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Rotating Rayleigh–Bénard convection denotes the convection between a warm plate
and a cold plate in a rotating environment. It is a classic model for understanding
convective vortices in the atmosphere and ocean. The influence of background rotation
on fluid inertia breaks the symmetry between cyclones and anticyclones. Such a symmetry
breaking could be represented by vorticity skewness, which still lacks a systematic theory.
Rapidly rotating convection with stress-free boundaries and unit Prandtl number is a
convenient starting point. The investigation starts from the convective onset stage, where
the vortices grow stationarily. Asymptotic analysis shows that the volumetric vorticity
skewness S is produced by the interaction between the n = 0, 1 and n = 1, 2 vertical
eigenmodes. The n = 0 (barotropic) mode contributes positively to S mainly by stretching
the vertical relative vorticity, an ageostrophic effect. The n = 2 mode makes a minor
negative contribution to S by preferentially intensifying the outflow over the inflow, a
non-hydrostatic effect. The theory predicts S to be proportional to the global Rossby
number defined with the volumetric standard deviation of vorticity, Rog. The proportional
factor does not depend on the Rayleigh and Ekman numbers, agreeing with direct
numerical simulations. Then the system enters the equilibrium stage. The stretching of
vertical vorticity still contributes to S dominantly. At Rog � 0.5, the emergent unsteady
flow significantly suppresses the asymmetry between the inflow and outflow strength, and
weakens its influence on S.
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1. Introduction

Fluid motion in a rotating background tends to organize into vortices that spin along
the rotating axis. The fluid area with the same or opposite sign of vertical vorticity
to the solid-body vorticity is defined as a cyclone or an anticyclone, respectively. The
strengths of cyclones and anticyclones are not statistically identical due to the symmetry
breaking brought by the influence of background rotation on the fluid inertia (e.g. Polvani
et al. 1994; Julien et al. 1996b; Yavneh et al. 1997; Hakim, Snyder & Muraki 2002;
Morize, Moisy & Rabaud 2005; Sreenivasan & Davidson 2008; Naso 2015). Background
rotation does not induce vorticity asymmetry when it dominates the fluid inertia, i.e. in
the quasi-geostrophic limit. This is because cyclones and anticyclones are dominantly
produced by stretching and squashing the solid-body vorticity, which are statistically
identical processes. Background rotation also does not induce vorticity asymmetry when
it is too weak to influence the flow. Thus the asymmetry vanishes at these two ends
(Vorobieff & Ecke 2002).

It is well known that the vertical vorticity is stretched more efficiently at the cyclonic
region than squashed at the anticyclonic region due to the influence of relative vorticity on
the absolute vorticity. This ageostrophic mechanism, briefed as the stretching of vertical
relative vorticity, is key for producing vorticity asymmetry in rotating fluids (e.g. Morize
et al. 2005); the challenge is quantifying how the asymmetry depends on the solid-body
rotation rate. In addition, it remains unclear whether the non-hydrostatic effect, which
generates the asymmetry between convergent and divergent flow, could indirectly influence
the vorticity asymmetry. This paper explores the vorticity asymmetry of rapidly rotating
Rayleigh–Bénard convection, a canonical non-hydrostatic flow near the quasi-geostrophic
end.

Rotating Rayleigh–Bénard convection (RRBC) is a prototype model of rotating
convection. It is the free convection between a warm lower plate and a cold upper plate in
a rotating background (e.g. Bénard 1901; Rayleigh 1916; Chandrasekhar 1953; Nakagawa
& Frenzen 1955; Veronis 1959; Boubnov & Golitsyn 1986; Julien et al. 1996b; Ding et al.
2023; Ecke & Shishkina 2023; Anas & Joshi 2024), and has implications for the dynamics
of tropical cyclones, tornadoes, open ocean convection, Earth’s dynamo, and the interior
circulation of gas giants, etc. (Marshall & Schott 1999; Hendricks, Montgomery & Davis
2004; Vasavada & Showman 2005; Aurnou et al. 2015; Horn & Aurnou 2021; Vélez-Pardo
& Cronin 2023). Without considering centrifugal acceleration, RRBC could be governed
by three independent non-dimensional parameters:

Ra =βg�T H3

νκ
, E = ν

fH2 , Pr =ν
κ
, (1.1a–c)

where β is the thermal expansion coefficient, g is the gravitational acceleration, �T is
the temperature difference between the bottom and top, H is the depth of the fluid, f is
the Coriolis parameter (solid-body vorticity) that equals twice the background rotation
rate, and ν and κ are the kinematic viscosity and thermal diffusivity, respectively. The
Rayleigh number Ra depicts the relative strength of the destabilizing effect of buoyancy
to the damping effect of viscosity and thermal diffusion. The Ekman number E represents
the relative strength of viscosity and the rotational effect. The Prandtl number Pr is the
ratio of kinematic viscosity to thermal diffusivity.

The equilibrium state of RRBC is further classified with the reduced Rayleigh number
R̃a ≡ Ra E4/3. It represents the extent to which the convective system is supercritical
to neutral stability (Chandrasekhar 1961). According to Stellmach et al. (2014), when
R̃a � 25, the flow is dominated by quasi-steady densely packed columnar vortices that

997 A3-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.571


Vorticity skewness of rotating Rayleigh–Bénard convection

barely interact with each other, called the cellular regime. When 25 � R̃a � 70, the system
is in the convective Taylor column regime. The vortices are packed less densely and more
significantly shielded with opposite-sign vorticity, and vortex interaction remains weak.
For R̃a � 70, organized vortices break into unsteady plumes and could form barotropic
large-scale vortices.

In RRBC, vertical vorticity has been found to skew towards positive generally (Julien
et al. 1996a,b, 2012; Vorobieff & Ecke 2002; Kunnen, Geurts & Clercx 2009, 2010b;
Favier, Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014; Guzmán et al. 2020;
Shi et al. 2020). We call it a ‘cyclonic bias’. Previous studies on the cyclonic bias of
RRBC focus on the turbulent regime and have presented three qualitative explanations.
First, the convergent flow makes a cyclone more compact, and the divergent flow makes
an anticyclone more diluted (Guervilly et al. 2014). This is essentially the stretching of
vertical vorticity. Second, the turbulent mixing due to vortex–vortex interaction weakens
the convective cell’s outflow to produce a diluted anticyclone (Julien et al. 1996a,b;
Vorobieff & Ecke 2002; Kunnen, Clercx & Geurts 2010a; Kunnen et al. 2010b; Shi et al.
2020). This effect could be enhanced by Ekman pumping, which intensifies a convective
cell’s inflow to produce a compact cyclone (e.g. Kunnen, Clercx & Geurts 2006). Third,
an anticyclone with vertical relative vorticity lower than −f is susceptible to centrifugal
instability (Kunnen et al. 2010b; Favier et al. 2014), but there is no such constraint for
cyclonic vorticity. The eddies produced by centrifugal instability might further dilute the
anticyclones, so they can also enhance the second factor. These arguments have covered
most of the ageostrophic effects and the asymmetry between convergent and divergent
flow. Still, a theoretical framework is needed to clarify which mechanism dominates at
which stage or regime.

Little progress in theoretical modelling has been made on the vorticity skewness in
the weakly nonlinear regime of RRBC, which is the basis for understanding vorticity
skewness in the turbulent regime. In the weakly nonlinear regime, the instability is
finite-amplitude. Previous studies have diagnosed the vorticity skewness at each horizontal
slice (e.g. Julien et al. 1996b; Vorobieff & Ecke 2002; Kunnen et al. 2009), but how
it depends quantitatively on the solid-body rotation rate has not been discovered. The
pioneering work of Veronis (1959) has presented a comprehensive asymptotic analysis
of weakly nonlinear RRBC in the steady state. The vorticity skewness, a nonlinear effect,
can be calculated with his second-order special solutions. However, possibly due to the
low expectation for a simple result, the analysis seems to have not been done. Our interest
in this problem was ignited when plotting the simulated volumetric vorticity skewness
S against the global (volumetric) Rossby number Rog, using a series of direct numerical
simulations (DNS) with different Ra and E, and fixed Pr = 1. Here, S and Rog are defined
as

S ≡ 〈ω∗
z

3〉
〈ω∗

z
2〉3/2

, Rog ≡ 〈ω∗
z

2〉1/2

f
, (1.2a,b)

where ω∗
z denotes the (dimensional) vertical vorticity, ω∗

z denotes its vertical average, and
〈ω∗

z 〉 denotes its horizontal average. The volumetric skewness and Rossby number have
hardly been used in previous studies of RRBC. The volumetric averaging eliminates many
freedoms, showing compactly the vorticity asymmetry of the system. At the convective
onset stage, we found S ∝ Rog with a proportional factor approximately 2.5 that hardly
depends on Ra and E in the Rog � 1 regime. This inspires us to revisit the finite-amplitude
RRBC with asymptotic analysis and explain why S ∝ Rog. We start the investigation from
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Figure 1. Cross-sections of vertical vorticity normalized by f at (a) the convective onset stage and
(b) the equilibrium stage. The data of the Ra3 experiment (see table 1) with stress-free boundaries are used
(R̃a = 23.2 and E = 10−4). The plots are of ω∗

z /f at the non-dimensional times (a) t = 8 and (b) t = 100. The
horizontal plane is at z = 0.2, and the vertical planes are at x = 1.25 and y = 1.25. The simulation domain is
doubly periodic, with 0 < x < 2.5, 0 < y < 2.5 and 0 < z < 1. See § 2 for the experimental setting and the
non-dimensionalization procedure.

the convective onset stage, where the vortices are erect and highly organized. We find that
the skewness is contributed positively by the stretching ofω∗

z and contributed negatively by
vorticity tilting and outflow intensification. Then we extend the theory to the equilibrium
stage by accounting for the eddy-induced vertical shear, a stochastic factor that breaks the
vertical coherency and terminates the outflow intensification. The flow fields at the two
stages are demonstrated in figure 1, as well as in movies 1 and 2 in the supplementary
material (available at https://doi.org/10.1017/jfm.2024.571).

The paper is organized as follows. Section 2 introduces the governing equation and DNS
set-up. Section 3 presents the S and Rog diagnosed from DNS. Section 4 uses vertical mode
decomposition and an asymptotic equation set to study S at the convective onset stage.
Section 5 extends the theory to the equilibrium stage. Section 6 concludes the research.

2. The governing equations and DNS set-up

This section introduces the variables, the governing equations and the DNS set-up.
The dimensional variables (not including constant quantities) are denoted with *.
Here, i, j,k are the unit vectors of the Cartesian coordinates, x∗ = (x∗, y∗, z∗) is
the position, u∗ = (u∗, v∗,w∗) is the velocity, p∗ is the pressure potential, T∗
is the perturbation temperature that has subtracted a diffusive-equilibrium linear
temperature profile, and ω∗ = (ω∗

x , ω
∗
y , ω

∗
z ) is the vorticity, with ω∗ = ∇∗ × u∗, where

∇∗ ≡ i ∂/∂x∗ + j ∂/∂y∗ + k ∂/∂z∗ is the gradient operator. We non-dimensionalize the
variables in the formulation of Portegies et al. (2008). The convective overturning time
scale is H/W, where the characteristic vertical velocity W uses the free-fall scaling
W = √

gβ �T H. The length scale is the domain height H. The temperature scale is the
temperature difference between the lower and upper plates, �T . So

t∗ = tH/W, (x∗, y∗, z∗) = (x, y, z)H, u∗ = uW,

ω∗ = ωW/H, T∗ = T �T, p∗ = pW2.

}
(2.1)
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Vorticity skewness of rotating Rayleigh–Bénard convection

The convection is between a warm plate at z = 0 and a cold plate at z = 1, with a doubly
periodic lateral boundary. The flow obeys the incompressible Boussinesq equation:

∂u
∂t

+ (u · ∇)u + 1
Ro

k × u = −∇p + Tk +
(

Pr
Ra

)1/2

∇2u, (2.2)

∂T
∂t

+ (u · ∇) T − w = (Pr Ra)−1/2 ∇2T, (2.3)

∇ · u = 0, (2.4)

where ∇ ≡ i ∂/∂x + j ∂/∂y + k ∂/∂z is the non-dimensional gradient operator, and
Ro ≡ E(Ra/Pr)1/2 = W/( fH) is the convective Rossby number that measures the relative
strength of thermal forcing to the rotational effect (Julien et al. 1996b). Note that both
Ro and R̃a ≡ Ra E4/3 are combinations of Ra and E, but their physical interpretations are
different: Ro measures the deviation from geostrophic balance at the equilibrium state, and
R̃a measures the deviation from neutral stability (R̃a ≈ 8.7; Chandrasekhar 1953). For the
weakly nonlinear and rapidly rotating RRBC, there is Ro � 1 and R̃a � O(101).

The temperature boundary condition is Dirichlet:

T|z=0 = 0, T|z=1 = 0. (2.5a,b)

The impermeable velocity boundary condition is

k · u|z=0 = 0, k · u|z=1 = 0. (2.6a,b)

For the tangential velocity, we study only the stress-free boundary condition:

k × ∂u
∂z

∣∣∣∣
z=0

= 0, k × ∂u
∂z

∣∣∣∣
z=1

= 0. (2.7a,b)

The DNS are performed with the Boussinesq solver of Cloud Model 1, version 19.8
(CM1; Bryan & Fritsch 2002). See Appendix A for the detailed numerical setting. The
simulation is run in a [0, 2.5] × [0, 2.5] × [0, 1] horizontally doubly periodic domain.
The initial condition is a spatially uncorrelated random noise on T in the whole domain,
obeying a uniform distribution between −0.25 and 0.25. This noise generation method is
the default setting of the configured ‘Rayleigh–Bénard convection’ set-up in CM1. The
perturbation amplitude uses the default value, which is relatively large but does not cause
numerical instability in our simulations. We fix Pr = 1, which is close to the Pr ≈ 0.7
value of air and is mathematically simple (e.g. Vélez-Pardo & Cronin 2023). Because our
Pr is above 0.68, the primary instability is stationary, with vortices growing at the same
location (Chandrasekhar 1953).

We define the convective onset stage as the stage where the vortices have not been
sufficiently deformed and tilted by mutual advection or by any secondary instability (e.g.
Küppers & Lortz 1969; Carton 1992). Practically, the end of the convective onset stage is
set as the overshooting peak of the time series of Rog, which marks the initiation of vortex
interaction that breaks down the stationary pattern.

We perform two groups of experiments, with eight simulations in each group.

(i) Changing Ra and using a fixed E = 10−4.
(ii) Changing E and using a fixed Ra = 2.5 × 106.

The experimental parameters are listed in table 1 and plotted in figure 2. We explore
the parameter space around Ra = 2.5 × 106 and E = 10−4, because this point has been
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Name Ra (×106) E (×10−4) Ro R̃a Ra/Rac

Ra1 12.50 1.00 0.354 58.0 8.68
Ra2 8.33 1.00 0.289 38.7 5.79
Ra3 5.00 1.00 0.224 23.2 3.47
Ra4 3.57 1.00 0.189 16.6 2.48
Ra5 3.13 1.00 0.177 14.5 2.17
Ra6 2.63 1.00 0.162 12.2 1.83
Ra7 2.50 1.00 0.158 11.6 1.74
Ra8 2.27 1.00 0.151 10.5 1.58
E1 2.50 5.00 0.791 99.2 16.30
E2 2.50 3.33 0.527 57.8 9.24
E3 2.50 2.50 0.395 39.4 6.19
E4 2.50 2.00 0.316 29.2 4.54
E5 2.50 1.67 0.264 22.9 3.52
E6 2.50 1.25 0.198 15.6 2.36
E7 2.50 1.00 0.158 11.6 1.74
E8 2.50 0.909 0.144 10.2 1.52

Table 1. Values of Ra, E, Ro ≡ E(Ra/Pr)1/2, R̃a ≡ Ra E4/3, and Ra/Rac in the 16 numerical experiments.
The Pr value is fixed at 1. Note that Ra7 and E7 are identical.

E

Parameter space

108

107

106

105

10–5 10–4 10–3

Ra

Figure 2. The E–Ra parameter space investigated in this paper. The blue crosses denote experiments Ra1–Ra8.
The red crosses denote experiments E1–E8. The black line denotes the critical Rayleigh number Rac derived
by Homsy & Hudson (1971).

investigated carefully by Portegies et al. (2008), and detailed background information
is available. The critical Rayleigh number Rac for the stress-free boundary case has
an asymptotic expression: Rac = 8.6956(1 − 1.108E1/6 + 0.1533E1/3)E−4/3, derived by
Homsy & Hudson (1971). The ratio Ra/Rac, which is a more accurate measure of
supercriticality than R̃a, ranges from 1.52 to 16.30 in the experiments. The equilibrium
states of our experiments are mainly in the cellular regime (R̃a � 25; Stellmach et al.
2014).

The time interval of data output is 0.5. The total simulation length is 120, which goes
through the convective onset stage and finally reaches a statistically equilibrium stage.
Before calculating any quantity, the data are interpolated from the vertically stretched
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Vorticity skewness of rotating Rayleigh–Bénard convection

mesh to a vertically uniform mesh with 300 layers using the cubic spline function. The
motivation for the interpolation is to facilitate the calculation of numerical integral and
finite difference. As readers will see, S calculated with the interpolated data converges to
zero in the Rog → 0 limit, so the interpolation error should be negligible.

3. Simulation results

Unlike previous studies that investigate the vorticity skewness at different heights (Julien
et al. 1996b; Kunnen et al. 2009), we investigate the contribution from different vertical
eigenmodes. Vertical mode decomposition is a useful technique in studying linear and
weakly nonlinear waves in a vertically confined domain (e.g. Vallis 2017). To our
knowledge, it has not been applied to analyse the vorticity skewness in RRBC. For
RRBC with stress-free boundary conditions, the vertical eigenfunction is the trigonometric
function:

sin(nπz) and cos(nπz), n = 0, 1, 2, . . . . (3.1a,b)

The n = 0 mode is called the barotropic mode, and n ≥ 1 modes are called baroclinic
modes. Variables with the Dirichlet and Neumann boundary conditions take the sin(nπz)
and cos(nπz) shapes, respectively. Thus u, v, ωz, p have a vertical structure of cos(nπz),
and w, T , ωh (horizontal vorticity vector) have a vertical structure of sin(nπz).

In this section, we do not distinguish between baroclinic modes and simply decompose
ωz into the barotropic mode and a bulk baroclinic mode. The barotropic mode is simply
the vertical average of ωz, defined as ωz. The baroclinic mode is the vertical anomaly,
defined as ω′

z. Because only the baroclinic modes can be linearly unstable, ωz must
be nonlinearly generated by baroclinic modes, and there should be O(ωz) � O(ω′

z) in
the weakly nonlinear regime. Substituting ωz = ωz + ω′

z into (1.2a–c), we decompose S
into the barotropic contribution, the baroclinic contribution and the barotropic–baroclinic
contribution:

S =

barotropic︷ ︸︸ ︷
〈ωz

3〉
〈ω2

z 〉3/2
+

baroclinic︷ ︸︸ ︷
〈ω′

z
3〉

〈ω2
z 〉3/2

+

barotropic–baroclinic︷ ︸︸ ︷
3

〈ωz
2ω′

z〉
〈ω2

z 〉3/2
+ 3

〈ωzω′
z
2〉

〈ω2
z 〉3/2

≈ 〈ω′
z
3〉

〈ω2
z 〉3/2

+ 3
〈ωzω′

z
2〉

〈ω2
z 〉3/2

. (3.2)

The purely barotropic contribution 〈ωz
3〉/〈ω2

z 〉3/2 is negligible because O(ωz)� O(ω′
z).

The 3(〈ωz
2ω′

z〉/〈ω2
z 〉3/2) term equals zero because 3(〈ωz

2ω′
z〉/〈ω2

z 〉3/2) = 3(〈ωz
2ω′

z〉/
〈ω2

z 〉3/2) = 0, where we have used ω′
z = 0. This simplification is validated with DNS

(figures 3 and 4). The only two terms remaining are the purely baroclinic term

〈ω′
z
3〉/〈ω2

z 〉3/2 and the barotropic–baroclinic term 3(〈ωzω′
z
2〉/〈ω2

z 〉3/2). Figures 3(e–h) and
4(e–h) show that at the convective onset stage, the purely baroclinic term is negative, and
the barotropic–baroclinic term is positive. The magnitude of the former is approximately
half of the latter, except for the Ra1 and E1 experiments that have relatively large R̃a
and Ro.
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Figure 3. (a–d) The time evolution of the vorticity skewness S ≡ 〈ω3
z 〉/〈ω2

z 〉3/2 (black line) and its

decomposed parts. The blue line shows 〈ω3
z 〉/〈ω2

z 〉3/2, the red line shows 〈ω′
z
3〉/〈ω2

z 〉3/2, the yellow line shows

3(〈ωz
2ω′

z〉/〈ω2
z 〉3/2), and the purple line shows 3(〈ωzω′

z
2〉/〈ω2

z 〉3/2). The blue shading marks the convective
onset stage, which ends at the time of maximum Rog. The red shading marks the equilibrium stage, which is
between t = 90 and t = 120, and will be studied in § 5. The four plots are for experiments (a) Ra1, (b) Ra3,
(c) Ra5, and (d) Ra8. (e–h) Comparison of the purely baroclinic term 〈ω′

z
3〉/〈ω2

z 〉3/2 and the barotropic–

baroclinic term 3(〈ωzω′
z
2〉/〈ω2

z 〉3/2), with the colour of the dots denoting time (0 < t < 20, from blue
to yellow). The time interval between two dots is 0.5. For (e), only a small portion of data points
lie in the scope of plotting. The solid black line is the 2 : −1 reference line. Here, (a,e) R̃a = 58.0,
(b, f ) R̃a = 23.2, (c,g) R̃a = 14.5, and (d,h) R̃a = 10.5.

Equation (3.2) indicates that the skewness originates from the correlation between the
baroclinic or barotropic vorticity with ω′2

z . The region with a high ω′2
z is essentially the

rich-vorticity region. We define the lines crossing the centre of the rich-vorticity region as
the vortex axes. At the convective onset stage, they coincide with the axes of strongest
vertical motions. Therefore, the vorticity structure along the vortex axis is crucial for
modelling the skewness.

Figures 5 and 6 show S ∝ Rog for almost all simulations, with proportional factor
approximately 2.5. The exceptions are the Ra1 and E1 experiments, where the Ro � 1
and R̃a � O(101) conditions are violated. Note that Rog and Ro have different physical
meanings: Rog is a diagnostic quantity that represents the instantaneous vorticity
amplitude, while Ro is an a priori estimation of Rog at the equilibrium state. Section 4
focuses on the convective onset stage. We use asymptotic analysis and vertical mode
decomposition to derive a Galerkin model, which proves S ∝ Rog and explains why the
barotropic–baroclinic and purely baroclinic terms make opposite contributions to S. They
are the basis for understanding the more complicated equilibrium stage in § 5.
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Figure 4. The same as figure 3, but for experiments E1, E3, E5 and E8 that change E and fix Ra. For (e, f ), only
a small portion of data points lie in the scope of plotting. Here, (a,e) E = 5.00 × 10−4, (b, f ) E = 2.50 × 10−4,
(c,g) E = 1.67 × 10−4, and (d,h) E = 9.09 × 10−5.

4. The vorticity skewness at the convective onset stage

4.1. Vertical mode decomposition
This subsection studies what controls S at the convective onset stage. The main idea is to
perform a vertical mode decomposition, and study the contribution from each mode. We
decompose velocity (u, v,w), horizontal vorticity ωh, vertical vorticity ωz, pressure p, and
temperature T into different vertical modes:

u = u0 + u1 + u2 + · · · ,
v = v0 + v1 + v2 + · · · ,

w = w0 + w1 + w2 + · · · ,
ωh = ωh,0 + ωh,1 + ωh,2 + · · · ,
ωz = ωz,0 + ωz,1 + ωz,2 + · · · ,

p = p0 + p1 + p2 + · · · ,
T = T0 + T1 + T2 + · · · ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.1)

where the subscript n denotes the nth vertical mode, with vertical structure sin(nπz) or
cos(nπz). For the weakly nonlinear regime, only the n = 1 mode is susceptible to linear
instability, so the n = 0 and n = 2 modes are driven nonlinearly by the n = 1 quantities.
Thus the n = 0 and n = 2 modes are smaller than the n = 1 modes by an order of Ro
(strictly speaking, Rog). The n ≥ 3 modes are higher-order nonlinear effects neglected in
this analysis.
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Figure 5. The dots show the dependence of the volumetric vorticity skewness S on the global Rossby number
Rog during 0 < t < 20. The data sampling time interval is 0.5. (a–h) Plots for experiments Ra1–Ra8 with
a fixed E = 10−4. The colour of the dots denotes time (0 < t < 20, from blue to yellow). The solid black
lines show the S = 2.5Rog fitting relation. Here, (a) R̃a = 58.0, (b) R̃a = 38.7, (c) R̃a = 23.2, (d) R̃a = 16.6,
(e) R̃a = 14.5, ( f ) R̃a = 12.2, (g) R̃a = 11.6, and (h) R̃a = 10.5.

We express the third-order moment of vorticity, which is the numerator of S, with the
n = 0, 1, 2 modes:

〈
ω3

z

〉
≈
〈(
ωz,0 + ωz,1 + ωz,2

)3
〉

= 〈ω3
z,0 + ω3

z,1 + ω3
z,2〉 + 6〈ωz,0ωz,1ωz,2〉

+ 3〈ω2
z,0ωz,1 + ωz,0ω

2
z,1 + ω2

z,0ωz,2 + ωz,0ω
2
z,2 + ω2

z,1ωz,2 + ωz,1ω
2
z,2〉

≈ 3〈ω2
z,1ωz,0〉 + 3〈ω2

z,1ωz,2〉. (4.2)

The first term of the fourth line is essentially the 3〈ωzω′
z
2〉 term in (3.2), and the second

term is essentially the 〈ω′
z
3〉 term. Many terms have been neglected, as explained below.

Some terms are exactly zero:

〈ω3
z,1〉 ∝ cos3 (πz) = 0, 6〈ωz,0ωz,1ωz,2〉 ∝ cos (πz) cos (2πz) = 0,

3〈ω2
z,0ωz,1〉 ∝ cos (πz) = 0, 3〈ω2

z,0ωz,2〉 ∝ cos (2πz) = 0,

3〈ωz,1ω
2
z,2〉 ∝ cos (πz) cos2 (2πz) = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.3)
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Figure 6. The same as figure 6, but for experiments E1–E8 that change E and fix Ra: (a) E = 5.00 × 10−4,
(b) E = 3.33 × 10−4, (c) E = 2.50 × 10−4, (d) E = 2.00 × 10−4, (e) E = 1.67 × 10−4, ( f ) E = 1.25 × 10−4,
(g) E = 1.00 × 10−4, and (h) E = 9.09 × 10−5.

The rest of the neglected terms, i.e. 〈ω3
z,0〉, 〈ω3

z,2〉 and 3〈ωz,0ω
2
z,2〉, are order Ro2

smaller than the retained terms. This section is devoted to understanding the relationship
between ωz,0, ωz,1 and ωz,2, which involves the full coupling between dynamical and
thermodynamic processes.

4.2. A Galerkin model
We derive a Galerkin model of n = 0, 1, 2 modes from a simplified set of equations. As
a simplification from Veronis (1959), we apply two assumptions that work for the rapidly
rotating and weakly nonlinear regime.

(i) The divergence equation uses geostrophic balance, which requires Ro � 1. This
assumption is crucial for deriving the quasi-geostrophic omega equation in § 4.3,
which helps us to understand the origin of S.

(ii) The n = 1 mode is the only unstable vertical mode, which requires 8.7 � R̃a �
21.9. This is because the critical R̃a of the nth mode in the rapidly rotating limit
approximately obeys 8.7n4/3 (Chandrasekhar 1953). We take it as R̃a � 20 for
simplicity.

A natural consequence of the two assumptions is E = Ro3 R̃a−3/2 Pr3/2 � 1. Because
the most unstable horizontal total wavenumber is Km = (π2/2)1/6E−1/3, we must have
Km � 1, and the vortices must have a small width-to-depth ratio (Chandrasekhar 1953).
This allows us to neglect viscosity and thermal diffusion in the vertical direction. The
simplified governing equation set is shown below, with linear terms on the left-hand side
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and nonlinear terms on the right-hand side:(
∂

∂t
− Ra−1/2 ∇2

h

)
ωz − 1

Ro
∂w
∂z

= −u · ∇ωz + ω · ∇w, (4.4)

∇2
h p − 1

Ro
ωz = 0, (4.5)(

∂

∂t
− Ra−1/2 ∇2

h

)
w + ∂p

∂z
− T = −u · ∇w, (4.6)(

∂

∂t
− Ra−1/2 ∇2

h

)
T = −u · ∇T, (4.7)

∇ · u = 0, (4.8)

where ∇h ≡ i ∂/∂x + j ∂/∂y denotes the horizontal gradient. Equation (4.5) is the
divergence equation using the geostrophic balance approximation. Also, note the ∇2 ≈ ∇2

h
approximation used in the viscosity and diffusion terms.

The simplified equation set is similar to yet different from the non-hydrostatic
quasi-geostrophic (NHQG) equation proposed by Sprague et al. (2006), which is derived in
the regime of Ro � 1 and small width-to-depth ratio, using multiple time scale asymptotic
expansion. The rigorous NHQG equation yields zero S. We retain a few terms neglected
in the NHQG scaling, which are crucial for generating vorticity asymmetry.

(i) In the vertical vorticity equation (4.4), the advection of ωz by the toroidal velocity,
the stretching of ωz, and tilting terms are retained. The toroidal velocity includes the
vertical velocity and the curl-free component of horizontal velocity.

(ii) In the w equation (4.6), the advection of w by the toroidal velocity is retained.
(iii) In the T equation (4.7), the advection of perturbation temperature T by the toroidal

velocity is retained. This term is partially represented in the NHQG equation by
allowing the horizontally averaged temperature perturbation 〈T〉 evolve.

We will show that factor (i) contributes positively to S, and factors (ii) and (iii) contribute
negatively to S, at the convective onset stage. Substituting (4.1) into the simplified equation
set (4.4)–(4.8), we obtain a Galerkin model of the n = 1, n = 2 and n = 0 modes relevant
for calculating skewness.

The n = 1 mode equation is(
∂

∂t
− Ra−1/2 ∇2

h

)
ωz,1 − 1

Ro
∂w1

∂z
= 0, (4.9)

∇2
h p1 − 1

Ro
ωz,1 = 0, (4.10)(

∂

∂t
− Ra−1/2 ∇2

h

)
w1 + ∂p1

∂z
− T1 = 0, (4.11)(

∂

∂t
− Ra−1/2 ∇2

h

)
T1 − w1 = 0, (4.12)

∇ · u1 = 0. (4.13)
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Vorticity skewness of rotating Rayleigh–Bénard convection

The eigenvalue of the n = 1 equation is the growth rate σ of the linear instability:

σ =
(

K2 − Ro−2 π2

K2

)1/2

− Ra−1/2 K2. (4.14)

The n = 2 mode governing equation is(
∂

∂t
− Ra−1/2 ∇2

h

)
ωz,2 − 1

Ro
∂w2

∂z
= 0, (4.15)

∇2
h p2 − 1

Ro
ωz,2 = 0, (4.16)(

∂

∂t
− Ra−1/2 ∇2

h

)
w2 + ∂p2

∂z
− T2 = −u1 · ∇w1, (4.17)(

∂

∂t
− Ra−1/2 ∇2

h

)
T2 − w2 = −u1 · ∇T1, (4.18)

∇ · u2 = 0. (4.19)

For the n = 0 mode, only the vertical vorticity equation is needed:(
∂

∂t
− Ra−1/2 ∇2

h

)
ωz,0 = − w1

∂ωz,1

∂z︸ ︷︷ ︸
vertical advection

+ωz,1
∂w1

∂z︸ ︷︷ ︸
stretching

− (u1 · ∇h) ωz,1︸ ︷︷ ︸
horizontal advection

+ (
ωh,1 · ∇h

)
w1︸ ︷︷ ︸

tilting

. (4.20)

The stretching of solid-body vorticity cannot produce barotropic vorticity because the
barotropic mode is purely two-dimensional. We call the right-hand side terms of (4.20)
ageostrophic effects because they do not exist in the NHQG scaling (Sprague et al. 2006).

The Galerkin model has been greatly simplified by the assumption that the instability
is dominated by a single mode with a unique horizontal and vertical wavenumber. The
−u1 · ∇w1 and −u1 · ∇T1 terms only project onto the n = 2 mode:

− u1 · ∇w1, −u1 · ∇T1 ∝ sin(πz) cos(πz) ∼ sin(2πz). (4.21)

The sum of the vertical advection and stretching of ωz,1 only projects onto the n = 0 mode
vorticity equation:

− w1
∂ωz,1

∂z
+ ωz,1

∂w1

∂z
∝ sin2(πz)+ cos2(πz) ∼ 1. (4.22)

In Appendix B, we prove that with an additional axisymmetric assumption, which
approximately works for vortices at the convective onset stage, the sum of the horizontal
advection and tilting terms also only project onto the n = 0 mode vorticity equation.

Next, we study the two parts of S, which is from the interaction between the n = 1 and
n = 2 modes, and from the interaction between the n = 1 and n = 0 modes:

S ≈ 3
〈ω2

z,1ωz,2〉
〈ω2

z,1〉3/2
+ 3

〈ω2
z,1ωz,0〉

〈ω2
z,1〉3/2

. (4.23)

Note that the self-interaction of the n = 1 mode does not generate vorticity skewness,
because 〈ω3

z,1〉 = 0, as shown in (4.3).
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4.3. The negative contribution to S from the n = 2 mode
The n = 2 vertical vorticity equation (4.15) has an intriguing property: it is linear. Thus
ωz,2 is only driven by the stretching of solid-body vorticity by w2. The quasi-geostrophic
approximation on the divergence equation (4.16) allows us to derive the diagnostic
equation of w2, essentially the quasi-geostrophic omega equation (e.g. Holton 2004) in
the non-hydrostatic state with unstable stratification. Combining (4.15)–(4.19), we obtain⎡⎢⎢⎢⎣ 1

Ro2
∂2

∂z2︸ ︷︷ ︸
from p2, <0

−∇2
h︸︷︷︸

from T2 adv, >0

+
(
∂

∂t
− Ra−1/2 ∇2

h

)2

∇2
h︸ ︷︷ ︸

non-hydrostatic, <0

⎤⎥⎥⎥⎦w2

= −
(
∂

∂t
− Ra−1/2 ∇2

h

)
∇2

h (u1 · ∇w1)− ∇2
h (u1 · ∇T1) . (4.24)

The operator on the left-hand side includes three important terms.

(i) The pressure gradient part (1/Ro2)(∂2/∂z2), which suppresses w2. This is because
convergence produces a cyclone and therefore a low-pressure anomaly, and vice
versa for divergence. Thus pressure gradient force always points from a divergent
zone to a convergent zone, suppressing w2.

(ii) The temperature advection part ∇2
h , which amplifies w2. This term originates from

the w2 term in (4.18). It amplifies w2 because a higher w2 increases the buoyancy (T2)
and accelerates an updraft, and similarly for a downdraft. This term has an opposite
sign in the traditional omega equation applied to a stably stratified fluid.

(iii) The non-hydrostatic term, which suppresses w2.

The omega equation helps us to infer the trend of w2 from the forcing terms. First, we
analyse the left-hand-side operator of (4.24). The first and third terms yield a multiplier
with a minus sign, and the second term yields a positive sign. We can determine the sign
of the left-hand-side operator without solving the omega equation. If the n = 1 variables
were substituted into the left-hand side operator,

n = 1, −∇2
h = K2

m,
∂

∂t
= σ,

∂2

∂z2 = −π2, (4.25a–c)

then the left-hand side would be zero, providing a reference. Now we substitute in the
n = 2 variables (e.g. w2). Because the right-hand-side forcing terms of (4.24) are product
terms of the n = 1 mode, we must have ∂/∂t = 2σ , and the horizontal structure of the
n = 2 mode must be approximately twice as fine-grained as the n = 1 mode. Thus we
set −∇2

h ≈ α2K2
m, where α is an unknown parameter, diagnosed to be 1 < α < 2 in

Appendix C (figure 12). The vertical structure of the n = 2 mode is also more fine-grained,
yielding ∂2/∂z2 = −4π2. This is summarized as

n = 2, −∇2
h ≈ α2K2

m,
∂

∂t
= 2σ,

∂2

∂z2 = −4π2. (4.26a–c)
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(a) (b)

Downwind deformation of w Vertical advection + stretch of ωz

w ωz

AC

CC

Figure 7. A schematic illustration of the vorticity skewness generation along the vortex axis at the convective
onset stage. An updraft is used as an example. (a) The vertical velocity downwind deformation (outflow
intensification) enhances the squashing of solid-body vorticity, generating a strong anticyclone (AC). It
contributes negatively to S via the interaction between the n = 2 and n = 1 modes. (b) The vertical advection
and stretching of ωz produce a barotropic cyclone (CC) along the vortex axis. It contributes positively to S via
the interaction between the n = 0 and n = 1 modes. The solid blue lines denote (a) the n = 1 mode vertical
velocity and (b) the vertical vorticity profile along the vortex axes. The solid red lines denote (a) the bulk
vertical velocity and (b) the vertical vorticity profile. The dashed black lines are zero-value reference lines.

Using (4.25a–c) and (4.26a–c), we calculate the change of magnitude of each
left-hand-side term when switching from n = 1 to n = 2:

1
Ro2

∂2

∂z2 × 4,

−∇2
h × α2,(

∂

∂t
− Ra−1/2 ∇2

h

)2

∇2
h × (2σ + α2Ra−1/2 K2

m)
2α2

(σ + Ra−1/2 K2
m)

2︸ ︷︷ ︸
>α2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.27)

Because 1 < α < 2, the first and third terms of (4.27) are amplified more than the
second term when switching from n = 1 to n = 2. Thus they dominate the sign of the
left-hand-side operator, and the operator must correspond to a negative multiplier.

The above analysis shows that along the vortex axis, w2 must have the same sign as
−u1 · ∇w1 and −u1 · ∇T1, which causes w to deform downwind vertically. The downwind
deformation denotes the shift of the zero divergence height towards the outflow zone,
essentially an intensification of outflow (figure 7a). As a result, the convergent zone is
more diluted than the divergent zone, making the magnitude of the cyclone produced by
stretching the solid-body vorticity smaller than the magnitude of the anticyclone produced
by squashing the solid-body vorticity. This explains why the n = 2 mode contributes
negatively to S.

Here are physical explanations for the downwind deformation. We take the updraft as
an example. Here, −u1 · ∇w1 denotes the inertia of a parcel. Buoyancy remains positive
along the air column, so the parcel keeps accelerating until steered to divergence near the
upper plate, causing a downwind deformation of the vertical velocity profile. Meanwhile,
the upward advection of temperature makes the temperature lapse rate smaller at the lower
level and larger at the upper level. This reduces the low-level convective instability and
enhances the upper-level convective instability. Thus the peak height of vertical velocity
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must shift to a higher level, also causing a downwind deformation. An extreme example
of downwind deformation of vertical velocity is a buoyant plume, which keeps entraining
(converging) fluids unless a ceiling forces it to diverge (e.g. Rooney & Linden 2012).

4.4. The positive contribution to S from the n = 0 mode
Equation (4.20) shows that along the vortex axis, the barotropic vorticity is produced by
the vertical advection term −w1(∂ωz,1/∂z) and the stretching term ωz,1(∂w1/∂z). For an
updraft, there is a low-level cyclone and an upper-level anticyclone. The down-gradient
advection produces an overall cyclonic anomaly. The stretching on the low-level cyclone
and the squashing on the upper-level anticyclone produce an overall cyclonic anomaly.
Thus both terms generate cyclonic anomaly along the vortex axis, producing a barotropic
cyclone, as illustrated in figure 7(b). The cyclonic bias produced by these mechanisms
has been identified in many previous studies of rotating fluids (e.g. Schubert & Alworth
1987; Morize et al. 2005; Majda, Mohammadian & Xing 2008). The only discussion in
the context of RRBC seems to be from Guervilly et al. (2014). They explained the cyclonic
bias as the concentration of cyclonic vorticity by the convergent flow and the dilution of
anticyclonic vorticity by the divergent flow. It is an explanation based on the flux-form
vorticity equation (e.g. Haynes & McIntyre 1987), consistent with the explanation based
on the stretching of ωz.

Readers might ask: what is the role of the horizontal advection and tilting terms?
They are zero along the vortex axis. Tory, Montgomery & Davidson (2006) made a
budget analysis of a simulated tropical cyclone precursor vortex. They found a core–shield
structure of barotropic vorticity, with the horizontal advection and tilting terms producing
an anticyclonic shield around a cyclonic core. The shield structure in the RRBC problem is
theoretically confirmed in Appendix B and visible in the simulation result (figure 11(c) of
Appendix C). Note that this shield is a nonlinearly generated depth-averaged structure that
needs to be compared cautiously with the RRBC literature, where the shield (or sleeve) is
more loosely defined as a ring of opposite-sign vorticity to the vortex core that is also seen
in the linear instability (e.g. Sprague et al. 2006; Portegies et al. 2008; Grooms et al. 2010;
Shi et al. 2020). Because the anticyclonic shield renders ωz,0 < 0, it produces negative
vorticity skewness via 〈ωz,0ω

2
z,1〉. However, because the shield is off the vortex axis, its

negative contribution is minor compared to the positive contribution by vertical advection
and stretching along the vortex axis. In fact, the bulk effect of the horizontal and vertical
advection of ωz does not produce volumetric vorticity skewness, even though it could
generate local vorticity skewness along the vortex axis, as will be shown in the budget
analysis of the 〈ω3

z 〉 equation in § 5. This is because the positive skewness produced by the
vertical advection along the vortex axis is offset by the negative skewness produced by the
horizontal advection in the anticyclonic shield. Given that advection does not produce
volumetric vorticity skewness, we do not highlight the role of vertical advection as a
generator of vorticity skewness.

In summary, S at the convective onset stage is controlled by two factors. The
downwind deformation of w is inherently non-hydrostatic, contributing negatively to S.
The production of barotropic vorticity by vortex tube stretching and tilting is inherently
ageostrophic, contributing positively to S. Despite the rich insights, the above qualitative
analysis cannot explain the −1 : 2 relative contribution of the n = 2 and n = 0 modes in
DNS. It also cannot explain why S ∝ Rog and determine the proportional factor, which
does not depend on Ra and E, and is approximately 2.5 in DNS. In Appendix C, we
perform an order-of-magnitude estimation of S via a single-scale approximation on the
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Galerkin model, and by using the vorticity skewness along the vortex axis to estimate
the volumetric skewness. The contributions of the n = 2 and n = 0 modes to S are
confirmed theoretically to be of the same order of magnitude. We show theoretically that
S/Rog ∼ 1.5, which is close to the S/Rog ≈ 2.5 result in DNS.

5. The vorticity skewness at the equilibrium stage

The convective onset stage has a relatively simple flow pattern with erect vortices, and is a
convenient starting point. This section studies the equilibrium stage and investigates how
much of the mechanism discussed at the convective onset stage still holds. We define the
equilibrium stage as the period where flow statistics do not vary significantly with time.
In practice, we use the time-averaged data between t = 90 and t = 120 to diagnose its
behaviour. The slot is marked as the red shading in figures 3 and 4. To test the convergence
of the averaging, figure 8, which is associated with the equilibrium stage, is recalculated
between t = 90 and t = 105, and between t = 105 and t = 120, and deposited in the
supplementary material. No qualitative differences are found, so the averaging between
t = 90 and t = 120 should be an adequate representation of the equilibrium-state statistics.

5.1. Budget analysis of the 〈ω3
z 〉 equation

For the equilibrium stage, we have tried the analysis with the barotropic–baroclinic
decomposition, but found a conversion between the barotropic–baroclinic term and the
purely baroclinic term due to the unsteady flow, which complicates the attribution of
physical mechanisms. Thus we take another route by making a budget analysis of the
〈ω3

z 〉 equation. Multiplying by 3ω2
z on both sides of the vertical vorticity equation

∂ωz

∂t
= −u · ∇ωz + ω · ∇w + 1

Ro
∂w
∂z

+
(

Pr
Ra

)1/2

∇2ωz (5.1)

and making a volumetric average, we get

d〈ω3
z 〉

dt
=

ageostrophic︷ ︸︸ ︷
3

〈
ω3

z
∂w
∂z

〉
︸ ︷︷ ︸
ωz stretching

+ 3〈ω2
z (ωh · ∇hw)〉︸ ︷︷ ︸

tilting

+

non-hydrostatic︷ ︸︸ ︷
3

〈
1

Ro
ω2

z
∂w
∂z

〉
︸ ︷︷ ︸

solid-body stretching

− 6
(

Pr
Ra

)1/2

〈ωz |∇ωz|2〉︸ ︷︷ ︸
viscosity

. (5.2)

The right-hand side has four terms. The ωz stretching and tilting terms carry the
ageostrophic effects. The solid-body vorticity stretching term carries the non-hydrostatic
effect, which causes the asymmetry between inflow and outflow. Figures 8(a,b) show that
the sum of the four terms is slightly positive for Rog � 1, a quantity that should equal zero
at the equilibrium stage. We have carefully examined the budget calculation and infer it to
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Figure 8. Statistics of the equilibrium stage (between t = 90 and t = 120) for experiments (a,c,e) Ra1–Ra8
and (b,d, f ) E1–E8. (a,b) The budget of the 〈ω3

z 〉 equation. The blue, red, yellow and purple lines show the ωz
stretching term, the tilting term, the solid-body vorticity stretching term, and the viscous term of (5.2). Each
term has been normalized by the absolute value of the viscous term. (c,d) The volumetric skewness of ∂w/∂z.
(e, f ) The vorticity skewness S versus Rog. The blue lines show the diagnosed S. The solid black lines show the
convective onset stage fitting: S = 2.5Rog. The dashed black lines show the heuristic equilibrium stage theory:
S = 2.5 Rog exp(−0.25 Rog/Ro).
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(a)

(b)

Figure 9. A schematic diagram for the break of vertical coherence by the vertical shear induced by other
convective vortices. The shear could (a) suppress the intensity of outflow and (b) cause misalignment between
the plume and the vortex axis.

be due to the numerical diffusion of the fifth-order advection scheme that could dissipate
〈ω3

z 〉.
The primary balance of the right-hand side is between the ageostrophic terms (ωz

stretching and tilting) that generate skewness and the viscosity that dissipates skewness.
The negative contribution of tilting is likely due to the anticyclonic shield around a
cyclonic core (Appendix B). The solid-body vorticity stretching term has an intriguing
transition behaviour. It reduces skewness in the Rog � 0.5 range, and slightly increases it
for a higher Rog. Because this term carries the asymmetry between inflow and outflow,
the transition indicates the suppression of outflow strength as the flow gets more unsteady
(figure 9a). Figures 8(c,d) confirm the drastic change in the inflow–outflow asymmetry
by showing that the skewness of ∂w/∂z first drops and then increases as Rog increases.
This can be explained as a well-known process in plume dynamics: a stronger crossflow
enhances entrainment dilution and makes an inflow turn to outflow at a lower depth (e.g.
Lavelle 1997; Devenish et al. 2010). In the context of RRBC, this agrees qualitatively with
the existing understanding that the turbulent dilution of the outflow generates positive
vorticity skewness in the turbulent regime (e.g. Vorobieff & Ecke 2002), though we
should be cautious that the equilibrium-state skewness of ∂w/∂z remains negative in our
DNS. Our analysis reveals a competition in generating vorticity skewness between the
stiffening role of the non-hydrostatic effect, which intensifies the outflow and drives the
inflow–outflow asymmetry, and the disturbing role of the unsteady flow, which dilutes the
outflow and weakens the inflow–outflow asymmetry.

5.2. A heuristic skewness generation efficiency
The above analysis shows that the break of vortex coherency by the unsteady shear flow
is the main difference between the onset and equilibrium stages. The unsteady flow
suppresses outflow intensification (figure 9a). We infer that the shear could also tilt the
plume, causing a misalignment between the plume and the vortex axis that makes the
stretching of ωz less efficient in producing a barotropic cyclone (figure 9b). Thus both
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the positive and negative skewness generation factors at the convective onset stage might
be suppressed. The DNS result (figures 8e, f ) also indicates that the equilibrium-state S
drops below the onset stage scaling S ≈ 2.5 Rog. Thus skewness might be generated at the
highest efficiency at the convective onset stage, where the flow is stationary.

We introduce a heuristic ‘skewness generation efficiency’ to parametrize the deviation
from S ≈ 2.5 Rog at the equilibrium stage due to the unsteady flow. For simplicity, we
assume that the vorticity stretching and outflow intensification are suppressed equally.
We let the efficiency be a decreasing function of the vertical overturning time scale over
the horizontal overturning time scale. A faster vertical overturning allows less time for
eddies in the horizontal plane to tilt the plume. The vertical overturning time scale is
estimated as the free-fall time scale (unity in this non-dimensional framework), and the
horizontal overturning time scale is estimated as the inverse of vorticity scale 〈ω2

z 〉−1/2 =
Ro/Rog. We propose a heuristic expression for S that works for the Rog � 1 regime at the
equilibrium stage:

S = 2.5 Rog exp
(

−0.25
Rog

Ro

)
. (5.3)

Here, the exponential function is a heuristic choice, and the 0.25 factor is obtained by
fitting. Equation (5.3) agrees well with DNS in the Rog � 1 regime (figures 8e, f ). The next
step is to solidify the theoretical basis of (5.3) by studying the resilience of a convective
vortex in random vertical and horizontal shear, a topic also of interest to tropical cyclone
researchers (e.g. Reasor, Montgomery & Grasso 2004; Tao & Zhang 2015).

6. Conclusion and discussion

Rotating Rayleigh–Bénard convection (RRBC) is a prototype model of geophysical and
astrophysical convection. Like many other rotating fluid systems, cyclones tend to have
higher vorticity magnitudes than anticyclones, rendering a cyclonic bias. The bias has
been explained with three mechanisms. First, ωz is stretched more efficiently in the
cyclonic region than squashed in the anticyclonic region due to the influence of ωz on
the absolute vorticity (e.g. Morize et al. 2005; Guervilly et al. 2014). Second, turbulent
mixing dilutes the outflow of a plume, making the vertical motion preferentially stretch the
solid-body vorticity rather than squash it (e.g. Julien et al. 1996a; Vorobieff & Ecke 2002).
Third, an anticyclone with negative absolute vorticity is unstable to centrifugal instability
(e.g. Kunnen et al. 2010b). Despite the progress in identifying physical mechanisms, the
current understanding of the cyclonic bias in rotating convection is not systematic. It
remains unclear which mechanism dominates at which stage or regime.

A useful metric of cyclonic bias is the vorticity skewness. An important question is how
the skewness depends on the Rossby number, which has not been solved in any regime
or stage of RRBC. The convective onset stage of rapidly rotating RRBC, which is weakly
nonlinear (finite amplitude) and has an organized flow structure, provides a straightforward
starting point. To obtain a concise result, properly defining the skewness and Rossby
number is crucial. Using DNS with a fixed Pr = 1 and varying Ra and E, we find that
the volumetric vorticity skewness S is proportional to the global Rossby number Rog by a
constant factor approximately 2.5. It works for the convective onset stage of the Ro � 1
and R̃a � 20 regime.

To understand this phenomenon, we perform a vertical eigenmode decomposition and
find that S is produced by the interaction between the n = 0, n = 1, and n = 2 modes. We
derive a Galerkin model following the asymptotic analysis procedure of Veronis (1959),
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n = 0 n = 1 n = 2

Downwind deformation

of w
(non-hydrostatic)

Stretching of ωz
+ tilting of ωh
(ageostrophic)

3〈ωz′2ωz〉 〈ωz′3〉

3〈ωz,1ωz,2〉23〈ωz,1ωz,0〉2

S
< 0> 0

Figure 10. A schematic diagram showing how the interaction of the n = 0, n = 1 and n = 2 modes of the flow
produces the vorticity skewness S at the onset stage of rapidly rotating RRBC. It is the basis for understanding
the equilibrium stage, where the flow is more unsteady.

but with several simplifications. A crucial simplification is applying the quasi-geostrophic
assumption to the divergence equation, consistent with the NHQG model of Sprague et al.
(2006). Our model also retains some terms neglected in the NHQG model that generate
skewness. They include the advection of ωz, T and w by toroidal velocity, as well as the
vertical stretching and tilting terms in the ωz equation. An approximate solution of the
Galerkin model confirms S ∝ Rog and shows a relation S/Rog ∼ 1.5 that does not depend
on Ra and E, not far from the 2.5 value in the DNS.

Figure 10 summarizes the mechanism of vorticity skewness at the convective onset
stage. The linearly unstable n = 1 mode does not generate vorticity skewness itself.
It nonlinearly drives the n = 0 and n = 2 modes, and interacts with them to generate
skewness. The key mechanisms include:

(i) the interaction between the n = 1 and n = 2 modes, a non-hydrostatic effect;
(ii) the interaction between the n = 1 and n = 0 modes, an ageostrophic effect.

By deriving the quasi-geostrophic omega equation of the n = 2 mode, we find the
downwind deformation of vertical velocity (in other words, outflow intensification) due to
the nonlinear advection of w and T makes a negative contribution to S. This results from
non-hydrostatic effects, a factor that has not received much attention. The mechanisms
associated with the n = 0 mode are ageostrophic. The down-gradient vertical advection of
ωz and the more efficient stretching of absolute vorticity in the cyclonic region produces
a barotropic cyclone along the vortex axis, contributing positively to S. Meanwhile, the
horizontal advection of vertical vorticity and tilting of horizontal vorticity produce a
barotropic anticyclonic shield, contributing negatively to S. Because the shield is off the
vortex axis where the vorticity magnitude is the largest, its influence on S is minor. In
addition, we note that the bulk effect of the horizontal and vertical advection of ωz cannot
produce volumetric vorticity skewness. The DNS show that the positive contribution from
ageostrophic effects (n = 0 mode) is twice as strong as the negative contribution from
non-hydrostatic effects (n = 2 mode), making S positive. By solving the quasi-geostrophic
omega equation with a single-scale approximation, we theoretically confirm that these two
terms are proportional, though not accurately enough to prove the 2 : −1 contribution ratio
in the DNS.

Finally, we extend the theory from the convective onset to the equilibrium stage,
where the flow is more unsteady. The budget analysis of the 〈ω3

z 〉 equation shows that
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the stretching of ωz is the main producer of vorticity skewness, mainly balanced by
viscous dissipation. The non-hydrostatic effect in generating negative vorticity skewness is
significantly suppressed for Rog � 0.5, owing to the suppression of outflow intensification
by the unsteady flow. Given that the unsteady vertical shear suppresses the outflow
intensification and could also disturb the stretching of ωz by tilting the plume, we
heuristically parametrize the influence of shear on skewness as an efficiency factor,
which is a decreasing function of the vertical overturning time scale over the horizontal
overturning time scale. A unit efficiency represents the fully coherent state corresponding
to the convective onset stage. By fitting one parameter, the agreement of the heuristic
skewness theory with DNS is good in the Rog � 1 regime. An important future task
is solidifying the physical explanation at the equilibrium stage by studying the vortex
evolution under random vertical and horizontal shear.

Note that the theory only derives the S–Rog relation and is not a fully predictive model
because Rog uses the diagnosed vorticity. To predict how S depends on Ra and E at the
equilibrium state, we can couple the S–Rog relation with a model of how Rog depends on
Ra and E. Sakai (1997) derived a model of the Rossby number defined with the horizontal
velocity scale and length scale for the cellular regime, which might be a candidate model
for Rog.

Examining the trend of the S − Rog relation in a more turbulent regime is the next
step. It remains unclear how the skewness transfers across scales in the turbulent RRBC
and whether it could help to explain a critical problem: the formation of the large-scale
vortex (LSV). The LSV is a barotropic turbulent cyclone produced by upscale energy
transfer (Julien et al. 2012; Favier et al. 2014; Guervilly et al. 2014; Rubio et al. 2014;
Guzmán et al. 2020). The LSV is not seen in our simulations. It typically takes much
longer than the convective overturning time to form, and its formation criterion is still not
well understood. Even within the finite-amplitude rapidly rotating regime, the investigation
of S is far from complete. Examining how much of the result still holds for Pr /= 1 and a
no-slip boundary is important. A no-slip boundary condition leads to Ekman pumping,
a factor inferred to enhance the cyclonic bias via intensifying the inflow (e.g. Kunnen
et al. 2006). Despite the limitations of the current theory, the analysis method in this
paper could be generalized. First, studying the convective onset stage is a convenient
intermediate step, which provides a short time slot to observe skewness at a relatively
high Rog without unsteady flow. At the onset stage, decomposing the vorticity skewness
into the contributions from purely barotropic, purely baroclinic and barotropic–baroclinic
modes is a useful diagnosis method. Second, focusing on the vorticity-rich region, i.e. the
vortex axis, might be a useful simplification for studying vorticity skewness, given that
the rotating flow tends to self-organize into columnar structures under the constraint of the
Taylor–Proudman theorem. Third, using the quasi-geostrophic omega equation to quantify
the asymmetry of convergent and divergent flow is a useful method. For example, it can
be applied to evaluate the secondary circulation driven by Ekman pumping when the
boundary is no-slip.

Supplementary material. Supplementary figures, two simulation movies, a handwritten maths derivation
note, and all the MATLAB post-processing and plotting codes are deposited in the supplementary material,
available at https://doi.org/10.1017/jfm.2024.571.
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Appendix A. The adaptation of CM1 to the rotating Rayleigh–Bénard problem

The CM1 is a widely used numerical model for simulating atmospheric convection and
tropical cyclones. Its code is run in its Boussinesq formulation. It uses finite-difference
discretization, with a fifth-order advection scheme for temperature and velocity (Wicker
& Skamarock 2002). In addition, a fifth-order WENO scheme is applied on the final
Runge-Kutta step for temperature. All simulations use a 200 × 200 × 100 mesh for a
2.5 × 2.5 × 1 domain. The time step is �t = 5 × 10−4 for all experiments. The mesh
is horizontally uniform and vertically non-uniform, with refinement near the lower and
upper boundaries. The vertical mesh generation function is zk = 1

2 + 1
2 tanh(Zk)/tanh(z0),

where z0 = 2.2, Zk = −z0 + (k − 1)2z0/Nz, k = 1, 2, . . . ,Nz + 1. Here, Nz = 100 is the
number of vertical cells.

The CM1 code is adapted from its configured ‘Rayleigh–Bénard convection case’.
Specifically, the following subroutines are modified: the vertical mesh is set in param.F, the
buoyancy expression is set in solve.F, and the basic state profile is set in base.F. The code
has been benchmarked with the critical Rayleigh number test for stress-free boundaries.

Appendix B. The horizontal advection and tilting terms of the vertical vorticity
equation

This appendix shows that for a finite-amplitude axisymmetric vortex dominated by a single
horizontal and vertical wavenumber (n = 1), the horizontal advection and tilting terms in
the vertical vorticity equation, which are the next-order effect, only project onto the n = 0
mode. We use a cylindrical coordinate with r as the radius and z as the height. The radial
and tangential velocity components of the n = 1 mode are defined as ur,1 and uθ,1. They
are expressed with a velocity potential φ1 and a stream function ψ1:

ur,1 = ∂φ1

∂r
, uθ,1 = ∂ψ1

∂r
. (B1a,b)

The n = 1 mode vertical velocity and vorticity are expressed as

w1 = −
∫

∇2
hφ1 dz, ωz,1 = ∇2

hψ1. (B2a,b)
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The horizontal structure is assumed to be dominated by the most unstable wavenumber
Km, leading to

∇2
hφ1 = −K2

mφ1, ∇2
hψ1 = −K2

mψ1. (B3a,b)

Here, φ1 and ψ1 are assumed to have a variable-separation structure:

φ1 = Φ1(r) cos(πz), ψ1 = −γΦ1(r) cos(πz), (B4a,b)

where Φ1(r) is the common horizontal structure of φ1 and ψ1. The quantity γ is a positive
constant accounting for the magnitude difference between φ1 and ψ1. A positive γ means
that a horizontally convergent/divergent region is cyclonic/anticyclonic.

The horizontal advection and tilting terms are expressed as

− u1 · ∇hωz,1 = −ur,1
∂ωz,1

∂r
, ωh,1 · ∇hw1 = −∂uθ,1

∂z
∂w1

∂r
. (B5a,b)

Substituting (B1a,b)–(B4a,b) into (B5a,b), we get

−ur,1
∂ωz,1

∂r︸ ︷︷ ︸
horiz. advection

− ∂uθ,1
∂z

∂w1

∂r︸ ︷︷ ︸
tilting

= −K2
m cos2(πz)

dΦ1

dr
dγΦ1

dr
− K2

m sin2(πz)
dγΦ1

dr
dΦ1

dr

= −γK2
m

(
dΦ1

dr

)2

, (B6)

which proves that the sum of the horizontal advection and tilting terms only projects onto
the n = 0 barotropic mode. The negative-definite sign of (B6) shows that they produce an
anticyclonic shield and therefore a negative vorticity skewness. The physical mechanism
of the anticyclonic shield can be understood by considering an updraft plume. For the
horizontal advection term, the convergent flow at the lower level narrows the cyclone by
moving in low-vorticity fluid; the divergent flow at the upper level widens the anticyclone
by moving out low-vorticity field. The bulk effect is the accumulation of negative vorticity
at the periphery of the vortex. For the tilting term, the horizontal vortex tube associated
with the vertical shear of the tangential flow (∂uθ,1/∂z) points outwards. The updraft flow
is strongest along the vortex axis, so it tilts the horizontal vortex tube to point downwards.

Appendix C. An estimation of vorticity skewness at the convective onset stage

This appendix approximately solves the quasi-geostrophic omega equation (4.24) and
proves that the contributions from the n = 0 and n = 2 modes are comparable. Then we
estimate S/Rog by solely focusing on the vortex axial quantities, and show S/Rog ∼ 1.5,
which is of the same order of magnitude as the DNS result S/Rog ≈ 2.5. An accurate
solution of S/Rog requires knowledge of the horizontal structure. The horizontal structure
is hard to solve accurately due to its random nature, an imprint of the random initial noise.
We devise a single-scale approximation to simplify the equations. All theoretical results in
this appendix should be understood as order-of-magnitude estimations.

C.1. Single-scale approximation
Equations (4.17), (4.18) and (4.20) show that the n = 0 and n = 2 modes are produced by
the product terms of the n = 1 quantities, so they are statistically identical along the axis of
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Figure 11. The vertical vorticity normalized by the effective Coriolis parameter (Ro−1) for the Ra5 experiment
(R̃a = 14.5) at time t = 10. Only the z = 0.1 slice is shown. (a) The full vorticity field. (b) The n = 1 vorticity.
(c) The n = 0 vorticity. (d) The n = 2 vorticity. Note the difference in colour bars between the first and second
rows. The plots are for (a) Roωz, (b) Roωz,1, (c) Roωz,0, and (d) Roωz,2.

an updraft and a downdraft vortex. This doubles the number of periodic structures. Thus
the horizontal length scale of the n = 0 and n = 2 quantities should be approximately
1/

√
2 of the n = 1 quantities. This is a heuristic single-scale approximation. Figure 11

shows that the n = 0 and n = 2 vorticities indeed have more fine-grained horizontal
structure than the n = 1 mode. To further confirm the

√
2 relation, we diagnose the mean

horizontal total wavenumber Kn from DNS:

Kn ≡

∫∫
|ω̂z,n|2

(
k2

x + k2
y

)1/2
dkx dky∫∫

|ω̂z,n|2 dkx dky

, n = 0, 1, 2. (C1)

Here, ω̂z,n is the two-dimensional Fourier transform of the nth vertical mode, ωz,n:

ω̂z,n ≡ 1
L2

∫∫
ωz exp

[−i
(
kxx + kyy

)]
dx dy, (C2)

where i = √−1, L is the domain width, and kx and ky are the horizontal wavenumbers in
the x- and y-directions. Figures 12 and 13 show that within the convective onset stage of
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Figure 12. The mean horizontal total wavenumber of the n = 0 vorticity (K0, blue line), n = 1 vorticity
(K1, red line) and n = 2 vorticity (K2, yellow line). The dashed red line denotes

√
2 times K1. The shading

marks the convective onset stage, which ends at the time of maximum Rog. (a–h) correspond to experiments
Ra1–Ra8, with (a) R̃a = 58.0, (b) R̃a = 38.7, (c) R̃a = 23.2, (d) R̃a = 16.6, (e) R̃a = 14.5, ( f ) R̃a = 12.2,
(g) R̃a = 11.6, (h) R̃a = 10.5.
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Figure 13. The same as figure 12, but for experiments E1–E8, with (a) E = 5.00 × 10−4, (b) E = 3.33 × 10−4,
(c) E = 2.50 × 10−4, (d) E = 2.00 × 10−4, (e) E = 1.67 × 10−4, ( f ) E = 1.25 × 10−4, (g) E = 1.00 × 10−4,
(h) E = 9.09 × 10−5.

the R̃a � 20 regime, K0 and K2 are indeed approximately
√

2 times K1, though there is
generally K2 <

√
2K1.

An n = 1 quantity obeys

∇2
h = −K2

m,

(
∂

∂t
− Ra−1/2 ∇2

h

)
= σ + Ra−1/2 K2

m︸ ︷︷ ︸
σ1

, (C3a,b)
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where σ is the growth rate of the linear instability from (4.14). We define σ1 to denote
the bulk effect of tendency and viscosity/diffusivity on n = 1 quantities. The n = 0, n = 2
and product of n = 1 quantities are assumed to obey

∇2
h ≈ −2K2

m,

(
∂

∂t
− Ra−1/2 ∇2

h

)
≈ 2σ + Ra−1/2

(√
2 Km

)2

︸ ︷︷ ︸
σ2

. (C4a,b)

Similarly, we define σ2 to denote the bulk effect of tendency and viscosity/diffusivity on
fine-grained quantities, which yields σ2 = 2σ1.

We use the single-scale approximation to simplify the omega equation (4.24) and solve
w2. Substituting (C3a,b) and (C4a,b) into (4.24), and using (4.12) to express u1 · ∇T1 with
u1 · ∇w1, we obtain

σ2w2 ∼ −μu1 · ∇w1

∼ −u1 · ∇w1 − (μ− 1)u1 · ∇w1︸ ︷︷ ︸
− ∂p2

∂z +T2

, (C5)

where μ is named the non-hydrostatic factor that links the momentum advection and the
tendency of w2:

μ ≡
2K2

m

(
σ 2

2 + σ2

σ1

)
2K2

m
(
σ 2

2 − 1
) + 4π2

Ro2

= 2. (C6)

Substituting the expressions for σ1 (C3a,b) and σ2 (C4a,b) into (C6), we obtain the concise
resultμ = 2, which does not depend on Ra and E, and only requires Pr = 1. Detailed math
steps are documented in the supplemental derivation note. Equations (C5) and (C6) show
that the bulk effect of the vertical pressure gradient force (−∂p2/∂z) and buoyancy (T2)
plays a similar role to the inertial term −u1 · ∇w1.

C.2. Vertical structure along the vortex axis
Vorticity skewness depends critically on the vorticity distribution along the vortex axis,
which is the vorticity-rich region. We view vortex axial quantities as the ‘skeleton’ of the
skewness problem and use them to estimate S/Rog.

First, we calculate quantitatively the relationship between ωz,2 and ωz,1 along the vortex
axis. Let the vorticity and vertical velocity along the vortex axis be

ωz,n = Ωn cos(nπz), wn = Wn sin(nπz), (C7a,b)

where n = 0, 1, 2, andΩn and Wn are not functions of space and time. Substituting (C7a,b)
into (4.9), (4.15) and (C5), we get

σ1Ω1 cos(πz) ∼ 1
Ro

dW1 sin(πz)
dz

, (C8)

σ2Ω2 cos(2πz) ∼ 1
Ro

dW2 sin(2πz)
dz

, (C9)

σ2W2 sin(2πz) ∼ −μW1 sin(πz)
dW1 sin(πz)

dz
. (C10)
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Eliminating W1, we obtain

Ω2 ∼ −Roμ
σ 2

1

σ 2
2
Ω2

1 ∼ −Ro
2
Ω2

1 , (C11)

where we have used σ1/σ2 = 1/2 and μ = 2.
Along the vortex axis, the vertical vorticity equation of the n = 0 mode (4.20) reduces

to

σ2ωz,0 ∼ −w1
∂ωz,1

∂z
+ ωz,1

∂w1

∂z
. (C12)

Substituting in (C7a,b), we rewrite (C12) as

σ2Ω0 ∼

vertical advection︷ ︸︸ ︷
−W1 sin(πz)

dΩ1 cos(πz)
dz

+

stretching︷ ︸︸ ︷
Ω1 cos(πz)

dW1 sin(πz)
dz

∼ πW1Ω1 sin2(πz)+ πW1Ω1 cos2(πz)

∼ πW1Ω1, (C13)

which shows that the vertical advection and stretching terms contribute equally to the
barotropic mode with a sin2(πz) and cos2(πz) factor, respectively. Though the vertical
advection produces vorticity skewness along the vortex axis, the total contribution of
horizontal and vertical advection to the volumetric skewness is zero, as shown in
the budget analysis in § 5. Because the vorticity skewness along the vortex axis can
approximately inform the volumetric skewness, we retain the role of vertical advection
in the calculation. Combining (C13) with the n = 1 vorticity equation (C8), we get

Ω0 ∼ Ro
σ1

σ2
Ω2

1 ∼ Ro
2
Ω2

1 . (C14)

Thus we must have Ω0 > 0 along the vortex axis, indicating a barotropic cyclone along
the vortex axis. Equations (C11) and (C14) show Ω0 ∼ −Ω2, which indicates that the
magnitudes of the barotropic and second baroclinic modes are comparable.

C.3. Calculating S/Rog

Expressing S with the vertically decomposed vorticity shown in (4.23), we get

S ≈ 3
〈ω2

z,1ωz,2〉
〈ω2

z,1〉3/2
+ 3

〈ω2
z,1ωz,0〉

〈ω2
z,1〉3/2

∼ 3
Ω2

1Ω2 cos2(πz) cos(2πz)

Ω3
1 cos2(πz)

3/2 + 3
Ω2

1Ω0 cos2(πz)

Ω3
1 cos2(πz)

3/2

∼ −3
√

2
4

RoΩ1︸ ︷︷ ︸
from n=2

+ 6
√

2
4

RoΩ1︸ ︷︷ ︸
from n=0

∼ 3
√

2
4

RoΩ1. (C15)
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Note that the third line of (C15) shows the contribution from the n = 2 and n = 0 modes
to be −1 : 2, agreeing with the DNS (figures 3 and 4). We consider this exact match
with DNS to be a coincidence because the accuracy of the solution has been significantly
reduced by the single-scale approximation in solving the omega equation and the neglect
of the anticyclonic shield in calculating S. Despite this, the result captures the physical
process qualitatively.

Then Rog is calculated by letting 〈ω2
z 〉 ≈ 〈ω2

z,1〉:

Rog ≈ 〈ω2
z,1〉1/2

Ro−1

∼ RoΩ1 cos2(πz)
1/2

∼
√

2
2

RoΩ1. (C16)

Combining (C15) and (C16), we get the theoretical prediction of S/Rog:

S
Rog

∼ 1.5, (C17)

which is smaller than, yet at the same order of magnitude as, the DNS result S/Rog ≈ 2.5
at the convective onset stage.
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