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Summary

The effects of partial inbreeding on effective population size and rates of fixation of mutant genes
are investigated in selected populations. Truncation selection and an infinitesimal model of gene
effects for the selected trait are assumed. Predictions of effective size under this model are given for
partial selfing and partial full-sib mating and an extension to a more general model is outlined.
The joint effect of selection and partial inbreeding causes a large reduction in the effective size
relative to the case of random mating. This effect is especially remarkable for small amounts of
selected genetic variation. For example, for initial heritability 0-1 and proportion selected 1/6, the
ratio of effective size to population size is 0-10 in populations with about 90 % selfing while it is
0-85 in random mating populations. The consequence is a reduction in the fixation probability of
favourable genes and, therefore, a reduction in the final response to selection. Stochastic
simulations are used to investigate the effects of partial inbreeding and selection on fixation and
extinction rates of genes of large effect and of recessive lethals with effects on the selected trait.
For genes of very large effect, the effective size is not a critical factor and it is expected that partial
inbreeding will be efficient in increasing fixation rates of recessive mutants. Lethal recessives are
eliminated more frequently and their equilibrium frequency is lower under partial inbreeding, but
only when their effects on the heterozygote are not very large.

1. Introduction

Many plants, including most major crops, and some
animal species exhibit substantial non-random mating
such as selfing or full-sib mating (see e.g. Jain [1976];
Schemske & Lande [1985] or Futuyma [1986, pp.
124-128]). Also, deliberate inbreeding may be useful
as a way of using non-additive genetic variance in
breeding schemes (see e.g. Dickerson & Lindhé, 1977;
Sirkkomaa, 1986; Berg & Christensen, 1990;
Caballero & Hill, 1992¢; Toro, 1993 q, b). Partial full-
sib mating has been proposed as a means to increase
fixation probabilities of recessive mutations in selec-
tion programmes (Caballero, Keightley & Hill, 1991)
and as a way of detecting recessive visible alleles
(Karlin & Tavaré, 1982; Caballero, Etheridge & Hill,
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1992). Thus, it is justified to investigate the conse-
quences of partial inbreeding both from a practical
and evolutionary point of view.

The effects of partial inbreeding on fixation and
variation of mutant genes have been investigated by a
number of authors (Pollak, 1987, 1988; Caballero &
Hill, 19925; Charlesworth, 1992; Pollak & Sabran,
1992). The rate of substitution of alleles and the
asymptotic rate of response from artificial selection
both depend on the fixation probability, thus be-
coming an essential parameter in population and
quantitative genetics. Results from previous analyses
show that for populations where the number of
offspring per family is multinomially distributed,
partial inbreeding increases the fixation probability of
recessive mutants, decreases that of dominants and
does not change that of additives. These theoretical
results were developed on the assumption that the
only variation present in the population was that due
to the selected mutation. In these circumstances,
diffusion approximations using the effective popu-
lation size predicted under random selection, but
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accounting for partial inbreeding (Caballero & Hill,
1992 a), were shown to be very reliable estimators of
results obtained by stochastic simulation (Caballero &
Hill, 1992 5). This situation, however, is not a realistic
one, because it is expected that some additional
genetic variation subject to selection will always be
present in the population. Even in the extreme case of
an isogenic or highly inbred population there will be
some variation arising each generation by mutation.

The effective population size is reduced under
selection and this reduction will be larger with intense
selection and high heritability of the selected trait
(Robertson, 1961). It is therefore expected that, if
some variation for a selected trait is present in the
population other than that contributed by the mutant
gene, the effective size will be reduced and, accordingly,
the fixation probability of advantageous mutations
will also be reduced. The magnitude of this reduction
in the effective size with selection critically depends on
the recombination rate and system of mating.
Charlesworth, Morgan & Charlesworth (1993) investi-
gated the effect of background selection due to
recurrent deleterious mutations on nucleotide di-
versity. They observed by simulation that, for a given
set of mutation parameters, the genetic diversity for
rates of selfing larger than about 0-5 was markedly
reduced relative to the predictions of classical neutral
theory, implying that even with loose linkage high
rates of selfing can greatly reduce the effective
population size when there is background selection. In
the context of artificial selection on quantitative traits,
Santiago & Caballero (1995) have also shown that the
reduction in effective size under selection is much
larger when partial full-sib mating is carried out
among selected parents than when matings are
panmictic.

In this paper, we quantify the effect of partial
inbreeding on the effective population size and the
rates of fixation and average times until fixation or
extinction of a mutant gene appearing in a population
with a genetic background. The model refers to
truncation selection on a quantitative trait, with
background genetic variation determined by an
infinitesimal additive model of gene effects (Bulmer,
1980). No linkage is assumed between the mutant
gene and the selected background. Expressions for
approximate equilibrium parameters under this model
are derived for partial selfing and partial full-sib
mating, which allow predictions of the effective size in
these two situations. It will be shown that, under
truncation selection, a very small amount of variation
in the selected trait is enough to reduce drastically the
effective size of highly inbred populations. In a
companion paper (Merchante, Caballero & Lopez-
Fanjul, 1995), an experimental check of this effect is
presented using an artificially selected isogenic popu-
lation in which there is a small amount of genetic
variation in the selected trait due to a short period of
exposure to new mutations.
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2. Prediction of rates and times to fixation and
extinction

Assume a locus with three genotypes 44, Aa and aa,
genotypic frequencies (1 —x)®+ x(1 —x) F5, 2x(1 —x)
(1—F,), and x*+ x(1 —x) F,,, and relative fitnesses 1,
1+4sh and 1+s, where s is the selective advantage of
allele a, 4 is its coefficient of dominance and F; is
the departure from Hardy—Weinberg proportions
(Wright, 1969, pp. 294-295). The fixation probability
of a gene with initial frequency ¢ in a finite population
can be calculated by means of diffusion approxi-
mations as

Jq G(x)dx
u(q) = H—— (1)
f G(x)dx

(Kimura, 1962), where

G(x) = exp(—2N,sx[2F s+ (1 — F ¢} (x+2h—2xh)])

)

(Caballero et al. 1991), and N, is the effective
population size.

Additionally, the average number of generations
until fixation (¢,[g]) and extinction (¢,[g]) of such a

gene are given by

1(g) = f Y0) () [1 — ()] dx

1—u(g) 2
u(q) fl/f(x)u('c)dx 3)

(Kimura & Ohta, 19694) and

to(q) = l—gﬂf P(x) [1 —u(x)]Pdx

u(q) J,
+ f YOI —u@u@dx @)
(Kimura & Ohta, 19695b), where

4N, J ' G(2)dz
x(1—x)G(x)"

The fixation probability of a mutant gene with
initial frequency ¢ = 1 /2N, where N is the population
size, and large selection coefficient (Ns > 1), can be
approximated from equations (1) and (2) by

u(1/2N) = 25(N,/N) (F;5 +h— Fygh) ©)

(Caballero & Hill, 19925; Pollak & Sabran, 1992). An
approximation for smaller values of Ns is given by
Charlesworth (1992). From (6) we observe that the
fixation probability is directly proportional to the
effective size of the population. Until recently,
however, there were no equations available to predict
N, under selection and non-random mating. Santtago

P(x) = o)


https://doi.org/10.1017/S0016672300034662

Fixation rates with partial inbreeding

& Caballero (1995) obtained a general expression to
approximate the effective size of selected populations
under partial full-sib mating and selection. In the next
section, this predictive equation is explained and
extended to the case of partial selfing.

3. Effective population size under selection

Throughout this paper we will consider the simplest
case where numbers of breeding males and females are
equal (N/2 each) and constant over generations. A
general approximation for the effective population
size with continuous mass selection and the possibility
of partial full-sib mating of selected parents is

N 4N

¢ =1 Fy 1 (511 40°CH (15 3E,) @

(Santiago & Caballero, 1995), where S? is the variance
of the number of selected offspring per family after
random selection (¢2) with the Gaussian correction
(Si = o2 N/[N—1]), and the term 4Q*C? accounts for
selection. C? is the variance of relative fitnesses of
families; equivalently, 4C? is the variance of the
expected number of offspring per family based on its
genotypic value for the selected trait. Q® is the term
accounting for the cumulative effect of selection, i.e.
the fact that selective advantages of families are
inherited (Robertson, 1961 ; Wray & Thompson, 1990)
and can generally be obtained as

2

Q=2—G(1+ﬂ)

(®)
(Santiago & Caballero, 1995), where G is the
proportion of the genetic variance remaining after
selection has been practised, and £ is the proportion
of full-sib matings carried out among selected parents,
the remainder, 1 — £, being random. It is assumed that
the full-sib mating habit is not inherited. Under a
constant proportion of full-sib matings per generation,
F,; reaches an approximate asymptotic value of F; =
B/(4—3p) (Ghai, 1969). Under random mating, the
value of F is of order 1/N (Kimura & Crow, 1963),
and we will assume that is equal to zero.

Equation (7) assumes no linkage between the neutral
genes and the selected genes and it is an approximation
because second-order terms in N are neglected.
Santiago & Caballero (1995) also gave an approximate
expression which extends (7) to the general case where
there is a different number of parents of each sex.
Similar equations for predicting N, in selected popu-
lation with random mating are given by Woolliams,
Wray & Thompson (1993).

In the particular case of a multinomial distribution
of the number of offspring per family available for
selection (SZ = 2), equation (7) reduces to

N = N
¢ (14 Fy)+Q*C¥(1+3E,)

(€)
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The argument given by Santiago & Caballero (1995)
can also be applied to the case of partial selfing, and
equation (7) holds except that the term (1 + 3 F;) must
be replaced by (1 + F,¢) (see Caballero & Hill, 1992a)
and f refers to the proportion of individual offspring
that results from selfing. Thus, for partial selfing

4N

N = A= Fy T (SI+40°CH (1 4 By (10)

where now S: is the variance of the number of
successful gametes produced per parent after random
selection (again with the Gaussian correction), and
k¢ = p/(2—p) (Haldane, 1924).

Under independent multinomial distributions of
selfed and non-selfed offspring per individual available
for selection, S =242 (see Caballero & Hill,
19924), and equation (10) reduces to

N

N =avEya+ocy (an

Equations (7) and (10) are general but the values of
G and C*? depend on the selective system and genetic
model. In later sections, expressions for these para-
meters will be given for the infinitesimal model of gene
effects and truncation selection on the phenotype, and
predictions for particular examples will be compared
with simulation results.

4. Predictions under truncation selection and the
infinitesimal model

For practical considerations in breeding schemes, and
for convenience in the analyses and simulations, the
model assumed in this paper for the genetic back-
ground variation will be that of a quantitative trait
controlled by an infinitesimal additive model of
unlinked gene effects (Bulmer, 1980) with heritability
h*. Selection is performed by truncation on the
phenotype, the offspring with the highest phenotype
being chosen as parents. (An outline of a more general
model will be given in the discussion section.) Under
the infinitesimal model, G = 1 —kh? (Bulmer, 1980),
where k = i(i—x), i is the selection intensity and x is
the truncation point in the normal curve. Under
random mating, C* =~ i*p (Robertson, 1961 ; Milkman,
1978), where p is the intraclass correlation of family
members. We will consider a practical situation in
which the selection process starts with an unselected
random mating population with initial genetic vari-
ance V, and initial heritability hf =V, /(V, +V}),
where V, is the environmental variance, which is
assumed to be constant over generations. The popu-
lation is then subject to truncation selection for a
number of generations, and we are interested in the
asymptotic effective size, i.e. the value when the rate of
inbreeding is approximately constant over genera-
tions. The initial genetic variance will be reduced by
selection and inbreeding, especially at the beginning,
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but in most cases this change will become negligible
after a few generations and the rate of increase in
inbreeding will become relatively stable. Therefore,
the first step in the prediction of this asymptotic
effective size is the prediction of the asymptotic values
of h* and p when their change due to selection is
negligible. Approximate equations to predict these
parameters under random mating are given by Gomez-
Raya & Burnside (1990) and Santiago & Caballero
(1995). In what follows we derive equivalent
expressions for the general cases under partial selfing
and partial full-sib mating.

(1) Partial selfing

Assume a hermaphroditic population where each
parent may have selfed and/or crossbred offspring.
Thus, parents have selfed offspring with probability S
and crossbred offspring (produced by random union
of gametes) with probability 1— g, the selfing habit
not being inherited. Let V, be the asymptotic variance
before selection, and V,(1 —kh*) = ¥, G the variance
after truncation selection has been practised. The
genetic variance between selfed progenies is V, G
and that between crossbred progenies is V,G/2,
so the average variance between matings is SV, G+
A=/ V,G/2=V,G(1+p)/2. The expected genetic
variance of offspring within matings is

Vo = Va,(1-F5)/2, (12)

where we will assume that F¢ is the equilibrium
inbreeding coeflicient for an infinite population, i.e.
F . = £/(2—p). The total asymptotic genetic variance
is, therefore, V, = V,G(1+ f)/2+ V,. Substituting G
and ¥V, from above and rearranging we obtain a
second-degree equation

Vill+k—p(1 =K+ V[V:(1-5)—2V,]
—2V, ¥, =0, (13)

from where the asymptotic genetic variance and
asymptotic heritability, h* = V,/(V,+ V), can be
calculated.

To obtain the correlation between family members
(p; where a family is the total offspring, selfed or non-
selfed, from a parent) let us call g the breeding value
of the selected parent. The expected breeding value of
its selfed offspring will also be g, while that of its
crossbred offspring will be g/2 if these are obtained by
mating with other individuals taken at random from
the population. Hence, the expected breeding value of
all possible offspring of an individual is fBg+
1-pg/2=g(1+p)/2, from which the variance
of family means and intraclass correlation will be

V,=V.G(1+p)*/4 (14)
and

p=W/Vi+Vp), (15)
respectively.
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(i) Partial full-sib mating

For this model we assume monogamous matings, with
proportions 8 between full sibs and 1— £ at random.
Again, the full-sib mating habit is not inherited. The
genetic variance within families is given by equation
{12) where we assume again that F,g is the equilibrium
inbreeding in an infinite population, F,¢ = /(4 —3p4).
The variance between full-sib progeny equals V, G+
V,G/2, and that between non-sib progeny is (¥, G+
V,,G)/2, assuming that the reduction of variance
by selection in the previous generation (1 —G) affects
equally both the variances between and within families
in the current generation. Thus, the total variance
between families is

Vo=B,G+V,G/)+(1-pH(V,G+V,G)/2=
((1+p8)+V,1G/2. (16)
Substituting  #* = (V,+V,)/(V,+V,+V,), G from
above, and rearranging, we obtain the second-degree
equation
Vill+k—p(1=R)]+ V[Vl = B) + V(kf— B+ 2K)]
—-hVa-k+Vl =0, (17)

from where an approximation for the asymptotic
variance between families can be obtained, and

p=V/V+V,+Vp) (18)

The above expressions give the values of p and A% in
the asymptotic state for a given initial genetic variance
or heritability and environmental variance in this
model. It is also worth expressing the equilibrium p in
terms of the equilibrium heritability. For partial
selfing, substituting equation (14) into (15),

PG +p)?
p=TAUED (19)
For partial full-sib mating, substituting (16) into (18),

_ L+ VG2 _(h*+pBGC
T VvV 2

and, rearranging,

PG

Thus, under random mating =0 and p = #*G/4 in
the monoecious polygamous case, and p = #*°G/2 in
the dioecious monogamous case, as would be expected.

5. Stochastic simulation procedure

Stochastic simulation was used to investigate fixation
or extinction rates of mutants of very large effect for
which diffusion approximations break down, for
example for lethal recessive mutants with effects on
the heterozygote, or for mutations appearing in
populations where such a lethal gene is segregating at
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equilibrium frequencies. Some runs were also devoted
to check the prediction equations for effective size and
fixation parameters of mutant genes of small effect.

In the simulations to check out predictions of
effective size, artificial selection was carried out on a
trait controlled by an infinitesimal additive model of
gene effects with initial heritability A7. In generation 0,
genotypic values were assumed to be normally
distributed with mean zero and variance V, = hj.
Phenotypes were obtained by adding to the genotypic
value a random environmental deviation normally
distributed with mean zero and variance V, = 1 —h.
Truncation selection on the phenotypes was carried
out each generation. In the monoecious case, the best
N =100 individuals out of 7 =200, 300 or 600
available for selection (i.e. proportions selected of
1/2, 1/3 and 1/6) were selected to be parents of the
next generation. The number of selfed (with prob-
ability f) and cross-bred (with probability 1—2)
offspring available for selection per parent were
independently multinomially distributed with para-
meters T and 1/N, such that S;=2+24. In the
dioecious case, the best N/2 = 50 individuals of each
sex out of T/2 =100, 150 or 300 available for
selection of each sex, were chosen as parents. The
number of offspring available for selection per family
was multinomially distributed with parameters 7/2
and 2/N, such that S2 = 2. In the monoecious case,
mating of selected individuals was at random (4 = 0,
F,; = 0) or with a probability of selfing § =1/3, 2/3
or §8/9, which correspond to values of F, =02, 0-5
and 0-8, respectively. In the dioecious case, mon-
ogamous matings were made at random (f =0,
Fs=0) or matings were made between full sibs
whenever possible, at random otherwise, giving an
average proportion of g = 048 (F; = 0-19). Discrete
generations were assumed in all cases. Genotypic
values of the offspring were obtained as the average of
the genotypic values of their parents plus a random
Mendelian deviation normally distributed with mean
zero and variance (V, /2)[1 —(F, + F})/2], where E is
the inbreeding coefficient of the parent of sex s (or the
donor of gamete sex s is monoecious populations),
obtained from pedigrees. Each generation, Wright’s
(1922) numerator relationship matrix was constructed
and the average coancestry between individuals (£) in
generation ¢ was computed. Effective population size
was obtained from the average rate of inbreeding
AF = [F,,—E}/[1 — F] between generations 10 and 20,
as N,=1/2AF in the monoecious case, and N, =
(1/2AF)—(1/2) in the dioecious case. This latter
correction is made for the sake of comparison between
predictions and simulations of N,, as equation (7)
considers absence of self-fertilization (see e.g.
Caballero, 1994). 500 replicates were run for each case
and results were averaged among replicates.

In the simulations to check predictions of rates and
times to fixation of mutant genes, the procedure for
the dioecious population with random mating or
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partial full-sib matings explained above, with pro-
portion selected 1/3 and initial heritability A2 = 0, 0-1
or 0-4, was used. In these runs, a mutant appeared in
one of the individuals available for selection (initial
frequency 1/600) in generation 4, in which the rate of
inbreeding is already approximately constant in most
cases. The effect of the mutant was to produce a
difference between the mutant and wild-type homo-
zygotes of 2a = 0-046 phenotypic standard deviations
(o) of the selected trait. As the selection intensity is
i ~ 1-085, this gives a coefficient of selection s = 2ai =
0-05 (see e.g. Falconer [1989], p. 202). Additive or
recessive gene action for the mutant was considered.
30000 replicates were run for each case simulated.
Each replicate was stopped when the mutant was lost
or fixed and fixation probabilities and average
numbers of generations until fixation of the mutant
gene were computed.

Simulations were also made in order to investigate
fixation rates and times to fixation of mutants of very
large effect, elimination of lethals with effects on the
heterozygote, and fixation rates of genes in popu-
lations where a lethal is segregating. In these simu-
lations the procedure was as in the dioecious model
explained above, except that the number of breeding
individuals was 20 of each sex, and five individuals of
each sex were available for selection per family. This
design is identical to the experimental one followed by
Merchante ez al. (1995) in order to allow comparisons
between simulation results and experimental obser-
vations. The mutation investigated had an initial
frequency of 1/400 (1/300 for X-linked, where the
mutation appeared with probability twice as high in
females than in males) and caused a difference between
homozygotes with a range between 025 and 4c¢
(hemizygous effect for X-linked), being additive or
recessive. Background variation with A2 =0, 0-1 and
0-4 was considered. In other runs, the mutation was a
lethal recessive with an effect on the heterozygote
within a range of 0125 to 1o and background
variation with A% = 0-1. Finally, in some runs the
fixation probability of a neutral mutation appearing
in a random mating population where a lethal with
effect on the trait is segregating at its equilibrium
frequency was investigated. 5000 replicates were run
for each of these simulations.

6. Results
(i) Effective population size

Tables 1 and 2 show simulated and predicted (in
parentheses) values of the effective size for a range of
initial heritabilities (hZ), proportions selected (P) and
asymptotic values of Fg, for monoecious and di-
oecious populations, respectively. Predictions are
generally quite close to simulations, at least giving the
right order of magnitude. The largest absolute errors
occur for large proportions of inbred matings (F, =
0-8, Table 1) and small heritabilities. This is pre-
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Table 1. Simulated and predicted (in parentheses;
using equations [8), [11], [13], [14] & [15]) values of
effective population size in a monoecious population
with N = 100 breeding individuals, and 200, 300 or
600 individuals available for selection (proportion
selected P), with an initial background heritability h?

h P=1/2 P=1/3 P=1/6
Fs=0

0-0 100-0 (100-0) 99-7 (100-0) 999 (100-0)
01 95-7 (95:2) 92-3 (91-6) 86:2 (85:6)
04 89-6 (89-6) 830 (831) 72:8 (74-4)
0-8 88-6 (89-6) 830 (84'1) 747 (78-2)
Fs=02

0-0 83-4 (833) 83-8 (83-3) 83-3 (83-3)
01 70-3 (69-8) 59-5 (61-8) 470 (51-3)
04 610 (62:6) 509 (53-1) 371 (431)
0-8 62:6 (65'5) 54-5 (58-0) 44-7 (51-3)
Fs=05

0-0 667 (66'7) 67-0 (66'7) 66°5 (66'7)
01 354 (353) 28-3 (26:0) 20-3 (18-2)
04 31-3 (33:6) 24-0 (25'1) 17-2 (18'5)
0-8 353 (40'7) 300 (33:3) 219 (27-6)
Fs=08

00 55-8 (55:6) 561 (55-6) 557 (55-6)
01 155(11-2) 12-5(7-2) 107 (4-6)
04 144 (14-5) 11-8 (9-8) 89 (6:8)
0-8 17-5 (22:6) 149 (16:8) 10-2 (12-9)

The number of progeny available for selection per parent is
multinomially distributed. Mating is at random (£, = 0) or
with a proportion f=1/3, 2/3 or 8/9 (F,, =02, 05 and
0-8, respectively) of selfing. Standard errors range from 0-2
to 1:2 (with an average of 0-4).

Table 2. Simulated and predicted (in parentheses;
using equations [7), [8], [16}, {17} & [18)) values of
effective population size in a dioecious population
with N = 100 breeding individuals (half of each sex),
with 100, 150 or 300 individuals of each sex available
Jfor selection (proportion selected P), with an initial
background heritability h}

h P=1/2 P=1/3 P=1/6
Fs=0

00 100-0 (100-0)  100-0 (100:0) 999 (100-0)
01 91-7 (50-9) 85-8 (84:6) 75-3 (749)
04 81-1 (81:2) 71-5(71-8) 572 (59-1)
08 80-1 (81-1) 70-6 (73-9) 584 (63-9)
Fs=02

00 84-6 (84-2) 84-1 (84-2) 84-7 (84-2)
01 539 (54'7) 421 (43-3) 293 (31-2)
0-4 44-0 (47-3) 340 (379) 27-7(272)
0-8 536 (54-6) 456 (47-5) 36'9 (39:0)

The number of progeny available for selection per family is
multinomially distributed. Mating is at random (F,; = 0) or
with a maximum possible number of full-sib matings among
the selected individuals (£ = 0-2). Standard errors range
from 0-1 to 0-8 (with an average of 0-4).
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Fig. 1. Ratio of the effective size of a partially selfed
selected population with coefficient of inbreeding £
(N, . to that of a random mating selected population
(N, r.,), plotted against the initial heritability for the
selected trait. P: proportion selected.

sumably because for very large values of F; 5 and small
heritabilities the value of Q is extremely large and
sensitive to errors in predictions.

An example of the prediction for selfing populations
follows. Assume that a population has N = 100
breeding individuals selected out of 7 = 300 available
for selection each generation, with initial genetic
variance V, = 0-4 and environmental variance V; =
0-6 (thus, the initial heritability is 43 = 0-4). Offspring
available for selection per parent are produced by
selfing with probability #= 1/3 or random mating
otherwise, with independent multinomial distributions
with parameters 7 and 1/N. Thus, S2=2+28=
2:666 and F 4 = #/(2— ) = 0-2. From standard stat-
istical tables, i = 1088, x =0452 and k= i(i—x) =
0-692. First we approximate the equilibrium para-
meters. From (12), ¥, = 0-160. The positive solution
of (13) gives V, = 0-323. Therefore, h* = V,/(V,+ V)
= 0-350, and from (14) and (15), ¥, =0-109 and p =
0-118. Thus, C? = 2p = 0-140 and from (8), Q = 2-02.
Substituting into (10) we obtain N, = 53-1, while the
simulated value is 50-9.

Both Tables 1 and 2 show that when there is a
genetic background for the selected trait (43 > 0), the
effective size is much more reduced under partial
inbreeding (F5 > 0) than under random mating
(Fs=0). A drastic reduction is observed with low
heritability but this is not much further increased with
increasing heritability for reasons which will be
explained below. It is also observed that the effect is
more marked with more intense selection. For the
same value of F; (compare F,; = 0-2 in Tables 1 and
2, which correspond to about 33% selfing and 50 %
full-sib mating), the reduction in N, is larger with
partial full-sib mating. For the same proportion of
inbred matings, however, partial selfing reduces N,
more (data not shown), as would be expected.

The combined effect of selection and partial
inbreeding is better visualized in Fig. 1, where we
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Fig. 2. Ratio of the effective size of a partial full-sib
mating selected population with coefficient of inbreeding
Fg=02(N, .., to that of a random mating selected
population (¥, ,_,), plotted against the initial heritability
for the selected trait. P: proportion selected. SZ: variance
of family size after random selection.

represent the ratio between the predicted N, with a
given proportion of seifed matings (F; > 0) and N,
under random mating (F,, =0) for a given initial
heritability and proportion selected (P). Clearly, when
there is genetic background variation for the selected
trait, the effect of partial selfing is to decrease N, by a
large amount, and the minimum value of the ratio
occurs for small heritabilities, say around 0-1 or 0-2.

The reduction in effective size by selection occurs
because changes in gene frequency of a neutral gene
are correlated over generations, due to associations
between this gene and the selected system. Thus, the
frequency of neutral genes associated to high fitness
background genotypes will increase, while that of
those associated to low fitness genotypes will decrease.
The term Q gives the magnitude of these correlated
changes or, in other words, the total influence over
time of the original background genotypes. With
partial inbreeding, the associations are removed at a
slower rate than with random mating, even if free
recombination is assumed, so Q can be much larger
and N, much smaller.

The intuitive explanation of the larger effect under
small heritabilities than under larger ones can also be
given in terms of Q. The fortuitous associations
between a neutral allele and selected genes created
each generation are partly removed by the reduction
in genetic variance due to selection (1 -G). When the
heritability is small, this reduction is small (G is close
to 1) and little association is lost, so that the
associations and, therefore, the correlated changes in
gene frequency last longer, particularly with partial
inbreeding (see equation [8]).

Figure 2 represents similar ratios to those in Fig. 1
between N, for dioecious populations with partial full-
sib mating (§ = 0-5, F; = 0-2) and those with random
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mating (/= 0) when the variance of family size after
random selection is S? =1, 2 or 4. In our truncation
selection model, this variance accounts for a different
distribution of offspring available for selection. If the
number of offspring per family available for selection
is multinomially distributed, S =2, and if this
distribution is less or more variable than the multi-
nomial distribution, S; <2 or S% > 2, respectively.
For example, in selection experiments it is a common
practice to evaluate a constant number of offspring
per family and S} will be the variance of a
multihypergeometric distribution.

We observe in Fig. 2 similar results, perhaps even
more accentuated, than those in Fig. 1. The reduction
of N, with selection and partial inbreeding is more
marked for smaller values of S2. The reason is that
with random mating, the effect of selection, i.e. that
represented by the term 4Q*C? in equation (7), is not
very large so that the magnitude of S2 in the same
equation has a large impact on the magnitude of N,:
the larger SZ, the smaller N,. However, if F; is large,
the effect of selection may become so large relative to
S2 that there is not much difference between models
with different S2. Therefore, the proportional re-
duction of N, with small variance of family size will be
more marked than with large variance of family size.

(1) Fixation rate of mutant genes

Table 3 shows simulated and predicted (in parentheses)
values of fixation probability (¥) and times until
fixation (¢z;) of an additive or recessive mutant
appearing in a population with background variation
with heritability AZ. Predictions are based on diffusion
approximations using equations (1) and (3) and the
predicted values of N, from Table 2. Integrations were
made numerically by Simpson’s rule.

With no background varation (A5 =0), it is
predicted that the fixation probability of additive
mutations is the same for both systems of mating.
This can be seen by substituting # = 0-5 (additive gene
action) and equation (11) with Q?C?* =0 (random
selection) into equation (6). When a background
selected variation (4?) is considered, however, fixation
rates are much smaller under partial inbreeding.
Analogously, the benefit of partial inbreeding for
recessive mutants with no background variation is lost
when A2 > 0. Times to fixation are also reduced with
partial inbreeding.

The above results are generalized in Fig. 3. This
shows fixation probabilities for mutants with selective
coefficient Ns = 5 and various coefficients of domi-
nance (4), such that h =0 is recessive, 7 =05 is
additive, and A=1 is dominant. Lines without
symbols refer to predictions under no background
variation and are the same as in Caballero & Hill
(199254, fig. 1c) and similar to Charlesworth (1992,
fig. 1). They show that, with increasing F g, fixation
probabilities become more and more similar for any
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Table 3. Simulated and predicted (in parentheses) values of the fixation
probability (u, in %) and average number of generations until fixation
(1)), of an additive or recessive mutant gene in a population with 50
breeding individuals of each sex, 150 individuals of each sex available for
selection multinomially distributed and an initial background heritability

hq
Additive Recessive
R FS R FS
hi=0 u 1-51 (1-65) 1-68 (1-65) 0-63 (0-59) 072 (0-87)
t, 218 (221) 188 (186) 202 (199) 178 (173)
=01 u 1-36 (1-40) 0-81 (0-86) 0-:53 (0-55) 0-57 (0-54)
f,  212(206) 162 (133) 191 (183) 151 (121)
h: =04 u 1-26 (1-19) 0-61 (0:75) 0-49 (0-50) 0-45 (0-49)
t, 202(190) 132 (121) 172 (167) 122 (110)

Random mating (R) or maximum number of full-sib matings (F.S) are carried out
each generation. The mutant appears in the fourth generation of selection with
initial frequency 1/600 and has a selective coefficient of s = 0-05. 30000 replicates
were run for each simulated case. Standard errors of simulations range from 0-04

to 0-07 (u) and 3 to 7 (¢).

10 q

Fig. 3. Fixation probability (u) scaled by population size
(N) of a mutant with coefficient of selection Ns = 5 and
coefficient of dominance 4. Continuous lines: random
mating of selected parents (£, = 0). Broken lines: 2/3 of
selfed offspring (F,; = 0-5). Dotted lines: 100% of selfed
offspring (F,; = 1). Lines without symbols: no
background variation for the selected trait. Lines with
symbols: infinitesimal background variation with initial
heritability 0-1 and proportion selected 1/6. Predictions
used simulated values of N,.

degree of dominance. Lines with symbols refer to the
case of background selection with initial heritability
0-1 and proportion selected 1/6. The effect of selection
and inbreeding is a general reduction in fixation
probabilities, but especially so for large dominance
values. This has the consequence that intermediate
values of F, produce the same effect as F3=1
without background variation in making equal the
fixation probability for any gene action.
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Table 4. Predicted number of generations until
extinction of a deleterious recessive allele with
coefficient of selection s = —0-01 and initial frequency
1/200, in a monoecious population with 100 breeding
individuals, 200, 300 or 600 individuals available for
selection multinomially distributed, a genetic
background with initial heritability h3, and random
mating (F,; = 0) or a given proportion of selfed
matings (F,3>0)

B =01
Fy k= P=1/2 P=1/3 P=1/6
0 11-64 11-06 10-63 990
02 929 779 689 570
05 715 3-84 283 1:96
08 581 121 078 0-50

The effect of partial inbreeding and selection on N,
also produces an increase in the fixation probability of
unfavourable mutants and a reduction in their time
until extinction. To illustrate the latter, Table 4 shows
the predicted average number of generations until
extinction (7, obtained by means of equation [4]), for
a deleterious recessive allele. With an intense selection
and high proportion of selfed matings, the time until
extinction is greatly reduced relative to the case with
no genetic background (h2 = 0) and random mating
(F;s=0). Similar results were obtained (data not
shown) for mutants with different gene action.

(i) Muztants of large effect

In order to investigate fixation rates of mutants of
large effect, for which diffusion approximations do
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Table 5. Simulated fixation probability (in %) and average number of
generations until fixation (in parentheses) of an additive or recessive
autosomal (X-linked) mutant with a homozygous (hemizygous) effect of
1/4 to 40 in a population with 20 male and 20 female breeding
individuals with five offspring of each sex available for selection per

family
Additive Recessive

2a R R FS R FS

Autosomal

1/4 0 8-4 (44-6) 8-0 (38-2) 1-6 (45-0) 27 (36'4)
01 6-0 (452) 4-4 (37-6) 12 (43-2) 1-5 (34-3)
04 4-9 (43-0) 2:8 (357) 11 (381) 1-0 (32-4)

1/2 0 14-7 (25-8) 150 (22-6) 2:0 (32-2) 4-2 (21-8)
01 129 (26°6) 11-2 (24-8) 1-6 (31-3) 2-6 (22-3)
04 10-2 (26-6) 7-0 (26-2) 1-3 (28-0) 19 (22:7)

1 0 27-8 (15-1) 27-8 (13-0) 2:7 (20-5) 5-8 (12-5)
01 284 (156) 24-6 (14-7) 29 (21-1) 42 (141)
04 231 (16'5) 179 (16:6) 2:0(199) 2:9 (14-6)

2 0 53-3(89) 53-8 (79) 31 (14-8) 62 (8-8)
01 521 (9-2) 526 (8:6) 2-8 (14:3) 57 (8-6)
04 487 (9-8) 49-0 (10-0) 27 (141) 4-8 (9-8)

X-linked

1/4 0 9-9 (33-9) 10-1 (30-9) 6:0 (337) 6-1 (31-4)
04 53 (37:6) 2:6 (36:4) 2-8 (38:1) 1-7 (31-0)

2 0 64:6 (7'1) 66-4 (6:8) 29-7 (89) 299 (7-8)
04 62-1 (8:6) 614 (9-8) 18-3 (10-8) 16:7 (11-2)

The population has initial heritability 42. 5000 replicates were run for each case.
Standard errors of fixation probability range from 0-15 to 0-70. Those for time to

fixation range from 0-02 to 1-80.

Frequency

Generations

Fig. 4. Average frequency (5000 replicates) of a lethal
recessive mutant with an effect of a phenotypic standard
deviations in the heterozygote, appearing in a population
with 40 selected parents (half of each sex) out of 200
scored. An infinitesimal background heritability of 0-1 is
assumed in the initial generation. Continuous lines:
random mating of selected parents. Broken lines:
maximum possible number of matings between full sibs
(about one half).

not hold, stochastic simulations were used. Table 5
shows fixation probabilities and times to fixation (in
parentheses) for an autosomal or X-linked mutant.
For small or intermediate effect (2a), say up to 0-5 or
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1o, fixation is a long-term process which requires a
large number of generations (see average times to
fixation in table) and is therefore dependent on the
effective size of the population. The conclusions
reached in previous sections can, therefore, be
approximately applied for this type of mutant. When
the mutant effects are very large, however, fixation
gets faster and the dependence on the effective size is
diminished. Thus, for genes of very large effect, say
more than 1o, fixation rates are less dependent on the
background heritability. For mutants with substantial
effect on the heterozygote (additives or dominants),
fixation rates are also independent of the system of
mating while, of course, partial inbreeding increases
the fixation rate of autosomal recessive mutants of
very large effect but not that of X-linked mutants.
Analogous conclusions can be reached for times to
fixation. For autosomal recessive mutants of very
large effect, times to fixation will be reduced by the
inbred matings, but for autosomal additive or X-
linked mutants the system of mating will have little or
no effect.

The effect of partial inbreeding and selection was
also studied for the case of lethal recessives with a
heterozygous effect on the selected trait. Figure 4
shows the average frequency of such a mutant
appearing in a population with background heri-
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tability 0-1. The figure shows the average frequency
each generation over 5000 replicates and, therefore,
for a given generation includes replicates in which the
lethal has been lost or it is still segregating. The
average equilibrium frequency of the lethal in the
replicates in which it is still segregating is the maximum
possible value for a lethal (1/3) only when the effect is
larger than about lo. Equilibrium frequencies for
effects of 1, 0-5, 0-25 and 01250 were 0-31, 0-27, 0-19
and 0-12 with random mating, and 0-31, 0-26, 0-13 and
0-08 with partial full-sib mating, respectively. The
figure shows that for lethals with effects of 1o or more
there is no difference between random mating or
partial full-sib mating in the final overall frequency of
the lethal, although the final equilibrium value is
reached sooner in the latter case. For smaller effects of
the lethal, however, there is a higher chance of loss
and lower final overall frequency of the lethal under
partial inbreeding.

7. Discussion
(i) Effective population size

Effective population size is reduced under selection
due to correlated changes in allele frequency over
generations caused by associations between the neutral
genes under study and the selected genes (Robertson,
1961). These associations occur even in the absence of
linkage but are larger if this is tight (N. H. Barton,
unpublished results; E. Santiago, unpublished
results). The association between neutral and selected
genes is also increased by partial inbreeding, such as
partial selfing (Charlesworth et al. 1993) or partial
full-sib mating (Santiago & Caballero, 1995). In this
paper we have quantified the effect of partial in-
breeding on effective size under a model of truncation
selection on a quantitative trait controlled by an
infinitesimal model of gene effects. We have derived
expressions for approximate asymptotic parameters
under truncation selection with the infinitesimal model
for the cases of partial selfing and partial full-sib
mating, which allows us to make predictions of the
effective size under these situations.

Predictions seem to be quite accurate for a wide
spectrum of parameter values. However, under-
estimations occur when partial inbreeding is close to
100% and the heritabilities are small. This occurs
because, in this situation, the value of Q becomes very
large and sensitive to errors in the predictions.
Moreover, a large Q means that many generations
should pass before the associations between neutral
and selected genes disappear, what can only be
detected after many generations and with populations
of very large size.

With the usual pressures of truncation selection
carried out in breeding schemes, a clear reduction in
effective size under partial inbreeding relative to the
case of random mating is predicted. This reduction is
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shown to be particularly high for small amounts of
genetic variation. This occurs because, for low
heritability of the selected trait, the amount of
variation which is lost each generation by selection is
small and, accordingly, the association between
neutral and selected genes is maintained for a longer
period of time.

An experimental evaluation of this effect was
performed by selecting an initially isogenic line of
Drosophila melanogaster for increased and decreased
abdominal bristle number for 40 generations, using
two systems of mating: random mating of selected
parents or maximum possible number of full-sib
matings (Merchante er al. 1995). The only selected
genetic background variation present in the lines was
that due to the appearance of spontaneous mutations.
It was shown that a background heritability as small
as 3% strongly reduces the effective size under partial
full-sib mating relative to random mating, as predicted
by theory.

Predictions of effective size of Santiago & Caballero
(1995) and this paper refer to a model of truncation
selection with infinitesimal gene effects. The values of
C? and G have been derived for this model. Now
assume a general but simplistic model where the
fitness of individual i is w, = 14/, +e¢,, where f; is the
additive genetic value for fitness and e, is an
uncorrelated environmental deviation. Let m, be the
ith moment of the distribution of additive genetic
values for fitness. Assume that before selection E[f]] =
m, =0, E[e] =0 and E[w] =1, and that the equi-
librium additive variance for fitness (E[f?] = m,) is
maintained constant over generations due to, for
example, mutation—selection balance. (Note that m,
refers to fitness of individuals rather than families
and, therefore, C*=m,/2.)) After selection the
expected increase in fitness is E[w, f;] = E[(1 +f,+¢) f]]
= E[f,+f*+f,e] = m,, in agreement with Fisher’s
Fundamental Theorem. The additive genetic variance
after selection is E[w/(f;—m,)?] = E[(1 +f,+e)(*+
mi;—2f,m,)] = m,—mi+m,. Thus, the proportion
of additive variance remaining after selection is the
ratio of the variance after selection to that before
selection G = (m,—mi+m,)/m, =1 —my+m,/m,.

As an illustrative example, let us assume that the
additive variance for fitness is m, = 0-1 and there is
normality of additive fitness values, so that G = 0-9.
From (8), Q =2/(2—G) = 1-82 for random mating
and Q =2/[2—G(1+p)] =10 for complete selfing
(# = F=1).Replacing C*by m,/2, equation (11) gives
N,=N/[1+FJ)(1+0*m,/2)], and substituting,
N, = N/1-16 for random mating and N, = N/12 for
complete selfing, so the latter is about 10% of the
former. This shows how severely complete selfing can
reduce the effective size even with loose linkage.
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(ii) Response to selection from new mutations

The reduction in effective size brought about by
partial inbreeding and selection is responsible for a
reduction in the fixation probability and times until
fixation of favourable mutations (Charlesworth, 1994;
Peck, 1994; this paper; see also Barton, 1995). Thus,
the benefits of partial inbreeding in increasing the
fixation rate of recessive mutants predicted by previous
papers (Caballero et al. 1991; Caballero & Hill,
19925 ; Charlesworth, 1992; Pollak & Sabran, 1992)
no longer hold, except for the case of mutants of very
large effect on the selected trait, for which fixation is
a short term issue with little dependence on N, (see
Table 5).

Charlesworth (1992) discussed the effects of partial
inbreeding on the distribution of dominance
coefficients of fixed mutations in natural populations.
As with highly selfed populations (F,; & 1) the fixation
probability of a mutation is the same for any coefficient
of dominance, the spectrum of favourable mutations
fixed by selection should be close to that for newly
arising mutations, in contrast to what happens under
random mating (see Fig. 3). The same conclusion can
be reached when we consider background selection,
but this is now extended to intermediate levels of
selfing, because background selection reduces pro-
portionally more the fixation rates of more dominant
mutations.

Pollak & Sabran (1992) discussed the effects of
partial selfing on the selection response to a quan-
titative trait for which there is additive gene action.
They arrived at Wright’s (1969, pp. 244-245) result
that in a population with an equilibrium value of F;
the response to one generation of selection is (1 + F)
times that in a random mating population. They also
showed that the selection plateau is 2N, times the
response in the first generation, in agreement with the
result obtained by Robertson (1960) for random
mating populations. They were considering the
effective size with random selection, N, = N/(1+ Fy)
in the particular case of multinomial distribution of
offspring number and, therefore, they concluded that
in this case the initial response in a partially selfed
population is (1 + F ) larger than in a random mating
population but the final limit is the same. The results
of the present paper imply that the second prediction
is no longer valid as N, will be generally smaller than
N/(1+ F), as shown by equation (11). For the range
of parameters investigated in Table 1, we can observe
that in no case is the product N,(1 + F,;) larger under
partial selfing (F¢ > 0) than under random mating
(K, = 0) and, therefore, the limiting response under
partial selfing for these parameter values will always
be smaller than under random mating even though
initial responses are larger. These conclusions only
apply, of course, to an additive infinitesimal model.
Results for models with dominance might be very
different but predictions of covariances of relatives are
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then much more complicated (Wright, 1988). Hayashi
& Ukai (1994) give an expression to predict the mean
genotypic value under truncation selection with the
infinitesimal model in a completely selfed population
but where dominance as well as additive models
without epistasis can be fitted.

(iii) Elimination of lethals and detrimentals

The reduction in effective size caused by the joint
effects of inbreeding and selection drastically reduces
the times until extinction of deleterious mutations,
but slightly increases their fixation probability
(Charlesworth et al. 1991; Table 4). Deliberate
inbreeding has been suggested as a way of purging a
population of deleterious genes (see e.g. Hedrick
[1994] and references therein) because it is generally
accepted that deleterious recessives and, particularly,
lethal recessives, will be strongly selected against in
partial inbreeding systems (Lande & Schemske, 1985).
In Drosophila, for example, it seems that about half
the genetic load is due to nearly recessive lethals and
half is due to partially recessive detrimental genes of
much smaller effects (Simmons & Crow, 1977). Under
artificial selection, however, detrimental and lethal
alleles might have a large effect on the selected trait
(see e.g. Yoo, 1980; Lopez & Lopez-Fanjul, 1993;
Merchante et al. 1995) and their elimination by
inbreeding will depend on the magnitude of this effect.
In the particular design investigated in Fig. 4 it is
shown that even the maximum number of full-sib
matings each generation (about half) is not efficient in
eliminating lethals with effect above 1o or so. Only
lethals with effects smaller than that will be more
effectively removed or maintained at lower frequencies
with inbreeding.

This selective elimination of lethals by inbreeding,
however restricted, may have some advantages in
selection schemes. Lethal recessives with effects on the
selected trait, maintained in artificially selected popu-
lations at high frequency, not only have an impact on
the fitness of their carriers but also have other
consequences. On the one hand, selecting for lethal
heterozygotes produces a reduction of the probability
of losing lethal alleles at other loci that are in linkage
disequilibrium with the first, irrespective of their effect
on the selected trait (Madalena & Robertson, 1975;
Garcia-Dorado & Lopez-Fanjul, 1983). On the other
hand, by maintaining lethals at high frequency, the
fixation rate of other mutations is decreased by
reducing their effective selection intensity (Madalena
& Robertson, 1975). This is illustrated in Table 6,
which shows fixation probabilities for neutral
mutations with an effect on the selected trait of 1/8,
1/2 or 20, appearing in a selected population where a
lethal gene with effect Lo is segregating at its
equilibrium frequency. The example is the same as
that for Table 5 and Fig. 4 and follows the
experimental design of Merchante et al. (1995). The
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Table 6. Fixation probability (in %) of a mutant with
an effect of 1/8, 1/2 or 20 and neutral for fitness,
appearing in a population with 20 male and 20 female
breeding individuals with five offspring of each sex
available for selection per family, where a lethal
recessive with effect Lo is segregating at equilibrium

frequency (freq)

Dom

L freqg 1/8 1/2 2  1/8 1/2 2 1/8 1/2 2

1/4 019 36 15 53 10 21 33 73 29 87
1/2 027 34 14 52 10 21 35 71 28 86
1 031 32 13 48 11 21 33 65 26 82
2 033 30 12 43 10 20 32 590 23 71
4 033 31 12 39 09 19 32 57 22 60

The population has initial heritability A2 =0. 20000
replicates were run with mutants of effect 1/8, 10000
replicates otherwise. Standard errors range from 0-1 to 0-3.

table shows that the fixation probability is reduced for
dominant and additive mutants by up to 20-30% but
very little for recessive mutations. The expected effect
of a lethal of very large effect segregating at frequency
1/3 in the population would be to reduce the fixation
rate of genes with effect on the heterozygote (additives
or dominants) by 1/3, because non-carriers of the
lethal will never be selected. Recessive mutants,
however, behave like neutral mutants in the initial
generation (when it is more likely that the mutant will
be lost) and, therefore, its fixation rate is little or not
affected by the presence of the lethal.

The joint effects of partial inbreeding and back-
ground selection investigated in this paper mostly
refer to a model of artificial selection on quantitative
traits. Obviously, there are similar consequences for
different models such as those referring to populations
under natural selection (Charlesworth et al. 1993).
However, further research is necessary to investigate
the effect for other models of selection such as, for
example, stabilizing selection.
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