oy has the desired properties. First of all,
since f is continuous, the restriction f is certainly a continuous extension of f Since
0, is dense in 0, the continuous extension of f is unique. By Theorem 4.5, f(B;) =
C(f,By), so [ is surjective onto f(Q;) U C(f,B,). Since f sends By to By, this image
is certainly contained in 52.

If f is locally conformal or conformal, then by Theorem 4.6, the mapping fis lo-
cally conformal or conformal, respectively, and hence f is locally injective or injective,
respectively.

It follows that if f is conformal onto and C(f,B;) = B,, then by Theorem 4.6
]?: 01> Oyisa biholomorphism and hence a homeomorphism. In particular, ﬂ51 =

f is a homeomorphism. u

We remark that in the above theorem, if f is conformal and onto but C(f, B;) is
strictly included in B, (instead of equal to B,), then f does not in general extend to a
homeomorphism, even of Ql onto Qz For example, let Q; and Q, be the open unit
disc. Let B; be the circle T and B; = T \ {1}. Let f(z) = z. Then f is conformal and
onto, and f sends B; strictly into B,, but f does not extend to a homeomorphism of
§1 onto EZ.

6 Some Comments and Applications

If two plane domains are conformally equivalent, then their automorphism groups
are isomorphic. Thus, by the Riemann mapping theorem, for simply connected plane
domains, we only need to understand the automorphism groups of the disc and the
plane which are well known.

If a plane domain is not simply connected, the group Aut(Q) of conformal self-
maps is “in general small”. However, for a given domain, there may be many confor-
mally equivalent domains that are presented in very different ways. For example, let
Q be a Jordan region in C and let D be a disc containing Q. Now let f be an arbitrary
conformal mapping of D onto a simply connected domain. Then f(Q) is conformally
equivalent to (), but may appear quite different as a subset of C.

For n > 2, an example of an n-connected Jordan region Q c C for which Aut(Q)
is not trivial is obtained by choosing 0 < r < 1 and taking as Q the unit disc A
from which we have removed n — 1 disjoint closed discs of the same small radius,
whose centres are equidistributed on the circle |z| = r. Clearly, rotations of angle
j2n/(n-1),j=0,1,...,n -1, are distinct elements of Aut(Q).

Let Q be the interior of a compact bordered Riemann surface Q. Let p € Q and
S, be the family of holomorphic functions from Q to the unit disc which take p to
zero, and which have in a fixed coordinate chart, a non-negative derivative at p. The
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Ahlfors function for Q) and p is the unique function A in S, such that
’ _ /
A'(p) = ;}gleg:Ref (p)-

It is a non-trivial fact that every Ahlfors function is a proper mapping of Q onto the
unit disc A. The Ahlfors function for a Jordan region in C is presented in [8, Ch. VI].
For a monumental treatment of Ahlfors functions, see [7].

Corollary 6.1 Let Q be a compact bordered Riemann surface and let f:Q — A be
an Ahlfors function of Q onto the open unit disc A. Then f extends to a meromorphic
function f:Q - Cu {oo}.

For Riemann surfaces Q,Q);, and Q,, let us denote by Iso(Q;,Q,) the space
of biholomorphic mappings Q; — Q, and by Aut(Q) the automorphism group
Iso(Q, Q). Slm1larly, for bordered Riemann surfaces Q, Q;, and Q,, let us denote
by Iso( €y, Q,) the space of homeomorphlsms Q; - O, whose restrictions to ) are
in Iso(Qy, Q) and by Aut(Q), the space Iso(Q, Q).

Theorem 6.2 (Schwarz 1879) The automorphism group of every compact Riemann
surface of genus g > 2 is finite.

A compact bordered Riemann surface is said to be of type (g, n) if it is of genus g
and the number of border components is .

Corollary 6.3  IfQ is a compact bordered Riemann surface of type (g, n) and 2g+n >
3, then Aut(Q) is finite.

Proof It follows from Theorem 4.6 that every ¢ € Aut(Q) extends to ¢ € Aut(Q).

The genus of the double O is 2g + n — 1, which is greater than or equal to 2. By the
Schwarz theorem, Aut(Q) is finite. Consequently, since the mapping ¢ ~ ¢ is injec-
tive, Aut(Q)) is also finite. [ |

The hypothesis on the type is satisfied if the genus g is not zero or if the genus is
zero and the number n of border components is at least 3.

The restriction mapping gives a natural embedding Aut(Q) - Aut(Q), but this
need not be surjective. For example, if A is the bordered Riemann surface whose
interior is the open unit disc A and whose border is an arc ¢?,0 < 6 < 8 for some
B € (0,27), then Aut(A) is the proper subgroup of Aut(A) described as follows. Fix
a € (0,p). The group Aut(A) consists of the elements ¢, € Aut(A) which send the
points 1, e’ eiP to the points 1, e, e, respectively, for 0 < y < . They are thus
parametrized by the values y,0 < y < 3.

If O, and Q, are bordered Riemann surfaces and Iso(;, Q,) # @, then every
element f of Iso(€), Q) induces bijections

Aut(Qy) — 150(Q1, Qs), ¢ fo¢

and _ ~ ~
Aut(Q;) — Is0(Q1,Q;), y=yof.
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In this situation, the groups Aut(;) and Aut((),) are isomorphic and have the same
cardinality as the family Iso(ﬁl, 52) Of course, for “most” Riemann surfaces €, the
group Aut(Q) is trivial. Similarly, for most bordered Riemann surfaces (0, the group
Aut(Q) is trivial. For such O, the subgroup Aut(Q) is, of course, also trivial.

Since the interior of every bordered region in a Riemann surface can be viewed as
a Riemann surface, it follows that if Q; and Q, are two such bordered regions, the
family Iso(Qy, Q) is usually empty and, if not, then it has the same cardinality as
Aut(€);) and Aut(€),). For a general Riemann surface, and in particular for a general
domain Q in a Riemann surface, the group Aut(Q) is usually trivial.

There are interesting exceptional bordered regions Q of infinite genus, for which
Aut(Q) is infinite. For example, consider the bordered region in C:

~ +o00o
QO=C~ UA],

where Aj is the open disc of center j and radius 1/3. Then the interior  is of infinite
connectivity and Aut(Q) is clearly infinite. We can easily modify this example to ob-
tain an example of infinite genus. Take two copies of C from which we have removed
theslitsz=x+i:j<x<j+1/2,j=0,+1,+2,... and let R be the Riemann surface
obtained by gluing these two slit domains along the slits in the usual way. Let W be
the bordered region in R, obtained by removing the open discs A; from each sheet of

R. Then W is of infinite genus, has infinitely many border components and Aut( W)
is again clearly infinite.

For more information regarding domains with infinite automorphism groups,
see [11].

Acknowledgment We thank Dmitry Khavinson and Malik Younsi for helpful com-
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nected planar domains.
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