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1. Introduction

We say a matrix H of order At is Hadamard if each entry is 1 or — 1, and the
inner product of any two rows is zero. We shall consider only Hadamard matrices
in normal form with the first row consisting solely of 1 while any two of the remain-
ing rows have the property that hik = hjk = \,hik— — hJk — 1, —hik = hjk = 1,
and — hik = —hJk = 1 each occur t times. We can induce a further normalization
by choosing the second row of H to have the first 2t entries 1 and the last It
entries — 1, and this will be the standard form we consider. We now call H the
submatrix obtained by deleting the first two rows of H and the first It columns.
H therefore is of dimension At — 2 x It. We prove the following theorem:

THEOREM. RH T - (2t)I is orthogonal.

It is interesting to note that this theorem has relevance for the problem of
the existence of finite projective planes, and, although our methods lead to this
theorem and thus prove to be inconclusive, it is possible that modification of our
procedures would settle some of the questions concerning the existence of finite
projective planes or lead to new theorems about Hadamard matrices. We therefore
include the necessary background about finite projective planes in the next section.

2. Finite projective planes

By a finite projective plane of order 2t we mean a collection of At2+2t+\
objects called points divided into subclasses called lines such that each subclass
contains 2t +1 points, and any two subclasses have precisely one point in common.
Thus two lines define a point, and the dual, two points determine a line, also holds.
An extensive literature has grown up on this subject since the topic was first
explored in (8).

The leading theorems about finite projective planes concern the question of
existence of such planes. We have the classic result established in (1): if the order
is a prime or a power of a prime, the geometry exists. We also have the now cele-
brated Bruck-Ryser theorem (5) stating that if the order s s 1 or 2 (4) and if the
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decomposition of s contains a prime of the form 4k + 3 to an odd power, then the
finite projective plane fails to exist. Despite strenuous efforts and much computer
time, no further progress has been made with this fundamental question. As a
result, two schools have arisen, one faction believing that finite projective planes
exist in all cases not excluded by the Bruck-Ryser conditions while others conjec-
ture that such planes exist only if s is a power of a prime or a prime. The former
position was somewhat strengthened by the remarkable discovery of Bose,
Shrikhande, and Parker that the Euler conjecture was false since they showed
the existence of two orthogonal Latin squares of side 4k+ 2 for k > 1 (3, 4)
which we now proceed to define.

Let a set of s integers 0, 1, • • •, s— 1 be arranged in an J x s square in such a
way that every integer occurs s times. If each integer occurs once and only once
in every row and column, the square is said to be a Latin square of side s. Two
squares are said to be orthogonal to one another if, when one square is super-
imposed upon the other square, every number of the first occurs once and only
once with every number of the second square. To the set of at most s— 1 Latin
squares which are mutually orthogonal, we may adjoin two other squares which
are not Latin squares but which are orthogonal to each other and to every other
Latin square in the orthogonal set. The first of these squares is constructed by
taking each element of the first row as 0, each element of the second row as 1,
and so on. The second square is the transpose of the first square. Conversely it
may be noted that any square orthogonal to these two squares must be a Latin
square. Thus a total of s+1 orthogonal squares is possible at best, and it is known
that this bound is attainable when 5 is a prime or a power of a prime [1]. When
this bound is attained, we say that we have a complete set of orthogonal squares.
As an example of a complete set, we might choose s = 3 and write
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If we write in order the elements of each square in a line, we can display these
squares in the following form:

0 0 0 1 1 1 2 2 2 [first square]
0 1 2 0 1 2 0 1 2 [second square]
0 1 2 1 2 0 2 0 1 [third square]
0 1 2 2 0 1 1 2 0 [fourth square]

In this form we see that any two rows have the property that each one of the nine
possible ordered pairs occurs exactly once when one row is superimposed on
another row.

We call such an array an orthogonal array of index 1, strength 2, and level 5.
A classic result is that the maximum number of rows we can accommodate is s+l.
We call the maximum number of rows we can construct the number of constraints.
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3. On the expansion of orthogonal arrays to a square matrix

We consider orthogonal arrays with J = 2t of strength 2 and index 1. Then
we assume that there are 2t +1 constraints equivalent to the assumption that a
finite projective plane of this order exists. We assume the array is written in
standard form with the first two rows:

0 0 - - - 0 l i • • • i . . . ,s_-i , s _ i • • • s - i

o l • • • s - i o l • • • s - i • • • o l • • - s - i

Let us suppose that the orthogonal array is repeated so that we now have Bt2

columns and 2t+l rows. We propose expanding this array to a square matrix of
order St2 by replacing each element in the array by a vector. In fact, we set up a
one-to-one correspondence between the elements of our array and vectors which
are columns of a Hadamard matrix of order At. Specifically, we assume this matrix
exists, and we agree to choose the first row to consist only of positive entries. The
second row is to contain 2t plus entries followed by 2t negative entries. We now
delete these two rows from the Hadamard matrix and consider only the remaining
At — 2 rows. We now replace 0 in the first half of the orthogonal array by the first
column of our reduced Hadamard matrix where each element is multiplied by %.
We replace 0 in the second half of our orthogonal array by the 2t +1 column of
our Hadamard matrix. Similarly we replace 1 in the first half of the array by the
second column with each element multiplied by \ and 1 in the second half by the
2f + 2 column etc. To illustrate the process we have described, we append the
details for the case t = 1. The array when duplicated becomes:

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 .

The Hadamard matrix is

The replacements are:

first half
1/2

1/2

-1/2

-1 /2

second half

l->-±,
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and we secure:
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In this way the original array now becomes a matrix with (2t+l)(4t — 2) =
St2 — 2 rows. We now adjoin a row consisting of \ repeated At2 times followed by
plus repeated At2 times. We adjoin a second row consisting of \ repeated At2

times and minus repeated At2 times to secure a square matrix. We call this matrix
A. We claim that this matrix is orthogonal in the sense that the inner product of
any two columns is zero.

Suppose we consider any two columns from the second half. From our
construction we note that the portion of the inner product arising from two dif-
ferent symbols in the original array is the inner product of two columns of an
Hadamard matrix with the first two rows deleted. The inner product contribution
is therefore —2. If however the original symbols agree, the contribution is At —2.
We now note in the original array that any two columns have precisely one row
in which the symbols agree, for if there were two such rows, then there would be
a repeated pair. It is easily seen that any two columns have precisely one row in
which the symbols agree. Recapitulating, the inner product is then:

4t—2 (from repeated symbol)
— 2 (2/) (from the remaining It pairs)

2 (from the adjoined rows).

A precisely similar proof holds for the orthogonality of any two columns from
the first half.

If we select one column from the first half and one from the second half,
then there is no contribution to the inner product from the two adjoined rows.
Since here we deleted the combination \, \ from the first two rows in the first
half and the combination -i— from the first two rows in the second half, it is
clear that the inner product attributable to any two symbols in the vector replace-
ment process is zero. We thus have the result:

THEOREM. The matrix Ar A is diagonal with the first At2 entries 2t2 and the
last At2 entries %t2.

It follows that the eigenvalues of ATA are 2t2 and 8?2 each of multiplicity At2.
The matrix AAT will have the same eigenvalues. We show that the inner product
of any two rows of A arising from different rows in the original array is zero.

We note that each pair in the original array occurs once between any two
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rows. Thus 0 (say) is paired against 0, 1, • • •, It — 1. In both the first half and the
second half, the vector replacements have the property that the sum of the elements
in any row is zero. Hence the contribution to the inner product arising from any
fixed element (say) 0 in one of the rows is zero. Evidently the first two rows that
we adjoined are orthogonal to all the remaining rows although not to each other.
Nor are two rows that arise in the replacement process from a single row orthog-
onal. The matrix AAT then consists of a direct sum of matrices © U; V, V, • • •, V
where U is 2 x 2 and each V is (4f-2) x (4?-2). Each of these matrices has 5t2

as a diagonal element, and U has — 3t2 as the off-diagonal element. The off-
diagonal elements of V are not known unless we also describe the structure of the
Hadamard matrix which generated them. We do know V is symmetric. Inspecting
the U matrix, we easily verify that its eigenvalues are %t2 and It1. Consequently
each V has the same eigenvalues each repeated the same number of times.

We now set

C = (M+m)/(M-m)[I-2V/(M+m)].

Such a transformation has the effect of relocating all eigenvalues between — 1
and 1 where M and m are the greatest and least eigenvalues of V. Since this theorem
is not well-known, we append a short proof.

THEOREM. If OL and /? are scalars and E = al+flF, then the eigenvalues of E
are given by fiX + a where X is an eigenvalue of F.

PROOF. \E~HI\ = 0 -• \aI+pF-fiI\ = 0 -> \F- [(//— <x)//?]Z| = 0. Setting
k = (ix — <x)lfi, we see that \i =

Identifying a and /? in the transformation above yields our assertion. In the
case at hand M = it2 and m = It2. Under this transformation we secure:

C = \I- V/2t2.

Consequently the main diagonal of C consists solely of 0. Clearly C is symmetric,
and its eigenvalues are + 1 . The eigenvalues of C2 are therefore all 1 and C is
symmetric. Hence there is an orthogonal matrix 0 such that 0C20r = / or
C2 = 0 r /0 = /. Therefore C is orthogonal. The methods used here are similar to
those introduced by the author in (7).

We now discuss the off-diagonal elements of C which arose from the original
Hadamard matrix. Recalling how C was formed, we select the 4t distinct vectors
in the H matrix with the proper weights: \ if the first half and 1 otherwise. We
study the second half first. Here we can have the combinations listed below with
the last line indicating the number of occurrences of each:

t—a t—a
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The contribution to the inner product is 4a —2/ where 0 ^ d 1 /. From the first
half the same combinations weighted with i occur with respective frequencies of
t — a, a, a, t — a so that the contribution to the inner product is {It — 4a)/4. In any
case the total contribution is | that of the portion arising from the second half.
To within scaling factors

41

cij = Z hikhJk.
2 l

4. Proof of the Theorem

For orthogonality, we must have

YC«JCvj = °-

We must therefore have

Z Z Kr K Z Ks hJs = 0, U ¥=V.
j*u r s

If we sum on j first, we must distinguish between the cases r = s and r # s. We
must also recall that the inner product of two columns is —2. We secure:

Y(-2-Krhs-hvrhvs)hurhDS+ ^(4t-2-h2
ur-h

2
vr)hurhvr = 0.

Since h2
ur = h\r = 1, the last sum reduces to

We also note that

Z hlh«shs = Z Kshs+ • • • + Z h«shs

= it X Ks hvs - Z Ks K = {it -

We therefore finally secure

But Zs hvs is always zero establishing the theorem of the first section.
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