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Summary

For a population undergoing mass selection, derived from an unselected base population in
generation zero, the expected long-term contribution to the population of an ancestor from
generation 1 was shown to be equal to that expected during random selection multiplied by
1 +/(1 —c)'1A'i (where A\ is one half the breeding value of the ancestor for the trait under selection
standardized by the phenotypic standard deviation, / the intensity of selection, and c =|(1— khl) is
the competitiveness which is defined by hi the heritability in generation 2 and k the variance
reduction coefficient). It was shown that the rate of inbreeding (AF) could be partitioned into three
components arising from expected contributions, sampling errors and sampling covariances
respectively. Using this result AF was derived and shown to be dominated by terms that describe
AF by variance of family size in a single generation plus a term that accounts for the expected
proliferation of lines over generations from superior ancestors in generation 1. The basic prediction
of AF was given by

(1 + i V J (8M)"1 + (1 + ?Pm + 2PPf) (8F)"1 + K\pm(\ 6M)-1 + pf(\ 6F)"1] - (87T1

where M and F are the numbers of breeding males and females, T the number of offspring of each
sex, pm and pt are correlations among half-sibs in generation 2 for males and females respectively,
and AT is a function of the intensity and competitiveness.

1. Introduction

In a novel approach to the prediction of inbreeding,
Wray & Thompson (1990) used the concept of the
long-term contribution of an ancestor in the first
generation of a population and showed that these
contributions can be related to the rate of inbreeding.
This concept can be described as follows: in a
population maintained by the breeding of M males
and F females each generation a total of 2l~l(M + F)
distinct genealogical pathways can be traced back
from generation / to generation 1, the long-term
contribution of a particular ancestor is (Af+F) times
the proportion of these pathways that lead back to
that ancestor. They developed implicit formulae to
relate the long-term contribution of an ancestor to its
breeding value when the population was undergoing
mass selection, and using these advances they de-

* Corresponding author.

veloped a recursive method for the computation of the
inbreeding coefficient.

The advantage of such a method was that it took
account of the dependence of one generation of
selection on previous generations. In random selection
the selection processes in each generation proceed
independently of all previous generations, but when
inheritance is involved then a selective advantage (or
disadvantage) of a parent is passed, in part, to its
offspring. Consequently the breeding value of the
parent has some influence on the selection decisions of
all subsequent generations. In mass selection, this
influence is mediated entirely through the genes it
passes to its offspring.

Only the method of Robertson (1961) had pre-
viously allowed for this interdependence of selection
decisions. Whilst the method of prediction presented
by Wray & Thompson (1990) was considerably better
than previous methods (Burrows, 1984a, b; Verrier,
1989; Wray, Woolliams & Thompson, 1990; Robert-
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son, 1961) the method suffered from having no closed
form that described the relationship of inbreeding to
other predictable genetic parameters.

This paper will derive the explicit relationship
between the breeding value of a selected individual in
generation 1 and its expected long-term contribution in
generation /. It will further derive terms for ac-
cumulation of the squared contributions involving
both the expected values and chance deviations,
together with some adjustments appropriate for small
numbers of parents and for when rates of inbreeding
are not small. From these an explicit formula for
inbreeding is derived, and the origins of its constituent
terms identified (i.e. from expected contributions or
chance deviations) and their magnitudes evaluated.

Finally it will be shown that the rate of inbreeding
is closely approximated by methods based on variances
of family size developed by Latter (1959) and Hill
(1972) but with a simple correction for the expected
inequality of contributions of like-sexed ancestors that
arises from the selection process.

2. Notation

Throughout conventions on notation will follow as
closely as possible those of Wray & Thompson (1990).
Thus the population is propagated through hier-
archical random mating of F females with M males
(M =g F). Each female produces a family of full-sibs of
nf males and nt females. Each male has nm = M~lFnf

offspring of each sex. T is used to denote the total
number of offspring of each sex, thus T = nmM =
nfF. X (or Y) or nx (or ny) or subscripts x and y are
used to specify a single sex either male or female. The
long-term genetic contribution from an ancestor i of
sex x in generation 1 to descendants of sex y in
generation t will be denoted by ri{x)y t and its expected
value by /j,t(x)yl.

The value of /i(ix)Utl will be shown to be linearly
related to AHx), representing the breeding value of the
ancestor for the trait undergoing selection and the
slope of the relationship will be given by \bxy t. AHx)

has been adjusted so that E(AHx)) = 0. The rate of
inbreeding (AF) was shown by Wray & Thompson
(1990) to be predicted by

(
HM + FY21 T1 r2 + y r
4V"J >r) I Z J ri(m) ' ZJ '

\

)

where r((x) — '"j(;r)mi00 + '-J(.c)/ia).
Generation 1 itself was assumed to have been

produced by the mating structure described from an
unselected base population in which the trait under-
going selection had heritability A2,. Generation 1 was
the first generation in which selection took place and
generation 2 was the first generation produced from
selected parents. The heritability in generation t will
be denoted h2.

Various parameters relating to the normal dis-
tribution will be used throughout: i for the intensity of

selection, p for the upper tail probability after
truncation at point v with ordinate z, and k = i{i—v)
for the variance reduction coefficient. These will be
subscripted to refer to particular sexes.

3. Expected long-term contributions

In this section, ^i{x)y<t, the expected long-term genetic
contribution from an ancestor i of sex x and with
known breeding value, to descendants of sex y after
selection in generation t is predicted. Of the
2t~1(M+F) pathways, leading back from generation t
to generation 1, 2'~lM come from males and 2t~1F
come from females in generation t. Since male and
female parents make equal genetic contributions to
each individual in each generation exactly half these
pathways lead back to males and half to females.
Therefore for all descendants of sex y in generation / a
total of 2l~2Y pathways lead back to each sex in
generation 1.

If selection were random each ancestor of sex x
would be expected to contribute 2(~2( Y/X) pathways
from generation 1 to descendants of sex y in generation
t. This represents a proportion 2t-2YX-1/2l'\M + F)
of all the possible pathways and so the expected long-
term contribution of ancestor / of sex x to descendants
of sexy y is (M + F) times this proportion i.e. jtHx) y t =
\YX~l. With selection some ancestors are expected to
contribute more descendants, and in doing so establish
more pathways, than others due to the selective
advantage that is a function of the superiority of their
breeding value over the breeding value of their
contemporaries. It follows that, in a linear model,
PiWy,t = \(.YX~l + bxy,tAi{x)). Denoting the slope by
\bxv t allows comparison with Wray & Thompson
(1990). /ti(x)v,t is strictly an expectation that is
conditional on Ailx). It follows that the expected
number of pathways from i of sex x to descendants of
sex y in generation t is 2l'1/ni(x)y t.

The number of pathways from ancestor / of sex x to
descendants of sex y in generation t can also be
expressed as the sum of pathways to sex y that pass
through a male in generation t—\ and those that pass
through a female in aeneration / — 1. Each pathway
arriving at an individual of sex w in generation t—\
has on average YW~l extensions to sexy in generation
t; however, if it is known that the pathway originates
from a particular ancestor then the expected number
of extensions increases or decreases to some degree
according to the breeding value of the ancestor i.e. the
expected number of extensions is given by
YW~* + bxwy tAHx). Therefore, the expected number of
pathways to generation t is given by

If

=1
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then

/J/i(x)y.t = /J/i(x)m,t-lfli(x)my,t +/*((!) mj,t-\ fii(x)fy,t

and this now expresses a recurrence relationship
between generations t — 1 and /.

Note that although linear relationships have been
assumed this assumption was tested using simulation
by Wray & Thompson (1990) and found to be
appropriate.

Wray and Thompson (1990) showed (i) bxy 2 =
\nxzya'P\ where aP2 is the phenotypic standard
deviation in generation 2 and (ii) bxwy t can be
approximated by

<r-P\.

In this paper it will be assumed that by generation 2
the values of <JP and h2 will be close to their equilibrium
values, and so <TP2 will be denoted <rP and hi =

233

a single generation is required to disperse genes from
one sex through a homogeneous, random mating,
diploid population with discrete generations.

Using the property of idempotence Appendix 1
shows that the recurrence relationship can be solved
to give

will be used in place of A2 for
t ^ 2. It is possible to use the equilibrium values
calculated from the equations of Bulmer (1971) but
since the coefficients bxu>y t diminish rapidly to zero it
is more important to estimate the early coefficients
most accurately. If coefficients of competitiveness are
denned for each sex by

then
A
u

and consequently

and

where

and

Thus bxy m/bxy 2 = i/iy(l+khf) independent of x.
Application of this formula to the results of Wray &
Thompson (1990) shows accurate prediction: some
comparisons can be made with their simulation results
present in their Table 4 which differ by < 001 from
the expectation given above.

xwy,l ~ 2 w 7 / T
yuP "

Also by noting nxzy= YX~liy and defining A'Hx) = 4. Prediction of the rate of inbreeding
\A({x)<Tpl it is observed that

y, 2 = 2

and

— I
~ 2

As t becomes large ^iix)Wy,t~y^^r'1 indicating that
the influence of ancestor's breeding value on the
selection process in generation t decreases to zero.

Let bxt = (bxml,bxfl)
T and z = (zm,zf)

T, then from
collecting terms in the recurrence relationship that are
linear in Aiw,

Wray & Thompson (1990) showed that AF is related
to the expectation of the squared contributions and
this involves not only the expectation of the square of
the conditional expectations calculated in the previous
section but also the expectation of the conditional
variance. In this section the methods required to
derive these expectations are described. From the
definition,

thus

E(AF) =
where D is the matrix

D describes the expected dispersion of genes through
the population in the absence of selection from
generation to generation. For example, IMF'1 is the
expected number of copies of a gene sampled from
selected females in generation t'1, among the selected
males of generation t. D is idempotent, i.e. Z)2 = D,
and this property embodies the phenomenon that only

= KM + FT\ME{r%m)) + F£(r?(/))).

Suppose the squared contribution can be decomposed
into 5 elements so that

ri(x) ~ 2J ri(x)\J)'

then

j - \ x-m,f
GRH 62
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The expression has been given in this form as it will be
seen that simplification of terms is derived from it.

Wray & Thompson (1990) derive AFin a 'lateral'
and recursive accumulation: terms involved in r2

(x) 2

are derived and accumulated; the expected change in
contribution in these moving from generations 2 to 3
is derived and r2

{x) 3 is derived by adding further terms
originating in generation 3, the recursion then pro-
ceeds through generations until contributions become
negligibly small.

Following equations (24) and (27) of Wray &
Thompson (1990)

where lT = (1,1) and Vtix)tt and C,(lU are the matrices
of new contributions arising in generation t from
binomial sampling and from additional covariance
through co-selection of sibs (i.e. the squared con-
tribution is the sum of the mean contribution squared
plus the variance of the contribution).

In generation 3

= 1 I*™i(z), 3 ^Ux),2 ' 'i(x),2 *~ ^ i ( i ) , 2

"'Hx),^' Id) ,3 ' ^i(x),3

where

l\jf _ lllUx)mm,t

\/*i(x)m/.t

and ultimately

rt(x)ff,t

V l{x)> ~
DT 1

r i ( x ) 3 1

1
ri(x),t

-4-Y \TP C PT 1

where

"t(x).t ~
i-t

Thus E{r\x)) has three terms: due to the squared
rnean, to binomial sampling and to co-selection of
sibs. By deriving these terms separately and ac-
cumulating them vertically over generations a closed
expression for AF is obtained.

To achieve the vertical accumulation it is necessary
to derive Piix)_l+l explicitly. Appendix 2 shows P
to be Hxht+1

D\ + terms in A'*xy

Here 0 and A are diagonal matrices whose elements,
along with q, depend on the intensity and competi-
tiveness of the selection in each sex.

A general form for each of VHx) t and CHx) t is «0 (8
i tA'Hx)E + u2 tAlfx)C, where 8, £ and £ are matrices

that depend on genetic parameters but are independent
of t.

234

Since E(A'lw) = 0 and contributions of O(A'*X)) or
higher are ignored the contributions to | (M+F)" 2

XE{r\x)) are of the form vo + E(A'2x))l.*_1vp where

v0 =

The infinite sums in these expressions are convergent
since w0 „ H M and u21 are 0(2''). The symbols v0 and v}

will be referred to in Appendix 3 in order to aid the
identification of the origin of terms. E(A'(

2
X)) is the

correlation between half-sibs with common parent of
sex x in generation 2 prior to selection and will be
denoted px and his value |/i2(l -kxh§/(\ -\kh§.

The matrices a, P and y in Pt(x)it+1 have already been
derived and are all of the form D post-multiplied by
some diagonal matrix. Therefore the general form for
contributions to E(r%x)) is always \(M + F)-i\TDTDT\
for some matrix T. If T has elements tip then

\(M+F)-2\TDTDT\

= (F2tn + MFt12 + MFt21 2)/(16APF2).

(i) Squared mean contributions

For ancestors of sex x the contribution to AF is
lX(M + F)-nTPHx),3iiHxh2}iTxh2P?(xh31. Since

Nix)u,,2^nx)v,2 = \WYX~\\ +A'Hx)(iw + iy)
= ^

M2 MF
MF P

MF(im + if)
2FHS

MFimiX\
FPf ) \

Contributions are given in Appendix 3.

(ii) Binomial sampling

In generation 2, if success is taken as a selected
offspring of sex y the binomial paiaiueler for ancestor
i of sex x is given by equation (22) of Wray &
Thompson (1990) as

Pi(x)v.2 = Py + n~xlt>xy,2AHx)= py(\ +iyA'Hx)).

The variance assuming independent trials is therefore
« * / W 2 ( l - / W , 2 ) - The contribution to E(r\x) 2) is

where Vo, Vx and V2 are diagonal matrices:

F1 = diag(( l -2pJzM J( l -2p / )z / )

and

Piixht+1 is of the form

https://doi.org/10.1017/S0016672300031943 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300031943


Inbreeding and selection 235

In subsequent generations, new contributions arise
from binomial sampling of gene pathways leading to
offspring of sex y in generation t from parents of sex
iv. The probability of success is given by pHx) wy t =
py{\ + iycwc'~3A'Hx)) and each parent has a family
size of nw. The expected contribution of these variances
is weighted by the expected number of ancestors
finx)w (-1- The contributions are then summed over w.
Thus'

ViWA can be thus separated into 5 components
denoting terms in Vo, A'i(x) Vo, A'i(x) Vx, A',fx) Vi and
^ux)K- The resulting terms are listed in Appendix 3.

(iii) Co-selection of sibs

The original description of co-selection by Wray &
Thompson (1990) was incomplete, leading to the
omission of important contributions from the co-
selection of sibs, including half-sibs. The omissions
can contribute up to 8 % of the total for the examples
of mass selection considered here and can be many
times larger than the terms considered by Wray &
Thompson (1990). The original description was also
incorrect in using h2/4 as a correlation between half-
sibs which can lead to important errors as h2 increases.

The objective is to estimate the variance of family
size conditional on the breeding value of an ancestor
in generation 1. Co-selection occurs through the
covariances of selection probabilities of full- or half-
sibs that are not accounted for by regression on the
breeding value of the ancestor in generation 1. It is
useful to split the consideration of this into two parts;
generation 2 and generation 3 onwards, since in
generation 2 the ancestor is in fact the parent.

In generation 2, the covariance between half-sibs or
full-sibs, arising from the parent of sex x are already
fully accounted for in the term describing expected
contributions, leaving only those arising in full-sib
families through the parent of sex x' (i.e. the sex other
than x). The probability of selecting an individual of
sex y with parents of breeding value Ai(x) and AKx.^ is
given by py{\ + iyA'i(x) + iyA'Hx,)). Thus when mating is
at random, and conditional on the breeding value
AHx), the covariance of the selection probabilities of
two full-sibs of sex y and z is given by

E\PyPztt + iy A'Hx) + iy A'^) (1 + /, A'Hx) + iz A'1W))]

~PyPz(l -i,,A'Hx))(l +hA'nx)) = PyPz'yhPx-

This covariance will arise between all full-sib pairs for
ancestor i{x), i.e. X~lT(nf—\) times if y = z and
X'xTns if y 4= z. For simplicity of exposition the
(nf— 1) will be treated as nf at present. Thus Cl(x) 2 =
\X-xTnlPx.Ce where Co = (pm im,pfif)

T(pm im,pfif).
The terms arising from CHx) 2 are given in Appendix 3
for a single sex x.

In generation t where / ̂  3, for an offspring of a
parent of sex w of breeding value Aw with ancestor i(x)
in generation 1 and mated at random to an individual
of sex w' with breeding value Aw. the probability of
selection expressed as a regression on Ai(x), Aw and Aw,
is

A'im) + iy A'J.Py\\+c c»'i(^iW + '!/(^iii c

Thus conditional on the ancestor's breeding value,
with random mating the covariance not only arises
from w' but from w as well. For two full-sibs of sexes
y and z the covariance is

PyPz ̂  iz[(P,o + PJ ~ Cl C2'~6Px\ I

but for two half-sibs of sexes y and z with common
male parent there is also a covariance of the form py

Pz'yiz\Pm-cmc2t6Px\- Strictly speaking in generation
t ^ 3 the correlation of half-sibs with common parent
of sex tv is approximately \h\ cw, but it will be assumed
that for the cases considered this differs little from pw,
the correlation of half-sibs in generation 2. With the
hierarchical mating structure considered here only
male half-sibs are formed.

There are M~lTnf{d—\) half-sib pairs in a male
parent's family where d = FM~l. Thus for a male
descendant in generation t—\ where / ̂  3
cnx) m. t = I^M'1 T(nf(pm + pf) + nf(d- \)pm-

r.2 _2(-6 _ \ /—
n

whereas for a female descendant

Hx)Lt

Following the procedure set out in the section on
binomial sampling the terms require weighting by
fiiix) w (_, and summed for w = m and / . The terms
arising are listed in Appendix 3. Terms in (c3)' have
been ignored and also simplification has been made
for (A 3.24).

5. Application of the prediction equations

In this section, results from using the full prediction
equations listed in Appendix 3 will be compared to
simulation. In the simulations M = 20, and F varied
from 20 to 200 with two family sizes nf = 3 and 6. For
each combination a range of heritabilities from 0 to
0-99 was considered. To assess the predictive power of
the method it was necessary to consider three
modifications to the methods presented by Wray &
Thompson (1990): (i) replacement of binomial sam-
pling by hypergeometric sampling; (ii) correction for
the contribution of the base population; and (iii)
accounting for the sampling of the breeding value of
the ancestors. These modifications are described in
Appendices 4-6. The first has greatest influence when
M(F) is small, the second when AF increases in size,
and the third when heritabilities are high. Results are
presented in Table 1.

16-2
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Table 1. Prediction of AF using all terms in Appendix 3 (AFpr(!d) compared to rates obtained from simulation
(AFsim). Values are 100 x AF, and % errors are calculated as (AFsim — AFpre(i)/AFprea

"/

hi
= 3 0

01
0-2
0-4
0-6
0-99

= 6 0
01
0-2
0-4
0-6
0-99

AFprcd

104
119
130
142
145
137

115
146
166
187
191
165

0

A£;:;
+ 3
+ 4
+ 3

0
+ 5

0

- 2
- 2
- 5
+ 5
+ 7
- 3

% error

+ 2-9
+ 3-4
+ 2-3

0
+ 3-3

0

- 1 - 8
- 1 - 4
- 3 0
+ 2-7
+ 3-7
- 1 - 8

AFpred

83
99

109
120
122
109

89
116
134
150
152
124

0

A ^

0
- 1
+ 1
- 2
+ 1
- 1

- 1
+ 1
- 4

0
- 2
- 5

,d % error

0
- 1 0
+ 0-9
- 1 - 6
+ 0-8
- 0 - 9

- 1 1
+ 0-9
- 3 0

0
- 1 - 3
- 4 0

f —

71
88
98

107
107
90

73
99

115
128
127
98

100

ea A ^

0
- 6
- 4
- 2
- 5
- 1

0
- 4
- 5
- 4
- 4
- 3

n

,d % error

0
-6 -8
- 4 1
- 1 - 9
- 4 - 6
- 1 1

0
- 4 - 0
- 4 - 3
- 3 1
- 3 1
- 3 1

F =

AFpr

67
85
96

105
104
83

68
95

111
123
120
88

200

ea A f l "
- 1
- 3

- 1 0
- 5
- 5
- 2

0
- 8
- 8
- 6
- 1
- 1

% error

- 1 - 5
- 3 - 5

-10-4
-4 -8
-4 -8
- 2 - 4

0
- 8 - 4
- 7 - 2
- 4 - 9
-0 -8
- 1 1

Standard errors from simulations vary from 1 to 2.

160 n

120 -

80 J

4 0 •

00 0-2 0-4 0-6 0-8 10

160 -,

120 •

x 80

40 -\

00 0-2 0-4 0-6
Heritability (h

0-8 10

Fig. 1. The relationship of AFW and its three components
with heritability for (a) M = F = 20, nf = 3 and (b) M =
20, F = 200, nf = 6. The lower line is the squared mean
contribution, the middle line is the sum of the squared
mean and sampling contributions and the upper line is
AFW. (AFa is the rate of inbreeding uncorrected for base
contributions as described in Appendix 5.)

The results show a clear trend; very accurate
prediction for F ^ 40, but an increasing tendency to
overpredict as F increases further. This is also
confounded with the increase in FM'1. The possible

10
(a)

0-8 -

0-6 -

04 -

0-2 -

00
00

a
o

0-8 -

0-6 -

0-4

O-O
00

0-2

0-2

0-4 0-6 0-8 10

0-4 0-6

Heritability (h2
0)

0-8 10

Fig. 2. The proportional contribution of the three
components of inbreeding for (a) M = F = 20, nf = 3 and
(b) M = 20, F = 200, nf = 6. The lower line is the
contribution of the squared mean and the middle line is
the sum of the squared mean and sampling contribution.

reasons will be discussed in more detail in a later
section.

It has been shown that for mass selection 3 types of
contribution to long-term contributions (and hence to
AF) can be identified and modelled: squared mean,
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(a)
1 0 -i

Fig. 3. The proportional contribution of (i) equation
(A 3.1) to the squared mean contribution; (ii) equation
(A 3.6) to the sampling contribution; and (iii) equations
(A 3.13), (A 3.16) and (A 3.17) to the co-selection
contribution. Results are shown as (a) M = F = 20, nf = 3
and (b) M = 20, F = 200, nf = 6. (See Appendix 3 for
definition of the equations.)

sampling and co-selection of sibs. These sources
change in importance as the population parameters
change and further, within each type the importance
of particular contributions involving inheritance also
varies. Among the terms for the squared mean only
(A 3.1) occurs independently of selection, and likewise
(A 3.6) is the only sampling term to occur in the
absence of selection. For the purpose of this paper, the
co-selection of sibs occurs through genetic covariance
only. However, terms analogous to (A 3.13), (A 3.16)
and (A 3.17) will occur when common family variance
is encountered through non-genetic means e.g. ma-
ternal or environmental factors, but none of the
remaining co-selection terms would occur without
some mode of inheritance for the trait under selection.
Thus for co-selection there is a case for separating the
contribution of these three from the remaining terms
among (A 3.13) to (A 3.24).

The magnitude of these contributions have been
examined using the prediction for two cases M = F =
20, nf = 3 and M = 20, F = 200 nf = 6, and results are
presented in Figs 1-3.

Figure 1 shows the change in the expected long-
term squared contribution with heritability separated

237

into three types of contribution, whilst Fig. 2 shows
these same data when expressed as a proportion of the
total. In the cases considered the predicted E{r2)
reaches its peak for h2 between 0-4 and 0-6. When F =
20, the squared mean contribution remained between
57 and 62 % whilst for F = 200 the squared mean
contribution remained less than 58 % of the total. In
both examples the proportional contribution from co-
selection increased from h2 = 0 to 0-9 and contributed
up to 13% of the total.

Figure 3 shows the proportional contribution made
by : (i) (A 3.1) to the total squared mean contribution;
(ii) (A 3.6) to the sampling contribution; and (iii)
(A 3.13), (A 3.16) and (A 3.17) to the co-selection
contribution. For h2 as low as 0-2, approximately
30 % of the squared mean contribution was due to
inherited advantage, whereas this accounted for up to
20 % and only 2 % of the sampling and co-selection
components respectively. It was also noted that
(A 3.10) was large only when F = 100 and 200, where
AF was over-predicted.

6. Approximation and relationship with variance of
family size

The following simplifying approximation was strongly
suggested by the results.

(i) The terms of the squared mean were all included
and when summed give a total contribution of

+(K+i2)Pfl (1)

where K= ?(St
a)-l) + 2iqQa (where Sn, Qx and q

are as denned in Appendix 2, namely (1 — c"1),
(1 - c 2 ) " 1 and l(imcm + i/cf) + ic2S0B respectively).

(ii) Only (A 3.6) was included from the sampling
terms and this has the form

(2)

Correction for hypergeometric sampling is achieved
by multiplication with [±(1 -M~x) + \(\ -F1)].

(iii) Only terms (A 3.13), (A 3.16) and (A 3.17)
were included from the covariance terms and these
combine to give

(3)

although no correction for nf is necessary for A3.17.

The results from this formula are given in Table 2.
Results from Table 2 show that the approximation
has a tendency to underpredict for h2 = 0-4, 0-6, but
exhibits little loss of accuracy for F ^ 40 but a gain in
accuracy for F = 100 and 200. It appears more robust.

Latter (1959) and Hill (1972) derived an expression
for the rate of inbreeding using the variances of family

-i - 1 ) + 3(pm +Pf)].

More precisely P should be replaced by
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Table 2. Prediction ofAF using the approximation compared to rates obtained from simulation. Values are
100 x AF, and % errors are calculated as (Ai\.Im — AFpred)/A.Fpred

n,

K
= 3 0

01
0-2
0-4
0-6
0-99

= 6 0
01
0-2
0-4
0-6
0-99

F=20

A F p r e d

104
118
128
140
144
138

115
141
159
180
186
164

AW
+ 3
+ 5
+ 5
+ 2
+ 6
- 1

- 2
+ 3
+ 2

+ 12
+ 12

- 2

% error

+ 2-9
+ 4-2
+ 3-9
+ 1-4
+ 4-2
+ 0-7
-1-7
+ 21
+ 1-3
+ 6-6
+ 61
+ 1-2

F=40

AF p r e d

83
97

106
116
119
109

89
111
126
142
146
124

sin

pn

0
+ 1
+ 4
+ 2
+ 4
- 1

- 1
+ 6
+ 4
+ 8
+ 4
- 5

n

,d % error

0
10

+ 3-8
+ 1-8
+ 3-4
-0-9

- 1 1
+ 5-4
+ 3-1
+ 5-6
+ 2-7
- 4 0

F =

71
84
93

102
103

89

73
94

107
119
120

97

100

•ed " * p r i

0
- 2
+ 1
+ 3
- 1

0
0

+ 1
+ 3
+ 5
+ 3
- 2

,d % error

0
-2-3
+ 11
+ 2-9
- 1

0

0
+ 11
+ 2-8
+ 4-2
+ 2-5
- 2 1

F =

AFp,

67
81
90
98
98
82

68
88

101
112
112

87

200

ed " ' p r e d

- 1
+ 1
- 4
+ 2
+ 1
- 1

0
- 1
+ 2
+ 5
+ 7

0

% error

-1-5
+ 1-2
-4-4
+ 20
+ 10
-1-2

0
- 1 1
+ 20
+ 45
+ 6-2

0

Standard errors of mean simulated values range from 1 to 2.

size that was general enough to include environmental
covariances between sibs but did not include any
framework for selection and the inheritance of
selective advantage. Wray (1989) derived a form of
this equation (Ai^H) for populations of the same
structure considered here that predicted the increased
family size arising from sib covariances due to genetic
variation and selection in one generation only. This
form, ignoring correction factors of (1 — nj1), (1 — Af"1)
and ( 1 - i ^ 1 ) is:

AFLH = (8M)-1 + (8F)-1 - (8 T)"1 +

zVJCSM)-1 + (8F)-1] + ?Pj(4F)-1

This was found to underestimate rates of inbreeding
(Wray, 1989; Wray et al. 1990). However, if the sum
of equations (1) to (3) are denoted AFW [ignoring
corrections to (2) and (3)] it can be seen that

AFW = (4)

In fact, this relationship still holds when the correc-
tions using (1 — nj1), (1 — M'1) and (1 —F~1) are made
to both AFlH and AFW. The term in AFW that is not
included in AFLH, is part of the squared mean
contribution and describes the extra inbreeding arising
from selection; this is caused by the interdependence
of generations through the inheritance of selected
advantage and the consequent expected proliferation
of lines arising from superior ancestors in generation
1 at the expense of their inferior contemporaries.
Precise prediction will require correction using Ap-
pendix 5.

In conclusion, the prediction of inbreeding in mass
selection can be shown to approximate closely a
prediction involving the variance of family size
assuming independent selection processes in each
generation plus a single term that describes the
cumulative effect of the expected proliferation of lines

from superior ancestors in generation 1 at the expense
of lines from the inferior ancestors.

(i) Example

From M = 20, F = 4 0 , nf = 6 and ^ = 0-4: the
proportions selected are/?m = 0-0833 andpf = 01667;
the intensities of selection and variance reduction
coefficients are (from standard tables) im = 1-839, if =
1 -499 and i = \{im + if)=\ -669, km = 0-838, kf = 0-797
and k = l(km + kf) = 0-818. As is the case for esti-
mating progress, accurate estimation of AF requires
the calculation of hi and half-sib correlations {pm and
pf). For the example chosen these are hi = 0-358, pm =
0-071 and p, = 0-073, to give cm = 0-350, c, = 0-357
and c = \{cm + cf) = 0-354, and K = 7-361.

For simplicity the hypergeometric corrections will
be ignored: the squared mean contribution is 00081
[equation (1)], the sampling contribution is 00042
[equation (2)], and the co-selection contribution is
0-0022 [equation (3)]. This gives a value of AFW =
00145, which when corrected using Appendix 5 gives
AF = 00149 (compared to the value of 00150 from
stimulation). The prediction is slightly higher than
that shown in Table 2 for two reasons: firstly,
hypergeometric corrections have not applied; and
secondly, the values of h\, pm and pf that were
calculated above were not corrected for sampling as
described in Appendix 6, but were simply adjusted for
the Bulmer effect as defined earlier in the text.

7. Discussion

The work presented has shown that good predictions
of rates of inbreeding in mass selection can be made
using a straightforward closed expression involving
predictable genetic parameters. These genetic par-
ameters involve the intensity of selection and variance
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parameters from the second generation of offspring,
i.e. heritability, competitiveness (c = |(l— kh2)) and
half-sib correlations.

The terms involved predict that to order X~l, the
rate of inbreeding in the absence of genetic variation
and environmental covariation takes the form
($,M)-l + (ZF)-l-(%TY1 a term that can be derived
for random selection with fixed family sizes by other
methods (Burrows, 1984 a; Wray, Woolliams and
Thompson, 1990). This paper has shown that when
viewed from the concept of long-term contributions
this has two components, firstly a squared mean
contribution of (16Af)~1-t-(16ir)~1 and secondly a
smaller sampling contribution of (16M)"1-!-
(\6Fyl-(8T)-\ When heritable and non-heritable
correlations are present between sibs in a hierarchical
scheme then additional terms analogous to the
situations considered by Latter (1959) and Hill (1972)
are required plus the addition to the squared mean
contribution of K\pm{\6M)~l + p^X^F)'1] were px is
the half-sib correlation with common parent of sex x,
and K = /2(5^ — \) + 2iqQm. If selection is assumed to
be of equal intensity in the sexes q = icSw and K =
i'2(5'co-l)(H-5'a)-l-2Q00). This extra term describes
the inbreeding arising from the expected proliferation
of lines arising from superior ancestors in generation
1 at the expense of lines from their inferior con-
temporaries.

The full derivation of the theory presented by Wray
& Thompson (1990) was found to be very accurate in
the situations studied in this paper for F ^ 40, but
clearly overestimated for F ^ 100 where male half-sib
families are large. Overestimation can be firmly
ascribed to the inability to predict E(r2) rather than a
failure in the relationship of E(r2) with AF: simulations
show that for mass selection, index selection and niche
selection with environmental covariances, E(r2) ac-
curately predicts AFwhen mating is at random (N. R.
Wray, unpublished results). Two possible reasons for
the inability to predict E{r2) in these circumstances
can be advanced. Firstly when modelling the sib
covariance only partial adjustment has been made for
hypergeometric sampling; when covariances are
added, negative covariances must also be added
elsewhere i.e. one families success in another's failure.
When the half-sib family size is large, selection
becomes more intense (pm =g n"1) and Appendix 1
shows the regression of the selection score of an
ancestor on its breeding value becomes steeper: in the
next generation, if an ancestor has many descendants
the success of one branch of his family is to the
detriment of another. Thus the expected increase in
pathways is not as great as predicted. A second
contributing cause is that in later generations the
accumulation of variances has been assumed to depend
on the ancestor [equation (29) of Wray & Thompson,
1990]. In fact after generation 2 families of descendants
are a mix of ancestors from the same sex and whilst
the overall expected gain in pathways is unaffected by

this, the variance of additional contributions between
like-sex ancestors will be reduced. One implication of
all these considerations is that the robustness of
estimation may be less determined by the number of
parents than by the number of parents in relation to
family size. Nevertheless, the approximation derived
is robust over a wide range of parameters, and
although possibly benefitting from compensating
errors, achieves a great gain in simplicity.

The importance of identifying the components to
long-term contributions and quantifying their mag-
nitude in terms of predictable genetic parameters, is
that it is only by these means that the value of quanta
of information can be assessed for both promoting
genetic gain and promoting inbreeding. With this
understanding it would then be possible to reconsider
selection indices and scheme design to maximise
genetic gain while simultaneously constraining in-
breeding. The impact of this would clearly depend on
the circumstances and chosen constraints. An example
of this was given by Woolliams (1989) in which the
change from hierarchical to factorial mating designs
increased progress when inbreeding was constrained:
the foregoing analysis shows that this change left the
squared mean and sampling contributions unchanged
but substantially reduced that from co-selection. The
full potential will, however, require the extension of
the foregoing analysis to index selection.

A further finding of the paper is that the expected
long-term contribution of an ancestor in mass selection
relative to that for random selection will increase by a
factor that is linearly related to its breeding value. The
factor is of the form (1 -1-/(1 -c)~lA'Hx)), where A'Hx) is
\Ai{x)a~p, and Aiw is the ancestors breeding value
about the mean of those selected in generation 1. Thus
selection will be expected to leave the contribution
unchanged only for an average ancestor, and in
general the expected contribution will be linearly
related to the ancestors breeding value even though in
their offspring in generation 2, contributions are
equal. Toro & Neita (1984) and Lindgren (1991) have
shown that over a single generation when a restriction
is placed on diversity, genetic gain is increased by the
differential use of individuals, linearly related to their
breeding value. An interesting question arises as to
whether over many generations this reduces or
exacerbates inbreeding since the superior individuals
not only have more progeny but their progeny have a
selective advantage. This will determine if linear
deployment is a strategy for long-term selection or for
clonal propagation.

In a wider context it has been shown that a tractable
approach to the problem of predicting inbreeding in
the presence of some form of selection may be to
estimate the expected long-term squared contribution
of ancestors. However, these have only been shown to
be equivalent for random mating. It would seem a
logical and sensible alternative in some circumstances
to assess breeding schemes by \(M + F)~2I.E(r2) rather
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than by AF and that this assessment may also prove This can be further simplified by defining terms q =
tractable in the absence of random mating. g + c2iSm, and diagonal matrices 0 and A with
, . „ . „ . , D „, r 11 i i J elements dm,df and Am,A, where 6W = cw + c2Sa3 and
J. A. Woolliams and R. Thompson gratefully acknowledge . _ %n' tUan ' w °°
funding by the Ministry of Agriculture, Fisheries and Aw~ cw +Food, UK.

Appendix 1: Derivation of bx t

Dbxt =

o, then

/>w.t = D + A'HX) ic~3D& + A'2X) ic"-*qDA.

Note

Kdm + 6f) = cSo0 and KAm + A/) = cgr o .

z.
Since

Z>< = Z>, A*. ( = Z>k 2 + \nxa-1 f £ Az\ + \nxc^a'1 z.

Substituting bx 2 = \nx cr~p z, nx = TX~1 and zx =
Xix T'1 and denning St = S'_o c\ gives

K,t = \x-W[st-zD+s-*i]{Mim,Fify.

Finally D(Mim,Fif)
T = i(M,F)T, thus

+ ct-\imMX~\ifFX-1)].

Appendix 2

i-l

where L and R are diagonal matrices with non-zero
elements im and if for L and cm and cf for R. Thus

c~2AHx)LDRD + ctsAHx)DLDR

+ c'-2c< 3At?x)LDRLDR].

These terms can be simplified by noting DLD = iD
and DRD = cD, and likewise for other diagonal
matrices; and, if terms of order A3

{x) or higher are
ignored, by similar multiplication and collection of
terms

PHxht = D + A'i(x) £ c> \icD + cl

\l-2 J

'+1)icgD

+ cl-3cl'2igDR + c'-3 £ c* PcDR]

where gx = ix cx and g = | (gB +gf). If

530 = E c ' = ( l - c ) - 1 , and Gx

I)., = D + ^;(x)ic

Appendix 3

Listing of terms for AF derived for sex x. The
constants used in terms are

*„, = £<;» 2"' and

Note

= £

(i) Squared mean contribution
vo:{\6X)-\

v2:

vt:2pxic*qQJ\6X)-

(A 3.1)

(A 3.2)

(A 3.3)

(A 3.4)

(A 3.5)

(ii) Binomial sampling

Terms arising from Vo

y o : ( M - 1 + F - l - 2 r - 1 ) / 3 2 . (A 3.6)

vt: Pt Bm i\6l M-i + d) F-1 - (d2
m + 0*) Tl)/6A. (A 3.7)

v,:PzBmicq(AmM-i+AfF-1-2AT-1)/32. (A 3.8)

Terms arising from A't(x)V0

v3: p.B^Hxec{6mM-1 + ̂ F " 1 -2 (? r 1 ) /64 . (A 3.9)

Terms arising from A'Hx)Vx

J ; 3 : y 0 l ^ / ( ^ / m M - 1 + ̂ / r F - 1 - 4 g r - 1 ) / 3 2 . (A 3.10)

Terms arising from A'tfx) Vx

Terms arising from A'2X)V2

(A 3.11)

(A 3.12)

(iii) Co-selection offull-sibs in generation 2

Terms arising from Co

v0: p,?(\6F)-\ (A 3.13)

v,= pxPx,?q\\(>Fy\ (A 3.14)

(A 3.15)
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(iv) Co-selection of sibs in generation t ^ 3

Terms arising from Co

(A 3.16)

(A 3.17)

(A 3.18)

(A 3.19)

v2:pxPm(d-\)Ba}i
2c2q%64F)-\ (A 3.20)

vi:px(pm+Pf)BxPc3q(Amim + A/i/)(32F)-\ (A 3.21)

»4: P i P n ( d - 1 ) 5OT iV$(Am im + Af i» (64F)-1. (A 3.22)

Terms arising from A'Hx)C0

v3: px(pm +Pf) Bx H^PcqiXGF)'1. (A 3.23)

v3: pxpm{d-\)BmH^cq{32FT\ (A 3.24)

Appendix 4. Hypergeometric sampling

For sampling without replacement the variance of the
hypergeometric distribution is more appropriate than
that of the binomial. When selecting W individuals at
random from a total T without replacement the
variance of a total family contribution for a family of
nw=TW~l members is [ 1 - ( ^ - ^ ( r - l ) " 1 ] times
the binomial variance. When terms in 7"1 are neglected
this factor is approximately (1 — W'1) and the variance
is then (1 - W~1)nwp{\ -p) where p = WTX. In
derivation p is a function of family and sex but these
deviations are assumed to have no effect on the factor
(1-W1). Terms used to derive (A 3.6) to (A 3.12)
inclusive require these corrections. In the derivation of
terms arising from the co-selection of sibs the
simplifying assumption was made that the joint
probability of selecting two sibs of like sex is p2 where
again p is a function of the sex and family. This
probability is better approximated by p2{\ — W'1) and
the correction factor (1 — IV~1) is used multiplicatively
with the correction (1 — n~^) which is described in the
text. Since equations (A 3.13) to (A 3.24) include both
like-sex and unlike-sex contributions these correction
terms are not simple factors.

Appendix 5. Contributions from the base population

In their derivation Wray & Thompson (1990) show
AF x Ct(2 — Q)"1 where Cx and Co are the average of
the diagonal elements in the genetic contribution
matrices for generations 1 and 0 (i.e. the unselected
base) respectively. They argued that since Co is small,
AF^ jC , . However, Co can contribute to significant
proportional errors even when AF is in the range
covered by the mass selection examples in their paper.
However, by using the relations AFx\Ca (J. A.
Woolliams, N. R. Wray, unpublished results) this
problem may be largely overcome and the need for
predicting Co avoided.

AF= Ctf-Co)-1 = C,(2-4AF)-' since AFssfC0

and expanding to a quadratic gives 4AF2 —2AF+

Q = 0. Solving for the lowest root, AF =
! ( ! _ ( ! -4C,)*).

Substituting AFW for f C,, the estimate used by Wray
& Thompson (1990), gives

AF = 1(1 - ( 1 -8AFJ*) « AFJ1 + 2AFJ,

the latter approximation arising from expanding
(I-8AFJ5 as Taylor series. Thus when A F « 0 0 5 ,
AF̂ , underestimates AF by 10%.

Appendix 6. Sampling of ancestral breeding values

The average contribution from sex x to sex y, rWl/ao,
is constrained to be^YX'1. The sampling distributions
incorporated ensure the error terms obey this con-
straint. However, no allowance has so far been made
for fitlx)yiOa; as modelled the average expected
contribution is

The deviation from the constrained value decreases as
X increases since Var {AHx)) becomes smaller and A'iW
lies more surely close to 0.

Two approaches can be adopted to overcome this
problem which are equivalent in first order terms.
Firstly, the coefficients p,i(x)!/t and pUx)W!/J, can be
recalculated with the discrete distribution of genotypes
obtained from selection in generation 1 and, making
the same approximations as were made for the
truncated normal, it is seen that A'Hx) should be
replaced by A'i(x) — A'Hx). Alternatively, the fiUx)1/,t and
Piwwy.tmav be regarded as fitness coefficients, and the
process can be recalculated using relative fitness to
replace absolute fitness, by dividing through by mean
fitness coefficients at each generation and transition.
The use of A'Hx) — A'Hx) requires the estimation of its
variance.

V a r ( A * ) - ' V ) ) = Var C4<(1))-Var (.4^,),

Varaf ( I ) )= X-1 V a r O W + X"2 £ cov(AHx),AHx))

[Prob (ij half-sibs | ij selected)

xcov(half-sibs)

+ Prob (ij full-sibs | i,j selected)

x cov (full-sibs)].

After selection in generation 1, Var(AHx}) = /i*,(l —
kx hi), cov (half-sibs) a \h2

0{\ -kx hi) and cov (full-sibs)
w \h2

0{\ —kxhl). More precise estimates of covariance,
useful for high h2 > 0-8 can be obtained by applying
the results of Tallis (1961).

The results of Wray et al. (1990) are used to
approximate Prob (/j full-sibs \ i.j selected) when sam-
pling without replacement by standard normal prob-
abilities. For a normally distributed trait undergoing

GRH 62
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truncation selection with fixed proportion px and a
correlation pFS between the indices of full-sibs,
approximation to the required probability is given by
(nf- \)(T-1)"1 Prob(ij ^ v\ i,jfull-sibs)/?"2, where v
is the truncation deviate for infinite populations. Prob
(ij > v | i,j full-sibs) can be re-expressed as px QFS

where QFS = Prob(i,j ^ v\j ^ v and ij full-sibs).
Thus the required probability is approximately that
for pFS = 0 scaled by the ratio of the conditional and
unconditional probabilities of/ > v. Mendell & Elston
(1974)showQFS « <t>[(ixpFS-v)(l-kxpFS)-i]tobean
accurate approximation. Thus

Prob (/j full-sibs | ij selected)

Similarly

Prob(/, / half-sibs | i,j selected)

Since individuals are in generation 1, pFS = \hl and

PHS = \hl-
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