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Hilbert transform view of water-wave theory
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A general rethinking of the mathematical foundations of water surface waves from the
perspective of the Hilbert transform uncovers shortcomings of the standard multiple-scale
approach as well as elucidates the interplay of non-local and dispersive effects. Application
of the Hilbert transforms to planar and cylindrical settings allows us to deduce new
weakly nonlinear models, including an alternative to Zakharov’s equation and an envelope
equation for cylindrical waves on deep water, as well as to highlight the crucial differences
between these geometries.

Key words: waves/free-surface flows

1. Plane water waves

To fix the ideas, we will focus on inviscid gravity waves in the deep-water setting known
to lead to a nonlinear Schrödinger equation (NLS) in the approximation of a narrow
wavepacket centred around a wavenumber k0. The latter together with the wave amplitude
a and gravitational acceleration g set the natural scales for coordinates x → k−1

0 x, time
t → ω−1

0 t, surface deflection from the quiescent state η → aη, and velocity potential
φ → (aω0/k0)φ, where the circular frequency ω0 = ω(k0) is dictated by the dispersion
relation ω2

0 = gk0 and the factor aω0/k0 follows from balancing the fluid velocity at the
free surface with that of the surface itself, φz ∼ ηt. The resulting potential-flow system
reads

z � εη : �φ = 0 with ∇φ → 0, z → −∞, (1.1a)

z = εη : φz = ηt + ε∇⊥φ · ∇⊥η and φt + η + ε

2
|∇φ|2 = 0, (1.1b,c)

where the operators will be specialized either to plane x = (x, z) in the present section or
cylindrical x = (r, z) coordinates in § 2 with ∇ = (∇⊥, ∂z). The sole parameter ε = ak0
in the kinematic (1.1b) and dynamic (1.1c) boundary conditions (BCs) is treated as small
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since we are interested in reduced-order models compared with (1.1). Linearization of the
latter, following the Stokes (1847) idea, produces

z � 0 : �φ = 0 with |∇φ| → 0, z → −∞, (1.2a)

z = 0 : φz + εφzzη + ε2

2
φzzzη

2 = ηt + ε∇⊥η · (∇⊥φ + ε∇⊥φzη) , (1.2b)

φt + εφtzη + ε2

2
φtzzη

2 + η = −ε
2

[
(∇⊥φ)2 + φ2

z + 2ε (∇⊥φ · ∇⊥φz + φzφzz) η
]
,

(1.2c)

where we kept terms up to O(ε2). We will look for solutions in the series φ = φ0 + εφ1 +
ε2φ2 + . . ., η = η0 + εη1 + ε2η2 + . . ., at each order i requiring |∇φi| → 0, z → −∞;
for the boundary values we will use the same notation, e.g. the free-surface potential
φ(t, x, 0) ≡ φ(t, x).

1.1. Standard multiple-scale view
Solving (1.1) with such regular perturbations proves to lead to secular divergencies (Hakim
1998), which necessitates the introduction of multiple scales (t, x, z) → (t, T = εt,
τ = ε2t; x,X = εx; z, Z = εz), the origin of which can be gleaned from an O(ε0)-solution
of (1.2a) for the right-travelling wave

φ0(t, x, z) = 1
2π

∫ +∞

0
φ̂0(k) exp(|k|z) exp[i(kx − ωt)] dk + c.c., ω(k) = |k|1/2, (1.3)

with the initial boundary data φ̂0(k) being the Fourier transform of φ0(0, x, 0) related to
the initial free-surface deflection η0(0, x) via η̂0(k) = iω(k)φ̂0(k). Starting the evolution
with a narrow wavepacket k = 1 + εκ , (1.3) can be expanded to yield φ0(t, x, z) ∼
εΦ0(T, τ,X, Z) exp(i(x − t)+ z)+ c.c. with the amplitude

Φ0(T, τ,X, Z) = 1
2π

∫ +∞

−∞
φ̂0(κ) exp

(
i
[
κ(X − ω′

0T)− 1
2
ω′′

0κ
2τ

]
+ κZ

)
dκ, (1.4)

where ω0 = ω(1) = 1, ω′
0 = 1

2 and ω′′
0 = −1

4 . Differentiating (1.4) produces

Φ0T + ω′
0Φ0X = 0, iΦ0τ + 1

2ω
′′
0Φ0XX = 0 at Z = 0, (1.5a,b)

with the former stating that the wavepacket propagates at the group velocity ω′
0 and the

latter being the linear part of the NLS in the laboratory frame of reference. For the
subsequent discussion, we briefly review the multiple-scale derivation of the NLS also
highlighting how (1.5) formally emerge. At the leading order, the system

O(ε0) : {φ0zz + φ0xx = 0 z < 0 |φ0z − η0t = 0 and φ0t + η0 = 0 at z = 0 (1.6)

admits solution (1.3) for any k, in particular, a right-travelling narrow wavepacket
φ0 = Φ0(T, τ,X, Z) exp(i(x − t)+ z)+ c.c.. At the next order, the entire right-hand side
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Hilbert’s view of water waves

of the Poisson equation

O(ε1) : φ1zz + φ1xx = −2 (φ0zZ + φ0xX) for z � 0 (1.7)

produces secular terms containing exponents exp[±i(x − t)], the factors of which vanish
provided that

Φ0Z + iΦ0X = 0 for Z � 0, (1.8)

that is, Φ0 propagates along the characteristic of the first-order elliptic operator i∂X + ∂Z .
Although the slow Z-dependence has been the subject of some debate (Mei, Stiassnie &
Yue 2005), its cause is transparent from (1.3) and disregarding it in (1.8) would otherwise
lead to spurious transient growth of the φ1-solution in the vertical direction. The combined
BC, derived by eliminating η1 from the corresponding kinematic and dynamic BCs, is

O(ε1) : φ1z + φ1tt = − 2φ0tT − φ0Z − φ0zt (η0t + φ0z)

− η0 (φ0ztt + φ0zz)+ φ0x (η0x − φ0xt) at z = 0. (1.9)

Even though we started with initial conditions (ICs) being a wavepacket at k = 1 and
zero elsewhere, nonlinear interactions on the right-hand side of (1.9) generate a clustered
mode-distribution exp[in(x − t)], n ∈ Z (Eckhaus 1993). However, substitution of (1.8)
evaluated at Z = 0 and the O(ε0)-solutions brings out the solvability condition (1.5a)
thus nullifying the linear terms on the right-hand side of (1.9) and enforcing ω′

0(1) = 1
2 ,

whereas the nonlinear terms vanish identically and hence the multiple harmonics are not
excited in φ1. This results in the main harmonic φ1 = Φ1(T, τ,X, Z) exp(i(x − t)+ z)+
c.c., which is identical to that for φ0 and therefore can be put to zero, while η1 proves to
be non-trivial and, as follows from the dynamic BC at this order, contains the main and
double modes.

At the second order, the Poisson equation

O(ε2) : φ2zz + φ2xx = − (φ0ZZ + φ0XX) for z � 0 (1.10)

does not contain any secular terms because the right-hand side vanishes in view of (1.8),
i.e. Φ0 is an analytical function in the (X, Z)-plane, Φ0ZZ +Φ0XX = 0. The combined
kinematic and dynamic BCs (not shown due to excessive number of terms) at this order,
after simplifying with (1.5), (1.8) and transforming to the ξ = X − ω′

0T frame, lead to the
solvability condition in the form of the NLS

iΦ0τ − 1
8Φ0ξξ − 2|Φ0|2Φ0 = 0 at Z = 0, (1.11)

i.e. (1.5b) is the linear part of the NLS producing yet another Taylor expansion coefficient
ω′′

0(1) = −1
4 . Notably, η1 containing main and double harmonics does not contribute to

the envelope equation (1.11).

1.2. Hilbert wave equation
In the foregoing multiple-scale approach, we had to solve the problem at each order both in
the bulk and at the free surface, but our ultimate focus is the dynamics at the free surface
only, i.e. the envelope equation (1.11). Also, the above standard analysis does not reveal the
true nature of the ‘wave’ equation for the free-surface dynamics. To comprehend the latter,
we may appeal to the solution φ(t, x, z) = −(1/π) ∫ +∞

−∞ φx′(t, x′) atan[(x − x′)/z] dx′ of
the Laplace equation (1.2a) with the BC φx(t, x, 0) = φx(t, x) enabled by the fact that the
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domain for (1.2a) is the lower half-plane and hence constructed from the Poisson-Schwarz
integral formula. Differentiating φ leads to a representation in terms of the Hilbert
transform (HT) H:

φz(t, x, 0) = 1
π

−
∫ +∞

−∞
φx′(t, x′)

x − x′ dx′ ≡ Hφx(t, x) = K ∗ φx = − 1
π

−
∫ +∞

−∞
φ(t, x′)
(x − x′)2

dx′;
(1.12)

here −
∫

stands for the Cauchy principal value integral and by K(x) = 1/πx we denote
the Cauchy kernel. While naming the transform after Hilbert by G.H. Hardy has
been questioned, cf. discussion in King (2009), φ(t, x, z) represents a solution of the
Riemann–Hilbert problem (Muskhelishvili 1953) of finding a function χ(t, x, z) = φ + iψ
holomorphic in the lower half-plane from the known boundary value χ(t, x) at z = 0. The
latter satisfies Hχ = iχ per the Sokhotskii–Plemelj theorem, whence it is straightforward
to deduce (1.12) using the Cauchy–Riemann equations, thus once again justifying the term
coined by Hardy, as the Hilbert’s contribution is at the heart of the story, and illuminating
the meaning of HT.

Even though holomorphic functions may, in general, behave wildly near boundaries
(Mashreghi 2022), function (1.3) is analytic up to and including the free surface, which
enables linearization (1.2) and allows us to find higher-order derivatives normal to the free
surface, needed in (1.2b,c), directly from the Laplace equation (1.2a). Eliminating η(t, x)
from (1.2b,c) and invoking the property Hφx = Hxφ furnishes an integro-differential
equation for φ(t, x):

φtt + Hxφ = ε

{
∂t

[
φtHtxφ − 1

2

(
φ2

x + (Hxφ)
2
)]

− ∂x (φtφx)

}

ε2
{
∂t

[
φtφ

2
x ∂x

(Hxφ

φx

)
+ 1

2
φ2

t φtxx − φt(Htxφ)
2 − 1

2

(
φ2

x + (Hxφ)
2
)
Htxφ

]

+ φxx

[
φtHtxφ − 1

2

(
φ2

x + (Hxφ)
2
)]

+ 1
2
φ2

t Hxxxφ + φtφtxHxxφ

+ φx∂x

[
φtHtxφ − 1

2

(
φ2

x + (Hxφ)
2
)]}

+ O(ε3) at z = 0, (1.13)

which can be named as a Hilbert wave equation, general for small amplitude solutions and
not restricted to narrow wavepackets. A version of this equation up to O(ε1) appeared in
Matsuno (1992), though deduced in a more involved fashion and without the goal to derive
the NLS (1.11) for which O(ε2)-terms are required in (1.13). As known from perturbation
theory, the higher-order nonlinear terms in (1.13) give rise to multiple scales in the problem
in addition to the original t and x – this mechanism is different from the narrow wavepacket
assumption causing (T, τ,X, Z)-scales in the linear setting (§ 1.1). Equation (1.13) can be
seen as a compact analogue of the Zakharov (1968) equation, but, as pointed by the author
himself, triad resonances produce zero denominators and thus render his equation difficult
to apply to capillary-gravity waves. Equation (1.13) and its straightforward generalization
to the presence of surface tension, which would lead to a coupled system for φ(t, x) and
η(t, x), are not plagued with such difficulties. Finally, similar to the work of Dysthe (1979)
on extending the perturbation analysis of the NLS (1.11) to the third order in ε, (1.13)
readily admits the same extension.

Derivation of (1.11) from (1.13) becomes elementary since for the wavepacket solution

φ ∼ ei(x−t) [Φ0(T, τ,X)+ εΦ1(T, τ,X)+ . . .] + c.c. ≡ φ0 + εφ1 + · · · + c.c., (1.14)
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Hilbert’s view of water waves
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Figure 1. (a) Solution (blue) of (1.15) compared with that of φ0tt − φ0xx = 0 (red) at t = 5.655 with the same
ICs in the form of the Cauchy pulse (1 + x2)−1 (dashed); (b) dispersive SW solutions of (1.11), (2.14) of
self-similar form (2.16).

the HT acts on the narrow bandwidth waveform and not on slow modulation according
to Bedrosian’s theorem (King 2009) because for eixΦ(X) the corresponding Fourier
transforms 2πδ(k − 1) and (1/ε)Φ̂(k/ε) of the involved factors are well-separated in the
Fourier space, one being sharply peaked at k = 1 as the Dirac’s delta function δ(k − 1)
and the other having an O(ε)-support around k = 0. At the leading order, we find a ‘wave’
equation

O(ε0) : φ0tt + Hxφ0 = 0. (1.15)

At the next order, keeping in mind that H acts on the fast scale x, we get

O(ε1) : φ1tt + Hxφ1 + Hφ0X + 2φ0tT = quadratic nonlinearity, (1.16)

which entails solvability condition (1.5a). At the final order, where the NLS appears, we
deduce

O(ε2) : φ2tt + Hxφ2 + Hφ1X + 2φ1tT + φ0TT + 2φ0tτ = nonlinearity; (1.17)

here we may put φ1 = 0 as per the discussion in § 1.1. As a result, the solvability condition
on φ0 becomes Φ0TT − 2iΦ0τ = 0, which with (1.5a) can be brought to the linear part of
the NLS (1.5b). The nonlinearity in (1.11) then stems from the cubic terms in (1.13), which
involve fast derivatives and the O(ε0)-solution only thereby making computations concise.

The linear wave equation (1.15) is obviously non-local, because free-surface
perturbations propagate not only along the free surface, but also through the bulk. Its
general solution is a combination of right- and left-travelling dispersive waves φ0(t, x) =∫ +∞
−∞ φ̂0(k) exp[i(kx ∓ ω(k)t)] dk and is illustrated in figure 1(a) comparatively with that

of the ordinary wave equation φ0tt − φ0xx = 0: while the initial positive Cauchy pulse
is breaking into two sign-definite hump-solutions translating without any change by the
ordinary wave equation, the linear Hilbert wave equation (1.15) produces a faster spreading
at long wavelengths with the waves travelling in the opposite directions constantly
changing their shape because of dispersion – different wavenumbers travel with unequal
speeds and hence the initial positivity of the sum of those at t = 0 is not preserved.
Numerical simulation of (1.13) with nonlinear terms and small ε initially follows the
solution of (1.15), but at some point exhibits a short-wave instability. The latter is easy
to understand by ‘linearizing’ about the solution of the linear wave equation φ0, i.e. taking
φ = φ0 + φ′ we find for the growth rate λ of the perturbation φ′ ∼ exp(λt + ikx) in the

986 R3-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

31
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.318


R. Krechetnikov

short-wave limit:
λ2 ∼ εφ0tk2, k → ∞. (1.18)

Therefore, if the free-surface acceleration φ0t is positive, one observes a Rayleigh–Taylor
instability albeit modified by the free-surface curvature (Tanveer 1991; Krechetnikov
2009), which is short-wave and not regularized here due to the absence of surface tension,
thus rendering it an ill-posed problem in the sense of Hadamard (1923). Hence, any
application of (1.13) requires limiting the k-bandwidth from above (Joseph & Saut 1990)
as in the presented derivation of the NLS (1.11).

The HT approach can also be developed for arbitrary depth h as envisaged by Matsuno
(1992): imposing a no-penetration BC at z = −h : φz(t, x,−h) = 0, the generalization of
(1.12) is

φz(t, x, 0) =
∫ +∞

−∞
φx′(t, x′)Kh(x − x′) dx′ ≡ Hhφx(t, x) (1.19)

with the kernel Kh(x) = (1/2h) csch(πx/2h), which in the limit of infinite depth recovers
the Cauchy kernel K(x) in (1.12). To take the shallow-water limit, we integrate (1.19) by
parts:

z = 0 : φtt(t, x) = −φz(t, x, 0) = −
∫ +∞

−∞
φx′x′(t, x′)δh(x − x′) dx′, (1.20)

where δh(x) = −(1/πh) ln | tanh (πx/4h)| is a sequence approximating Dirac’s delta
function, though an unusual one being unbounded at x = 0 even for finite h; however,∫ +∞
−∞ δh(x) dx = 1 for any h and limh→0

∫ +∞
−∞ f (x)δh(x) dx = f (0) for any test function f (x)

as required. Expanding in h, the linear part of (1.20) in the shallow-water limit becomes a
local wave equation

φtt = φxx + 1
3 h2φxxxx + . . . , (1.21)

i.e. the non-zero shallowness is responsible for weak dispersion. With the change of
variables (t, x) → (ξ = x − t, τ = h2t), the above equation recovers the linear part of the
Korteweg-de Vries (KdV) equation, φτ + 1

6φξξξ = . . ., and the nonlinear advection term
arises from the quadratic nonlinearity in (1.13) with H → Hh. Therefore, free surface
itself is non-dispersive as per (1.21) and only non-zero bulk depth leading to non-locality
is responsible for dispersion of water waves.

2. Axisymmetric water waves

In system (1.1) operators are now adapted to the cylindrical setting. Linearization of (1.2)
results in the following form of the solution for the velocity potential analogous to (1.3):

φ(t, r, z) =
∫ ∞

0
φ̂0(k)J0(kr) exp(−iω(k)t + kz) k dk + c.c.

≈ ε1/2 exp
(

i(r − t)+ z − i
π

4

) 1√
2πR

×
∫ ∞

−∞
φ̂0(κ)k1/2 exp

(
i
[
κ
(
R − ω′

0T
)− ω′′

0
2
κ2τ

]
+ κZ

)

×
(

1 − iε
8kR

− 9ε2

128k2R2 + . . .

)
dκ + c.c., (2.1)
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Hilbert’s view of water waves

where on the right-hand side we showed only the outward-travelling wave as its
contribution to the integral in (2.1) dominates at large distances as per the stationary-phase
analysis (Koshlyakov, Smirnov & Gliner 1964), and φ̂0(k) is the Hankel transform of
the IC φ0(0, r, 0); we also expanded the Bessel function J0(kr) of zero order away from
the origin, kr � 1, used a narrow wavepacket k = 1 + εκ approximation, and introduced
R = εr. The solution (2.1) clearly illustrates the lack of sharp signals in two dimensions
(2-D), i.e. does not satisfy the Huygens’ principle in the narrow sense (Hadamard 1923),
which in the context of waves on deep water is also enhanced by dispersion, the effect
present in one dimension (1-D) as well (cf. figure 1a).

Equation (2.1) can be phrased as a formal expansion:

φ(t, r, z) = exp(i(r − t)+ z)
[
Φ0 + εΦ1 + ε2Φ2 + . . .

]
(T, τ,R, Z)+ c.c., (2.2)

i.e. φ(t, r, z) is a travelling wave exp[i(r − t)] modulated with envelope amplitudes
Φi(T, τ,R, Z), i = 0, 1, . . ., each travelling with the same group speed ω′

0 as per the
exponential in the integrand of (2.1). Identifying the first envelope function Φ0(T, τ,R) =
Φ0(T, τ,R, 0) from (2.1) we find by direct differentiation that it satisfies the condition of a
wavepacket propagating at the group velocity and the linear part of the envelope equation
in analogy to (1.5) at Z = 0:

Φ0T + ω′
0

(
Φ0R + 1

2R
Φ0

)
= 0, Φ0τ − iω′′

0
2

(
Φ0RR + 1

R
Φ0R − 1

4R2Φ0

)
= 0,

(2.3a,b)
respectively. With the transformation Φ0(T, τ,R) = R−1/2Φ̃0(T, τ,R) the above
equations reduce to the familiar translationally invariant plane counterparts (1.5).
Thus, the potential −1/4R2 is required to guarantee mass conservation

∫∞
0 η0(r)r dr =∫∞

0 η(t, r)r dr via modifying the cylindrical wave amplitude with the weight R−1/2 as
it travels to or from the origin; we call such a translational invariance weighted. The
presence of the potential in (2.3b) implies that the NLS is not covariant in view of being a
reduced-order model rather than a fundamental physical law (Krechetnikov 2024).

2.1. Indeterminacy of the multiple-scales approach
As we recognized from (2.1), a weakly nonlinear model, if exists, must reside at the
radial distances R = εr = O(1). As a result, at the leading order O(ε0) we get the
system defining the carrier wave identical to that in the plane case (1.6) with x → r and
the outward-travelling wavepacket solution being φ0 = Φ0(T, τ,R, Z) exp(i(r − t)+ z)+
c.c.. At the next order, some differences occur:

O(ε1) :

⎧⎪⎪⎨
⎪⎪⎩
φ1zz + φ1rr = −2 (φ0zZ + φ0rR)− φ0r

R
for z � 0,

φ1z + φ1tt = −2φ0tT − φ0Z − η0tφ0zt − φ0zφ0zt

−η0 (φ0ztt + φ0zz)+ η0rφ0r − φ0rφ0rt at z = 0.

(2.4)

The right-hand side of the Poisson equation in (2.4) brings about secular terms with
exp[±i(r − t)], the factors of which vanish provided that the no-resonance condition on
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Φ0(T, τ,R, Z), analogous to (1.8), holds:

Φ0Z + i
(
Φ0R + Φ0

2R

)
= 0 for Z � 0; (2.5)

differential consequence Φ0ZZ + (1/R)∂R(RΦ0R) = (1/4R2)Φ0 of (2.5) shows that Φ0 is
no longer a harmonic function in the (R, Z)-space in contrast to its plane equivalent, which
results in the loss of translational invariance and emergence of the −1/4R2-potential in
(2.3b).

The BCs in (2.4) give rise to the no-resonance requirement (2.3a), which with (2.5) at
Z = 0 yields

Z = 0 : iω′
0Φ0Z +Φ0T = 0. (2.6)

The solvability condition (2.3a) can be easily integrated to produce

Φ0(T, τ,R) = 1
R1/2 Φ̃0 (τ, ξ) , with ξ = R − ω′

0T, (2.7)

so that Φ̃0 satisfies Φ̃0T + ω′
0Φ̃0R = 0, i.e. the equivalent of (1.5a), and shows that the first

two terms in (2.3a) represent advection accounting for the envelope travelling at the group
velocity and the last term is responsible for dilution decreasing the wavepacket amplitude
with the radial distance as Φ0 ∼ R−1/2. Similar to the plane case (§ 1.1), the solution
φ1 = Φ1(T, τ,R, Z) exp(i(r − t)+ z)+ c.c. is the same as for φ0 with no other
harmonics, exp[in(r − t)], n = 0,±2, . . ., excited.

Finally, the Poisson equation at the order at which an envelope equation appears,

O(ε2) : φ2zz + φ2rr = −2 (φ1zZ + φ1rR)− (φ0ZZ + φ0RR)− φ1r

R
− φ0R

R
for z � 0,

(2.8)
leads to the solvability condition on Φ1, simplified with the differential consequence of
(2.5),

Φ1Z + i
(
Φ1R + 1

2R
Φ1

)
= − 1

8R2Φ0 for Z � 0. (2.9)

Hence, despite that the form of the solution for φ1 is the same as for φ0, which in the plane
case allowed us to put φ1 = 0, (2.9) prevents one from doing that in view of entanglement
of φ0 and φ1 owing to the cylindrical geometry. A posteriori, we realize that the term
O(R−1) in (2.1) must contribute to the equation for Φ1 by coupling to Φ0. The combined
BC at this order is

O(ε2) : φ2z + φ2tt = −2φ1tT − 2φ0tτ − φ1Z − φ1TT

= ei(r−t) (2iΦ1T −Φ1Z)+ ei(r−t) (2iΦ0τ −Φ0TT)+ c.c. at z = 0. (2.10)

The crux of the matter is that the solvability condition ensuing from the right-hand side
of (2.10) admits two interpretations, i.e. either to treat Φ0 and Φ1 in a coupled way
or independently, which is indeterminacy of the multiple-scale approach revealed here
in the axisymmetric geometry. Even though (2.9) suggests otherwise, if one chooses
to comply with (2.1), in which the wavepacket width ε is inversely proportional to the
radial distance scale, r ∼ ε−1, it seems that only one choice is valid as all the relevant
information is already encapsulated in that linear solution (2.1). The latter imposes the
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Hilbert’s view of water waves

condition iω′
0Φ1Z +Φ1T = 0, same as (2.6) on Φ0, thus nullifying the first brackets on

the right-hand side of (2.10) and leading to

Φ1T + ω′
0

(
Φ1R + Φ1

2R

)
= iω′

0
8R2Φ0 at Z = 0, (2.11)

whereas the second brackets in (2.10) produce (2.3b). While the left-hand side of (2.11)
admits travelling solutions as at the previous order (2.3a), consistent with the fact that
there exists only one physical mechanism (and hence speed) for wave propagation, (2.11)
also has a particular solution. Indeed, with Φ1 = R−1/2Φ̃1(T, τ,R) and (2.7) from (2.11)
we get

Φ̃1T + ω′
0Φ̃1R = iω′

0
8R2 Φ̃0 at Z = 0, (2.12)

which admits a particular solution Φ̃1 = −(i/8R)Φ̃0(ξ), also propagating at the group
velocity. Compared with the Φ0-solution, the phase of Φ1 alters by −π/2 and amplitude
decreases faster with R, which is consistent with (2.1) under closer consideration.
Therefore, from this interpretation we infer the crucial difference from the plane case: the
next-order amplitude Φ1 is generated at the linear level by the coupling term (1/R)φ1r in
(2.8), while in the plane case it would be generated by nonlinear interactions only leading
to the clustered mode-structure of the solution.

The complete nonlinear version of the combined boundary condition (2.10) (not shown
due to excessive number of terms), simplified with (2.5), (2.3a), (2.9) and their differential
consequences, gives rise to the no-resonance condition in the form of the Gross–Pitaevskii
equation:

− 2iΦ0τ + 1
4

[
Φ0RR + Φ0R

R
− 1

4
Φ0

R2

]
+ 4|Φ0|2Φ0 = 0 at Z = 0, (2.13)

which, compared with the 2-D NLS originally derived in Cartesian coordinates and then
rewritten in cylindrical ones, is amended with an inverse-square potential −1/4R2. The
weighted translational invariance no longer takes place because of the nonlinearity, i.e.
naive substitution of (2.7) into (2.13) brings up incompatibility with the dependence Φ̃0(ξ)
and thus the region of applicability of (2.13) in the R-space shrinks to zero if one seeks
travelling modulated waves. Thus, it is the order O(ε2) where the weighted translational
invariance (2.7) is lost, which is expected as the balance of nonlinearity and dispersion can
happen only for R = O(1) akin to the derivation of the concentric KdV (cKdV) equation
(Iordansky 1959; Maxon & Viecelli 1974), i.e. the resulting weakly nonlinear model cannot
be uniformly valid everywhere (for all R) compared with that in the Cartesian setting.

However, we recall that multiple scales are, in fact, related so that the ξ variable
introduced in (2.7) can be rewritten as R = ξ + (1/2ε)τ similar to what is done in the
derivation of the cKdV (Johnson 1980). Hence, substituting (2.7) into (2.13) as well as
rescaling Φ̃0 → ε−1/2Φ̃0 yields the concentric NLS (cNLS) with a τ -dependent factor:

iΦ̃0τ − 1
8
Φ̃0ξξ − 2

τ
|Φ̃0|2Φ̃0 = 0 at Z = 0, (2.14)

where the effect of the −1/4R2-potential disappears and ξ ∈ (−∞,+∞). Because
the wavepacket travels at the group velocity, thus necessarily operating on the slow
scale R as opposed to cKdV, in which the ξ -frame is based on the fast scale r, there
is no R-version of the τ -equation (2.14) compared with the shallow-water equivalent
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(Johnson 1980). Same as the NLS (1.11), under the appropriate decay conditions for
ξ → ±∞ the cNLS possesses the conservation law dN/dτ ≡ (d/dτ )

∫ |Φ̃0|2 dξ = 0 for
the number of particles N named so in analogy to quantum mechanics, but the energy
conservation reads dH/dτ = −(1/τ 2)

∫ |Φ̃0|4 dξ with the time-dependent ‘Hamiltonian’
H = −1

8

∫ +∞
−∞ |Φ̃0|2 dξ + (1/τ)

∫ +∞
−∞ |Φ̃0|4 dξ reflecting the time-transient nature of the

solution Φ̃0.
Whereas (1.11) admits standing-wave (Stokes) solutions Φ0(τ, ξ) = μ1/2e−iμτ

sech [(8μ)1/2ξ ] which are parameterized with the propagation constant μ and
generating travelling-wave solutionsΦ0(τ, ξ) → exp[−4iV(ξ̃ + τV/2)]Φ0(τ, ξ̃ ) owing to
translational symmetry (τ, ξ) → (τ, ξ̃ = ξ − Vτ), the cNLS (2.14) does not. Therefore,
we can compare them only on a set of self-similar solutions. The NLS admits
self-similarity Φ0 = τ−1/2Π(ζ) with ζ = τ−1/2ξ , and cNLS – Φ̃0 = Π(ζ) with ζ =
τ−1/2ξ , thus leading to

− i
2

(
Π + ζΠ ′)− 1

8
Π ′′ − 2|Π |2Π = 0, (2.15)

where the underlined term is present only in the NLS case; the primes stand for the
derivatives w.r.t. ζ . Expressing Π = Aeiϕ , we get a system for the amplitude A(ζ ) and
phase ϕ(ζ ):

Re : A′′ − Aϕ′2 − 4ζAϕ′ + 16A3 = 0, (2.16a)

Im : Aϕ′′ + 2A′ϕ′ + 4ζA′ + 4A = 0. (2.16b)

Both cases allow for odd and even solutions A(ζ ) w.r.t. ζ → −ζ with the asymptotics

ζ → +∞ : A ∼
(
ε

ζ

)1/2

cosΩ − 3
8

(
ε

ζ

)3/2

sinΩ + . . . , ϕ = −ζ 2 ∓ 1
4ζ 2 ln | sinΩ| + . . . ,

(2.17)
and similar for ζ → −∞; here ε = √

2 − 1, Ω = ζ 2 + π/4 and the only difference
between the NLS and cNLS appears in the phase φ with the upper sign choice
corresponding to the cNLS and the lower to the NLS. Equation (2.16) also possesses
dispersive shock-wave (SW) solutions (Gurevich & Pitaevskii 1974) potentially relevant to
undular bores, for example, as shown in figure 1(b) – they are virtually indistinguishable
between the NLS and cNLS cases. The cNLS (2.14) and the above analysis of self-similar
solutions to (1.11), (2.14) provide a deep-water counterpart to an analogous study of
self-similar solutions of KdV and cKdV (Johnson 1980) for shallow water, which also
exhibit asymptotics that are slowly decaying and oscillatory at infinity.

2.2. Analogue of the HT in the axisymmetric case
As in the plane case (1.12), the idea is to express φz(t, r, 0) in terms of φ(t, r) or φr(t, r)
with the former choice proving to be more convenient in the axisymmetric case. To
this end, from the solution φ(t, r, z) = ∫ +∞

0 kJ0(kr)φ̂(t, k)ekz dk of the Laplace equation
(1.1a) in the lower half-space supplied with the Dirichlet BC φ(t, r, 0) = φ(t, r), we may
calculate

φz(t, r) =
∫ +∞

0
k2J0(kr)φ̂(t, k) dk. (2.18)
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Figure 2. (a) Regular part of the kernel (2.23) (solid) vs the singular behaviour of the kernel itself (dashed) –
here G(r/r′) = r′3G(r − r′); (b) the HT of the derivative of the Cauchy pulse (dashed) in the plane case (blue,
c = x) vs axisymmetric case (red, c = r).

To simplify (2.18), let us resort to the convolution in the r = (r, θ)-plane (Baddour 2009):

γ (r) = α(r) ∗ ∗β(r) ≡
∫∫

R2
β(r − r′)α(r′) dr′

=
∫ ∞

0
α(r′)G(r − r′)r′ dr′ = 2π

∫ +∞

0
β̂(k)α̂(k)J0(kr)k dk, (2.19)

where G(r − r′) = ∫ 2π

0 β(r − r′) dθ ′, and β̂(k), α̂(k) are the respective Hankel transforms
of β(r),α(r), so that in the transformed space γ̂ (k) = 2πα̂(k)β̂(k). Applying this to (2.18)
produces

φz(t, r) =
∫ +∞

0
φ(t, r′)G(r − r′)r′dr′, (2.20)

where the inverse transform of β̂(k) is β(r) = 1/2πr3 and, correspondingly,

G(r − r′) =
∫ 2π

0
β(r − r′) dθ ′ = − 1

π

ρ(r, r′)
(r − r′)2r′ , ρ(r, r′) = 2r′

r + r′ E

(
2
√

rr′

r + r′

)
;

(2.21a,b)
here E(·) is the complete elliptic integral of the second kind.

Now, we are in a position to recover the envelope equation (2.13). For brevity, we will
focus on the linear terms since they are the source of indeterminacy in the multiple-scale
approach (§ 2.1). The linear wave equation resulting from the BCs is

z = 0 : φtt = −φz(t, r) = −
∫ +∞

0
φ(t, r′)G(r − r′)r′ dr′. (2.22)

It transpires that the kernel G(r − r′) should be almost 1-D for r = O(ε−1). In general, for
any r, r′ one may separate the singular and regular parts of the kernel (cf. figure 2a):

G(r − r′) = − 1
πr′

1
(r − r′)2

+ 1
2πrr′

1
r − r′ + 1

8πr2r′ ln |r − r′| + regular part, (2.23)
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where the singular part yields∫ +∞

0
φ(t, r′)G(r − r′)r′ dr′ = − 1

π

∫ +∞

0

φ(t, r′)
(r − r′)2

dr′ + 1
2πr

∫ +∞

0

φ(t, r′)
r − r′ dr′ + h.o.t.

= ∂

∂r
Hφ(t, r)+ ε

2R
Hφ(t, r)+ ε2

8R2 ∂
−1
r Hφ(t, r)+ h.o.t.; (2.24)

here the lower limit of integration can be changed to −∞ because the modulated solution
is non-zero only far from the origin, r = O(ε−1), and inessential for our discussion terms
are of higher order (h.o.t.). Next, applying the introduced earlier multiple-scale ansatz
and expanding the solution in series, at the first three orders we obtain, in analogy to
(1.15)–(1.17) in the plane case, the solvability conditions

O(ε0) : φ0tt + Hrφ0 = 0, (2.25a)

O(ε1) : 2φ0tT +
(
Hφ0R + 1

2R
Hφ0

)
= 0, (2.25b)

O(ε2) : 2φ0tτ + φ0TT = 0, (2.25c)

i.e. the same as in § 2.1 after we removed the indeterminacy from the O(ε2) condition with
the help of (2.11) emerged here due to the second and third terms in (2.23); in (2.25c) one
may replace φ0TT with the differential consequence of the O(ε1)-equation and represent
φ0 = Φ0(T, τ,R)ei(r−t) + c.c. thus furnishing the linear part of (2.13). Therefore, it is
the second and third terms in (2.23) that are absent in the plane case and responsible
for coupling of φ0, φ1 and hence for the indeterminacy in the axisymmetric case we
encountered in § 2.1.

To elucidate this difference from the plane analogue (1.12), we integrate (2.20) by parts:

φz(t, r) = 1
π

∫ +∞

0

1
r − r′

d
dr′

[
ρ(r, r′)φ(t, r′)

]
dr′, (2.26)

where we took into account that ρ(r, 0) = 0. Equation (2.26) is the counterpart of (1.12)
and its form explains why starting with the Dirichlet data φ(t, r) rather than φr(t, r) is
a more convenient choice in the axisymmetric case. Hence, if we are to apply the plane
HT to the derivative of the Cauchy pulse φ(x) = 1/(1 + x2) for comparison, we should
act with (2.26) on (the half of) the Cauchy pulse φ(r) = 1/(1 + r2), r > 0. Compared
with the kernel in (1.12) ∼ 1/π(x − x′)2 in the plane case, the kernel (2.21a,b) in addition
to the same behaviour ∼ 1/πr′(r − r′)2 in the neighbourhood of the singularity r = r′,
where the factor 1/r′ cancels out with the cylindrical measure in (2.20), contains extra
singular terms per (2.23) as well as a non-zero regular part. Hence, convolution is only
weakly localized in the cylindrical case, provoking coupling between the leading φ0 and
next-order φ1 effects we observed in § 2.1 and, as a result, radial spreading of the wave
relative to the plane case (cf. figure 2b).

3. Conclusions

In water-wave mechanics the HT has been previously encountered in internal waves (Davis
& Acrivos 1967) and traditionally used to analyse experimental water-wave data (Melville
1983; Huang, Shen & Long 1999). As we demonstrated both in the plane and axisymmetric
cases, the advantage of the HT approach is also in significant reduction of algebra in the
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course of derivation of envelope equations for surface waves (§ 1.1and § 2.1), in particular,
in the number of solvability conditions, because one does not need to handle the solutions
in the bulk as in the now classical multiple-scale approach. Moreover, in the axisymmetric
case (§ 2.2) it highlights the source of the indeterminacy peculiar to this geometric setting
(§ 2.1). Also, the HT technique produces a general bandwidth equation (1.13), which has
certain advantages compared with Zakharov’s equation, in particular, avoiding resonances
and multi-dimensional Fourier integrals, and therefore is worth further exploration, for
example, in the context of wave turbulence (Nazarenko & Lukaschuk 2016). Generalization
of the HT to a finite depth (§ 1.2) elucidates how one transitions from a purely dispersive
and non-local wave equation (1.13) on deep water to a weakly dispersive and local wave
equation (1.21) on shallow water. Finally, the HT analogy in the axisymmetric case (§ 2.2)
is instrumental in getting an insight into coupling of φ0- and φ1-potentials, the effect absent
in the plane case, and leads to the cNLS (2.14). Extension of the presented approach to
general 2-D waves can be based on a generalization of (1.12) to the (x, y)-plane:

φz(x, y, 0) = − 1
2π

∫∫ +∞

−∞
φ(x′, y′, 0)

[
(x − x′)2 + ( y − y′)2

]−3/2
dx′ dy′, (3.1)

which in the radial symmetry reduces to (2.20), but otherwise requires one to analyse a
Poisson-type integral transform leading to the 2-D Schrödinger equation (Zakharov 1968).
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