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THE DEPENDENCE OF CHANCE-CORRECTED WEIGHTED AGREEMENT
COEFFICIENTS ON THE POWER PARAMETER OF THE WEIGHTING SCHEME:
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We consider the dependence of a broad class of chance-corrected weighted agreement coefficients on
the weighting scheme that penalizes rater disagreements. The considered class encompasses many existing
coefficients with any number of raters, and one real-valued power parameter defines the weighting scheme
that includes linear, quadratic, identity, and radical weights. We obtain the first-order and second-order
derivatives of the coefficients with respect to the power parameter and decompose them into components
corresponding to all pairs of different category distances. Each component compares its two distances in
terms of the ratio of observed to expected-by-chance frequency. A larger ratio for the smaller distance than
the larger distance contributes to a positive relationship between the power parameter and the coefficient
value; the opposite contributes to a negative relationship. We provide necessary and sufficient conditions
for the coefficient value to increase or decrease and the relationship to intensify or weaken as the power
parameter increases. We use the first-order and second-order derivatives for corresponding measurement.
Furthermore, we show how these two derivatives allow other researchers to obtain quite accurate estimates
of the coefficient value for unreported values of the power parameter, even without access to the original
data.

Key words: chance-corrected weighted agreement coefficients, interrater agreement, weighting schemes,
power parameter, coefficient susceptibility.

1. Introduction

Agreement coefficientsmeasure the extent towhich raters agreewhen subjectively classifying
items into mutually exclusive and exhaustive categories. Examples include the classification of
communications based on content, images based on visible aspects, and diagnoses of patients.
High rater agreement indicates that the obtained categorical data are reproducible. In contrast, low
rater agreement means that the raters interpreted the items or categories differently, jeopardizing
the validity of subsequent analyses.

Due to limited choice options, raters may guess the category without knowing the actual
category, implying that some rater agreements occur by chance. Because agreements by chance
do not provide intrinsic value, agreement coefficients usually aim to exclude them (Banerjee et
al. 1999; Janson and Olsson 2001). Different ways to correct for chance agreement have resulted
in various agreement coefficients.

In addition to nominal (unordered) categories,many settings involve classification into ordinal
(ordered) categories, such as 5-point rating scales. Ordinal categories require the researcher to
choose both a suitable agreement coefficient and a weighting scheme that assigns partial credit to
rater disagreements. The amount of credit (or penalization) for disagreements typically depends
on the distance between the chosen categories, but many options exist to capture this dependence.
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Before data collection, the researcher should decide on the weighting scheme, and the chosen
weights should reflect the specific situation (Cohen 1968; Gwet 2014).

In practice, the two most common weighting schemes are linear and quadratic. The former
uses a penalty factor equal to the distance between the chosen categories expressed as a fraction
of the maximum possible distance (Cicchetti and Allison 1971); the latter defines the penalty
factor by the square of this relative distance (Fleiss and Cohen 1973). The literature has offered
coefficient interpretations for linearweights (Kvålseth 2018;Mielke andBerry 2009;Vanbelle and
Albert 2009; Warrens 2011), quadratic weights (Cohen 1968; Fleiss and Cohen 1973; Schuster
2004), and both (Vanbelle 2016). Alternatively, radical weights define the penalty factor by the
square root of the relative distance (Gwet 2014), and identity weights imply that all possible rater
disagreements receive zero credit (i.e., maximum penalization).

Unfortunately, the chosenweighting schememay substantially affect the coefficient value and
thus the conclusion about whether the categorized data are reproducible (Brenner and Kliebsch
1996; Graham and Jackson 1993). For example, it is well known that quadratic weights tend to
produce higher coefficient values than linear weights. Indeed, Warrens (2013) computed Cohen’s
weighted kappa with linear and quadratic weights for 20 contingency tables from the literature:
Quadratic weights resulted in higher coefficient values for 19 out of 20 cases.

Although lenient weighting schemes, such as quadratic weights, are sometimes justified by
the specific situation, researchers may abuse such weighting schemes to obtain artificially high
scores of interrater agreement. This problem hasmade some researchers conclude that alternatives
with stronger foundations should replace chance-corrected weighted agreement coefficients (e.g.,
Soeken and Prescott 1986). Although such views may be extreme, they hint at the importance
of appropriate measurement and understanding the conditions under which these coefficients are
particularly susceptible to the chosen weights and in which direction.

For two-rater coefficients, Warrens (2012a) proved that quadratic weights yield higher coeffi-
cient values than linear weights if the contingency table is tridiagonal. Thus, a sufficient condition
is that only the main diagonal and the two diagonals immediately next to the main diagonal
contain nonzero frequencies, meaning that raters’ chosen categories are at most one step apart.
Warrens (2013) provided a generalization of this sufficient condition for two raters: After com-
bining any two diagonals with the same distance to the main diagonal, the ratio of observed to
expected-by-chance frequency should decrease as the diagonal’s distance to the main diagonal
increases; that is, after scaling by expected frequency, category combinations should occur less
often if the categories are farther apart, where combinations with the same distance to the main
diagonal compensate for each other. Although this sufficient condition is insightful, violations
become increasingly likely as the number of categories (and diagonals) increases.

The present study considers a broad class of chance-corrected weighted agreement coeffi-
cients suitable for any number of raters. This class includes weighted versions of existing coef-
ficients, such as the S-coefficient, Cohen’s kappa, Scott’s pi, Fleiss’ kappa, and the recently
introduced uniform prior coefficient. We relate the coefficient value to one real-valued power
parameter that captures common weighting schemes, such as linear, quadratic, identity, and rad-
ical weights, and allows for a continuum of infinitely many weighting schemes (Warrens 2014).
We derive expressions for the corresponding first-order and second-order derivatives that can act
as measures of coefficient susceptibility, which is the direction and degree to which the coeffi-
cient value changes as the power parameter of the weighting scheme changes. Next, we show
how researchers without access to the original data can use these derivatives to obtain quite accu-
rate estimates of the coefficient value for unreported values of the power parameter (e.g., linear
weights when the authors showed only quadratic weights). Finally, we translate the two derivatives
into necessary and sufficient conditions for the coefficient value to increase or decrease and the
dependence to become stronger or weaker as the power parameter increases. We decompose the
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derivatives and related conditions into components that pairwise compare all different category
distances in terms of the ratio of observed to expected-by-chance frequency.

2. Observed Weighted Agreement

Before correcting for chance agreement, we define observed weighted agreement as

Aw = 1

N

N∑

i=1

[
∑C

c=1

Ri,c(
∑C

c̃=1 wc,c̃ Ri,c̃ − 1)

R(R − 1)

]
=
∑N

i=1
∑C

c=1 Ri,c(
C∑
c̃=1

wc,c̃ Ri,c̃ − 1)

N R(R − 1)
, (1)

where N is the number of items, C ≥ 3 is the number of categories, R ≥ 2 is the number of
raters, and Ri,c is the number of raters who assign item i to category c, with

∑C
c=1 Ri,c = R.

Furthermore, wc,c̃ defines the weights for pairwise rater (dis)agreements, where c is the category
chosen by the first rater, and c̃ is chosen by the second rater: wc,c̃ = 1 if c = c̃, and 0 ≤ wc,c̃ < 1
if c �= c̃ (i.e., full credit if the two raters agree, and partial or no credit if they disagree). Because
of symmetric weights, wc,c̃ = wc̃,c for all c �= c̃. Expression (1) is consistent with Gwet (2014)
and Van Oest and Girard (2021); it reduces to Fleiss (1971) if wc,c̃ = 0 for all c �= c̃.

As an example, suppose C = 3 categories, R = 2 raters, and N = 1 item for which the
first rater chooses category 1 and the second rater chooses category 2. This situation implies
that R1,1 = 1, R1,2 = 1, and R1,3 = 0, so Aw = ∑C

c=1 R1,c(
∑C

c̃=1 wc,c̃ R1,c̃ − 1)/[R(R − 1)]
becomes {1 × (w1,1 × 1 + w1,2 × 1 + w1,3 × 0 − 1) + 1 × (w2,1 × 1 + w2,2 × 1 + w2,3 ×
0 − 1) + 0 × (w3,1 × 1 + w3,2 × 1 + w3,3 × 0 − 1)}/{2 × (2 − 1)} = {(w1,1 + w1,2 − 1) +
(w2,1 +w2,2 − 1)}/2. Because w1,1 = 1, w2,2 = 1, and w1,2 = w2,1 due to symmetry, we obtain
Aw = {(1+w1,2 − 1)+ (w1,2 + 1− 1)}/2 = w1,2, which is the weight corresponding to the two
categories chosen for the item by the rater pair. More generally, Aw in (1) is the average value of
wc,c̃ across all combinations of items and rater pairs, which reduces to the proportion of pairwise
rater agreement if wc,c̃ = 0 for all c �= c̃.

We consider weighting schemes that penalize rater disagreements based on the distance
between the chosen categories, with power parameter γ (Vanbelle 2016; Warrens 2013, 2014):

wc,c̃ = 1 −
( |c − c̃|
C − 1

)γ

, γ > 0. (2)

These weights become linear if γ = 1, become quadratic if γ = 2, become radical if γ = .5,
and converge to identity weights (i.e., wc,c̃ = 0 for all c �= c̃, implying unweighted agreement)
if γ → 0. The weighting scheme does not award credit to rater disagreements as γ approaches
zero, whereas it becomes increasingly lenient as γ increases.

A smaller power parameter (e.g., radical weights) is appropriate for situations where even
minor rater disagreements are serious. For example, different teachers may need to do grading and
independent regrading of student exams, where one-step deviations are part of the game, but larger
deviations quickly become unacceptable. Conversely, a larger power parameter (e.g., quadratic
weights) is appropriate if only major rater disagreements are problematic. Furthermore, linear
weights are suitable if no obvious arguments exist to deviate from penalization in proportion to
the distance of disagreement. For the sake of illustration, we write out the weights W = (wc,c̃),
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defined by (2), for C = 5 categories and different values of the power parameter:

Wγ→0(identity) =

⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
,

Wγ=.5(radical) =

⎛

⎜⎜⎜⎜⎝

1 .50 .29 .13 0
.50 1 .50 .29 .13
.29 .50 1 .50 .29
.13 .29 .50 1 .50
0 .13 .29 .50 1

⎞

⎟⎟⎟⎟⎠
,

Wγ=1(linear) =

⎛

⎜⎜⎜⎜⎝

1 .75 .50 .25 0
.75 1 .75 .50 .25
.50 .75 1 .75 .50
.25 .50 .75 1 .75
0 .25 .50 .75 1

⎞

⎟⎟⎟⎟⎠
,

Wγ=2(quadratic) =

⎛

⎜⎜⎜⎜⎝

1 .94 .75 .44 0
.94 1 .94 .75 .44
.75 .94 1 .94 .75
.44 .75 .94 1 .94
0 .44 .75 .94 1

⎞

⎟⎟⎟⎟⎠
.

By substituting the weights (2) into observed weighted agreement (1) and subsequently
working out the brackets and using that (|c − c̃| /(C − 1))γ = 0 if c = c̃, we obtain

Aw =
∑N

i=1
∑C

c=1
∑C

c̃=1

[
1 −

( |c−c̃|
C−1

)γ ]
Ri,c Ri,c̃ −∑N

i=1
∑C

c=1 Ri,c

N R(R − 1)

=
N R2 −∑C

c=1
∑

c̃ �=c

( |c−c̃|
C−1

)γ [∑N
i=1 Ri,c Ri,c̃

]
− N R

N R(R − 1)

= 1 −
∑C

c=1
∑

c̃ �=c

( |c−c̃|
C−1

)γ [∑N
i=1 Ri,c Ri,c̃

]

N R(R − 1)
. (3)

Symmetry in the numerator of (3) regarding c and c̃ (and thus c̃ < c and c̃ > c in c̃ �= c) implies

Aw = 1 −
C∑

c=2

∑

c̃<c

(
c − c̃

C − 1

)γ

Oc,c̃, (4)

where

Oc,c̃ =
2

N∑
i=1

Ri,c Ri,c̃

N R(R − 1)
(5)
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is the observed fraction of cases (i.e., combinations of items and rater pairs) for which one rater
chooses c and the other rater chooses c̃ < c. In words, (4) states that observed weighted agreement
Aw equals one minus the total observed weighted disagreement.

3. Chance-Corrected Weighted Agreement

We consider a broad class of chance-corrected weighted agreement coefficients:

Iw = Aw −∑C
c=1
∑C

c̃=1 wc,c̃ pcqc̃

1 −∑C
c=1
∑C

c̃=1 wc,c̃ pcqc̃

= 1 − 1 − Aw

1 −∑C
c=1
∑C

c̃=1 wc,c̃ pcqc̃
, (6)

where the category proportions in the chance correction sum to one and are greater than zero:

C∑

c=1

pc =
C∑

c̃=1

qc̃ = 1, pc > 0 for c = 1, . . . ,C, qc̃ > 0 for c̃ = 1, . . . ,C. (7)

The first part of (7) is logical consistency; the two other parts hold if, for example, all categories
are chosen at least once by one of the raters if pc = qc for all c or chosen by any two raters (not
necessarily for the same item) if pc �= qc. The class of coefficients, defined by (6) and (7), is
general. For R = 2 raters, it includes weighted versions of Cohen’s kappa (Cohen 1960, 1968)
and Scott’s pi (Scott 1955). For R ≥ 2 raters, it includes weighted versions of Fleiss’ kappa
(Fleiss 1971), the uniform prior coefficient (Van Oest 2019; Van Oest and Girard 2021), and the
S-coefficient (Bennett et al. 1954; Brennan and Prediger 1981; Warrens 2014). Table 1 provides
the operationalizations of pc and qc for these coefficients.

Although the class of coefficients does not include Krippendorff’s alpha (Gwet, 2014, p.88),
this coefficient converges to the weighted Fleiss’ kappa as the number of items N increases.
Thus, these coefficients usually provide similar values (Gwet 2014). Another excluded coeffi-
cient is the weighted kappa for R ≥ 3 raters (Mielke et al. 2007, 2009). This coefficient con-
siders the R-dimensional category combinations from all raters together (instead of rater pairs)
but is equivalent to a weighted version of Conger’s kappa, where expected weighted agreement∑C

c=1
∑C

c̃=1 wc,c̃ pcqc̃ becomes the corresponding average across all rater pairs, with rater-specific
category proportions pc and qc̃ (Conger 1980; Warrens 2012b). Furthermore, the class of coef-
ficients excludes Gwet’s AC2 (Gwet, 2014, p.89), which replaces

∑C
c=1
∑C

c̃=1 wc,c̃ pcqc̃ by a
substantially different expression.

We substitute the weights (2) and observed weighted agreement (4) into coefficient (6):

Iw = 1 −
∑C

c=2
∑

c̃<c

(
c−c̃
C−1

)γ

Oc,c̃

1 −∑C
c=1
∑C

c̃=1

[
1 −

( |c−c̃|
C−1

)γ ]
pcqc̃

= 1 −
∑C

c=2
∑

c̃<c

(
c−c̃
C−1

)γ

Oc,c̃

1 −∑C
c=1
∑C

c̃=1 pcqc̃ +∑C
c=1
∑C

c̃=1

( |c−c̃|
C−1

)γ

pcqc̃

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:19:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


R. VAN OEST 559

= 1 −
∑C

c=2
∑

c̃<c (c − c̃)γ Oc,c̃∑C
c=2
∑

c̃<c (c − c̃)γ Ec,c̃

, (8)

where
∑C

c=1
∑C

c̃=1 pcqc̃ = 1 in the middle step of (8) due to property (7), and

Ec,c̃ = pcqc̃ + qc pc̃ (9)

is the fraction of cases (i.e., combinations of items and rater pairs) expected by chance for which
one rater chooses c and the other rater chooses c̃ < c, with Ec,c̃ > 0 because of (7). Coefficient
Iw in (8) equals one minus the ratio of the total observed and expected weighted disagreements.

To facilitate further interpretation, we recall the definition of Oc,c̃ in (5) and define

O(l) =
C∑

c=2

∑

c̃<c:c−c̃=l

Oc,c̃ (10)

as the observed fraction of cases for which the categories c and c̃ < c, chosen by two raters, are
l ∈ {1, . . . ,C − 1} steps apart; we put brackets around subscript l to emphasize that it refers to
the distance between categories. Analogously, recalling the definition of Ec,c̃ in (9), we define

E(l) =
C∑

c=2

∑

c̃<c:c−c̃=l

Ec,c̃ (11)

as the fraction of cases expected by chance for which the categories c and c̃ < c, obtained from
two raters, are l steps apart. Table 1 provides the exact expressions of (11) for the coefficients.
We note that E(l) > 0 because of (7). Using (10) and (11), we rewrite the chance-corrected
weighted agreement coefficient (8) in terms of all possible category distances and their observed
and expected frequencies:

Iw = 1 −
∑C−1

l=1 lγ O(l)∑C−1
l=1 lγ E(l)

. (12)

4. First-Order Derivative

The first-order derivative of Iw with respect to γ describes coefficient susceptibility, that is,
the direction and degree to which the coefficient value changes as the power parameter of the
weighting scheme increases.

Theorem 1. The first-order derivative of coefficient Iw in (12) with respect to power parameter
γ in weighting scheme (2) is

d Iw
dγ

=
C−1∑

m=2

∑

l<m

ln
(m
l

)

⎛

⎜⎜⎜⎝
lγ E(l)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝
mγ E(m)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

{
O(l)

E(l)
− O(m)

E(m)

}
, (13)
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where we obtained coefficient (12) from (1), (2), (6), and (7), the summation indices l, m, and s
are category distances, O(l) is defined by (10) and (5), and E(l) is defined by (11) and (9).

Proof. Differentiating (12) with respect to γ yields

d Iw
dγ

=
d

(
1 −

∑C−1
l=1 lγ O(l)∑C−1
l=1 lγ E(l)

)

dγ

=
−
{∑C−1

l=1 lγ ln(l) O(l)

} {∑C−1
m=1m

γ E(m)

}
+
{∑C−1

l=1 lγ O(l)

} {∑C−1
m=1 m

γ ln(m) E(m)

}

(∑C−1
s=1 sγ E(s)

)2

= −∑C−1
m=1

∑C−1
l=1 ln(l) lγmγ O(l)E(m) +∑C−1

m=1
∑C−1

l=1 ln(m) lγmγ O(l)E(m)
(∑C−1

s=1 sγ E(s)

)2 ,

where the notation uses different indices l, m, and s in the summations to allow for combining.
Using that − ln(l) + ln(m) = ln(m/ l) and that ln(m/ l) = 0 if l = m, we obtain

d Iw
dγ

=
⎛

⎝
C−1∑

m=1

C−1∑

l=1,l �=m

ln
(m
l

)
lγmγ O(l)E(m)

⎞

⎠ /

(
C−1∑

s=1

sγ E(s)

)2

.

Next, we decompose l �= m into l < m and l > m:

d Iw
dγ

=
(
C−1∑

m=1

∑

l<m

ln
(m
l

)
lγmγ O(l)E(m) +

C−1∑

m=1

∑

l>m

ln
(m
l

)
lγmγ O(l)E(m)

)
/

(
C−1∑

s=1

sγ E(s)

)2

=
(
C−1∑

m=1

∑

l<m

ln
(m
l

)
lγmγ O(l)E(m) +

C−1∑

m=1

∑

l<m

ln

(
l

m

)
mγ lγ O(m)E(l)

)
/

(
C−1∑

s=1

sγ E(s)

)2

=
(
C−1∑

m=1

∑

l<m

ln
(m
l

)
lγmγ

{
O(l)E(m) − O(m)E(l)

}
)

/

(
C−1∑

s=1

sγ E(s)

)2

.

Using that m = 1 is infeasible if l < m, and rewriting yields the result, completing the proof. ��
The first-order derivative in (13) is a weighted sum taken over all pairs of different category

distances m and l < m. As reflected by the term (O(l)/E(l)) − (O(m)/E(m)), each component
compares its smaller distance l with its larger distance m in terms of the ratio of observed to
expected-by-chance frequency. Because all other terms in (13) are strictly positive, it holds that
d Iw/dγ > 0 (i.e., coefficient Iw is increasing in power parameter γ ) if the ratio of observed to
expected-by-chance frequency tends to decrease as categories are farther apart; that is, if mostly
O(l)/E(l) > O(m)/E(m) for l < m. However, violations are allowed because of the compensatory
structure in the weighted sum.

In (13), a component’s comparison of category distances becomes more important in shaping
the first-order derivative as (i) the ratio of the larger versus smaller distance increases (via ln(m/ l)),
and (ii) these two distances capture greater shares of the total expected weighted disagreement
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across all distances (via the fractions lγ E(l)/(
C−1∑
s=1

sγ E(s)) and mγ E(m)/(
C−1∑
s=1

sγ E(s))). Further-

more, the latter implies that a component’s importance increases as its two distances l and m are
more likely to occur by chance (via E(l) and E(m)), and these distances l and m increase, where
higher values of γ play a reinforcing role (via lγ andmγ ). For example, in a two-rater contingency
table, the elements far from the main diagonal increasingly determine how the coefficient value
responds to changes in the power parameter as this parameter increases. An implication is that
the relationship between the power parameter and the coefficient value can be non-monotonic,
as changes in γ trigger shifts in the importance of components that compare different category
distances, with possibly opposite contributions via the signs of (O(l)/E(l)) − (O(m)/E(m)). Fur-
thermore, the log-ratio of category distances ln(m/ l) in (13) implies that the degree of coefficient
susceptibility is often higher in settings with more categories (i.e., higher C). The reason is that
ln(m/ l) tends to take higher values as C increases, magnifying the effects of the comparisons
(O(l)/E(l)) − (O(m)/E(m)).

5. Conditions for Direction of Coefficient Susceptibility

We obtain a necessary and sufficient condition from (13) in Theorem 1:

Corollary 1a. As power parameter γ in weighting scheme (2) increases, the chance-corrected
weighted agreement coefficient Iw in (12) increases if and only if

C−1∑

m=2

∑

l<m

ln
(m
l

)
lγmγ E(l)E(m)

{
O(l)

E(l)
− O(m)

E(m)

}
> 0.

Corollary 1b. As power parameter γ in weighting scheme (2) increases, the chance-corrected
weighted agreement coefficient Iw in (12) decreases if and only if

C−1∑

m=2

∑

l<m

ln
(m
l

)
lγmγ E(l)E(m)

{
O(l)

E(l)
− O(m)

E(m)

}
< 0.

Proof. We have
∑C−1

s=1 sγ E(s) > 0 due to property (7), so we may ignore these
∑C−1

s=1 sγ E(s)

terms that do not determine the sign of d Iw/dγ in (13). Thus, d Iw/dγ > 0 is equivalent to the
simpler condition in Corollary 1a, and d Iw/dγ < 0 is equivalent to the condition in Corollary
1b. ��

As before, each component compares its two category distances m and l < m in terms of the
ratio of observed to expected-by-chance frequency, and components comparing larger distances
become relatively more important as the power parameter increases (via lγ and mγ ).

For C = 3 categories, the necessary and sufficient condition in Corollary 1 becomes partic-
ularly simple:

Corollary 2a. As power parameter γ in weighting scheme (2) increases in settings with three
categories, the chance-corrected weighted agreement coefficient Iw in (12) increases if and only
if

O(1)/E(1) > O(2)/E(2).
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Corollary 2b. As power parameter γ in weighting scheme (2) increases in settings with three
categories, the chance-corrected weighted agreement coefficient Iw in (12) decreases if and only
if

O(1)/E(1) < O(2)/E(2).

Proof. The only feasible pair of category distances with l < m for C = 3 categories corresponds
to l = 1 and m = 2. Because ln(m/ l) lγmγ E(l)E(m) > 0, substituting l = 1 and m = 2 into
Corollary 1 yields Corollary 2.

Corollary 2 implies that the relationship between γ and Iw is always monotonic (either
increasing or decreasing) for C = 3 categories. The direction is determined by whether the ratio
of observed to expected-by-chance frequency is greater for combinations of categories that are
one step apart or two steps apart.

Furthermore, we obtain a sufficient condition that extends the sufficient condition byWarrens
(2013) beyond two raters:

Corollary 3a. As power parameter γ in weighting scheme (2) increases, the chance-corrected
weighted agreement coefficient Iw in (12) increases if the ratio O(l)/E(l) is decreasing in the
category distance l.

Corollary 3b. As power parameter γ in weighting scheme (2) increases, the chance-corrected
weighted agreement coefficient Iw in (12) decreases if the ratio O(l)/E(l) is increasing in the
category distance l.

Proof. Because ln(m/ l) lγmγ E(l)E(m) > 0, the necessary and sufficient condition for d Iw/dγ >

0 in Corollary 1a is satisfied if (O(l)/E(l)) − (O(m)/E(m)) > 0 for all l < m; that is, if O(l)/E(l)

is decreasing in l. Similarly, the necessary and sufficient condition for d Iw/dγ < 0 in Corollary
1b is satisfied if (O(l)/E(l)) − (O(m)/E(m)) < 0 for all l < m; that is, if O(l)/E(l) is increasing
in l. ��

Thus, the relationship between power parameter γ and coefficient Iw is monotonic if the
ratio of observed to expected-by-chance frequency is monotonic in the category distance. The
sufficient condition in Corollary 3 is both necessary and sufficient in three-category settings due
to Corollary 2.

6. Conditions for Direction of Coefficient Susceptibility: Weighted S-coefficient

It is instructive to apply the three corollaries to the weighted S-coefficient, which assumes
that all C categories are equally likely to occur by chance; that is, pc = qc = 1/C , c = 1, . . . ,C ,
and hence E(l) = 2(C − l)/C2 (see Table 1). We note that C − l is the number of category
combinations (c, c̃) with distance l; that is, satisfying c − c̃ = l. By applying Corollary 1 to the
weighted S-coefficient, we obtain a necessary and sufficient condition for this coefficient:

Corollary 4a. As power parameter γ in weighting scheme (2) increases, the weighted S-
coefficient increases if and only if

C−1∑

m=2

∑

l<m

ln
(m
l

)
lγmγ (C − l)(C − m)

{
O(l)

C − l
− O(m)

C − m

}
> 0.
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Corollary 4b. As power parameter γ in weighting scheme (2) increases, the weighted S-
coefficient decreases if and only if

C−1∑

m=2

∑

l<m

ln
(m
l

)
lγmγ (C − l)(C − m)

{
O(l)

C − l
− O(m)

C − m

}
< 0.

Proof. Substituting E(l) = 2(C − l)/C2 into Corollary 1 and ignoring the positive constant term
2/C2 (that does not affect the sign) yields the result. ��

As before, this condition considers a weighted sum taken over all pairs of different category
distances m and l < m. As reflected by the term (O(l)/(C − l)) − (O(m)/(C − m)), each
component compares its smaller distance l with its larger distance m in terms of the average
observed frequency per category combination (c, c̃). Component importance increases as more
category combinations (c, c̃) have the corresponding distances l andm (via C − l and C −m), the
ratio of the larger versus smaller distance increases (via ln(m/ l)), and these distances themselves
increase, where higher values of γ play a reinforcing role (via lγ and mγ ).

Analogous toCorollary 2, the necessary and sufficient condition for theweighted S-coefficient
in Corollary 4 becomes particularly simple if there are only C = 3 categories:

Corollary 5a. As power parameter γ in weighting scheme (2) increases in settings with three
categories, the weighted S-coefficient increases if and only if O(1)/2 > O(2).

Corollary 5b. As power parameter γ in weighting scheme (2) increases in settings with three
categories, the weighted S-coefficient decreases if and only if O(1)/2 < O(2).

Proof. The only feasible pair of category distances with l < m for C = 3 categories corresponds
to l = 1 and m = 2. Because ln(m/ l) lγmγ (C − l) (C − m) > 0, substituting l = 1, m = 2,
and C = 3 into Corollary 4 yields Corollary 5. ��

Corollary 5 implies that the relationship between the power parameter and the weighted S-
coefficient is always monotonic (either increasing or decreasing) forC = 3 categories. The direc-
tion is determined by whether the average observed frequency of the two category combinations
(c = 2, c̃ = 1) and (c = 3, c̃ = 2), with distance one, is greater than the observed frequency of
category combination (c = 3, c̃ = 1), with distance two, or not.

Furthermore, we obtain a sufficient condition for the weighted S-coefficient that extends a
sufficient condition by Warrens (2014) beyond two raters:

Corollary 6a. As power parameter γ in weighting scheme (2) increases, the weighted S-
coefficient increases if the average observed frequency O(l)/(C − l) is decreasing in distance
l.

Corollary 6b. As power parameter γ in weighting scheme (2) increases, the weighted S-
coefficient decreases if the average observed frequency O(l)/(C − l) is increasing in distance
l.

Proof. Because ln(m/ l)lγmγ (C − l)(C − m) > 0, the necessary and sufficient condition for
d Iw/dγ > 0 in Corollary 4a is satisfied if (O(l)/(C − l)) − (O(m)/(C − m)) > 0 for all l < m;
that is, if O(l)/(C − l) is decreasing in l. Similarly, the necessary and sufficient condition for
d Iw/dγ < 0 in Corollary 4b is satisfied if (O(l)/(C − l)) − (O(m)/(C − m)) < 0 for all l < m;
that is, if O(l)/(C − l) is increasing in l. ��

Thus, the relationship between the power parameter and the weighted S-coefficient is mono-
tonic if the average observed frequency per category combination is monotonic in the category
distance. The sufficient condition in Corollary 6 is both necessary and sufficient in three-category
settings due to Corollary 5.
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7. Second-Order Derivative

The second-order derivative of Iw with respect to γ helps describe change in coefficient sus-
ceptibility, that is, whether the coefficient’s susceptibility to the power parameter of the weighting
scheme intensifies or weakens as this parameter increases.

Theorem 2. The second-order derivative of coefficient Iw in (12) with respect to power param-
eter γ in weighting scheme (2) is

d2 Iw
(dγ )2

=
C−1∑

m=2

∑

l<m

ln
(m
l

)

⎛

⎜⎜⎜⎝
lγ E(l)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝
mγ E(m)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C−1∑
s=1

ln(lm/s2)sγ E(s)

C−1∑
s=1

sγ E(s)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

{
O(l)

E(l)
− O(m)

E(m)

}
.

(14)

Proof. Starting from the first-order derivative in (13), we first note that

d

⎛

⎜⎝ lγ E(l)
C−1∑
s=1

sγ E(s)

⎞

⎟⎠

dγ
=

lγ ln(l) E(l)

C−1∑
s=1

sγ E(s) − lγ E(l)

C−1∑
s=1

sγ ln(s) E(s)

(
C−1∑
s=1

sγ E(s)

)2

=

⎛

⎜⎜⎜⎝
lγ E(l)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
ln(l) −

C−1∑
s=1

ln(s)sγ E(s)

C−1∑
s=1

sγ E(s)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

so that

d

⎛

⎜⎝ lγ E(l)
C−1∑
s=1

sγ E(s)

⎞

⎟⎠

⎛

⎜⎝ mγ E(m)

C−1∑
s=1

sγ E(s)

⎞

⎟⎠

dγ

=

⎛

⎜⎜⎜⎝
lγ E(l)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝
mγ E(m)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
ln(lm) − 2

C−1∑
s=1

ln(s)sγ E(s)

C−1∑
s=1

sγ E(s)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

Using this result and (13), we obtain

d2 Iw
(dγ )2

=
d
(
d Iw
dγ

)

dγ
=

C−1∑

m=2

∑

l<m

ln
(m
l

)

⎛

⎜⎜⎜⎝
lγ E(l)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝
mγ E(m)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
ln(lm) − 2

C−1∑
s=1

ln(s) sγ E(s)

C−1∑
s=1

sγ E(s)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

{
O(l)

E (l)
− O(m)

E (m)

}

Rewriting the term in the first set of accolades yields the result, completing the proof. ��
Like the first-order derivative in (13), the second-order derivative in (14) is a weighted

sum taken over all pairs of different category distances m and l <m. As reflected by the term
(O(l)/E(l)) − (O(m)/E(m)), each component compares its smaller distance l with its larger dis-
tance m in terms of the ratio of observed to expected-by-chance frequency. The only difference
between the two derivatives is the componentwise multiplier in the first set of accolades in (14).
If this multiplier is positive, the component affects the first-order and second-order derivatives in
the same direction: The component’s comparison of category distances increasingly shapes the
relationship between power parameter γ and coefficient Iw (i.e., susceptibility tends to intensify)
as γ increases. Conversely, a negative multiplier implies opposite effects on the two derivatives:
The component’s influence reduces (i.e., susceptibility tends to weaken) as γ increases. Because
the multiplier is increasing in the distances l and m, components comparing larger category dis-
tances become relatively more influential than components comparing smaller category distances
as the power parameter increases. Furthermore, settings with more categories (i.e., higher C)

are more likely to have substantial multipliers, making large changes in coefficient susceptibility
more likely. The reason is that the term ln(lm/s2) in the multiplier in (14) can take more extreme
values as C increases.

8. Conditions for Change in Coefficient Susceptibility

A necessary and sufficient condition follows from (13) and (14) in Theorems 1 and 2:

Corollary 7. As power parameter γ in weighting scheme (2) increases, the susceptibility of
coefficient Iw in (12) to γ intensifies if the first-order derivative d Iw/dγ in (13) and the second-
order derivative d2 Iw/(dγ )2 in (14) have the same sign and weakens if these two derivatives
have opposite signs. Equivalently, as γ increases, coefficient susceptibility intensifies if

C−1∑

m=2

∑

l<m

ln
(m
l

)
lγmγ E(l)E(m)

{
O(l)

E(l)
− O(m)

E(m)

}

and

C−1∑

m=2

∑

l<m

ln
(m
l

)
lγmγ E(l)E(m)

{
C−1∑

s=1

ln(lm/s2)sγ E(s)

}{
O(l)

E(l)
− O(m)

E(m)

}

have the same sign and weakens if these two expressions have opposite signs.

Proof. This follows from the definitions of first-order and second-order derivatives. We obtain
the two expressions in the second half of Corollary 7 by ignoring the

∑C−1
s=1 sγ E(s) terms that are

always positive and do not determine the signs of d Iw/dγ in (13) and d2 Iw/(dγ )2 in (14). ��
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We expect that coefficient susceptibility often weakens as power parameter γ increases. The
reason is that, especially for high γ , large category distances s correspond to both high values of
sγ and negative values of ln(lm/s2) in

∑C−1
s=1 ln(lm/s2)sγ E(s), whereas small category distances

s correspond to both low values of sγ and positive values of ln(lm/s2). Thus, large distances s
tend to make large negative contributions to

∑C−1
s=1 ln(lm/s2)sγ E(s), whereas small distances s

tend to make only small positive contributions, triggering opposite signs in Corollary 7. As this
mechanism for weakening coefficient susceptibility becomes increasingly strong for higher values
of the power parameter, coefficient susceptibility ultimately converges to zero. Furthermore, the
mechanism is more prominent if the values of E(s) remain substantial for large s, so large category
distances are relatively likely to occur by chance.

For C = 3 categories (with the only feasible combination being l = 1 and m = 2), we can
write the second-order derivative in (14) as a multiple of the first-order derivative in (13):

d2 Iw
(dγ )2

∣∣∣∣
C=3

= ln (2) E(1)+ln(1/2)2γ E(2)

E(1)+2γ E(2)
× d Iw

dγ

∣∣∣∣
C=3

= ln (2) {E(1) − 2γ E(2)}
E(1) + 2γ E(2)

× d Iw
dγ

∣∣∣∣
C=3

,

(15)

where the fraction in (15) is the multiplier in (14) for l = 1 and m = 2. Equivalently,

d2 Iw
(dγ )2

∣∣∣∣
C=3

/ d Iw
dγ

∣∣∣∣
C=3

= ln (2) {E(1) − 2γ E(2)}
E(1) + 2γ E(2)

. (16)

We obtain the following result for three-category settings, where the relationship between the
power parameter and the coefficient value is monotonic due to Corollary 2:

Corollary 8. As power parameter γ in weighting scheme (2) increases in settings with three
categories, the chance-corrected weighted agreement coefficient Iw in (12) becomes more
susceptible to γ until γ ∗ = ln(E(1)/E(2))/ln(2) . Next, Iw becomes less susceptible.

Proof. Equation (15) implies that the second-order derivative has the same sign as the first-order
derivative if E(1) − 2γ E(2) > 0, or equivalently if γ < ln(E(1)/E(2))/ln(2). Similarly, the
signs of the first-order and second-order derivatives are opposite if γ > ln(E(1)/E(2))/ln(2). So,
coefficient susceptibility intensifies until γ ∗ = ln(E(1)/E(2))/ln(2) and weakens after. ��

Thus, if C = 3, there is a value of the power parameter for which the chance-corrected
weighted agreement coefficient Iw is most susceptible to this parameter, and this value γ ∗ is easy
to compute. Furthermore, the weighted S-coefficient is most susceptible to linear weights:

Corollary 9. As power parameter γ in weighting scheme (2) increases in settings with three
categories, the weighted S-coefficient becomes more susceptible to γ until γ ∗ = 1. Next, the
weighted S-coefficient becomes less susceptible.

Proof. Because E(l) = 2(C − l)/C2, the weighted S−coefficient with C = 3 categories implies
that E(1) = 4/9 and E(2) = 2/9. Substituting into Corollary 8 yields γ ∗ = ln(2)/ln(2) = 1. ��

The contour plot in Figure 1 visualizes Corollary 8 for all settings with three categories and
pc = qc, c = 1, . . . ,C ; it visualizes Corollary 9 for the weighted S-coefficient by showing
a dot at p1 = p2 = 1/3, where γ ∗ = 1. The figure shows a wide range of possible values
for γ ∗. Coefficient susceptibility weakens monotonically as the power parameter increases (i.e.,
γ ∗ < 0) if the distribution of category proportions is substantially bimodal (in the bottom part of
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infeasible region 

(bimodal)

(category 2 

is largest)

(category 3 

is largest) 

(category 1 

is largest)

Figure 1.
Contour Plot Showing the Value of the Power Parameter Corresponding to Maximum Coefficient Susceptibility (γ ∗)

for Varying Category Proportions (p1 and p2) in Three-Category Settings. Note. The dotted line captures all symmetric
distributions for the category proportions (i.e., p1 = p3, where p3 = 1− p1 − p2); the dot is the weighted S-coefficient
(i.e., p1 = p2 = p3 = 1/3).

the figure, triggering high E(s) for large s in Corollary 7). Conversely, coefficient susceptibility
intensifies monotonically at least up to quadratic weights (i.e., γ ∗ > 2) if the distribution is
strongly unimodal, entailing a middle category that is substantially larger than the smallest corner
category (in the top, left, and right parts of the figure, triggering low E(s) for large s in Corollary
7). Furthermore, coefficient susceptibility is most extreme between identity and quadratic weights
(i.e., 0 < γ ∗ < 2) if the category proportions p1, p2, and p3 are somewhat balanced. We note
that small changes in the distribution of category proportions may substantially affect the value of
γ ∗ if one of the corner categories strongly dominates (in the figure’s bottom left and right parts).

9. Descriptive Measures of Coefficient Susceptibility

Based on the preceding analysis, we propose descriptive measures that summarize various
aspects of coefficient susceptibility for any data set with rater-based classifications. As shorthand
notation, we denote the first-order derivative by D1(γ ) and the second-order derivative by D2(γ ).
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First, researchers may use the first-order derivative D1(γ ) to describe how the coefficient
value reacts to changes in the chosen value of power parameter γ . The sign of D1(γ ) reveals the
direction of dependence; the absolute value quantifies the degree of coefficient susceptibility. The
measure D1(γ ) is the change in the value of coefficient Iw in response to a small change in γ ,
expressed as a multiple of this change in γ . This measure of coefficient susceptibility is invariant
to the amount of curvature that is present in the relationship between γ and Iw. Interpretation is
most straightforward for settings in which the relationship between γ and Iw is (almost) linear.
For example, D1(γ ) = .10 would mean that the value of Iw changes by (approximately) .10 if
γ changes by one point. Settings with substantial curvature in the relationship between γ and Iw
require combining D1(γ )with a measure of curvature, that is, change in coefficient susceptibility
as γ changes (as discussed below). In settings with three categories, researchers may also report
D1(γ

∗), that is, the first-order derivative evaluated at the value of the power parameter for which
coefficient Iw is most susceptible, where Corollary 8 defines γ ∗. This measure provides a tight
upper bound for the degree of coefficient susceptibility over the entire range of γ ; it is independent
of the chosen value of the power parameter.

Second, researchers may use the ratio D2(γ )/D1(γ ) to describe the amount of curvature
that is present in the relationship between power parameter γ and coefficient Iw, or equivalently,
to describe the change in coefficient susceptibility as γ changes (Pratt 1964). A positive sign
of D2(γ )/D1(γ ) indicates that the coefficient value changes more when γ increases than when
γ decreases (i.e., susceptibility intensifies as γ increases), whereas a negative sign indicates
the opposite (i.e., susceptibility weakens as γ increases). The absolute value of D2(γ )/D1(γ )

quantifies the change in coefficient susceptibility as a fraction of the amount of susceptibility
that is present. Thus, D2(γ )/D1(γ ) is a scaled measure that is invariant to the actual degree of
susceptibility. For settingswith three categories, this ratiomeasure reduces to (16), a simple closed-
form expression. We note that D1(γ ) and D2(γ )/D1(γ ) complement each other: The former
describes coefficient susceptibility independent of the amount of curvature in the relationship
between γ and Iw; the latter describes curvature (or change in susceptibility) independent of the
amount of susceptibility.

We illustrate the measures D1(γ ) and D2(γ )/D1(γ ) for linear weights by considering 31
data sets from the literature. Contingent on our library access, these data sets originate from
two literature reviews by Warrens (2013) and Warrens (2014), supplemented by other data sets
that we obtained by checking lists of references and additional well-known studies of interrater
agreement. In addition to D1(γ ) and D2(γ )/D1(γ ), we show D1(γ

∗) and the corresponding
value of γ ∗ for all data sets with C = 3 categories. For settings with R = 2 raters, we implement
Cohen’s kappa, which is the most frequently used coefficient in practice. For settings with R ≥ 3
raters, we implement Fleiss’ kappa, proposed in the literature as an easy generalization of Cohen’s
kappa beyond two raters (although it generalizes Scott’s pi rather than Cohen’s kappa).

We provide Ox source code as online supplementary material on the journal’s website. Ox
is free of charge for academics, and downloads are available at doornik.com/download.html
(Doornik 2007). The default value of the power parameter in the Ox source code is γ = 1, but
users can easily adjust its value. To compute themeasures D1(γ ), D2(γ )/D1(γ ), D1(γ

∗), and γ ∗,
we recommend editing the first data set in the Ox source code if users wish to implement Cohen’s
kappa to analyze a data set in C × C contingency table format. Alternatively, we recommend
editing the last data set in the Ox source code if the data set is an N ×C table containing the rater
frequencies Ri,c. In the latter case, the calculations assume that the coefficient is Fleiss’ kappa,
which coincides with Scott’s pi if there are R = 2 raters. Users can run the source code in the
Ox editor by first clicking on “Modules” and next clicking on “Ox.” This automatically prints all
computed statistics.

Table 2 shows that D1(γ ) > 0 for 27 out of 31 data sets, confirming that coefficient values
usually increase as the power parameter of the weighting scheme increases. Furthermore, the
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degree of coefficient susceptibility is often high: |D1(γ )| ≥ .10 for 17 data sets, .05 ≤ |D1(γ )| <

.10 for 7 data sets, and |D1(γ )| < .05 for only 7 data sets. For the data sets with C = 3 categories
(implyingmonotonicity), the values of γ ∗ vary substantially, confirming that the point until which
coefficient susceptibility intensifies depends on the specific data set. As anticipated, the number
of categories C correlates strongly with the degree of coefficient susceptibility |D1(γ )|, with
a correlation coefficient of .59. Furthermore, the values of D2(γ ) /D1(γ ) show that coefficient
susceptibility oftenweakens as the power parameter increases (18 data sets), although it sometimes
intensifies (5 data sets) or is almost constant (8 data sets). As anticipated, substantial change in
coefficient susceptibility (i.e., curvature in the relationship between γ and Iw) occurs most often
when the number of categories C is high, with a correlation coefficient of .48.

10. Coefficient Values for Unreported Values of Power Parameter

Beyond interpretation of coefficient susceptibility in terms of positive or negative and inten-
sifying or weakening, the summary measures D1(γ ) and D2(γ ) /D1(γ ) help researchers obtain
(approximate) coefficient values for unreported values of the power parameter. For example, Table
2 shows the results for linear weights only. Still, we can use these results to estimate the coeffi-
cient values for other choices, such as identity, radical, or quadratic weights. Furthermore, these
estimates do not require access to the original data because the coefficient Iw computed at γ , the
first-order derivative D1(γ ), and the ratio D2(γ ) /D1(γ ) are sufficient statistics. The second-order
Taylor series (i.e., quadratic) approximation of coefficient Iw, computed for an alternative power
parameter value γ + �γ , is given by

Iw(γ + �γ ) ≈ Iw(γ ) + D1(γ )

(
�γ + 1

2

D2(γ )

D1(γ )
(�γ )2

)
, (17)

where the right-hand side is the heuristic value, and �γ is the change in the power parameter.
Table 3 shows the deviations between the actual value of Iw(γ + �γ ) and the corresponding

heuristic value in (17) for all 31 data sets in Table 2.We consider γ = 1 and γ = 2 for the original
value of the power parameter (i.e., linear and quadratic weights). Next, we change the value of γ :
�γ = −1, �γ = −.5, �γ = .5, and �γ = 1, resulting in 2 × 4 = 8 different scenarios. The
heuristic is generally accurate. The mean absolute deviation based on all 31× 8 cells in Table 3 is
.002, and the corresponding mean absolute percent deviation is .99, approximately one percent.
More precisely, the mean absolute deviation across the 31 data sets is .005 or less for each of the
eight scenarios, and this deviation is .001 or less for the four scenarios with either �γ = −.5
or �γ = .5. Similarly, the maximum absolute deviation across 30 of the 31 data sets is .011 or
less for each of the eight scenarios. Furthermore, the absolute deviation remains modest for the
excluded data set from Maclure and Willett (1987), with C = 12 categories and extreme levels
of susceptibility and curvature. This deviation is .019 for γ = 1 and �γ = 1, .016 for γ = 2 and
�γ = −1, and .011 or less for the other six scenarios.
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Table 3.
Deviation between second-order Taylor series heuristic and actual coefficient value for different original values of power
parameter (γ ) and changes (�γ ).

γ (original value) 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
�γ (change) R C −1.0 − .5 .5 1.0 −1.0 −.5 .5 1.0

Cohen (1960) 2 3 −.005 − .001 .001 .004 −.003 −.000 .000 .002
Cohen (1960) 2 3 .001 .000 − .000 −.001 .001 .000 −.000 −.000
Fleiss (1971) 2 3 .001 .000 − .000 −.001 .000 .000 −.000 −.000
Fleiss (1971) 2 3 −.002 − .000 .000 .002 −.001 −.000 .000 .001
Guggenmoos-Holzmann and Vonk (1998) 2 3 .000 − .000 .000 .000 −.000 −.000 .000 .000
Spitzer and Fleiss (1974) 2 3 −.001 − .000 .000 .000 .000 .000 −.000 −.001
Sim and Wright (2005) 2 3 −.002 − .000 .000 .003 −.003 −.000 .000 .002
Sim and Wright (2005) 2 4 −.003 − .000 .000 .002 −.001 −.000 .000 .000
De Raadt et al. (2021) 2 4 −.002 − .000 .000 .003 −.004 −.001 .001 .004
Hand et al. (1994, p.170) 2 4 −.008 − .001 .001 .005 −.002 −.000 −.000 −.001
Hand et al. (1994, p.170) 2 4 −.007 − .001 .000 .002 .002 .000 −.000 −.004
Hand et al. (1994, p.170) 2 4 −.007 − .001 .000 .002 .003 .000 −.001 −.004
Landis and Koch (1977) 2 4 −.008 − .001 .001 .005 −.002 −.000 −.000 −.001
Landis and Koch (1977) 2 4 −.008 − .001 .001 .006 −.002 −.000 .000 −.001
Simonoff (2003, p.288) 2 4 −.006 − .001 .001 .004 −.002 −.000 −.000 −.001
Simonoff (2003, p.303) 2 4 −.009 − .001 .001 .008 −.005 −.000 .000 .001
Simonoff (2003, p.303) 2 4 −.002 − .000 .000 .003 −.003 −.000 .000 .002
Agresti (1988) 2 5 −.007 − .001 .001 .005 −.002 −.000 −.000 −.001
Graham and Jackson (1993) 2 5 −.007 − .001 .000 .003 .001 .000 −.000 −.003
Maria and Victorino (1997) 2 5 −.002 − .000 .000 .003 −.003 −.000 .000 .002
Maria and Victorino (1997) 2 5 −.006 − .001 .001 .005 −.002 −.000 −.000 −.001
Simonoff (2003, p.272) 2 5 −.001 − .000 .000 .001 −.000 .000 −.000 −.000
Van Swieten et al. (1988) 2 6 −.006 − .000 − .000 −.002 .006 .001 −.001 −.007
Cookson et al. (1986) 2 8 −.005 − .001 .001 .005 −.003 −.000 .000 .002
Maclure and Willett (1987) 2 12 .010 .002 − .002 −.019 .016 .002 −.002 −.011
Tinsley and Weiss (1975) 3 3 .002 .000 − .000 −.001 −.000 −.000 .000 .001
Gwet (2014 p.96) 3 5 −.005 − .001 .001 .006 −.005 −.001 .001 .004
Gwet (2014 p.370) 3 5 −.011 − .001 .001 .010 −.006 −.001 .000 .002
Gwet (2014 p.372) 4 5 −.002 − .000 .000 .001 −.000 .000 −.000 −.001
Fleiss et al. (2003, p.615) 5 3 .004 .000 − .000 −.003 .001 .000 −.000 −.000
Holmquist et al. (1967) 7 5 −.007 − .001 .001 .005 −.002 −.000 −.000 −.001

Cohen’s kappa if R = 2 raters, and Fleiss’ kappa if R ≥ 3 raters.

11. Example: Two Raters and Three Categories

We consider a contingency table from Cohen (1960) that corresponds to the first row of Table
2. Table 4 reproduces the observed and expected fractions of items for which the choices by the
two raters result in the corresponding category combination. As there are three categories, the
maximum possible category distance (i.e., distance to the main diagonal) is two. For Cohen’s
kappa with three categories, Corollaries 1, 2, 3, 7, and 8 apply (see Table 1).

The observed fraction of items with category distance one equals O(1) = .12 + .15 + .13 +
.16 = .56; the corresponding fraction expected by chance is E(1) = .12+ .06+ .15+ .09 = .42,
implying that the ratio of observed to expected-by chance for category distance l = 1 becomes
O(1)/E(1) = .56/.42 = 1.333. Similarly, the observed fraction of items with category distance
two equals O(2) = .03 + .12 = .15, and the corresponding fraction expected by chance is
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E(2) = .08+ .15 = .23. Thus, the ratio of observed to expected-by-chance for category distance
l = 2 becomes O(2)/E(2) = .15/.23 = .652. Because the ratio of observed to expected by
chance is higher for category distance one (i.e., closer to the main diagonal) than for category
distance two (i.e., farther away), coefficient Iw increases monotonically as power parameter γ

increases (Corollaries 2 and 3). Furthermore, coefficient Iw is most susceptible to γ at γ ∗ =
ln(E(1)/E(2))/ln(2) = ln(.42/.23)/ln(2) = .869, close to linear weights (Corollary 8).

Because the only feasible pair of category distances for C = 3 is l = 1 and m = 2, it follows
from (13) that the first-order derivative for linear weights (i.e., γ = 1) becomes

D1(γ ) = ln
(m
l

)

⎛

⎜⎜⎜⎝
lγ E(l)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝
mγ E(m)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

{
O(l)

E(l)
− O(m)

E(m)

}

= ln

(
2

1

)(
1 × .42

1 × .42 + 2 × .23

)(
2 × .23

1 × .42 + 2 × .23

)
{1.333 − .652} = .118.

Thus, the coefficient value reacts strongly to changes in the power parameter, and there is indeed
a positive relationship (Corollary 1). Furthermore, D1(γ

∗) = .118 at γ ∗ = .869, so coefficient
susceptibility for linear weights is essentially the same as the maximum over the entire range of
γ . Next, we use (16) to compute the ratio of derivatives:

D2(γ )
/
D1(γ ) = ln(2) {E(1) − 2γ E(2)}

E(1) + 2γ E(2)
= ln (2) {.42 − 2 × .23}

.42 + 2 × .23
= −.032.

As the derivatives D1(γ ) and D2(γ ) have opposite signs, coefficient susceptibility weakens as the
power parameter increases (Corollary 7). However, D2(γ )/D1(γ ) ≈ 0, implying almost linearity
in the relationship between the power parameter and the coefficient value.

Using (12) and Table 4, we compute the coefficient value for linear weights:

Iw(γ ) = 1 −

C−1∑
l=1

lγ O(l)

C−1∑
l=1

lγ E(l)

= 1 − 1 × .56 + 2 × ..15

1 × .42 + 2 × .23
= 1 − .86

.88
= .023.

When moving from linear to identity weights (i.e., γ = 1 and �γ = −1), the heuristic in (17) is

Iw(γ ) + D1(γ )

(
�γ + 1

2

D2(γ )

D1(γ )
(�γ )2

)
= .023 + .118

×
(

−1 + 1

2
× −.032 × (−1)2

)
= −.097.

Because the actual value of Cohen’s (unweighted) kappa is −.092, the corresponding deviation
becomes−.097− (−.092) = −.005, as shown in the first cell of Table 3. Similarly, when moving
from identity to quadratic weights (i.e., γ = 1 and �γ = 1), the heuristic in (17) yields

Iw(γ ) +D1(γ )

(
�γ + 1

2

D2(γ )

D1(γ )
(�γ )2

)
= .023 + .118 ×

(
1 + 1

2
× −.032 × (1)2

)
= .139.

Cohen’s weighted kappa with quadratic weights equals .134, which is again quite close.
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Table 4.
Calculations in example with two raters and three categories.

Observed .25 .13 .12 .50
.12 .02 .16 .30
.03 .15 .02 .20
.40 .30 .30 1.00

Expected .20 .15 .15 .50
.12 .09 .09 .30
.08 .06 .06 .20
.40 .30 .30 1.00

Distance l = 1 l = 2
O(l) .56 .15
E(l) .42 .23
O(l)/E(l) 1.333 .652
(O(1)/E(1)) − (O(2)/E(2)) .681
γ ∗ = ln(E(1)/E(2))/ln(2) .869
For γ = 1
D1(γ ) .118
D2(γ )/D1(γ ) −.032
Iw(γ ) .023
Actual and heuristic values of Iw for other γ

γ = 0 −.092 −.097
γ = 2 .134 .139

12. Example: Four Raters and Five Categories

We consider a data set from Gwet (2014, p.372), included in Table 2. As there are five
categories, the maximum possible category distance is four. As we consider Fleiss’ kappa with
more than three categories, Corollaries 1, 3, and 7 apply (seeTable 1). The top part of Table 5 shows
the observed and expected fractions of cases (i.e., combinations of items and rater pairs) for the
four distances l = 1, . . . , 4, together with the corresponding ratios O(l)/E(l). Because O(l)/E(l) is
decreasing in the category distance l, coefficient Iw increases monotonically as power parameter
γ increases (Corollary 3).

We compute the differences (O(l)/E(l)) − (O(m)/E(m)) for all pairs of different category
distances, m = 2, . . . , 4, and l < m, resulting in six pairwise comparisons of distances. Next, we
compute the components of the first-order derivative in (13) for linear weights and these six pairs
of distances. For example, the first component, with l = 1 and m = 2, is

ln
(m
l

)

⎛

⎜⎜⎜⎝
lγ E(l)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝
mγ E(m)

C−1∑
s=1

sγ E(s)

⎞

⎟⎟⎟⎠

{
O(l)

E(l)
− O(m)

E(m)

}

= ln

(
2

1

)(
1 × .110

1.700

)
×
(
2 × .378

1.700

)
× .739

= .015,
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Table 5.
Calculations in example with four raters and five categories.

Distance l = 1 l = 2 l = 3 l = 4
O(l) .155 .253 .011 .000
E(l) .110 .378 .062 .162
O(l)/E(l) 1.409 .670 .187 .000
(O(l)/E(l)) − (O(m)/E(m))

l = 1 l = 2 l = 3
m = 2 .739
m = 3 1.222 .483
m = 4 1.409 .670 .187
Contributions to d Iw/dγ for γ = 1

l = 1 l = 2 l = 3
m = 2 .015
m = 3 .009 .009
m = 4 .048 .079 .002
For γ = 1
D1(γ ) .163
D2(γ )/D1(γ ) −.234
Iw(γ ) .591
Actual and heuristic values of Iw for other γ

γ = 0 .410 .409
γ = 2 .734 .735

where

C−1∑

s=1

sγ E(s) = 1 × .110 + 2 × .378 + 3 × .062 + 4 × .162 = 1.700.

The first-order derivative is the sum of the six components: D1(γ ) = .015 + .009 + .009 +
.048+.079+.002 = .163. Thus, the relationship between the power parameter and the coefficient
value is indeed positive (Corollary 1). As shown in the middle part of Table 5, the coefficient’s
strong susceptibility to the power parameter is mainly due to comparisons involving themaximum
possible category distancem = 4 that never actually occurred in the data (i.e., O(4)/E(4) = .000).
In particular, the comparisons of the two category distances l = 1 and l = 2 with distance m = 4
(implying large distance ratios m/ l in (13)) contribute substantially to D1(γ ); they account for
more than 80 percent of the total. The remaining distance l = 3 is unlikely to occur by chance and
therefore plays only a minor role: E(3) = .062. Using a similar decomposition for the second-
order derivative in (14), we obtain D2(γ )/D1(γ ) = −.234. As the two derivatives D1(γ ) and
D2(γ ) have opposite signs, coefficient susceptibility weakens as the power parameter increases
(Corollary 7).

Using (12) and Table 5, we compute the coefficient value for linear weights:

Iw(γ ) = 1 −

C−1∑
l=1

lγ O(l)

C−1∑
l=1

lγ E(l)

= 1 − 1 × .155 + 2 × .253 + 3 × .011 + 4 × .000

1 × .110 + 2 × .378 + 3 × .062 + 4 × .162
= 1 − .694

1.700

= .591.
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As before, we use the second-order Taylor series heuristic in (17) to obtain estimates of Iw for
identity and quadratic weights, based on the computed measures for linear weights. Gwet (2014,
p.150) reported that Fleiss’ kappa with identity weights equals .410 for the considered data set.
The heuristic in (17) yields essentially the same coefficient value when moving from linear to
identity weights (i.e., γ = 1 and �γ = −1):

Iw(γ ) + D1(γ )

(
�γ + 1

2

D2(γ )

D1(γ )
(�γ )2

)
= .591 + .163 ×

(
−1 + 1

2
× −.234 × (−1)2

)

= .409.

Similarly, Gwet (2014, p.150) reported that Fleiss’ kappa with quadratic weights equals .734.
When moving from linear to quadratic weights (i.e., γ = 1 and �γ = 1), the heuristic yields

Iw(γ ) + D1(γ )

(
�γ + 1

2

D2(γ )

D1(γ )
(�γ )2

)
= .591 + .163 ×

(
1 + 1

2
× −.234 × (1)2

)

= .735.

13. Discussion

A frequently expressed concern is that different weighting schemes to penalize rater dis-
agreements may result in substantially different coefficient values and conclusions about whether
the categorized data are reproducible (De Raadt et al. 2021). The present study considered how
a power parameter, commonly applied to define weighting schemes, affects a broad class of
chance-corrected weighted agreement coefficients.We allowed for a continuum of infinitelymany
weighting schemes: Researchers may decide to follow popular choices (e.g., linear, quadratic, or
identity weights) or use some other value of the real-valued power parameter that would better
fit their data context. For example, they may decide that chosen categories that are one step apart
should receive a specific weight and adjust the power parameter value to obtain the corresponding
weighting scheme.

The “optimal” weighting scheme depends on the specific study context (Cohen 1968; Gwet
2014). Linear weights are a natural choice when there are no obvious arguments to deviate from
penalization in proportion to the distance of rater disagreement. However, stricter weighting
schemes (e.g., radical weights) may be better if even relatively small disagreements are serious,
and more lenient weighting schemes (e.g., quadratic weights) may be better if only rather large
disagreements are problematic. Although researchers may choose a specific weighting scheme
for good reasons related to their data context, the choice is subjective and likely prone to abuse.
For example, empirical studies most commonly use lenient quadratic weights (Vanbelle 2016).
However, these studies usually provide little or no justification for this choice (Crewson 2005).
Therefore, it is important to understand how the values of chance-corrected weighted agreement
coefficients respond to changes in the power parameter. Furthermore, empirical studies should
become more transparent.

The present study addressed these issues. First, we obtained theoretical results that help
understand when and why chance-corrected weighted agreement coefficients are susceptible to
the power parameter and in which direction. We provided necessary and sufficient conditions
for the coefficient value to increase or decrease and the relationship to intensify or weaken as
the power parameter increases. Furthermore, we decomposed these conditions into components
that pairwise compare different category distances based on the ratio of observed to expected-
by-chance frequency. For example, a larger ratio for the smaller distance than the larger distance
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contributes to a positive relationship between the power parameter and the coefficient value. We
showed that the relationship is monotonic if the number of categories equals three or the ratio of
observed to expected-by-chance frequency is monotonic in the category distance.

Second, we provided closed-form expressions for the first-order and second-order deriva-
tives of chance-corrected weighted agreement coefficients with respect to the power parameter.
We proposed the first-order derivative and the ratio of both derivatives as measures to quantify
coefficient susceptibility and change in susceptibility as the power parameter changes. These
summary measures give researchers a quick impression of the amount and type of dependence,
such as positive or negative susceptibility and intensifying or weakening patterns. For example,
suppose coefficient susceptibility turns out to be only moderate. In that case, the authors could use
the measures to show that the obtained coefficient value does not strongly depend on the chosen
weighting scheme. We found that positive but weakening coefficient susceptibility is most com-
mon. Thus, the coefficient value usually increases as the power parameter increases but tends to
become more stable for higher values of the power parameter. For example, moving from identity
to linear weights (i.e., from γ = 0 to γ = 1) likely triggers a larger change in the coefficient
value than an equal-sized step from linear to quadratic weights (i.e., from γ = 1 to γ = 2).

Third, we showed how other researchers could use the coefficient value and derivatives for
the reported value of the power parameter to obtain quite accurate estimates of the coefficient
value for unreported values of the power parameter. These calculations are quick and easy (e.g.,
in Microsoft Excel or using a hand calculator), and they do not require access to the original data
set. Especially this last property is valuable: Empirical studies often do not show their underlying
data, particularly in settings with more than two raters, where the data no longer fit within a simple
contingency table. Ideally, authors of empirical studies provide both arguments to justify their
chosen weighting scheme and the derivative-based measures to allow others to recompute the
coefficient value for flexible other choices of the power parameter.

The literature has proposed reference tables to interpret the values of chance-corrected
(weighted) agreement coefficients in terms of high or low (Landis and Koch 1977). However,
there is a broad consensus that more lenient weighting schemes require stricter thresholds, mak-
ing such tables less useful (e.g., Warrens 2013). Although a lenient weighting scheme may not
need stricter thresholds if it would fit the specific data context, correction is necessary if solid
arguments for such a weighting scheme are lacking. Unfortunately, the literature offers little or
no guidance on which stricter thresholds are appropriate to correct. Therefore, an alternative
approach could be to apply the original thresholds to a recomputed coefficient value for a less
lenient weighting scheme that the outside researcher considers more appropriate. Our proposed
measures allow for recalculations that are usually accurate in the first two decimals. Furthermore,
these measures help identify whether the issue of correcting is essential for the considered data
set, which would be the case if the degree of coefficient susceptibility is high.

Although we considered a broad class of chance-corrected weighted agreement coefficients,
future research could obtain the first-order and second-order derivatives and related conditions
for coefficients with different structures. Examples include the weighted kappa for R ≥ 3 raters
and Gwet’s AC2. Furthermore, future research could extend the analysis to coefficient versions
that allow for missing data, where raters may classify different subsets of items (Gwet 2014; Van
Oest and Girard 2021). Another avenue for future research pertains to the drivers of coefficient
susceptibility. For example, the present study found that agreement coefficients are often more
susceptible to the power parameter in settings with more categories (i.e., higher C). However,
other drivers may be present too. Relatedly, we considered 31 data sets from the literature. Future
research could include more data sets to improve the representativeness of the sample and present
meta-analytic generalizations.
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