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The Carathéodory Reflection Principle
and Osgood–Carathéodory Theorem
on Riemann Surfaces

Paul M. Gauthier and Fatemeh Shariû

Abstract. _eOsgood–Carathéodory theorem asserts that conformalmappings between Jordan do-
mains extend to homeomorphisms between their closures. Formultiply-connected domains on Rie-
mann surfaces, similar results can be reduced to the simply-connected case, but we ûnd it simpler
to deduce such results using a direct analogue of the Carathéodory re�ection principle.

1 Introduction

_e re�ection principles of Schwarz and Carathéodory give conditions under which
holomorphic functions extend holomorphically to the boundary and the theorem of
Osgood–Carathéodory states that a one-to-one conformalmapping from the unit disc
to a Jordan domain extends to a homeomorphism of the closed disc onto the closed
Jordan domain. In this note, we study similar questions for holomorphic mappings
on Riemann surfaces. We give a Carathéodory type re�ection principle for bordered
Riemann surfaces that are arbitrary. _at is, we do not assume that they are compact
nor do we assume that they are of ûnite genus. From this follows a Schwarz type
re�ection principle, as well as an Osgood–Carathéodory type theorem.

_e Osgood–Carathéodory theorem was extended by Osgood and Taylor [14] to
domains bounded by ûnitely many disjoint Jordan curves, where the proof was re-
duced to the simply-connected case. Using a certain amount of cleverness, a similar
approach can be employed for bordered Riemann surfaces. We prefer to deduce the
Osgood–Carathéodory theorem for bordered Riemann surfaces immediately from
the Carathéodory re�ection principle for Riemann surfaces, since a holomorphic ex-
tension is obviously a continuous extension. In this manner (to paraphrase Larry
Zalcman), cleverness is rendered super�uous.

When we speak of a conformal mapping f from a domain Ω1 of one Riemann sur-
faceR1 to a domainΩ2 in another Riemann surfaceR2 , we alwaysmean an orientation
preserving conformal mapping that is one-to-one, but not necessarily onto. _e ex-
pressions “one-to-one conformal mapping onto” and “biholomorphic mapping” will
be used interchangeably. For an overview of conformal mappings in the plane, see
[5, 8, 13, 15, 16].

Received by the editors February 27, 2016; revised July 30, 2016.
Published electronically September 16, 2016.
Research of author F. S. supported by NSERC (Canada).
AMS subject classiûcation: 30C25, 30F99.
Keywords: bordered Riemann surface, re�ection principle, Osgood-Carathéodory.

https://doi.org/10.4153/CMB-2016-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-051-1


Carathéodory Re�ection Principle and Osgood–Carathéodory _eorem 777

A Riemann surface is said to be planar if it is homeomorphic to a subset of the
complex plane C. In extending results from the complex plane to Riemann surfaces,
the following general uniformization theorem of Koebe is extremely helpful.

_eorem 1.1 Every planar Riemann surface is conformally equivalent to a plane do-
main.

It will also be helpful to recall that meromorphic functions on Riemann surfaces
are the same as holomorphic mappings to the Riemann sphere C = C ∪ {∞}.
For a domainG ⊂ C, a function f ∶G → C and a boundary point ζ ∈ ∂G, Carathéo-

dory deûnes a point α ∈ C to be a boundary value of f at ζ if there is a sequence zν in
G for which limν→∞ zν = ζ , limν→∞ f (zν) = α. _e set of boundary values of f at ζ
is precisely the cluster set C( f , ζ). Also, for a subset E ⊂ ∂G, we denote

C( f , E) ≡ ⋃
ζ∈E
C( f , ζ).

For a set E ⊂ C, let us set E∗ = {z ∶ z ∈ E}, where∞∗ = ∞.
_e ûrst part of the following theorem is the Carathéodory re�ection principle [4].

_eorem 1.2 Let V be a domain in the open upper half-plane {Iz > 0}. Let I be
the interior of {z ∈ ∂V ∶ Iz = 0} in the topology of R. Set V̂ = V ∪ I ∪ V∗. Let f
be meromorphic in V and suppose all boundary values of f on I are real or ∞. _en
f extends to a surjective meromorphic function f̂ ∶ V̂ → f (V) ∪ C( f , I) ∪ f (V)∗ and
f̂ (p∗) = f (p).

Suppose, moreover, that f (V) is contained in the open upper half-plane

H+ = {w ∈ C ∶ Iw > 0}.

If f is respectively locally conformal, or conformal, then so is f̂ .

A similar version of the re�ection principle can be found in [15, p. 4].

Proof _eûnal two sentences are not in Carathéodory’s formulation of the theorem,
but, as we shall see, this ûnal portion follows from the ûrst part.

Suppose then that f (V) is contained in the open upper half-plane. _en combin-
ing the ûrst part of the theorem with the Schwarz re�ection principle, we conclude
that if f is locally conformal (respectively conformal) in V , then f̂ is locally confor-
mal (respectively conformal) in V∗. Suppose for some value p ∈ I that f̂ (p) were
assumed to have multiplicity greater than 1. _en at p all angles would be multiplied
by the multiplicity of p, which contradicts the assumption that the image by f of any
upper half-disc “centred” at p is contained in the open upper half-plane. _us, f̂ is
locally conformal at each point of I. Now suppose f is conformal. We have already
veriûed that f̂ is injective on V ∪ V∗. Since f̂ (V), f̂ (V∗), and f̂ (I) are disjoint, it
is suõcient to show that f̂ is injective on I. _en f̂ will be injective and hence con-
formal. Suppose, to obtain a contradiction, that f̂ (p) = f̂ (q), for p /= q in I. Let Up

andUq be disjoint neighbourhoods of p and q, respectively, suõciently small that f̂ is
conformal, hence injective, in Up and Uq . Since f̂ is an open mapping and f̂ (I) is of
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measure zero, it follows that there are points a and b inUp∖ I andUq∖ I, respectively,
such that f̂ (a) = f̂ (b). _is contradicts the fact that f̂ is injective on V ∪ V∗. _us,
f̂ is injective on I.

_e example f (z) = z2 shows that if we omit the assumption that f (V) is con-
tained in the open upper half-plane, it does not always follow that f̂ is locally confor-
mal when f is locally conformal, in fact, not even when if f is conformal.

2 A Few Facts on Conformal Mappings in the Plane

An open (respectively compact) Jordan arc is deûned as the homeomorphic image of
the interval (0, 1) (respectively the interval [0,1]). A Jordan curve is the homeomor-
phic image of a circle and a Jordan domain in C is a domain whose boundary is a
Jordan curve. By the Jordan curve theorem, if J is a Jordan curve in C, then its com-
plement C∖ J consists of two disjoint Jordan domains, both having J as boundary. A
closed Jordan domain is the closure of a Jordan domain. By the Schoen�ies theorem
[15, p. 25], a closed Jordan domain is the homeomorphic image of the closed unit
disc. _e Schoen�ies theorem could be phrased as follows. A homeomorphism from
the boundary of the disc to the boundary of a Jordan domain extends to a homeo-
morphism of the interiors. _e Osgood–Carathéodory theorem goes in the opposite
direction, and has as a consequence that a conformal mapping of the unit disc onto
a Jordan domain (which, of course, is a homeomorphism) extends to a homeomor-
phism of the boundaries.

More precisely, the Osgood–Carathéodory theorem states that a conformal map-
ping from the open unit disc onto a Jordan domain in the Riemann sphereC extends
to a homeomorphism of the closed disc onto the closed Jordan domain. If we think
of a Jordan domainU as the complement of a closed Jordan domain V , then a natural
generalization would be to replace V by a compact Jordan arc J (thinking of a Jordan
arc as a “compressed” Jordan domain). In this spirit, we shall consider to what extent
we can obtain an analogue of the Osgood–Carathéodory theorem if we are mapping
the unit disc to the complement of a compact Jordan arc. _e following discussion
describes the situation.
A topological space is said to be locally connected if every point has a fundamental

system of connected neighbourhoods. _e continuous image of a locally connected
space need not be locally connected. For example, the closure of the image of the
curve

γ(t) = ∣ sin( 2π
t
) ∣ e i t , 0 < t ≤ 1

is not locally connected.

_eorem 2.1 (Continuity theorem [15]) Let f be a conformal mapping of the open
unit disc ∆ onto a domain G ⊂ C. _e function f has a continuous extension to ∆ if
and only if ∂G is locally connected.

Lemma 2.2 Let f ∶∆ → G be conformal with ∂G locally connected. _en the contin-
uous extension to ∆ maps the circle T onto ∂G.
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Proof If w ∈ ∂G, there is a sequence zn ∈ ∆ such that f (zn) → w. By choosing a
subsequence, we may assume that zn converges to a point ζ of the unit circle. _en
f (ζ) = w, so f (T) ⊃ ∂G. Conversely, if ζ ∈ T and zn ∈ D converges to ζ , then f (zn)
is eventually outside of every compact subset of f (∆) = G, so f (ζ) ∈ ∂G. _us,
f (T) ⊂ ∂G.

Lemma 2.3 Let ϕ be a conformal mapping of the open unit disc ∆ onto the comple-
ment Jc of a compact Jordan arc J in C. _en ϕ extends to a continuous mapping of ∆
onto C, which maps the unit circle T onto J.

Proof Since J is locally connected, the lemma follows from the previous theorem
and lemma.

Let E be a locally connected continuum. We say that a ∈ E is a cut point of E
if E ∖ {a} is no longer connected. For a Jordan arc all points except end points are
cut-points.

Lemma 2.4 Let ϕ be as in the previous lemma. _en for a ∈ J, the set ϕ−1(a) is a
singleton if and only if a is an end point of J.

Proof By [15, Proposition 2.5], if ϕ is a conformal mapping of ∆ onto a bounded
domain G, where ∂G is locally connected, then for each a ∈ ∂G, the set f −1(a) is a
singleton if and only if a is not a cut-point of ∂G. In our situation, Jc is not a bounded
domain in C, but the proof can be easily modiûed to apply to our case. Since a ∈ J is
not a cut-point of J if and only if a is an end point, the lemma follows.

Lemma 2.5 Let ϕ be as in the previous lemma. Let p and q be the ends of J and J0

be the inner points of J. _ere are points a and b on the unit circle, such that ϕ(a) = p,
ϕ(b) = q and ϕ maps each of the two arcs comprising T ∖ {a, b}(homeomorphically)
onto J0.

Proof From the previous lemma, ϕ−1(p) is a singleton {a} and ϕ−1(q) is a singleton
{b}. Let A be one of the two arcs comprising T ∖ {a, b}. Since ϕ(A) is a connected
subset of the (open) Jordan arc J0, it is a point or an arc. It cannot be a point, for then
ϕwould be constant on the arc A and hence constant by uniqueness theorems. Hence,
ϕ(A) is a sub-arc of J0. Since p and q are in the closure of ϕ(A), the arc ϕ(A) must
be all of J0.

A cross-cut C of an open set G is an open Jordan arc in G such that C = C ∪{a, b}
with a, b ∈ ∂G. We allow that a = b (see [1]).

Lemma 2.6 Let J be a compact Jordan arc in C. _en for every neighbourhood G of
J, there is a Jordan domain W ⊂ C, such that J0 ⊂ W ⊂ W ⊂ G and J is a cross-cut of
W. _at is, J is contained in W, except for the end points, which (of course) lie on ∂W.

Proof It follows from the Jordan arc separation theorem that Jc = C∖ J is connected.
For a proof, see [2, Lemma 4]. Let ϕ∶∆ → Jc be a conformal map. By Lemma 2.3, ϕ
extends to a continuous mapping (which we continue to denote by ϕ) of ∆ onto C
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that maps T onto J. _ere are two points a, b ∈ T which are mapped to the end
points of J and the two arcs of T ∖ {a, b} are mapped onto J0. We can assume that
{a, b} = {−1,+1}. Let G be a neighbourhood of J. _e neighbourhood ϕ−1(G) of T
contains an annulus Ar = {z ∶ r ≤ ∣z∣ ≤ 1}, for some r ∈ (0, 1). Let L be a “lens domain”
in ∆ such that L ∩T = {−1,+1} and the disc Dr = {z ∶ ∣z∣ ≤ r} is contained in L. _en
Γ = ϕ(∂L) is a Jordan curve in C, which separates C into two Jordan domains with
boundary Γ. One of these domains ϕ(L) contains ϕ(Dr), so the other Jordan domain,
call it W , is contained in ϕ(Ar) ⊂ G. Since ∂L ⊂ Ar , we also have ϕ(∂L) = Γ ⊂ G.
HenceW = W ∪ Γ ⊂ G. Since ϕ maps the two semicircles T ∖ {−1,+1} onto J0 and
these semicircles are disjoint from ∂L, it follows that J0 ⊂W . Since ϕ(±1) are the end
points of J and they lie on Γ = ∂W , it follows that J is a cross-cut ofW .

A domainW ⊂ C is called a circular domain if ∂W consists of ûnitelymany disjoint
spherical circles. A domain is non-degenerate if no component of its complement
is a single point. _e following theorem of Koebe states that circular domains are
conformally canonical for the class of non-degenerate n-connected domains.

_eorem 2.7 Every non-degenerate n-connected domain in C is conformally equiv-
alent to a circular domain.

We deûne a (ûnitely connected) Jordan region Ω in C to be a domain bounded
by ûnitely many disjoint Jordan curves and, if Ω is a Jordan region, we say that Ω is
a closed Jordan region. If there is only one boundary curve, then we call the Jordan
region a Jordan domain.

Occasionally, the Osgood–Carathéodory theorem is invoked not only for Jordan
domains, but also (implicitly) for Jordan regions (for example in [10]). _e following
extension of the Osgood–Carathéodory theorem for Jordan regions in C was proved
in [14] (see also [5, Chapter 15]) and can be deduced from the simply-connected case.

_eorem 2.8 If G and Ω are two Jordan regions and f ∶Ω → G is a conformal equiv-
alence, then f extends to a homeomorphism of Ω onto G.

3 Bordered Riemann Surfaces

Let us denote a bordered Riemann surface with interior Ω and border bΩ by Ω̃ =
Ω ∪ bΩ. A bordered Riemann surface is not necessarily compact. Every bordered
Riemann surface is a bordered surface, so there is an open cover {Uα} of Ω̃ and cor-
responding homeomorphisms hα ∶Uα → ∆α that we call closed charts, where each
∆α is either a disc whose closure is contained in the open upper half-plane of C or
an upper half-disc {w ∶ ∣w − t∣ < r, Iw ≥ 0} for some real “center” t and positive
radius r. Points of Ω̃ that correspond to points on the real line form the border bΩ
and the remaining points, which correspond to points of the open upper half-plane,
form the “interior” Ω of Ω̃. _e changes of charts h−1

β ○ hα , when deûned, preserve
interior points and border points, and are clearly homeomorphisms. If Ω̃ is not only a
bordered surface, but also a bordered Riemann surface, then we additionally require
these changes of charts to be conformal. At interior points the meaning of conformal
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is obvious and at border points we ask that h−1
β ○ hα be the restriction of a conformal

mapping in an open subset of C. _e closed upper half-plane is an example of a bor-
dered Riemann surface. A good introduction to bordered Riemann surfaces can be
found in [1, §II. 3A].

In a Riemann surface (bordered or not), a (Jordan) arc J is a homeomorphic im-
age of an interval. If the interval is open, we say that J is an open Jordan arc and
if the interval is closed, we say that J is a compact Jordan arc. A Jordan curve is a
homeomorphic image of a circle.

Lemma 3.1 If Ω̃ = Ω ∪ bΩ is a bordered Riemann surface, then each border point
p ∈ bΩ has a neighbourhood system given by closed border charts hr ∶ Ũr → ∆

+
r , 0 <

r < 1, where ∆+r is the open upper half-disc {z ∶ ∣z∣ < r, Iz > 0}. Set Ur = h−1
r (∆+r ).

_en Ũr = U r . Each closed neighbourhood U r is thus a closed Jordan domain, where
the Jordan curve U r ∖Ur consists of an open border arc βr ⊂ bΩ and a cross-cut Cr of
Ω̃ having the same end points as βr .

Proof Fix p ∈ bΩ. Let h∶U → ∆
+
be a closed chart at p where

∆+ = {z ∶ ∣z∣ < 1, Iz > 0}

and h sends p to zero. Denote by ∆+r the open upper half-disc {z ∶ ∣z∣ < r, Iz > 0}
and Ur the inverse image h−1(∆+r ). Since ∆

+
r , 0 < r < 1, is a neighbourhood system

of 0 in the closed upper half-plane and h is a homeomorphism, it follows that the
U r , 0 < r < 1 are closed Jordan domains and form a neighbourhood system of p. _e
Jordan curve ∂Ur consists of the open border arc βr = h−1{(−r, r)} and the cross-cut
h−1(cr), where cr is the closed semi-circle {z ∶ ∣z∣ = r, Iz ≥ 0}. If we denote by hr the
restriction of h to U r , then hr ∶U r → ∆

+
r , 0 < r < 1 are closed border charts at p.

Given a bordered Riemann surface Ω̃ = Ω∪bΩ, we construct a bordered Riemann
surface Ω̃∗ called the conjugate of Ω̃ (see [1]). _e conjugate Ω̃∗ of Ω̃ is a topological
copy of Ω̃. For each α, denote by U∗

α the corresponding topological copy of the Uα

and for each p ∈ Ω̃ by p∗ the corresponding point in Ω̃∗. _e space Ω̃∗ is endowed
with the complex structure obtained by replacing the closed charts hα ∶Uα → ∆α of
Ω̃ by the charts h∗α ∶U

∗
α → ∆

∗
α , where h∗α(p∗) = −hα(p) and ∆

∗
α = h∗α(U∗

α).
We now form the double Ω̂ of the bordered Riemann surface Ω̃ by welding Ω̃ and

Ω̃∗ together by the identity mapping on bΩ. _e double of a bordered Riemann sur-
face is a Riemann surface (not a bordered Riemann surface). _e complex structure
of the double Ω̂ is given by charts ĥα ∶ Ûα → ∆̂α , which we now describe. If Uα is
contained in the interior of Ω, then we set Ûα = Uα and ĥα = hα . Similarly, if U∗

α
is contained in the interior of Ω̃∗, we set ĥα = h∗α . _ere remains to deûne charts at
points of bΩ̃ = bΩ̃∗. If Uα corresponds to a half-disc, then we denote by Ûα the set
obtained by welding togetherUα andU∗

α . We deûne the function ĥα on the closure of
Ûα by setting ĥα = hα on Uα and on U

∗
α , ĥα(w) = −h∗α(w) = −(−hα(p)) = hα(p),

where w = p∗ ∈ U
∗
α .
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A manifold need not be second countable (consider the long line), but it is a pro-
found property of Riemann surfaces that they are second countable (Rado’s theorem).
_ey are therefore σ-compact, i.e., they can be represented as a countable union of
compacta. Similar properties hold for bordered Riemann surfaces but, since non-
compact bordered Riemann surfaces are less familiar, we state the following result,
which makes it easier to see these properties (and many others) for bordered Rie-
mann surfaces.

_eorem 3.2 Every bordered Riemann surface is homeomorphic to a closed subset
of R3.

Proof Let Ω̃ be a bordered Riemann surface. _e remarkable result of Rüedy [17]
states that every Riemann surface admits a smooth proper conformal embedding into
R3. Let h∶ Ω̂ → R3 be such an embedding. Since Ω̃ is closed in Ω̂, it follows that h(Ω̃)
is closed in h(Ω̂) and, since h(Ω̂) is closed inR3, and closed subsets of closed subsets
are closed, it follows that h(Ω̃) is also closed in R3.

A subset of a Riemann surface or bordered Riemann surface is said to be bounded
if its closure is compact.

Corollary 3.3 In a bordered Riemann surface Ω̃, a subset is compact if and only if it
is closed and bounded. Hence, a closed subset is non-compact if and only if it contains a
sequence which tends to inûnity (the Alexandroò point of Ω̃).

4 A Reflection Principle for Bordered Riemann Surfaces

Various re�ection principles for Riemann surfaces are known. For example, see [12,
§6]. In this section we present a re�ection principle for holomorphic maps between
bordered Riemann surfaces.

_eorem 4.1 Let Ω̃ = Ω∪bΩ be a bordered Riemann surface. Let f be meromorphic
in Ω and suppose all boundary values of f on bΩ are real or ∞. _en f extends to a
meromorphic function f̂ on Ω̂. Suppose f (Ω) is contained in the open upper half-plane.
_en if f is locally conformal, so is f̂ and, if f is conformal, so is f̂ .

Proof First, we shall extend f to a point p of the border bΩ. At p considered as a
point of Ω̂, there is a chart ĥ∶ Û → ∆, where ∆ is the open unit disc. Set

∆+ = {w ∶ ∣w∣ < 1, Iw ≥ 0} and ∆− = {w ∶ ∣w∣ < 1, Iw ≤ 0}.

Setting U+ = ĥ−1(∆+) and U− = ĥ−1(∆−), we have Û = U+ ∪U−. Moreover, ĥ∣U+ =
h ∶ U+ → ∆+ and ĥ∣U− = −h∗ ∶ U− → −∆− are border charts of p in Ω̃ and Ω̃∗

respectively.
Denote ∆+0 = {w ∶ ∣w∣ < 1, Iw > 0}. _e meromorphic function f ○ ĥ−1∶∆+0 → C

satisûes the hypotheses of _eorem 1.2 and so extends meromorphically to the open
disc ∆. Consequently, f extends meromorphically to the neighbourhood Û of p.

https://doi.org/10.4153/CMB-2016-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-051-1


Carathéodory Re�ection Principle and Osgood–Carathéodory _eorem 783

If p and q are two border points and Ûp and Ûq are corresponding neighbourhoods
as above that intersect, then the corresponding meromorphic extensions agree, since
they agree on Û+

p ∩ Û+
q . Setting Ûb = ⋃{Ûp ∶ p ∈ bΩ̃}, we obtain a meromorphic

extension f̂ , deûned on the neighbourhood Ûb of bΩ̃.
Since this extension to the neighbourhood Ûb of the commonborder bΩ̃ is deûned

explicitly on Ω̃∗ ∩ Ûb by the formula f̂ (p∗) = f (p), we may extend f̂ to all of Ω̃∗ by
the same formula. Namely, we set f̂ (p∗) = f (p) for all p∗ ∈ Ω̃∗. From this formula,
we see that if f is locally conformal on Ω, then f̂ is locally conformal on Ω ∪Ω∗.

Now suppose f (Ω) is contained in the open upper half-plane. _e proof that f̂ is
locally conformal or conformal if f is respectively locally conformal or conformal is
the same as the proof of the corresponding portion of _eorem 1.2.

We have deûned the cluster set earlier for mappings to the Riemann sphere. More
generally, let G be a subset of a metric space X, let f ∶G → Y be a mapping from G to
a topological space Y , and p ∈ ∂G ∖ G. Denote the cluster set of f at p by C( f , p).
_at is, C( f , p) = {q ∈ Y ∶ ∃pn ∈ G , pn → p, f (pn) → q}. For B ⊂ ∂G ∖G, we deûne
the cluster set at B as

C( f , B) = {q ∈ Y ∶ ∃p ∈ B, ∃pn ∈ G , pn → p, f (pn) → q} = ⋃
p∈B
C( f , p).

In the sequel, we shall consider the cluster sets C( f , p) and C( f , B) for mappings
f ∶Ω → Y , where Y is a bordered Riemann surface or a Riemann surface, Ω is the
interior of a bordered Riemann surface Ω̃ = Ω ∪ bΩ, and both p and B are contained
in the border bΩ. In particular, suppose Ω̃1 and Ω̃2 are bordered Riemann surfaces,
f ∶Ω1 → Ω̃2 is a continuous mapping, and p ∈ bΩ1. If Ω̃2 is compact, then C( f , p)
is not empty, but if Ω̃2 is not compact, C( f , p) may be empty. For example, this is
the case for C( f , 0), when Ω̃1 = Ω̃2 is the closed upper half-plane and f (z) = 1/z.
We shall say that the mapping f sends the border bΩ1 to the border bΩ2, if for every
sequence p j ∈ Ω1 converging to a point of bΩ1, the sequence f (p j) has a limit point
in bΩ2. If f sends the border to the border, then C( f , p) is a non-empty subset of
bΩ2. Moreover, C( f , p) is compact and connected, since

C( f , p) = ⋂
0<r<1

f (U+
r ),

where h∶ Ũ → {z ∶ ∣z∣ < 1, Iz ≥ 0} is a border chart at p and

U+
r = h−1{z ∶ ∣z∣ < 1, r > Iz > 0}.

For B a closed subset of bΩ1, the cluster set C( f , B) may not be closed, even if f
is continuous and sends the border to the border. For example, let Ω̃2 be the closed
upper half-plane, Ω̃1 the closed upper half-plane except the point 0, and f (z) = z.
_en for B = bΩ1, the set B is closed in bΩ1, but C( f , B) is not closed in bΩ2.

If f sends the border to the border, then C( f , p) is a non-empty subset of bΩ2
and since, as we have seen, C( f , p) is connected, it lies in a single component of bΩ2.
Similarly, we shall say that f sends a border component B1 of bΩ1 to the border bΩ2
if for every sequence p j ∈ Ω1 converging to a point of B1, the sequence f (p j) has a
limit point in bΩ2. Also, we shall say that f sends a border component B1 of bΩ1 to a
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border component B2 of bΩ2 if for every sequence p j ∈ Ω1 converging to a point of
B1, the sequence f (p j) has a limit point in B2.

Let S be a topological space, and B a subset of S. Following Brown [3], we say that
B is collared in S if there exists a homeomorphism h from B × [0, 1) onto a neigh-
bourhood of B such that h(b, 0) = b for all b ∈ B. Moreover, we say that the image
h(B × [0, 1)) is a collar of B. If B can be covered by a collection of subsets relatively
open in B each of which is collared in S, then B is said to be locally collared in S.
A bordered n-manifold is a connected metrizable topological space such that each

point has a closed neighbourhood homeomorphic to the closed n-ball.

_eorem 4.2 (Brown [3]) _e border of a bordered n-manifold M is collared in M.

Lemma 4.3 Let Ω̃ j = Ω j ∪ bΩ j , j = 1, 2 be bordered Riemann surfaces. Let f ∶Ω1 →
Ω̂2 be a continuous mapping that sends the border to the border and let B ⊂ bΩ1. If B
is compact or connected, then C( f , B) is compact or connected respectively.

Proof Suppose B is compact. Since each component of bΩ1 is closed and open in
bΩ1, it follows that B is contained in the union b1∪⋅ ⋅ ⋅∪bn of ûnitelymany components
of bΩ1 and that each B j = B ∩ b j is compact. Since C( f , B) = ⋃n

k=1 C( f , Bk), we may
assume that B is contained in a single component b of bΩ1.

Let h∶ b × [0, 1) → Hb be a collar of b in Ω̃1. Let In be a nested sequence of open
subsets of b such that each In is compact and B ⊂ In ⊂ In ⊂ b, B = ⋂∞n=1 In and put
Un = h(In×(0, 1/n]). _en C( f , B) = ⋂∞n=1 f (Un), and we see that C( f , B) is closed.

To see that C( f , B) is compact, it is suõcient to show that f (U1) is compact. Sup-
pose f (U1) is not compact. _en since f (U1) is closed, Ω̂2 is surely not compact and
there is a sequence qn ∈ f (U1), such that qn → ∗2, where ∗2 is the ideal (Alexandroò)
point of Ω̂2. By a diagonal process, we can construct a sequence pn ∈ U1, such that
f (pn) → ∗2. By choosing a subsequence, if necessary, we can assume that pn con-
verges to a point p ∈ I1. _is contradicts the assumption that f sends the border to
the border. _us, f (U1) is compact. Since C( f , B) is a closed subset of the compact
set f (U1), it follows that C( f , B) is also compact.

Suppose that B is not only compact, but also connected. _en we can take the In
to be connected. Recall that, since f sends the border to the border, C( f , B) /= ∅. _e
sets f (Un) are connected subsets of the compact Hausdorò space f (U1) and

lim inf f (Un) = lim sup f (Un) = C( f , B) /= ∅.

It follows [9, _eorem 2-101] that C( f , B) is connected.
We have shown that if B is compact and if B is moreover connected, then C( f , B)

is also connected.
Now we show that if B is connected, then C( f , B) is connected, even if B is not

compact. Since B is connected, it is contained in a single border component b. _e
only connected subsets of b are Jordan arcs and Jordan curves. Jordan curves are
compact, so we may assume that B is a Jordan arc, possibly containing one or both
end points. In any case, we may write B as the union of an increasing sequence of
compact Jordan arcs In . Since the In are compact and connected, we have shown that
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the sets C( f , In) are connected. Now C( f , B) = ⋃∞n=1 C( f , In) and the C( f , In) are
increasing, so C( f , B) is connected.

Lemma 4.4 Let Ω̃1 and Ω̃2 be two bordered Riemann surfaces and f ∶Ω1 → Ω̂2 a
holomorphic map. _en f sends a border component B1 to the border bΩ2 if and only
if it sends B1 to some border component B2 of bΩ2.

Proof By the deûnition, the direction “if ” is obvious. Now suppose f sends a border
component B1 of bΩ1 to the border bΩ2. It suõces to show thatC( f , B1) is connected,
but since B1 is a border component, it is connected, and so by the previous lemma,
C( f , B1) is connected.

_e following result extends the Carathéodory re�ection principle to bordered
Riemann surfaces.

_eorem 4.5 For j = 1, 2, let Ω̃ j = Ω j ∪ bΩ j be bordered Riemann surfaces with re-
spective interiorsΩ j , respective borders bΩ j , and respective doubles Ω̂ j . Let f ∶Ω1 → Ω̂2
be a holomorphic mapping which sends the border bΩ1 to the border bΩ2. _en there
is a holomorphic surjective extension

f̂ ∶ Ω̂1 Ð→ f (Ω1) ∪ C( f , bΩ1) ∪ f (Ω1)∗ ⊂ Ω̂2 ,

such that f̂ (bΩ1) = C( f , bΩ1).

Proof Fix p ∈ bΩ1. By Lemma 4.4, C( f , p) is contained in a single component B2 of
the border bΩ2. We consider two cases, depending on whether B2 is an open Jordan
arc or a Jordan curve. _roughout this proof, when we speak of a compact Jordan
arc [α, β], we mean a compact Jordan arc whose end points are α and β. Similarly
by an “open” Jordan arc (α, β), we mean the image of the open unit interval by a
homeomorphism h such that h(t) tends to the distinct points α and β, as t tends to
0 and 1, respectively.

Suppose ûrst that B2 is a Jordan arc. By the proof of Lemma 4.3, there is some
compact Jordan arc [α, β] ⊂ B2 such that C( f , p) is contained in the open Jordan arc
(α, β). We may choose a closed arc [a, b] about p in bΩ1, such that C( f , q) ⊂ (α, β),
for each q ∈ [a, b].
Construct a closed Jordan domain G2 in Ω̃2, such that the Jordan curve G2 ∖ G2,

consists of the closed arc [α, β] and a cross-cut γ2 of Ω̃2. To see that this is possible,
use a collar of B2. Similarly, (see also Lemma 3.1) we may construct a closed border
chart G1 for p, which is a closed Jordan domain in Ω̃1, such that the Jordan curve
G1 ∖ G1 consists of a closed arc [a, b] in bΩ1 and a cross-cut γ1 of Ω̃1. Let ϕ be the
restriction of f to G1. Denote by G̃2 the bordered Riemann surface whose interior is
G2 and whose border is (α, β). By Lemma 3.1, we may further assume that G1 is so
small that ϕ(G1) ⊂ Ĝ2 and all boundary values of ϕ on (a, b) lie in (α, β).

Let h be a conformalmapping ofG2 onto the upper half-planeH+. By_eorem4.1,
h extends to a conformal mapping ĥ∶ Ĝ2 → ĥ(G2) ⊂ C. _e function h ○ ϕ also sat-
isûes the hypotheses of _eorem 4.1, so h ○ ϕ extends to a meromorphic function
ĥ ○ ϕ∶ Ĝ1 → C. Since meromorphic functions on Riemann surfaces are the same as
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holomorphicmaps to the Riemann sphere, this extension can be considered as a holo-
morphic mapping Ĝ1 → C. On G1 we have

ϕ = h−1 ○ h ○ ϕ = (ĥ)−1 ○ ĥ ○ ϕ = (ĥ)−1 ○ (̂h ○ ϕ).

Hence, ϕ extends to a holomorphicmapping ϕ̂∶ Ĝ1 → Ĝ2. Since ϕ is the restriction of f
toG1, this gives a holomorphic extension of f whichwe denote by fp and fp ∶ Ĝ1 → Ĝ2.
Moreover, the value fp(p) lies on B2, since C( f , p) ⊂ B2.

Now we need to consider the case that B2 is a Jordan curve. Let C̃2 = C2 ∪ B2 be a
collar about B2 in Ω̃2. _e interior C2 of C̃2 is planar and so, by _eorem 1.1 and the
Koebe theorem on circular domains (see_eorem 2.7), there is a conformal mapping
h of C2 onto a domain A = H+ ∖ K, where K is a closed disc in H+. By Lemma 4.4,
we can assume that h sends B2 to R ∪ {∞}. By _eorem 4.1, we can extend h to a
meromorphic function ĥ∶ Ĉ2 → C. Let B1 be the border component containing p.
_en by Lemma 4.4, C( f , q) ⊂ B2, for each q ∈ B1. Hence, if we ûx a suõciently
small open arc α in B1 which contains p and which is pre-compact in B1, then we
can construct a collar C̃1 = C1 ∪ α of α in Ω̃1, such that f (C1) ⊂ Ĉ2. Let ϕ be the
restriction of f to C1. As for the case that B2 was not compact, the function h extends
meromorphically to Ĉ2 and h ○ ϕ extends meromorphically to Ĉ1. Consequently f
extends to a holomorphic mapping fp ∶ Ĉ1 → Ĉ2 and fp(p) ∈ B2. By the construction,
Ĉ2 ⊂ Ω̂2.
From the preceding, it follows that for every p ∈ bΩ1, there is a closed Jordan

domain, U p ⊂ Ω̃1, such that the Jordan curve U p ∖ Up consists of an open border
arc αp containing p and a cross-cut σp of Ω1. Furthermore, there is a closed Jordan
domain V p ⊂ Ω̃2, such that the Jordan curve V p ∖ Vp consists of an open border arc
βp and a cross-cut τp of Ω2, such that, denoting Ũp = Up ∪ αp and Ṽp = Vp ∪ βp ,
f restricted to Up extends to a holomorphic mapping fp ∶ Ûp → V̂p , where Ûp is the
double of Ũp and V̂p is the double of Ṽp . Moreover, fp(αp) ⊂ βp . We can assume that
we have a closed border chart hp ∶ Ṽp → ∆

+
.

_ese various holomorphic extensions fp , p ∈ bΩ1 are compatible. _at is, sup-
pose p and q are two arbitrary points in the border bΩ1 of Ω1, with corresponding
holomorphic extensions fp ∶ Ûp → V̂p and fq ∶ Ûq → V̂q . Suppose αp ∩ αq /= ∅. _en
fp = fq on Ûp ∩ Ûq by the uniqueness of holomorphic continuation.

It follows that there is an open neighbourhood of bΩ1 in Ω̃1, which is a bordered
surface of the form Ũ = U ∪ bU , with interior U ⊂ Ω1 and border bU = bΩ1 and
there is a holomorphic extension f̂ ∶Ω1∪Û → Ω̂2, such that f̂ (bΩ1) ⊂ bΩ2. Since, for
p∗ ∈ U∗, this extension is given by f̂ (p∗) = f (p)∗, wemay deûne the extension on all
of Ω∗

1 by the same formula. We now have a holomorphic extension f̂ ∶ Ω̂1 → Ω̂2.

As we already mentioned, for maps f ∶Ω1 → Ω̂2 _eorem 4.5 can be considered as
an extension of the Carathéodory re�ection principle to Riemann surfaces. In the fol-
lowing, we consider the particular case that f (Ω1) ⊂ Ω2 and obtain a generalization
of the Schwarz re�ection principle.
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_eorem 4.6 For j = 1, 2, let Ω̃ j = Ω j ∪ bΩ j be bordered Riemann surfaces; let
f ∶Ω1 → Ω2 be a holomorphic map which sends the border bΩ1 to the border bΩ2,
and let f̂ ∶ Ω̂1 → Ω̂2 be the holomorphic extension given by _eorem 4.5. If f is locally
conformal (respectively conformal), then so is f̂ .

If f is conformal and onto and C( f , bΩ1) = bΩ2, then f̂ is a biholomorphicmapping
of Ω̂1 onto Ω̂2.

Proof Let Û , Ûp , hp , and fp be the same as in the proof of _eorem 4.5. From the
formula f̂ (p∗) = f (p)∗, it clear that if f is locally conformal on Ω1, then f̂ is locally
conformal on Ω1 ∪ Ω∗

1 , and we claim that it is also locally conformal on Û . It is
suõcient to show that it is locally conformal on each Ûp . Clearly, (hp ○ fp)(Up)
is contained in the open upper half-plane and so, by _eorem 4.1, ĥp ○ fp is locally
conformal on Ûp . Consequently fp is also locally conformal on Ûp . It follows that f̂
is locally conformal.

_e proof that if f is conformal, then f̂ is also conformal, is similar to that of
the analogous statement in _eorems 1.2 and 4.1. If f is conformal and onto and
C( f , bΩ1) = bΩ2, then f̂ is conformal and onto and hence is a biholomorphic map-
ping of Ω̂1 onto Ω̂2.

5 Bordered Regions in Riemann Surfaces

We wish to show the equivalence between bordered Riemann surfaces and certain
domains in Riemann surfaces together with a portion of their boundary. We shall call
these bordered domains, and they include Jordan domains as the prime example.

Let Ω be a domain in a Riemann surface. An open Jordan arcA ⊂ ∂Ω is called a free
boundary arc of the domain Ω if for each point p ∈ A there is an open neighborhood
U of p in Ω and a homeomorphism hp ∶U → ∆

+
, where ∆+ is the open upper half-disc

{∣z∣ < 1, Iz > 0}, h(U ∩ A) = [−1,+1], and hp(p) = 0. _e maps hp are similar to
border charts in a bordered Riemann surface, where the hp were additionally required
to have a certain analyticity property.
An open arc A ⊂ ∂Ω is called a doubly free boundary arc of the domain Ω if, for

each point p ∈ A, there is an open set U ⊂ R and a homeomorphism h∶U → ∆, where
∆ is the open unit disc, h(U ∩ A) = (−1,+1), h(U ∩Ω) = ∆+, and h(p) = 0.
As an example, if Ω is a Jordan domain in C, then it follows from the Schoen�ies

theorem that ∂Ω is doubly free.

Remark If A is a doubly free boundary arc of a domain Ω in a Riemann surface,
then A is a free boundary arc of Ω.

Proof Fix p ∈ A. By the deûnition, there exists an open set N ⊂ R, and a homeo-
morphism g∶N → ∆ such that g(N ∩ A) = (−1, 1), g(N ∩ Ω) = ∆+, and g(p) = 0.
Take U ∶= N ∩Ω and h ∶= g∣U in the deûnition of free boundary arc.

Let us say that a subset E ⊂ ∂Ω is a doubly free boundary set of Ω if each point of
E is contained in a doubly free boundary arc of E.
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If Ω is a domain (open connected set) in a Riemann surface R and B is a (non
empty) doubly-free boundary set of Ω, then we shall say that Ω̃ = Ω∪B is a bordered
region in R. We note that a bordered region Ω̃ = Ω∪B is compact if and only if Ω̃ = Ω
and Ω is bounded. In this case, B = ∂Ω and B consists of ûnitely many disjoint Jordan
curves. For this reason, we call a compact bordered region a closed Jordan region. A
closed Jordan region of genus zero whose boundary is a single Jordan curve is a closed
Jordan domain. A Jordan region is the interior of a closed Jordan region and a Jordan
domain is the interior of a closed Jordan domain. _e following theorem asserts that
every bordered region can be considered to be a bordered Riemann surface, thus giv-
ing us a multitude of bordered Riemann surfaces. It is similar to a result in [1], where
there is the further hypothesis that the border B is a locally analytic arc.

_eorem 5.1 Suppose Ω̃ = Ω∪B is a bordered region in a Riemann surface R. _en Ω̃
admits the structure of a bordered Riemann surface with interior Ω and border B. _e
complex structures on Ω as interior of the bordered Riemann surface and as domain in
R are the same. In the other direction, if Ω̃ is a bordered Riemann surface, then Ω̃ may
be considered as a bordered region in the double Ω̂.

Proof Fix a point p ∈ B. Since B is a doubly free boundary set of Ω, there is an
open set U ⊂ R and a homeomorphism h∶U → ∆, where ∆ is the open unit disc,
h(U ∩ B) = (−1,+1), h(U ∩ Ω) = ∆+, and h(p) = 0. Since U is planar, it follows
from _eorem 1.1 that there is a biholomorphic mapping ϕp of U onto a plane do-
main Gp . We may assume that ϕp(p) = 0. Let A ⊂ U ∩ B be a compact Jordan arc
containing p, not as an end point. _en J = ϕp(A) is a compact Jordan arc in Gp ,
containing 0, not as an end point. By Lemma 2.6, there is a closed Jordan domain
W p in Gp , such that W p ∩ ϕp(U ∩ B) = J, and J is a cross-cut of Wp . _at is, J is
contained in Wp , except for its end points that lie on the Jordan curve ∂Wp . By the
Jordan curve theorem, J separates W p into two closed Jordan domains, whose inter-
section is J. By construction, ϕ−1

p maps one of these, call it W
+
p , homeomorphically

to a closed Jordan domain V p ⊂ Ω̃. We note that V p is a closed neighbourhood of
p in Ω̃, ϕ∶V p → W

+
p is a homeomorphism, ϕ∶Vp → W+

p is biholomorphic, ϕp maps
V p ∩ B onto J, and ϕ(p) = 0. By the Riemann mapping theorem and the Osgood–
Carathéodory theorem, there is a conformal mapping σp ∶W+

p → ∆+, which extends
to a homeomorphism W

+
p → ∆

+
, such that σp(J) = [−1,+1] and σp(0) = 0.

Set ηp = σp○ϕp . Wemay consider the family ofmaps ηp ∶V p → ∆
+
, p ∈ B, as closed

border charts and if, for every p ∈ Ω, we add to this family a chart ηp ∶Vp → ∆+ at p
for the Riemann surface Ω, then these combined charts give Ω̃ = Ω ∪ B the desired
structure of a bordered Riemann surface. Although the subset B of ∂Ω is locally an
arc, these arcs may be non-analytic. Nevertheless, the change of border charts ηq ○η−1

p

is analytic on ηp(B∩(V p ∩V q)), by the Schwarz re�ection principle. _is completes
the proof of the ûrst part of the theorem.

In the other direction it is not hard to see that if Ω̃ = Ω∪bΩ is a bordered Riemann
surface, then Ω̃ is a bordered region in the Riemann surface Ω̂ = Ω ∪ bΩ ∪Ω∗.
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A particular consequence of the preceding theorem is that every bordered region
Ω̃ = Ω∪B inC can be endowedwith the structure of a bordered Riemann surface and
the restriction of this structure to Ω is compatible with the given holomorphic struc-
ture on Ω. _is is striking, considering that the curves which comprise the border of
Ω need not be analytic. Nevertheless, the change of border charts

ϕq ○ ϕ−1
p , p, q ∈ B ⊂ ∂Ω,

whichmap the real interval ϕp(∂Ω∩(Vp∩Vq)) to the real interval ϕq(∂Ω∩(Vp∩Vq))
is analytic. Of course, an illustration of this is the Riemann mapping theorem (with
the Osgood–Carathéodory theorem), which sends an arbitrary closed Jordan domain
Ω to the closed unit disc. If the Jordan curve ∂Ω is not analytic, the structure of
a bordered Riemann surface we give to Ω is deûnitely not the restriction to Ω of the
complex structure ofC, although the restrictions to Ω of both structures are the same.

_eorem 5.2 If Ω̃ = Ω ∪ B is a bordered region in a Riemann surface R where the
region Ω is planar, then Ω̃ has a planar neighbourhood.

Proof If A is a component of the exterior R ∖ Ω whose boundary meets B, denote
by BA the intersection B ∩ ∂A. _en Ã = A∪ BA is also a bordered region.

Since the border of every bordered manifold is collared [3], each set BA is collared
in both Ω ∪ BA and A ∪ BA. Hence, there is an open neighbourhoodW of B and a
homeomorphism h∶B × (−1,+1) →W , with

h(B × (−1, 0]) = Ω̃ ∩W , h(p, 0) = p, h(B × [0,+1)) =W ∖Ω.

_e function ϕ(t) = −1/2 + 3(t + 1/2) deûnes a homeomorphism

ϕ∶ [−1/2, 0) → [−1/2,+1),
which induces a homeomorphismΦ∶B×[−1/2, 0) → B×[−1/2,+1), given byΦ(p, t) =
(p, ϕ(t)). Set

C = h(B × {−1/2}), V = h(B × [−1/2, 0]), U = h(B × [−1/2,+1)).
_e function G = h ○ Φ ○ h−1 deûnes a homeomorphism of V onto U , which ûxes
points of C. Denoting N = Ω∪U , we have a homeomorphism H∶Ω → N , deûned by
setting H(p) = p for p ∈ Ω∖V and H(p) = G(p) for p ∈ V . Since Ω is of genus zero,
it is planar, and since N is homeomorphic to Ω, the neighbourhood N is also planar,
which completes the proof.

_e following theoremmay be considered as a generalization of theOsgood–Cara-
théodory theorem to bordered regions in Riemann surfaces.

_eorem 5.3 For j = 1, 2, let Ω̃ j = Ω j∪B j be bordered regions in Riemann surfaces R j
with respective interiorsΩ j and respective borders B j . Let f ∶Ω1 → Ω2 be a holomorphic
mapping, which sends B1 to B2. _en f extends to a (unique) continuous surjective
mapping f̃ ∶ Ω̃1 → f (Ω1)∪C( f , B1) ⊂ Ω̃2. If f is locally conformal or conformal, then f̃
is respectively locally injective or injective. If f is conformal and onto and C( f , B1) = B2,
then f̃ is a homeomorphism of Ω̃1 onto Ω̃2.
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Proof By_eorem5.1, each Ω̃ j can be endowedwith the structure of a borderedRie-
mann surface, with interior Ω j and border B j , and such that on Ω j this structure is
compatible with the given holomorphic structure. _is implies that f is also holomor-
phic, when considered as a mapping between the interiors of the bordered Riemann
surfaces. By the Carathéodory re�ection principle for bordered Riemann surfaces
(_eorem 4.5), the mapping f extends to a holomorphic mapping f̂ ∶ Ω̂1 → Ω̂2.

We claim that the restriction f̃ of f̂ to Ω̃1 has the desired properties. First of all,
since f̂ is continuous, the restriction f̃ is certainly a continuous extension of f . Since
Ω1 is dense in Ω̃1, the continuous extension of f is unique. By _eorem 4.5, f̂ (B1) =
C( f , B1), so f̃ is surjective onto f (Ω1)∪C( f , B1). Since f sends B1 to B2, this image
is certainly contained in Ω̃2.

If f is locally conformal or conformal, then by _eorem 4.6, the mapping f̂ is lo-
cally conformal or conformal, respectively, and hence f̃ is locally injective or injective,
respectively.

It follows that if f is conformal onto and C( f , B1) = B2, then by _eorem 4.6
f̂ ∶ Ω̂1 → Ω̂2 is a biholomorphism and hence a homeomorphism. In particular, f̂ ∣Ω̃1

=
f̃ is a homeomorphism.

We remark that in the above theorem, if f is conformal and onto but C( f , B1) is
strictly included in B2 (instead of equal to B2), then f does not in general extend to a
homeomorphism, even of Ω̃1 onto Ω̃2. For example, let Ω1 and Ω2 be the open unit
disc. Let B2 be the circle T and B1 = T ∖ {1}. Let f (z) = z. _en f is conformal and
onto, and f sends B1 strictly into B2, but f does not extend to a homeomorphism of
B̃1 onto B̃2.

6 Some Comments and Applications

If two plane domains are conformally equivalent, then their automorphism groups
are isomorphic. _us, by the Riemannmapping theorem, for simply connected plane
domains, we only need to understand the automorphism groups of the disc and the
plane which are well known.

If a plane domain is not simply connected, the group Aut(Ω) of conformal self-
maps is “in general small”. However, for a given domain, there may be many confor-
mally equivalent domains that are presented in very diòerent ways. For example, let
Ω be a Jordan region inC and let D be a disc containing Ω. Now let f be an arbitrary
conformalmapping ofD onto a simply connected domain. _en f (Ω) is conformally
equivalent to Ω, but may appear quite diòerent as a subset of C.
For n > 2, an example of an n-connected Jordan region Ω ⊂ C for which Aut(Ω)

is not trivial is obtained by choosing 0 < r < 1 and taking as Ω the unit disc ∆
from which we have removed n − 1 disjoint closed discs of the same small radius,
whose centres are equidistributed on the circle ∣z∣ = r. Clearly, rotations of angle
j2π/(n − 1), j = 0, 1, . . . , n − 1, are distinct elements of Aut(Ω).

Let Ω be the interior of a compact bordered Riemann surface Ω̃. Let p ∈ Ω and
Sp be the family of holomorphic functions from Ω to the unit disc which take p to
zero, and which have in a ûxed coordinate chart, a non-negative derivative at p. _e
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Ahlfors function for Ω and p is the unique function A in Sp such that

A′(p) = max
f ∈Hp

Re f ′(p).

It is a non-trivial fact that every Ahlfors function is a proper mapping of Ω onto the
unit disc ∆. _e Ahlfors function for a Jordan region inC is presented in [8, Ch. VI].
For a monumental treatment of Ahlfors functions, see [7].

Corollary 6.1 Let Ω̃ be a compact bordered Riemann surface and let f ∶Ω → ∆ be
an Ahlfors function of Ω onto the open unit disc ∆. _en f extends to a meromorphic
function f̂ ∶ Ω̂ → C ∪ {∞}.

For Riemann surfaces Ω, Ω1, and Ω2, let us denote by Iso(Ω1 , Ω2) the space
of biholomorphic mappings Ω1 → Ω2 and by Aut(Ω), the automorphism group
Iso(Ω, Ω). Similarly, for bordered Riemann surfaces Ω̃, Ω̃1, and Ω̃2, let us denote
by Iso(Ω̃1 , Ω̃2) the space of homeomorphisms Ω̃1 → Ω̃2 whose restrictions to Ω1 are
in Iso(Ω1 , Ω2) and by Aut(Ω̃), the space Iso(Ω̃, Ω̃).

_eorem 6.2 (Schwarz 1879) _e automorphism group of every compact Riemann
surface of genus g ≥ 2 is ûnite.

A compact bordered Riemann surface is said to be of type (g , n) if it is of genus g
and the number of border components is n.

Corollary 6.3 If Ω̃ is a compact bordered Riemann surface of type (g , n) and 2g+n ≥
3, then Aut(Ω̃) is ûnite.

Proof It follows from _eorem 4.6 that every ϕ ∈ Aut(Ω̃) extends to ϕ̂ ∈ Aut(Ω̂).
_e genus of the double Ω̂ is 2g + n − 1, which is greater than or equal to 2. By the
Schwarz theorem, Aut(Ω̂) is ûnite. Consequently, since the mapping ϕ ↦ ϕ̂ is injec-
tive, Aut(Ω̃) is also ûnite.

_e hypothesis on the type is satisûed if the genus g is not zero or if the genus is
zero and the number n of border components is at least 3.

_e restriction mapping gives a natural embedding Aut(Ω̃) ↪ Aut(Ω), but this
need not be surjective. For example, if ∆̃ is the bordered Riemann surface whose
interior is the open unit disc ∆ and whose border is an arc e iθ , 0 < θ < β for some
β ∈ (0, 2π), then Aut(∆̃) is the proper subgroup of Aut(∆) described as follows. Fix
α ∈ (0, β). _e group Aut(∆̃) consists of the elements ϕγ ∈ Aut(∆) which send the
points 1, e iα , e iβ to the points 1, e iγ , e iβ , respectively, for 0 < γ < β. _ey are thus
parametrized by the values γ, 0 < γ < β.

If Ω̃1 and Ω̃2 are bordered Riemann surfaces and Iso(Ω̃1 , Ω̃2) /= ∅, then every
element f of Iso(Ω̃1 , Ω̃2) induces bijections

Aut(Ω̃1) Ð→ Iso(Ω̃1 , Ω̃2), ϕ ↦ f ○ ϕ

and
Aut(Ω̃2) Ð→ Iso(Ω̃1 , Ω̃2), ψ ↦ ψ ○ f .
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In this situation, the groups Aut(Ω̃1) and Aut(Ω̃2) are isomorphic and have the same
cardinality as the family Iso(Ω̃1 , Ω̃2). Of course, for “most” Riemann surfaces Ω, the
group Aut(Ω) is trivial. Similarly, for most bordered Riemann surfaces Ω̃, the group
Aut(Ω) is trivial. For such Ω̃, the subgroup Aut(Ω̃) is, of course, also trivial.

Since the interior of every bordered region in a Riemann surface can be viewed as
a Riemann surface, it follows that if Ω̃1 and Ω̃2 are two such bordered regions, the
family Iso(Ω1 , Ω2) is usually empty and, if not, then it has the same cardinality as
Aut(Ω̃1) and Aut(Ω̃2). For a general Riemann surface, and in particular for a general
domain Ω in a Riemann surface, the group Aut(Ω) is usually trivial.

_ere are interesting exceptional bordered regions Ω̃ of inûnite genus, for which
Aut(Ω̃) is inûnite. For example, consider the bordered region in C:

Ω̃ = C ∖
+∞
⋃
−∞

∆ j ,

where ∆ j is the open disc of center j and radius 1/3. _en the interior Ω is of inûnite
connectivity and Aut(Ω) is clearly inûnite. We can easily modify this example to ob-
tain an example of inûnite genus. Take two copies ofC from which we have removed
the slits z = x + i ∶ j < x < j + 1/2, j = 0,±1,±2, . . . and let R be the Riemann surface
obtained by gluing these two slit domains along the slits in the usual way. Let W̃ be
the bordered region in R, obtained by removing the open discs ∆ j from each sheet of
R. _en W̃ is of inûnite genus, has inûnitely many border components and Aut(W)
is again clearly inûnite.
For more information regarding domains with inûnite automorphism groups,

see [11].
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