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NEW BOUNDS FOR SZEMEREDI’S THEOREM, III:
A POLYLOGARITHMIC BOUND FOR r4(N)

BEN GREEN AND TERENCE TAO

Dedicated to the legacy of Klaus Roth

Abstract. Define r4(N) to be the largest cardinality of aset A C {1, ..., N} that
does not contain four elements in arithmetic progression. In 1998, Gowers proved
that

r4(N) < N(loglog N)~¢

for some absolute constant ¢ > 0. In 2005, the authors improved this to
ra(N) < Ne~° [loglog N
In this paper we further improve this to
r4(N) < N(logN)~¢,

which appears to be the limit of our methods.
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§1. Introduction. Let N > 100 be a natural number (so that loglog N is
positive). If k > 3 is a natural number we define r;(/N) to be the largest
cardinality of a set A C [N] := {1, ..., N} that does not contain an arithmetic
progression of k distinct elements.

Klaus Roth proved in 1953 [24] that r3(N) < N(loglog N)~!, and so in
particularl r3(N) = o(N) as N — oo. Since Szemerédi’s 1969 proof [29] that
ra(N) = o(N), and his later proof [30] that r¢ (N) = or(N) for k > 5 (answering
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1 See §2 for the asymptotic notation used in this paper.
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a question from [10]), it has been natural to ask for similarly effective bounds
for these quantities. It is worth noting that the famous conjecture of Erdés [9]
asserting that every set of natural numbers whose sum of reciprocals is divergent
is equivalent to the claim that Z;’lozl rr(2") /2" < oo for all k > 3 (see [33,
Exercise 10.0.6]).

A first attempt towards quantitative bounds for higher k was made by Roth
in [25], who provided a new proof that r4(N) = o(N). A major breakthrough
was made in 1998 by Gowers [11, 12], who obtained the bound r;(N) <
N (loglog N)~¢ for each k > 4, where ¢ := 1 /22k+9. In the other direction,
a classical result of Behrend [2] shows that 73(N) > N exp(—c,/log N) for
some absolute constant ¢ > 0 (see [8, 20] for a slight refinement of this bound),
and in [23] (see also [22]) the argument was generalized to give the bound
F140t(N) ¢ N exp(—clog!/®+D N) for any k > 1.

In the meantime, there has been progress on r3(N). Szemerédi (unpublished)

obtained the bound r3(N) <« Ne V1°219eN “and shortly thereafter Heath-
Brown [21] and Szemerédi [32] independently obtained the bound r3(N) <
N (log N)~¢ for some absolute constant ¢ > (. The best known value of ¢ has
been improved in a series of papers [4, 6, 7, 27, 28]. Sanders [28] was the first
to show that any ¢ < 1 is admissible, and Bloom [4] improved the factor of
loglog N in Sanders’s bound.

The only other direct progress on upper bounds for r;(N) is our previous

paper [19], obtaining the bound r4(N) <« Ne~¢V1°212N The main objective of
this paper is to obtain a bound for r4 (V) of the same quality as the Heath-Brown
and Szemerédi bound for r3(N).

THEOREM 1.1. We have r4(N) < N(log N)™¢ for some absolute constant
c>0.

An analogous result in finite fields was claimed (and published [15]) by us
around 12 years ago, although an error in this paper came to light some years
later. This was corrected around 5 years ago in [16]. These papers (like almost
all of the previously cited quantitative results on r¢(/N)) are based on the density
increment argument of Roth [24]. However we will use a slightly different
“energy decrement” and “regularity” approach here, inspired by the Khinchin-
type recurrence theorems for length-four progressions established by Bergelson
et al [3] in the ergodic setting, and by the authors [13] in the combinatorial
setting.

§2. Notation. We use the asymptotic notation X < Y or X = O(Y) to
denote |X| < CY for some constant C. Given an asymptotic parameter N
going to infinity, we use X = o(Y) to denote the bound |X| < ¢(N)Y for
some function ¢(N) of N that goes to zero as N goes to infinity. We also write
X <Y for X €Y < X.If we need the implied constant C or decay function
c() to depend on an additional parameter, we indicate this by subscripts, e.g.
X = 0r(Y) denotes the bound |X| < ¢ (N)Y for a function c;(N) that goes to
zero as N — oo for any fixed choice of k.
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We will frequently use probabilistic notation, and adopt the convention
that boldface variables such as a or r represent random variables, whereas
non-boldface variables such as @ and r represent deterministic variables (or
constants). We write P(E) for the probability of a random event E, and EX
and Var X for the expectation and variance of a real or complex random variable
X; we also use E(X|E) = EX1g/P(E) for the conditional expectation of X
relative to an event E of non-zero probability, where of course 1g denotes the
indicator variable of E. In this paper, the random variables X of which we will
compute expectations of will be discrete, in the sense that they take only finitely
many values, so there will be no issues of measurability. The essential range of
a discrete random variable X is the set of all values X for which P(X = X) is
non-zero.

By a slight abuse of notation, we also retain the traditional (in additive
combinatorics) use for E as an average, thus Eqca f(a) := (1/|A]) Y, c4 f(@)
for any finite non-empty set A and function f : A — C, where we use |A| to
denote the cardinality of A. Thus for instance E,c4 f(a) = E f(a) if a is drawn
uniformly at random from A.

A function f : A — C is said to be 1-bounded if one has | f(a)| < 1 for
all a € A. We will frequently rely on the following probabilistic form of the
Cauchy-Schwarz inequality, the proof of which is an exercise.

LEMMA 2.1 (Cauchy-Schwarz). Let A, B be sets, let f : A — C be a 1-
bounded function, and let g : A x B — C be another function. Let a, b, b’ be
discrete random variables in A, B, B’ respectively, such thatb' is a conditionally
independent copy of b relative to a, that is to say that

P(b=b,b =bla=a)=Pb=bla=a)P(b=>~|a=a)
for all a in the essential range of a and all b, b’ € B. Then we have
Ef@)g(a,b)> < Eg(a, b)g(a, b). @1
We will think of this lemma as allowing one to eliminate a factor f(a) from a
lower bound of the form |E f (a)g(a, b)| > n, at the cost of duplicating the factor

g, and worsening the lower bound from 7 to 7.
We also have the following variant of Lemma 2.1.

LEMMA 2.2 (Popularity principle). Let a be a random variable taking values
inaset A, andlet f : A — [—C, C] be a function for some C > 0. If we have
Ef(@) = n for some n > 0 then, with probability at least n/2C, the random
variable a attains a value a € A for which f(a) =2 n/2.

Proof. IfwesetQ:={ae€ A: f(a) = n/2}, then

n
f@ < > + Claco
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and hence on taking expectations

Ef(a) < - 4+ CP(a € Q).

oS

This implies that
P(a e Q) > n/2C

giving the claim. 0

If & € R, we write ||0]|r/z for the distance from 6 to the nearest integer, and
e() = e>™1%, Observe from elementary trigonometry that

le(@) — 1| = 2|sin(0)| < [|0|r/z (2.2)
and hence also
1 = cos(2m6) = 2[sin(w0)|* < |10l (2.3)
We will also use the triangle inequalities

101 + O2llr/z < I1011IR/Z + 1021IR/Z; k0 llr/z < |kIO]IR/Z (2.4)

for 01,6, € R/Z and k € Z frequently in the sequel, often without further
comment.

For any prime p, we (by slight abuse of notation) let @ +— a/ p be the obvious
homomorphism from Z/pZ to R/Z that maps a (mod p) to a/p (mod 1) for
any integer a. We then define e, : Z/pZ — C to be the character

ep(a) == e(g> = e?mialp
p
of Z/ pZ.

§3. High-level overview of argument. We will establish Theorem 1.1 by
establishing the following result, related to the Khinchin-type recurrence
theorems mentioned earlier. It will be convenient to introduce the notation

Aar(®) := Ef(a)f(a + r)f(a + 2r)f(a + 3r)

whenever a, r are random variables on Z/pZ and f : Z/pZ — [—1,1] is a
random function; of course, the notation can also be applied to deterministic
functions f : Z/pZ — [—1,1]. Later on we will also need the conditional
variant

Aar(fIE) == E(f(a)f(a+ r)f(a 4+ 2r)f(a 4 3r)|E) (3.1)

for some events E of non-zero probability. Informally, this quantity counts
the density of arithmetic progressions a, a+r,a+2r,a+ 3r on the event E
weighted by f, where a, r need not be drawn uniformly or independently (and
f may also be coupled to a, r).

https://doi.org/10.1112/50025579317000316 Published online by Cambridge University Press


https://doi.org/10.1112/S0025579317000316

948 B. GREEN AND T. TAO

THEOREM 3.1. Let p be a prime, let n be a real number with 0 < n < 1—10,
and let f : 7Z/pZ — [—1, 1] be a function. Then there exist random variables
a, r € Z/pZ, not necessarily independent, obeying the near-uniform distribution
bound

Ef@) = Exez/pzf(x)+ 0@, (3-2)

the recurrence property

Aax(f) = Ef@)* = 0, (3-3)

and the “thickness” bound
P(r = 0) < exp(—y~2M)/p. (3.4)

We note that a variant of Theorem 3.1 was established by us in [13]
(answering a question in [3]), in which the random variable a was uniformly
distributed in Z/ pZ, the random variable r was uniformly distributed in a subset
of Z/ pZ of size >, p and was independent of a, and the condition (3.4) (which
is crucial to the quantitative bound in Theorem 1.1) was not present. Compared
to that result, Theorem 3.1 obtains the much more quantitative bound (3.4),
but at the expense of no longer enforcing independence between a and r. The
use of non-independent random variables a, r is an innovation of this current
paper; it is similar to the technique in previous papers of using “factors” (finite
partitions) to break up the domain Z/ pZ into smaller “atoms” such as Bohr sets
and analyzing each atom separately. However there will be technical advantages
from the more general framework of pairs of independent random variables a, r.
In particular we will be able to avoid some of the boundary issues arising from
irregularity of Bohr sets, by using the smoother device of “regular probability
distributions” associated to such sets. Although f is allowed to attain negative
values in Theorem 3.1, in our applications we shall only be concerned with the
case when f is non-negative.

Let us now see how Theorem 1.1 follows from Theorem 3.1. Clearly we may
assume that N > 100. Suppose that A is a subset of {1, ..., N} without any non-
trivial four-term arithmetic progressions. By Bertrand’s postulate, we may find a
prime p between (for example) 2N and 4N. If we define f : Z/pZ — [—1, 1]
to be the indicator function 14 of A (viewed as a subset of Z/ pZ), then we have

1A
Exez/pz f(x) = > (3.5)
and also
f@f@a@+r)yf@a+2r)f(a+3r)=0 3.6)

whenever a, r € Z/pZ with r non-zero. Now let a, r be as in Theorem 3.1, with
7 to be chosen later. From (3.2), (3.3), (3.5) we have

A 4
Aax(f) > (U> —om.
P
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But by (3.6), (3.4), the left-hand side is O (exp(—n~ %)/ p). Setting n =
clog™¢ p for a sufficiently small absolute constant ¢ > 0, we conclude that

1A\ .
7 Llog™“p

and hence A <K N log_c/ 4N, giving Theorem 1.1.

Remark. As mentioned previously, the arguments in [13] established a bound
of the form (3.3) with a and r independent, and also one could ensure that a
was uniformly distributed over Z/pZ. As a consequence, one could establish a
variant of Theorem 1.1, namely that forany N > 1, n > 0, and A C [N], one
had

ANMA-NNMA=2)NMA=3)] _ (|A|>4_
N “\nv) 77

for >, N choices of 0 < r < N. Unfortunately our methods do not seem to
provide a good bound of this form due to our coupling together of a and r.

It remains to establish Theorem 3.1. As in [3, 13], the lower bound (3.3)
will ultimately come from the following consequence of the Cauchy—Schwarz
inequality that counts solutions to the equation x — 3y + 3z — w = 0 for x,
v, Z, w in some subset of a compact abelian group; this inequality is a specific
feature of the theory of length-four progressions that is not available for longer
progressions”.

LEMMA 3.2 (Application of Cauchy—Schwarz). Let G = (G, +) be a compact
abelian group, let 1 be the probability Haar measure on G, and let F : G — R
be a bounded measurable function. Then

4
f f f FO)F(F@F(x =3y +32) du(x) du(y) dp(z) > ( f qu) .
GJGIG G

Proof. Making the change of variables w = x — 3y and using Fubini’s
theorem, the left-hand side may be rewritten as

2
/(f F(w+3y)F(y)dM(y)) dp(w),
G G

which by the Cauchy—Schwarz inequality is at least

2
(/ / F(W+3y)F(y)dM(y)du(w)>.
GJe

But by a further application of Fubini’s theorem, the expression inside the square
is (fG F(x) du(x))z. The claim follows. (|

2 For longer progressions, the relevant constraints coming from nilpotent algebra are significantly more
complicated than a single linear equation; see [35]. In any event, the counterexamples in [3] indicate that
no comparable positivity property with polynomial lower bounds will hold for higher length progressions.
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To see the relevance of this lemma to Theorem 3.1, and to motivate the
strategy of proof of that theorem, let us first test that theorem on some key
examples. To simplify the exposition, our discussion will be somewhat non-
rigorous in nature; for instance, we will make liberal use of the non-rigorous
symbol &~ without quantifying the nature of the approximation.

Example 1 (A well-distributed pure quadratic factor). Let G be the d-torus

G = (R/Z)d for some bounded d = O(l), and let F : G — [—1,1] be a

smooth function (independent of p); for instance, F' could be a finite linear

combination of characters y : G — Sl of G. Let «p,...,aq € 7] pZ be

“generic” frequencies, in the sense that there are no non-trivial linear relations
of the form

kioeg + -+ kgag =0 3.7

with k1, ..., kg = O(1) not all equal to zero. We also introduce some additional
frequencies B1, ..., Bs € Z/pZ, for which we impose no genericity restrictions.
Let f : Z/pZ — [—1, 1] be the function

fla) == F(Q(a)),

where Q : Z/pZ — G is the quadratic polynomial

arja® + pra aga’® + ﬂda)

Q(a)::( ce
p p

and where we use the obvious division by zero map a — a/p from 7] pZ to
R/Z. For any tuples k = (ky, ..., kg) € 74 =G and & = (&1,...,&) € G, we
define the dot product

k-&:=kié& +- - +kida.

Because of our genericity hypothesis on the «;, we see from Gauss sum estimates
that

Euez)pzek - Q(a)) = 0

for any bounded tuple k € Z? when p is large. By the Weyl equidistribution
criterion, we thus see that when p is large, the quantity («a® + Ba)/p becomes
equidistributed in G as a ranges over Z/pZ. In particular, as F' was assumed to
be smooth, we expect to have

Ef(a) = Eqezypzf(@) ~ /G Fo) du(x)

if a is drawn uniformly in Z/ pZ. Now suppose that r is also drawn uniformly in
7./ pZ, independently of a. The tuple

(Q(a), Q(a+r), Q(a+2r), Q(a+3r) (3-8)
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will not become equidistributed in G*, because of the elementary algebraic
identity

Q@) —3Q(a+r)+30(+2r)— Q(a+3r) =0, (3.9)

which is a discrete version of the fact that the third derivative of any quadratic
polynomial vanishes. However, this turns out to be the only constraint on this
tuple in the limit p — oo. Indeed, from the genericity hypothesis on the «;, one
can verify that the quadratic form

(a,r) — ko- Qola) + ki - Qola+r)+kr Qola—+2r)+ ks - Qola + 3r)

on (Z/ pZ)2 for bounded tuples ko, k1, kz, k3 € 74 vanishes if and only if
(ko, k1, k2, k3) is of the form (k, —3k, 3k, —k) for some tuple k, where

aa? ozda2>

Qo(a):=<
p p

denotes the purely quadratic component of Q(a). Using this and a variant of the
Weyl equidistribution criterion, one can eventually compute that

Aa,r(f)%/G/G/GF(x)F(y)F(z)F(x—3y+3z)du(x)du(y)du(z).

Applying Lemma 3.2, we conclude (a heuristic version of) Theorem 3.1 in this
case, taking a, r to be independent uniformly distributed variables on Z/ pZ.

Example 2 (A well-distributed impure quadratic factor). Now we give a
“local” version of the first example, in which the function f exhibits “locally
quadratic” behaviour rather than “globally quadratic” behaviour. Let n > 0 be
a small parameter, and suppose that p is very large compared to . We suppose
that the cyclic group Z/ pZ is somehow partitioned into a number Py, ..., P, of
arithmetic progressions; the number m of such progressions should be thought
of as being moderately large (e.g. m ~ exp(1/7°(") for some parameter 1 > 0).
Consider one such progression, for example P, = {b, + ns. : 1 < n < N}
for some b., s, € Z/pZ and some N, > 0; one should think of N, as being
reasonably large, e.g. N. > exp(—1/n2(1)p. To each such progression P, we
associate a torus G, = (R/Z)% for some bounded d. with probability Haar
measure [, a smooth function F. : G, — [—1, 1], and a collection &. 1, ...,
&..4. € R/Z of frequencies that are generic in the sense that there does not exist
any non-trivial relations of the form

1
kigeq+ -+ ka e = 0(7) (mod 1) (3.10)

c

for bounded k1, ..., kg, € Z. We then define the function f : Z/pZ — [—1, 1]
by setting
f(bc +nse) = Fc(éc,dﬂ’lz, ey sc,dcnz)
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forl <c<mand1 < n < N. One could also add a lower order linear term to
the phases éc,inz, as in the preceding example, if desired, but we will not do so
here to simplify the exposition slightly.

Within each progression P., a Weyl equidistribution analysis (using the
genericity hypothesis) reveals that the tuple (éc,dlnz, ey éc,dcnz) becomes
equidistributed in G as p becomes large, so that

Eaep, f(a) %[ Fe(x) dpe(x). (3.11)

c

Now we define the random variables a, r € Z/pZ as follows. We first select a
random element ¢ from {1, ..., m} with P(c = ¢) = |Pj|/pforc=1,...,m.
Conditioning on the event that ¢ is equal to ¢, we then select a uniformly at
random from P, and also select r uniformly at random from an arithmetic
progression of the form

{nse : In| < exp(=1/n" )N}, (3.12)

with a and r independent after conditioning on ¢ = c. Note that a and r are only
conditionally independent, relative to the auxiliary variable c; if one does not
perform this conditioning, then a and r become coupled to each other through
their mutual dependence on c.

Without conditioning on ¢, the random variable a becomes uniformly
distributed on Z/ pZ, thus

Ef(a) = Euez/pzf(a).

Also, from (3.11) we have the conditional expectation

E(f(a)ICZC)&’/ Fe(x) dpee(x).

c

A modification of the equidistribution analysis from the first example also gives

Aax(fle = o)
ng /G /G Fo(0) Fe(p) Fe@)F (x — 3y + 32) dpc(x) dpe(y) dpe (),

where the conditional quartic form A, r(f|c = ¢) was defined in (3.1), and hence
by Lemma 3.2 we have

Aar(fle=0) 2 E(f@]e = ).
Averaging in ¢ (weighted by P(¢c = ¢)) to remove the conditional expectation on
the left-hand side, and then applying Holder’s inequality, we obtain a heuristic

version of Theorem 3.1 in this case.
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Example 3 (A poorly distributed pure quadratic factor). We now return to the
situation of the first example, except that we no longer impose the genericity
hypothesis, that is to say we allow for a non-trivial relation of the form (3.7).
Without loss of generality we can take the coefficient k4 of this relation to be
non-zero. Because of this relation, the quantity Q(a) studied in the first example
and the tuple (3.8) may not necessarily be as equidistributed as before. However,
we can use this irregularity of distribution to modify the representation of f (up
to a small error) in such a manner as to reduce the number d of quadratic phases
involved. Namely, we can write

Lﬂmrzﬁ(éw%Zﬁ)
)4

where
Q(a) . (k;lalaz + kd_lﬂla k;lad_laZ + k;lﬂd_]a)
. p EEEIEIRIE) p )
yi=Ba+kik; B+ -+ kaik) B,
F(xi,...,x4-1,y) == F(kax1, ..., kaxq—1, —kix1 — -+ - —kg_1xq-1 +y)

and where we take advantage of the field structure of Z/ pZ to locate an inverse
k;l of k4 in this field. For our quantitative analysis we will run into a technical
difficulty with this representation, in that the Lipschitz constant of F will
increase by an undesirable amount compared to that of F when one performs
this change of variable, at least if one uses the standard metric on the torus. To
fix this, we will eventually have to work with more general tori ]_[?:1 R/MZ
than the standard torus (R/Z)?, but we ignore this issue for now to continue
with the heuristic discussion.

To remove the dependence on the linear phase ya/p, we partition Z/pZ
into “(shifted) Bohr sets” By, ..., By for some moderately large m (e.g. m ~
exp(1/n7~C) for some constant C > 0), defined by

-1
B, := {an/pZ:ﬁe[c ,i) (mod 1)}
p m m

forc =1, ..., m. On each Bohr set B, we have the approximation

f(a) == F(Q(a))

where Fc(x, y) = F(x, c¢/m). Using the heuristic that Bohr sets behave like
arithmetic progressions, the situation is now similar to that in the second
example, with the number of quadratic phases involved reduced fromd tod — 1,
except that there may still be some non-trivial relations among the surviving
quadratic phases (and one also now has some lower order linear terms in the
quadratic phases). To deal with this difficulty, we turn now to the consideration
of yet another example.
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Example 4 (A poorly distributed impure quadratic factor). We now consider
an example that is in some sense a combination of the second and third examples.
Namely, we suppose we are in the same situation as in the second example,
except that we allow some of the indices c to have “poor quadratic distribution”
in the sense that they admit non-trivial relations of the form (3.10). Again we may
assume without loss of generality that k4, is non-zero in such relations. Because
of such relations, we no longer expect to have the equidistribution properties
that were used in the second example. However, by modifying the calculations
in the third example, we can obtain a new representation of f (again allowing
for a small error) on each of the progressions P. with poor quadratic distribution
to reduce the number d. of quadratic polynomials used in that progression by
one. Iterating this process a finite number of times, one eventually returns to the
situation in the second example in which no non-trivial relations occur, at which
point one can (heuristically, at least) verify Theorem 3.1 in this case.

The situation becomes slightly more complicated if one adds a lower order
linear term ¢, ;n to the purely quadratic phases & ;n? appearing in the second
example; this basically is the type of situation one encounters for instance at the
conclusion of the third example. In this case, every time one converts a non-
trivial relation of the form (3.10) on one of the cells P, of the partition into a
new representation of f on that cell, one must subdivide that cell P; into smaller
pieces, by intersecting P; with various Bohr sets. However, the resulting sets still
behave somewhat like arithmetic progressions, and it turns out that we can still
iterate the construction a bounded number of times until no further non-trivial
relations between surviving quadratic phases remain on any of the cells of the
partition, at which point one can (heuristically, at least) verify Theorem 3.1 in
this case (as well as in the case considered in the third example).

Example 5 (A pseudorandom perturbation of a pure quadratic factor). In all
the preceding examples, the function f : Z/pZ — [—1, 1] under consideration
was “locally quadratically structured”, in the sense that on local regions such as
P., the function f could be accurately represented in terms of quadratic phase
functions a — Q(a). This is however not the typical behaviour expected for a
general function f : Z/pZ — [—1, 1]. A more representative example would be
a function of the form

fa) = fita) + fr(a),

where f1 : Z/pZ — R is a function of the type considered in the first example,
thus

fi(a) = F(Q(a))

for some quadratic function Q : Z/pZ — G into a torus G = (R/Z)“ and some
smooth F : G — [—1, 1],and f;, : Z/pZ — [—1, 1] is a function that is globally
Gowers uniform in the sense that

E [ f(a+ oihy + wrhy + wshs) ~ 0, (3.13)

(w1,02,03)€{0,1}3
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where a, hy, hy, hz are drawn independently and uniformly at random from
Z] pZ. A typical example to keep in mind is when F (and hence f1) takes values
in [0, 1], and f = fis a random function with f(a) equal to 1 with probability
f1(a) and O with probability 1 — fj(a), independently as a € Z/ pZ varies; then
the f2(a) for a € Z/pZ become independent random variables of mean zero,
and the global Gowers uniformity can be established with high probability using
tools such as the Chernoff inequality.

From the standard theory of the Gowers norms (see e.g. [33, Ch. 11]), one can
use the global Gowers uniformity of f>, combined with a number of applications
of the Cauchy—Schwarz inequality, to establish a “generalized von Neumann
theorem” that, in our current context, implies that f and f; globally count
approximately the same number of length-four progressions in the sense that

Aar(f) = Nax(f1): (3.14)

similarly one also has
Ef(a) ~ Efi(a). (3.15)

As a consequence, Theorem 3.1 for such functions follows (heuristically, at least)
from the analysis of the first example, at least if one assumes the genericity of
the frequencies &1, ..., &;.

Example 6 (A pseudorandom perturbation of an impure quadratic factor). We
now consider a situation that is to the second example as the fifth example was
to the first. Namely, we consider a function of the form

f(a) = fila) + fr(a),

where f1 : Z/pZ — [—1, 1] is a function of the type considered in the second
example, thus

filbe +nse) i= Folecan®, ... & a.n%)

forc = 1,...,mand n = 1,..., N.. As for the function f>, : Z/pZ —
[—1, 1], global Gowers uniformity of f, will be too weak of a hypothesis for
our purposes, because the random variable r appearing in the second example
is now localized to a significantly smaller region than Z/pZ. Instead, we will
require the local Gowers uniformity hypothesis

E [l A@toh +ohtob)~0, 316

(w1,02,03)€{0,1}3

where a is now the random variable from the second example (in particular, a
depends on the auxiliary random variable ¢), and once one conditions on an event
c=cforc=1,...,m, one draws hy, hy, h;3 independently of each other and
from a, and each h; drawn uniformly from an arithmetic progression of the form

{nsc : In| < exp(=1/n" )N}, (3.17)
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for some constant C; > 0 (for technical reasons, it is convenient to allow these
constants Cp, C2, C3 to be different from each other, and also to be larger than
the constant C appearing in (3.12), so that hy, hy, hy range over a narrower
scale than r). As with a and r, the random variables a, hy, hy, hy are now
only conditionally independent relative to the auxiliary variable ¢, but are not
independent of each other without this conditioning, as they are coupled to each
other through c.

As it turns out, once one assumes this local Gowers uniformity of f>,
one can modify the Cauchy—Schwarz arguments used to establish the global
generalized von Neumann theorem to obtain the approximations (3.14), (3.15)
for the random variables a, r considered in the second example, at which point
Theorem 3.1 for this choice of f follows (heuristically, at least) from the analysis
of that example, at least if one assumes that there are no non-trivial relations of
the form (3.10).

Example 7 (Non-pseudorandom perturbation of a pure quadratic factor). We
now modify the fifth example by replacing the hypothesis (3.13) by its negation

E 1_[ f2(a+ wih) + w2hs + wshz) > 1 (3.18)

(w1,02,w3)€{0,1}3

(it is not difficult to show that the left-hand side is non-negative). In this case, the
generalized von Neumann theorem used in that example does not give a good
estimate. However, in this situation one can apply the inverse theorem for the
Gowers norm established by us in [14]. To obtain good quantitative bounds, we
will use the version of that theorem that involves local correlation with quadratic
objects (as opposed to a somewhat weak global correlation with a single “locally
quadratic” object). Namely, if (3.18) holds, then one can partition Z/pZ into
a moderately large (e.g. O (exp(1/7~?1))) number of pieces Py, ..., P, such
that on each piece P, the function f> correlates with a “quadratically structured”
object. The precise statement is somewhat technical to state, but one simple

special case of this conclusion is that the pieces P, ..., P, are arithmetic
progressions as in the second example, and for a “significant number” of the
progressions

Pe ={be +nsc:1<n< N}

there exists a frequency &. € R/Z such that
E1<nen, fo(be + ns)e(=&n)| > 1.

(In general, one would take P, to be Bohr sets of moderately high rank, rather
than arithmetic progressions, and the phase a +— &.a?/p would have to be
replaced by a more general locally quadratic phase function on such a Bohr
set, but we ignore these technicalities for the current informal discussion.) From
this and the cosine rule, it is possible to find a function g : Z/pZ — [—1, 1]
that is equal to (the real part of) a scalar multiple of the quadratic phases
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be + nse — e(&:n?) on each progression P, such that f> + g has an energy
decrement compared to f> in the sense that

Euez/pz(f(a) + g(@)? < Eyezypzfr(@)* — n° (3.19)

for some constant C > 0. In this situation, we can modify the decomposition
f = fi+ f2 by adding g to f> and subtracting it from fi. (Strictly speaking, this
may make f] and f, range slightly outside of [—1, 1], but because f itself ranges
in [—1, 1], it turns out to be relatively easy to modify f1, f> further to rectify this
problem.) The new function f] has a similar “quadratic structure” to the previous
function f], except that the quadratic structure is now localized to the cells
Py, ..., Py of the partition of Z/pZ, and the number of quadratic functions has
been increased by one. If the new function f> is now locally Gowers uniform
in the sense of (3.16), then we are now essentially in the situation of the sixth
example (at least if there are no non-trivial relations of the form (3.10)), and
we can (heuristically at least) conclude Theorem 3.1 in this case by the previous
analysis. If f is locally Gowers uniform but there are additionally some relations
of the form (3.10), then one can hope to adapt the analysis of the fourth example
to reduce the quadratic complexity of f; on all the poorly distributed cells, at
which point one restarts the analysis. If however f, remains non-uniform, then
we need to argue using the analysis of the next and final example.

Example 8 (Non-pseudorandom perturbation of an impure quadratic factor).
Our final and most difficult example will be as to the sixth example as the seventh
example was to the fifth. Namely, we modify the sixth example by assuming that
the negation of (3.16) holds. Equivalently, one has the lower bound

E 1_[ f2(@a+ wih; + oohy + wshs)le = C) > 1 (3.20)

(w1,02,03)€{0,1}3

on the local Gowers norm for a “significant fraction” of thec = 1, ..., m.

At the qualitative level, the inverse theorem in [14] for the global Gowers
norm allows one to also deduce a similar conclusion starting from the hypothesis
(3.20). However, the quantitative bounds obtained by this approach turn out to
be too poor for the purposes of establishing Theorems 3.1 or 1.1. Instead, one
must obtain a quantitative local inverse theorem for the Gowers norm that has
reasonably good bounds (of polynomial type) on the amount of correlation that
is (locally) attained. Establishing such a theorem is by far the most complicated
and lengthy component of this paper, although broadly speaking it follows the
same strategy as previous theorems of this type in [11, 14]. If one takes this local
inverse theorem for granted, then roughly speaking what we can then conclude
from the hypothesis (3.20) is that for a significant number of ¢ = 1,...,m,
one can partition the cell P, into subcells P 1, ..., Pcm,, and locate a “locally
quadratic phase function” ¢, ; : P.; — R/Z on each such subcell (generalizing
the functions b, + ns, — e(écnz) from the previous example), such that

Eacp.; f2(bei)e(—c,i(@)| > 1
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for a significant fraction of the c, i. Using this, one can again obtain an energy
decrement of the form (3.19), where now g is (the real part of) a scalar multiple
of the functions a +— e(¢.,;(a)) on each P, ;. By arguing as in the sixth example,
one can then modify f; and f> in such a way that the “energy” E f>(a)? decreases
significantly, while f] is now locally quadratically structured on a somewhat
finer partition of Z/ pZ than the original partition Py, ..., P, with the number
of quadratic phases needed to describe f] on each partition having increased by
one. If the function f> is now locally Gowers uniform (with respect to a new
set of random variables a, r adapted to this finer partition), and there are no
non-trivial relations of the form we can now (heuristically) conclude Theorem
3.1 from the analysis of the sixth example, assuming the addition of the new
quadratic phase has not introduced relations of the form (3.10). If such relations
occur, though, one can hope to adapt the analysis of the fourth example to
reduce the quadratic complexity of the poorly distributed cells, perhaps at the
cost of further subdivision of the cells. Finally, if the new version of f> remains
non-uniform with respect to the finer partition, then one iterates the analysis of
this example to reduce the energy of f> further. This process cannot continue
indefinitely due to the non-negativity of the energy (and also because none of the
other steps in the iteration will cause a significant increase in energy). Because
of this, one can hope to cover all cases of Theorem 3.1 by some complicated
iteration of the eight arguments described above.

Having informally discussed the eight key examples for Theorem 3.1, we
return now to the task of proving this theorem rigorously.
It will be convenient to work throughout the rest of the paper with a fixed
choice
l<Ci<Cy<---<Cs

of absolute constants, with each C; assumed to be sufficiently large depending
on the previous Cy, ..., C;_1. For instance, for sake of concreteness one could
choose C; := 22100i; of course, other choices are possible. The implied constants
in the O() notation will not depend on the C; unless otherwise specified. These

constants will serve as exponents for various scales n~Ci that will appear in our

analysis, with the point being that any scale of the form n~¢ fori = 2,...,5
is extremely tiny with respect to any polynomial combination of the previous
scales n~ €1, ..., n~Ci1,

In all of the eight examples considered above, the function f was
approximated by some “quadratically structured” function, usually denoted
f1, with the approximation being accurate in various senses with respect to
some pair (a,r) of random variables. The rigorous argument will similarly
approximate f by a quadratically structured object; it will be convenient to
make this object a random function f rather than a deterministic one (though
as it turns out, this function will become deterministic again once an auxiliary
random variable c is fixed). The precise definition of “quadratically structured”
will be rather technical, and will eventually be given in Definition 6.1. For
now, we shall abstract the properties of “quadratic structure” that we will need,
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in the following proposition involving an abstract directed graph G = (V, E)
(encoding the “structured local approximants”), which we will construct more
explicitly later. We will shortly iterate this proposition to establish Theorem 3.1
and hence Theorem 1.1.

PROPOSITION 3.3 (Main proposition, abstract form). Let  be a real number

with) < n < %, and let p be a prime with

p = exp(n ). (3.21)

Let f : Z/pZ — [0, 1] be a function. Then there exist the following:

(a) a (possibly infinite) directed graph G = (V, E), with elements v € V
referred to as structured local approximants, and the notation v — V'
used to denote the existence of a directed edge from one structured local
approximant v to another v';

(b) a triple (a,,ry,t,) associated to f and to each structured local
approximant v € V, where a,, r, are random variables in 7/ pZ, and
f, : Z/pZ — [—1, 1] is a random function (with ay, 1y, £, not assumed to
be independent);

(¢) a quadratic dimension d>(v) € N assigned to each vertex v € V;

(d) a poorly distributed quadratic dimension dgoor(v) € N assigned to each
vertexv € V, with 0 < dgoor(v) < dy(v), and

(e) aninitial approximant vg € V, with d,(vg) = 0 (and hence dgoor(vo) =0).

Furthermore, whenever a structured local approximant vy € V can be reached

from vy by a path vg — vy — - - - — v with 0 < k < 89722, then the following

properties are obeyed.:

(1) one has the “thickness” condition
P(r,, = 0) < exp(3n~ %)/ p; (3.22)

(i)  we have the almost uniformity condition

IEf(ay) — Eaez/pzf (@] < n; (3.23)
(ii1))  bad approximation implies energy decrement: if
|Efy, (ay,) — f@y)l >n (3.24)

or

| Aayy.ry, (Fo) = Aayr, ()] > 1 (3.25)
then there exists a structured local approximant viy1 € V with vy — vg41
such that

El f @u,,) = furp @y, 1> < ELf(y,) — i k(@y,))> — n©

and

dr(Vky1) < do(vg) + 1.
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(iv)  failure of “Khinchin-type recurrence” implies dimension decrement: if
A, r, (Fy) < By (ay)* — . (3.26)

then there exists a structured local approximant vi41 € V with vy — Vi1
obeying the bounds

Elf (ay,,) — o, @y, ) > < Elf(ay) — £y, (ay) 1> + 1,
dr (V1) < da(vp),
A5 (vg1) < dY (vp) — 1.

The proof of this proposition will occupy the remainder of the paper. For
now, let us see how this proposition implies Theorem 3.1. Let p, n, f be as in
that theorem, and let Cy, ..., Cs be as above. If the largeness criterion (3.21)
fails, then we may set r := 0, f := f, and draw a uniformly at random from
Z/ pZ, and it is easy to see that the conclusions of Theorem 3.1 are obeyed (with
(3.3) following from Holder’s inequality). Thus we may assume without loss of
generality that (3.21) holds.

Let G = (V, E), vg, d(), dgoor(), and (ay, ry, f,) be as in Proposition 3.3.
Suppose first that there exists a structured local approximant vy € V that can be
reached from vg by a path of length at most 8722, and for which none of the
inequalities (3.24)—(3.26) hold, that is to say one has the bounds

|Efy, (ay,) — fu, (ay)| < 1, (3.27)
|Aavk Ty (ka) - Aavk,l‘Uk (ka)| < n (328)
Aa, x, (Fy) > (B, (ay)* — . (3.29)

From (3.29), (3.28), (3.27) and the triangle inequality (and the boundedness of
f,.. /) we conclude that

Aayry, (fu) > Ef @) — 0Gn);

combining this with (3.22) and (3.23) we see that the random variables a,;,, Iy,
obey the properties required of Theorem 3.1. Thus we may assume for sake of
contradiction that this situation never occurs, which by Proposition 3.3 implies
that whenever v € V is a structured local approximant that can be reached from
vo by a path of length at most 8722, then the conclusions of at least one of (iii)
and (iv) hold. Iterating this we may therefore construct a path

V) = U] = - = Uggtl

with
ko := [8n72C2], (3.30)

such that for every 0 < k < kg, one either has the energy decrement bounds

Elf (au,,) — fit1 @y, ) < Elf(ay) — fi(ay))? — n,
dr(Vk4+1) < da(vg) + 1
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or the dimension decrement bounds

Elf (ay.,) — fit1 @y, )1 < Elf(ay) — fi(@y)? + 1°¢,
dr (V1) < da(vp),
A5 (irr) < d5™ (we) — 1.

Since vg already has the minimum quadratic dimension dgoor(vo) = 0, we
see that we must experience an energy decrement at the k = 0 stage. Also, if k
is the jth index to experience an energy decrement, we see that dgoor(kar 1) <
dy(vk+1) < J, and so one can have at most j consecutive dimension decrements
after the kth stage; in other words, we must experience another energy decrement
within j + 1 steps. By definition of kg, we have Zogjgz;rfz (J+1) <kgif Cais
large enough. We conclude that at least 22 energy decrements occur within
the path vp — - -+ — vg,+1. This implies that

E| f @y 1) = fro1 @ )1 < ELF @) = fi1 () > — 20~ + ko .

But if C» is sufficiently large, this implies from (3.30) that

E|f @uy1) = frgt1 @ DI < Bl f @@y,) — foay)|* — 4

(for example), which leads to a contradiction because the left-hand side is
clearly non-negative, and the right-hand side non-positive. This gives the desired
contradiction that establishes Theorem 3.1 and hence Theorem 1.1.

It remains to establish Proposition 3.3. This will occupy the remaining
portions of the paper.

§4. Bohr sets. To define and manipulate the “structured local approximants”
that appear in Proposition 3.3, we will need to develop the theory of two
mathematical objects. The first is that of a Bohr set, which will be covered in
this section; the second is that of a dilated torus, which we will discuss in the
next section.

Definition 4.1 (Bohr set). A subset S of Z/ pZ is said to be non-degenerate if
it contains at least one non-zero element. In this case we define the dual S-norm

p

lalls := sup

£es R/Z

for any a € Z/pZ, and then define the Bohr set B(S, p) C Z/pZ for any p > 0
by the formula
B(S,p) :={a€Z/pZ: |als. < p}

where [|0|g/z denotes the distance from 6 to the nearest integer. We refer to S
as the set of frequencies of the Bohr set, p as the radius, and |S| as the rank of
the Bohr set. We also define the shifted Bohr sets

n+ B(S,p):={a+n:ae B(S,p)}

forany n € Z/pZ.
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From (2.4) we have the triangle inequalities
lla+blst < llallst + 101 s2; lkalls < lklllallst 4.1
fora,b € Z/pZ and k € Z; also we trivially have
lallse < llall s+

if S € §" and a € Z/pZ, or equivalently that B(S’, p) C B(S, p) for p > 0.
We will frequently use these inequalities in the sequel, usually without further
comment. In Lemma 4.6 below, we will show that [||| g1 is “dual” to a certain
word norm ||||s on Z/ pZ. One could also define Bohr sets in the case when S is
degenerate, but this creates some minor complications in our arguments, SO we
remove this case from our definition of a Bohr set.

We have the following standard size bounds for Bohr sets, whose proof may
be found in [33, Lemma 4.20].

LEMMA 4.2. If B(S,p) is a Bohr set, then |B(S,p)| > plp and
|B(S, 2p)| < 4151|B(S, p)I.

In previous work on Roth-type theorems, one sometimes restricts attention to
regular Bohr sets, as first introduced in [6]; see [33, §4.4] for some discussion
of this concept. Due to our use of the probabilistic method, we will be able to
work with a technically simpler and “smoothed out” version of a regular Bohr
set, which we call the regular probability distribution on a Bohr set.

Definition 4.3. Let B(S, p) be a Bohr set. The regular probability distribution
PB(S.p) : Z/pZ — Rassociated to B(S, p) is the function defined by the formula

U 1p(s.p (@) )

pB(S,p)(a) = 2/ dt; “4.2)

12 |B(S,tp)|
it is easy to see (from Fubini’s theorem) that this is indeed a probability
distribution on Z/ pZ. A random variable a € Z/ pZ is said to be drawn regularly
from B(S, p) if it has probability density function pp(s, ), thus P(a = a) =
pB(g,p)(a) foralla € Z/pZ.

More generally, for any shifted Bohr set n + B(S, p), we define the regular
probability distribution p,4+p(s,p) : Z/pZ — R by the formula

Pn+B(S.p) (@) == PB(s.p)(@ —n),

and say that a is drawn regularly from n + B(S, p) if it has probability
distribution p, 4 (s, p)-

Informally, to draw a random variable a regularly from n 4+ B(S, p), one
should draw it uniformly from n 4 B(S, tp), where t is itself selected uniformly

at random from the interval [1/2, 1]. Note that if a is drawn regularly from
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n + B(S, p), then m + a will be drawn regularly from m + n + B(S, p) for
any m € 7Z/pZ, and similarly ka will be drawn from kn + B(k~! - S, p) for
any non-zero k € Z/pZ, where k~' - S := (k=& : &€ € S} is the dilate of the
frequency set S by k1.

From Lemma 4.2 we see that if a is drawn regularly from a shifted Bohr set
n + B(S, p), then

1
Pla=a) < /5, (4.3)
forall a € Z/pZ. In practice, this will mean that the influence of any given value

of a will be negligible.

The presence of the averaging parameter ¢ in (4.2) allows for the following
very convenient approximate translation-invariance property. Given two random
variables a, a’ taking values in a finite set A, we define the fotal variation
distance between the two to be the quantity

drv(a.a) =) |Pla=a)—P@ =a)l

acA

or equivalently
drv(a,a’) = sup [Ef(a) - Ef(a)]
f

where f : A — C ranges over 1-bounded functions.

The next lemma gives some approximate translation-invariance properties
of Bohr sets. Its proof is a thinly disguised version of the arguments of
Bourgain [6].

LEMMA 4.4. Let n + B(S, p) be a shifted Bohr set, and let a be drawn
regularly from B(S, p). Let B(S’, p') be another Bohr set with S’ D S.
1) If h € B(S',p'), then a and a + h differ in total variation by at most
O(IS1p’'/p).
(ii) More generally, if h is a random variable independent of a that takes
values in B(S’, p'), then a and a + h differ in total variation by ar most

O(IS1p'/p).

Proof. To prove (i), it suffices to show that

Ef(a+h) =Ef(a) + 0(|S|%)

for any 1-bounded function f : Z/pZ — C,; the claim (ii) then also follows by
conditioning h to a fixed value & € B(S’, p’), then multiplying by P(h = k) and
summing over .

By translating f by n, we may assume that n = 0. We may assume that
0’ < p/10]S], as the claim is trivial otherwise.
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From (4.2) we have

@
Ef(a) =2 f 3 f B @
2,57, 1B, ¢

and

@,
Ef(a+h) = 2/ (@) ES100-1)
2 SO s

so by the triangle inequality it suffices to show that

/

1 [18(8,1p)(@) — 1B(S,1p)—n(a)|
> ez pz | 1B(S.1p) (S,10) o <<|S|%' “4)

172 |B(S, tp)]

By the triangle inequality, the integrand here is bounded above by 2. Also,
from (4.1), we see that any a for which 15 1p)—n(a) # 1p(s.1p)(a) lies in the
“annulus” B(S, tp + p)\B(S, tp — p’). We conclude that the left-hand side of
(4.4) is bounded by

1 ’ /
B(S, 1t — |B(S, tp —
/ 0<min(| (S, tp+p")| — | (/ 1% p)|’1>)dt
12 |B(S,tp — p)l
which, using the elementary bound min(x — 1, 1) <« logx for x > 1, can be
bounded in turn by
1 /
B(S,t
12 |B(S,tp —p')l
The integral telescopes to

1+p'/p 172
0(/ log |B(S, tp)| dt — / log | B(S, t,o)ldt)
1 1

/2=p"/p

which can be bounded in turn by

O(P_’log M)
p " 1B(S. p/4)

The claim now follows from Lemma 4.2. O

We will be interested in the Fourier coefficients Ee,(An) = Ee(An/p) of
random variables n drawn regularly from Bohr sets B(S, p). As was noted by
Bourgain [6], these coefficients are controlled by a “word norm” ||| s, defined as
follows.

Definition 4.5 (Word norm). If S C Z/pZ is non-degenerate, and a is an
element of Z/ pZ, we define the word norm ||a||s of a to be the minimum value
of Y s Ingl, where (ny)ses € A ranges over tuples of integers such that one
has a representation a = ) ¢ n14s; note that such a representation always exists
because S is non-degenerate.
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Similarly to (4.1), we observe the triangle inequalities
la +0bls < llalls + lIblls; lkalls < |klllalls 4.5)

fora,b € Z/pZ and k € Z, which we will use frequently in the sequel, often
without further comment.

We now give a duality relationship between the word norm ||| s and the dual
S-norm |||l gt.

LEMMA 4.6 (Duality). Let S be a non-degenerate subset of 7/ pZ, and let
A€ pl:

() foreveryn € 7/ pZ, one has |ni/pllr/z < |nllstIAlls;
(ii)  conversely, if one has the estimate ||nA/pllr/z < Allnl|lsL for some A > 1
and alln € 7./ pZ, then ||1||s < |S|*/?A.

Proof. To prove (i), we simply observe (using (2.4)) that for any n € Z/pZ,

one has
Inx/plr/z
— Y ZMW— <> laelinllse < Irlslalls:
ges PRz g R/Z ges
as desired, where A = de sag& is a representation of A that minimizes
ZEES |S|

Estimates such as (ii) go back to the work of Bourgain [6]. We will prove
this claim by a Fourier-analytic argument. We may assume that ||Al|g > |S 13/2,
as the claim is trivial otherwise. Let ¥ : R — R be a non-negative smooth
even function (not depending on p or 1) supported on [—1, 1] and non-zero on
[—1/2, 1/2], whose Fourier transform 1&(5) = fR Y (x)e(—&x) dx is also non-
negative. Set N := |S |=1||A]l's, so in particular N > 1. We consider the kernel

N : Z/pZ — C defined by

k
K = k —|;
N () }:%<mw(N)
keZ
by the Poisson summation formula we have
~ (N
Kn(n (mod p)) =N Y w(—" . Nm)
p
mez

for any integer 7, so in particular Ky is non-negative.
By definition of N, the frequency A has no representations of the form A =
> tes as& with supg g lag| < N. Hence the Riesz-type product [ [;.g Kn(§n),
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when expanded, contains no terms of the form e,(Ain) or e,(—Ain), and is
therefore orthogonal to cos(2wAn/ p). In particular we have the identity

2T A
Enezpz l_[ Kn(En) = ]EneZ/pZ<1 - COS( np n)) 1_[ Ky(En).

§eS teS
On the other hand, from two applications of (2.3) we have
2
2w An An 209
1 — cos <L |— < A%nllge
p P Rz
2
2
<AZZ 50_” <A22<1—cos< zréon))‘
ges! P IR/Z gy P
As K is non-negative, we conclude that
Enez/pz 1_[ Ky (én)
EeS
9 2 éon
<A Enezpz( | [T KnGEn) ) KnGom)( 1 — cos . (4.6)
foes £eS\ko P

We can expand Ky (&on)(1 — cos(2m&pn/ p)) as a Fourier series

k Y((k—1)/N)+y¢((k+1)/N)
Doan(o(3) - ey

The expression inside parentheses is only non-vanishing for |k|] < N + 1, and
has magnitude O(1/N?). As ¢ is non-negative everywhere and non-zero on
[—1/2,1/2], we thus have a pointwise estimate of the form

K\ v (k= D/N)+y(k+D/N) 1 < [k
o(v)- <<mj§;”(ﬁ‘1)

N 2

(for example). By using the non-negativity of the Fourier coefficients of Ky, this
gives the estimate

2
EneZ/pz( I KN@n))KN(som(l —cos( ”E"”»

£eS\& p

1
Enez/pz H Ky (&n).

<L —
2
N EeS

Comparing this with (4.6), we conclude that 1 <« AZ|S|/N2, and the claim
follows from the definition of V. J
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Next, we estimate the Fourier coefficients of a regular distribution on a Bohr

set in terms of the word norm.

LEMMA 4.7. Let S be a non-degenerate subset of 7./ pZ. Suppose that n is
drawn regularly from B(S, p). Then we have

|S|5/2
plirls

Eep (An) K

Jor all & € Z]pZ, where we adopt the convention that the above estimate is
vacuously true if |\]|s = O.

Proof. For any h € Z/pZ, one has from Lemma 4.4 that
S|k
Eep(An) = Ee,(A(n+h)) + O (M)
0

which we may rearrange as

(1 —ep(Ah))Eep(in) K %

Since |1 — e, (Ah)| > ||Ah/pllr/z, We conclude that
AR N2

H_ Eep()\n) < M
P lr/z

Taking & so as to minimize the ratio ||z[|g/||A/ pllr/z, the claim follows from
Lemma 4.6. 0

We will take advantage of the fact that Bohr sets can be approximately
described as generalized arithmetic progressions. A key lemma in this regard
is the following.

LEMMA 4.8. Let T be a lattice in RY. Then there exist linearly independent
generators vy, ..., vq of I' and real numbers Ny, ..., Ng > 0 such that

d
B (0, 0(d)™3?1)NT C {Zn,-v,- s ni| < tN,-} C Bpa(0,1)NT (4.7

i=l

Jorallt > 0, where Bga(0, r) is the open Euclidean ball of radius r in ]Rd, and
the n; are understood to be integers. Furthermore, the determinant/covolume
det(I") obeys the bounds

d
det(T") = (2d)°@ ]_[ N (4.8)

i=1
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Proof. Applying [34, Theorem 1.6], we can find elements vy, ..., v, of I for
some r < d, linearly independent over the rationals, and real numbers Ny, ...,
N; > 0 such that

,
Bri (0, 0(d)3?1NT C {Znivi gl < tNi} C Bra(0,0) T (4.9)
i=1

for all + > 0, and such that

,
O(d) "2 |Bra(0,1) NT| < HZnivi Cnil < rN,-H < |Bra(0,1) N T

i=1

(Strictly speaking, the statement of [34, Theorem 1.6] only claims the latter
bound for # = 1, but the same argument gives the bound for all # > 0.) Sending ¢
to infinity, we conclude that the vy, . .., v, generate I'; since, by virtue of being a
lattice, ' is cocompact, this forces d = r. Also, volume packing arguments show
that as t — oo, the cardinality |Bga (0, £) N T"| is asymptotic to the measure of
Bra (0, t) divided by det(I"), while the cardinality of [{n1v1+---+ngvg : |n;i| <
tN;}| is asymptotic to ]_[jl: 1 (2tN;). We conclude (4.8) as desired. ]

The following corollary describes how we may pick a “basis” for a Bohr set.

COROLLARY 4.9. Let S be a non-degenerate subset of 7/pZ, and set
d = |S|. Then there exist elements ay, ...,aq of Z/pZ and real numbers
Ni, ..., Ng > 0 such that

d
[Iv7" = @a)0@p (4.10)
i=1
and
laillse < N;! (4.11)
for all i = 1,...,d. Furthermore, for any a € Z7/pZ, there exists a
representation
a=nia; +---+ngay 4.12)
withny, ..., ng integers of size
ni = ) DN |alls: (4.13)
fori =1,...,d. Finally, if one imposes the additional condition |n;| < N; /2 for
alli =1, ...,d, then there is at most one such representation of this form (4.12)

for a given a.

Proof. Foreach s € S, the fraction s/p can be viewed as an element of R/Z
of order at most p; as S is non-degenerate, we see that the tuple (s/p)scs is an
element of the torus (R/Z)S of order p. Let I' be the preimage in RS of the
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group generated by this element, thus I is a lattice of RS that contains Z° as a
sublattice of index p; in particular, I has determinant p. Applying Lemma 4.8,
one can find generators vy, ..., vg of I' and real numbers Ny, ..., Ny obeying
(4.10) such that

d
Bgs(0, 0(d)™3?)NT C {Znivi s ni| < tN,-} C Bgs(0, )T (4.14)

i=1

forall t > 0.
By construction of I', we can find elements ay, . .., ag of Z/pZ such that

al's S
v = <—) (mod Z°) 4.15)
D Jses

fori =1, ...,d. Applying (4.14) with ¢ slightly larger than Ni_l forsomei =1,
...,d,we see that v; € Bpa (Ni_l), and hence by (4.15) we have (4.11).

Finally, if a € Z/pZ, then by definition of I' we can find an element x of I
in the preimage of (as/p)scs such that each component of x has magnitude less
than ||a|| g1; in particular, x € Bps (0, Vdlal s1). Applying (4.14), we conclude
that x = Z?:l n;v; for some integers ny, ..., ny obeying (4.13), giving the
desired representation (4.12).

Finally, we show uniqueness. If there were two representations of the form
(4.12) with |n;] < N;/2 for all i = 1,...,d, then there exists a tuple (n/l,
S, ny) € 74, not identically zero, with In}| < N; foralli =1,...,d and
Z?:l n;a; = 0, which implies that the vector Z?:l n;v; lies in Z5. As the vy,
..., vg are linearly independent, this vector must have magnitude at least 1; but
this contradicts (4.7) (with t = 1). [l

Linear and quadratic functions on Bohr sets. We will frequently need to deal
with locally linear or quadratic functions on Bohr sets. We review the definitions
of these now.

Definition 4.10. Let B be asubsetof Z/pZ, and let G = (G, +) be an abelian
group. A function ¢ : B — G is said to be locally linear on B if one has

¢ +hy+h)—¢n+h)—¢mn+h)+on) =0

whenever n, hy, hyo € Z/pZ are such that n,n + hy,n + ho,n + hy + hy € B.
Similarly, ¢ is said to be locally quadratic on B if one has

S DUt oty + wshy + @3hy) =0 (4.16)

(w1,02,w3)€{0,1}3

whenever n, hy, hy, h3 € Z/pZ are such that n + w1h| + w2hr + w3zh3 € B for
all (w1, w2, w3) € {0, 1}°.
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A function ¥ : B x B — G is said to be locally bilinear on B if one has
Y (hy + hYy, ho) = Y (b, ho) + Y (hy, ho)
whenever 1, h'|, hy € B are such that by 4 k' € B, and similarly one has
Y (hi, hy +hy) = Y (h, ho) + 9 (hy, h)
whenever hy, ha, h, € B are such that iy 4 1), € B.

Specializing (4.16) to the case h; = hy = h3z = h, we conclude that
o) —3¢pn+h)+3¢p(n+2h) —¢dp(n+3h) =0 4.17)

whenever ¢ : B — G is locally quadraticon B andn,n+h,n+2h,n+3h € B.

It is well known (from the Weyl exponential sum estimates) that quadratic
exponential sums such as Ejc,<ye(an®> + pn) can only be large when the
quadratic phase an? is of “major arc” type in the sense that kan? is close to
constant on the range {1, ..., N} of the summation variable n, for some bounded
positive integer k. The following proposition is an analogue of this phenomenon
on Bohr sets.

PROPOSITION 4.11 (Large local quadratic exponential sums). Let B(S, p) be
a Bohr set, let 0 < § < 1/2, let A, i : B(S, 10p) — R/Z be locally linear maps,
and let ¢ : B(S, 10p) x B(S, 10p) — R/Z be a locally bilinear phase such that

[Ee(¢(m, m) +A(n) + pn(m))| > 6 (4.18)

if n, m are drawn independently and regularly from B(S, p). Then there exists a
natural number
1<k< 5—0(C||S\2)

such that
8_0(c1|s|2) Inllsllm|l s

p (4.19)

lkp(n, m)|r/z K
whenevern,m € B(S, 8¢ p/(C1|S])315h.

Proof. Let d := |S|, thus d > 1. By Corollary 4.9, we can find elements
ai, ...,aq of Z/pZ and real numbers Ny, ..., Ny obeying the conclusions of
that corollary.

Suppose that 1 < i, j < d are such that N;, N; > d/SCI/Z,o (we allow i and
Jj to be equal). Then by (4.11) we have

laillse, llajllse < d™1872p.
We can control the coefficient ¢ (a;, a;) by the following argument. If we draw

b; and b; uniformly from {b; € Z : 1 < b; < §S/*N;p/d} and {b; € Z: 1 <
bj < SCI/AN jp/d} respectively and independently of each other and of n, m,
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then from two applications of Lemma 4.4 (comparing n with n + b;a;, and m
withm + b;a;) we have

Ee(¢(m +b;a;, m+bja;) +A(n+b;a;) + um+b;a;))
= Ee(¢(n, m) + A(n) + p(m)) + 0 (5%

and hence from (4.18) (assuming C; large enough) we have
|Ee(¢(n +bja;, m+bja;) +A(m+b;a;) + u(m+bja;))| > 4.
By the pigeonhole principle, we can therefore find n, m € B(S, p) such that
|Ee(¢(n +b;a;,m +bja;) + A(n +bja;) + pnim+bja;))| > 6.
Using the local bilinearity of ¢, the left-hand side may be written as
|[Ee(b;b;¢(ai,a;) + ab; + Bb; + y)|

for some «, B, y € R/Z depending on i, j, n, m whose exact values are not of
importance to us. Evaluating the expectations and using the triangle inequality,
we conclude that

E1gb,g501/4Nip/d|E1gbjgacl/41vjp/d€(bj(bi¢(ai, a;j)+ B> 48
and hence (by Lemma 2.2)
|E1<b_/<5C|/4N_/p/d€(bj(bi¢(ai, aj) +BDI >4

for > 8C1/4+1Nip/d values of b; in the range 1 < b; < 8C1/4Nl-,o/d. This
average is a geometric series that can be explicitly computed, leading to the
bound

d
Ibig(ai, aj) + Blr/z K SCATIN,

for > §€1/4IN; p/d values of b; in the range 1 < b; < 8€1/*N;p/d. Applying
[17, Lemma A.4] (which is really an observation of Vinogradov, used often in
the theory of Weyl sums), we conclude that

2

ki jp(ai, aj)lr/z <K m

for some natural number k; ; with 1 < k;; < 8§~ 0 If we then “clear
denominators” by defining

k= l_[ ki j,

1<i, j<d:N; ,N;j>d /8172 p
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then 1 < k « 8—0(C1d%) 4pnd

ko (ai,aj)lr/z K (4.20)

50(C1d2)Nl.ij2

forall 1 < i, j <d with N;, N; > d/§1/%p.
For any n € Z/pZ, we see from Corollary 4.9 that we can find integers n1,
..., ng with
ni < Q2d)?“DNiIn]| sz

such that
n=nia1+---+ngay.

In particular, if n € B(S, 8€1p/(C1d)3?), then n; is only non-zero when N; >
d/s Ci/2 p. From these bounds, (4.20), and the local bilinearity of ¢, we conclude
(4.19) as desired. J

Local U?-inverse theorem. The global inverse U? theorem, which is a simple
and well-known exercise in discrete Fourier analysis, asserts that if a 1-bounded
function f : Z/pZ — C obeys the bound

|Ef (ho +hy) £ (hg + h)) f(hy +hy) f(hy +h)| > 7 (4.21)

where hg, hy, h6, h/1 are drawn uniformly at random from Z/pZ, then there
exists & € Z/ pZ such that

IEf (h)e,(—&h)| > n'/? (4.22)

where h is also drawn uniformly at random from Z/ pZ.

In this section we give a local version of the above claim, in which the random
variables h, hg, h;, h6, h’1 are localized to a small Bohr set. If the rank of the
Bohr set is bounded, one can modify the above arguments to obtain a reasonable
inverse theorem of this nature, but in our application the rank of the Bohr set will
be rather large, and it will be important that this rank does not affect the lower
bound in correlations of the form (4.22). Fortunately, such a result is available,
and will be crucial in the proofs of the two remaining claims (Corollary 4.13 and
Theorem 8.1) needed to prove Theorem 1.1.

Here is a precise version of the claim.

THEOREM 4.12. Let S C Z/ pZ be non-degenerate for some prime p, and let
0 < n < 1/2. Let py, p1 be real parameters with 0 < p; < pg < 1/2 and such

that cls|
Lo > 7;01 (4.23)

for a sufficiently large absolute constant C. Let [ : 7/ pZ — C be a 1-bounded
function such that

|Ef (ho + hy) f (ho + hy) £ (h + hy) £ (g + )| > 7, (4.24)
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where ho, hi, hy, h| are drawn independently and regularly from B(S, po),
B(S, po), B(S, p1), B(S, p1) respectively. Then there exists & € 7/ pZ such that

Y Pmg = no)[Ef(no +m)e,(—En)|* > n/2
no€Z/ pZ

where ng, ny are drawn independently and regularly from B(S, po), B(S, p1)
respectively.

Proof. We thank Fernando Shao for supplying a proof of this result, which
was considerably simpler than our original argument.

For this proof, which is Fourier-analytic in nature, it will be convenient
to work explicitly with probability densities rather than probabilistic notation.
(However, in the lengthier proof of the local inverse U3 theorem given in the
next section, the probabilistic notation will be significantly cleaner to use.) In
this argument, all sums will be over Z/ pZ. We abbreviate

pi(h) :=pps,pHh) =P =h)

fori =0,1and h € Z/pZ; clearly we have p; (h) > 0 and

> pith) =1. (4.25)
h

The hypothesis (4.24) may be written as

Z po(ho)po(hy)pi(h)pi(RY) f (ho + h1) f(ho + h})
ho.hl b I

x f(hy+h) fhy+h)D|=n (4.26)

and our goal is to locate & € Z/pZ such that

Z Po(no)

The first stelp is to replace the factor po(ho) by the slightly different factor
po/ 2 (ho + h)py'* (ho + 1'). If we use the elementary inequality |x'/2 — y!/2] <
|x — yll/ 2 for x, y 2 0 and then apply Cauchy—Schwarz, Lemma 4.4, and (4.23),

2
> P f(no + nep(=gnn)| = n/2.

we see that
S 102 (ho + h) — 2o g (o)
ho
< > Ipotho + hn) = poho)?py > (ho)

ho
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1/2
<( > |po<ho+h1)—po(ho>|)

hoeZ/ pZ

1/2
=( > bhl(hO)PO(hO'f‘hl)—bhl(hO)PO(hO))

hoeZ/ pZ

NS
<<( % < m

for any £ in the support of p;, where the 1-bounded function by, is given by
by, (ho) := sgn(po(ho + h1) — po(ho)). Similarly we have

172

Zna”z(hwha) Py (ho)lpy > (ho + h1) < =

C1/2

whenever /] is also in the support of p;; by the triangle inequality, we conclude
that

1/2
Z 9o/ (ho + hpotho + )2 = poto) | < =175
for all Ay, h’l in the support of p;. From the 1-boundedness of f and (4.25), we
conclude that

3" ipg 2o + By (ho + 1) — po(ho)]
ho,hly b1,
% po(hp1(h1)p1 () £ (ho + k) Fho + R F(hy + ) f (hy + hp)

n

< cin

If C is large enough, the left-hand side is thus bounded by 0.1n (for example),
so by (4.26) and the triangle inequality we conclude that

3" v 2o + hypy (o + HDpo (e (h)py ()
ho,hlyhy I

x f(ho + h1) f (ho + hy) f (hg + h) f (hg + By | = 0.9n

If we write
172

Jo(n) == f(n)p,

we may rewrite the above estimate as

(n), (4.27)

> polhgpi(hypr (i)

’ ’
ho,ho,hl,hl

X foho + h1) fo(ho + 1)) f (hg + h) f (hg + BY)| = 0.9,

https://doi.org/10.1112/50025579317000316 Published online by Cambridge University Press


https://doi.org/10.1112/S0025579317000316

A NEW BOUND FOR r(N) 975

. o 1)2 172
A similar argument then lets us replace po(h,) with po/ (h+h 1)p0/ (ho+h)),

leaving us with

> pothy + k) Ppo(hy + k) Ppi(hyp ()
ho,hy.hy,h)

X foho + h) fo(ho + hy) f (hy + k) f (hy + )

= 0.87.

which we can simplify using (4.27) to

Z p1(h)p1(hY) folho+h1) folho+RY) fo(hy+h1) fo(hy+h')

ho,hgy,hy

> 0.87.

Making the change of variables n := h; — h, we may rewrite the left-hand
side as

D k1 xpDMIfo * fo) )

where fo(n) := fo(—n), and similarly for pi, and f % g denotes the discrete
convolution

fxgn) =) fmgn—m).
m
Using the Fourier transform, we may then rewrite the previous bound as

PP IBE @ P fo€ + &)1 = 087 (4.28)
§,8'

where

A 1
[® == f(me,(=&n).
p n
From (4.25), the 1-boundedness of f, and the Plancherel identity we have

N 1 1
D@ == 1fom < -
£ ) 2 p

By this, (4.28), and the pigeonhole principle, we may therefore find & € Z/pZ
such that

PP Y IBEOPIfoE +E) 1P > 0.8,

§'€l/pZ

By the Plancherel identity again, the left-hand side may be rewritten as

2

no

2

fo(no —np)p1(n)epény)
)

ni
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and hence (by replacing n with —n1 and using (4.27))

2

no

2
3" fno+npg* (o + nppi(nnep(—§n1)| = 0.8n.

ny

By argument similar to those at the beginning of the proof, we may replace
P(l)/z (no +ny) by p(l)/z (no) and conclude that

2

no

2
= 0.7n,

3" £ o+ npy > (o)1 (n1)e(—&ny)

nj

and the claim follows. O

As a corollary of this inverse theorem, we can establish that locally almost
linear phases on Bohr sets can be approximated by globally linear phases; this
will be needed in §7 to deal with poorly distributed quadratic factors.

Here is a precise statement.

COROLLARY 4.13. Let ¢ : ng + B(S, p) — R/Z be a function on a shifted
Bohr set ng + B(S, p) that is “locally almost linear” in the sense that one has
the bound

A||h||sL!k||sl

¢ (no+h+k)—¢(no+h)—¢(no+k)+¢(no)lr/z < (4.29)

forall h,k € B(S, p/2) and some A > 1. Then there exists & € 7./ pZ such that

h
H(b(ﬂo +h) — ¢(ng) — %

2 A h Sl
< Al |S| —” I (4.30)
R/Z Y

forall h € B(S, p).

Proof. By translating in space, we may normalize so that ng = 0; by shifting
¢ by a phase, we may also suppose that ¢ (0) = 0. By replacing p with the
smaller quantity p/A'/? if necessary, we may normalize A to be 1 (note that
(4.30) is trivial for ||Aa]| g1 > ,o/Al/2). Thus, we now have a function ¢ : B(S, p)
— R/Z with ¢ (0) = 0 such that the quantity

Pp(h. k) := p(h + k) — ¢ (h) — ¢ (k) (4.3D)
obeys the bound
19°¢ (h, k) Iryz < % (4.32)
for all 1, k € B(S, p/2), and our task is to locate & € Z/ pZ such that
H¢>(h> _Shsells (4.33)
P llr/z o

forall h € B(S, p).
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Let pg := p/100, and set p; := p/C|S|? for some sufficiently large absolute
constant C. If we let f : Z/pZ — C be the 1-bounded function

J ) == 1ps.pe(@(x)) (4.34)

and draw h, hg, h{, h’1 independently and regularly from B(S, po), B(S, po),
B(S, p1), B(S, p1) respectively, then from (4.31) we have

f(ho +hy) f(ho +h}) f (g + hy) f (h + h')
= e(@*¢p (ho, hy) — 8% (g, hy) — 9°¢ (ho, b)) + 3% (hy, hY)).
Applying (4.32) and taking expectations, we conclude that
IEf (ho + hy) 7 (ho + 1)) F(hg + hy) £ (hy + h))] > 1/2

(for example). Applying Theorem 4.12 (which is applicable for C large enough),
we may thus find & € Z/pZ such that

> Pmo = no)Ef(no +m)e,(—En)[* > 1/4

noeZ/ pZ

if ng,n; are drawn independently and regularly from B(S, pg), B(S, p1)
respectively. In particular, there exists n € B(S, pp) such that

IEf(n+mnpep(=Eny)| > 1/4.
By (4.34), (4.31) we have
f+n) =e@m) + o0 + ¢ (n,n)
so by (4.32) we conclude that
<¢ (my) — %)

For any h € B(S, p1), we have from Lemma 4.4 that

Ee<¢<n1+h>—‘§(“ll+h)> (¢( )_%>'<< sllse

L1

> 1. (4.35)

on the other hand, from (4.31) we have the identity

]Ee<¢(n1 +h) — g(“lp%h))

h n
= e(¢(h> - g—)Hﬂe(qb(m) _ ML gy, h)).
p P
Combining this with (4.32), (4.35), and (2.2), we conclude that

‘ sh ‘ <¢(h)_@)_1 ]l
R/Z p

¢h) — —
P1
for all h € B(S, p1). As the claim (4.33) is trivial for 2 € B(S, p)\B(S, p1), the
claim follows. Il

< |S|
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§5. Dilated tori. As mentioned in Example 3 of §3, to maintain good
quantitative control (and specifically, Lipschitz norm control) on the functions
F : G — [—1, 1] used to build quadratic approximants, one needs to generalize
the underlying domain G to more general tori than the standard tori (R/Z)¢ with
the usual norm structure. It turns out that it will suffice to work with dilated tori
of the form

d
G = [®/x2),
i=1
where A, ..., Ay = 1 are real numbers. One can view this dilated torus as the
quotient of R? by a dilated lattice I" := ]_[?:1 AiZ. We can place a “norm” on G
by declaring ||x||g for x € G to be the Euclidean distance in R? from x to I';
this generalizes the norm ||||g,7z from §2. This in turn defines a metric dg on G
by the formula
dg(x,y) == llx = yllg-

The volume vol(G) of a dilated torus is defined to be the product

d
vol(G) := Hx,- = det(I).
i=1

It will be important to keep this quantity under control during the iteration
process. In particular, when transforming from one dilated torus to another, the
volume of the new torus should behave like a linear function of the existing
torus; anything worse than this (e.g. quadratic behaviour) will lead to undesirable
bounds upon iteration.

We define the Pontryagin dual G of a dilated torus G to be the lattice

i=1""

Elements k of this dual will be called dual frequencies of the torus. If k = (kq,
..., kg) is a dual frequency and x = (x1, ..., xg4) is an element of G, we define
the dot product k - x € R/Z in the usual fashion as

k-x=kixi+- - +kgxqg

noting that this gives a well-defined element of R/Z.

A dual frequency k is said to be irreducible if it is non-zero, and not of the
form k = nk’ for some other dual frequency k' and some natural number n > 1.
If a dual frequency k is irreducible, then its orthogonal complement

kti={xeG:k-x=0}

is a (d — 1)-dimensional subtorus of Gj it inherits a metric d;1 from the torus G
it lies in. We will need to pass to such a complement when dealing with poorly
distributed quadratic factors (as in the third or fourth examples in §3), however

https://doi.org/10.1112/50025579317000316 Published online by Cambridge University Press


https://doi.org/10.1112/S0025579317000316

A NEW BOUND FOR r(N) 979

we encounter the technical issue that these complements k- will not quite be
of the form of a dilated torus. However, we will be able to transform kL into a
dilated torus using a bilipschitz transformation, as the following result shows.

THEOREM 5.1. Let G = ]—I?ZI(R/MZ) be a dilated torus, and let k €
G be an irreducible dual frequency of G. Then there exists a dilated torus
G = ?;11 (R/A;Z) and a Lie group isomorphism v : k't — G’ obeying the
bilipschitz bounds

19 ips 1 lip < 9@ 5.1)

and such that one has the volume bound
vol(G") = d°D k| vol(G), (5.2)
where |k| denotes the Euclidean magnitude of k in R?.

Proof. The case d = 0 is vacuous and the case d = 1 is trivial, so we may
assume d > 1. One can identify k- with the quotient V/T', where V := {x €
R : k-x = 0} is the hyperplane in R orthogonal to k (now viewed as an element
of RY),and " := VN ]_[fl:l (A;Z) is the restriction of the lattice ]_[f: 1(AiZ)yto V.

As k is irreducible, there exists a vector e in the lattice ]—[id:l()\iZ) with
k - e = 1; thus e has distance 1/|k| to V. One can form a fundamental domain of
R4/ ]_[fl=1 (7iZ) by taking any fundamental domain for V/I" and performing the
Minkowski sum of that domain with the interval {te : 0 < ¢ < 1}. By Fubini’s
theorem, the d-dimensional Lebesgue measure of such a sum will equal the
(d — 1)-dimensional Lebesgue measure of the fundamental domain of V/T" and
1/|k|; thus the covolume of ]_[?: 1(AZ) in R4 equals 1/|k| times the covolume
of I" in V. As the former covolume (determinant) is ]_[f:1 Ai = vol(G), we
conclude that I has covolume |k| vol(G) in V.

Applying Lemma 4.8, we can find linearly independent elements vy, ...,
vg—1 generating I" such that

.
By(0,0(d)3*nNT {Znivi gl < tN,-} C By, )NT  (53)

i=1

for all + > 0, where By (0, r) is the Euclidean ball of radius » in V, and the n;
are understood to be integers, with the bound

d—1
[N = @)@k vol(G). (5.4)
i=1

From (5.3) we conclude in particular that
0)PN < Juil < N (5.5)

foralll <i <d.
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We now define the (d — 1)-dimensional dilated torus

d—1
G =[]®R/N"Z)
i=1
and the isomorphism ¢ : V/T" — G’ by the formula

d—1 d—1

¢<Z t;v;i (mod r)) =N, oINS <m0d ]_[ N;IZ>

i=1 i=1

for real numbers #1,...,75—1. It is easy to see that this is a Lie group
isomorphism, and the bound (5.2) follows from (5.4). It remains to establish
the bilipschitz bounds (5.1). It suffices to show that the linear isomorphism

d—1

-1 —1
Zt,'vi = (N, 1Ny )
i=1

from V to R?~!, together with its inverse, have an operator norm of O (d?@).
For the inverse map, this is clear from (5.5). For the forward map, it suffices from
Cramer’s rule to show that

VLA - AViL] AX A V4] A-ee A vg_i] < do@

U1 A - A Vgt A

for all i = 1,...,d — 1 and all unit vectors x in V. But from (5.5) the

numerator is at most ]_[Ki/< d—1:i' i NiTl, while the denominator is the volume

of a fundamental domain in V and is thus equal to d°@ N L b Nd_ll thanks to
(5.4). The claim follows. O

§6. Constructing the approximants. In this section we construct the abstract
directed graph G = (V, E) that appears in Proposition 3.3. For the rest of the
paper, the prime p, the function f : Z/pZ — [—1, 1], and the parameter n with
0<n< 11—0 are fixed, and we assume that (3.21) holds.

We begin with a description of the structured approximants v € V.

Definition 6.1 (Structured local approximant). A structured local approximant
is a tuple

v=1(C,¢, (nec + B(S¢, pc))eec, (Ge)eecs (Fe)eec, (Ec)eer)

consisting of the following objects:

e a finite non-empty set C;

e arandom variable ¢, which we call the label variable, taking values in C;
e ashifted Bohr set n. + B(S;, p.) associated to each label ¢ € C;

e adilated torus G associated to each label ¢ € C;
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e a l-Lipschitz function F, : G, — [—1, 1] associated to each label ¢ € C;
and

e a locally quadratic function E. : n. + B(S;, p.) — G associated to each
label ¢ € C.

We denote the collection of all structured local approximants (up to isomor-

phism?) as V. Given any structured local approximant v € V, we define the

random variables (a,, ry, f;)) associated to v by the following construction.

(1) First, let ¢ be the random label variable appearing above.

(2) For each ¢ € C in the essential range of ¢, if we condition on the event
¢ = ¢, we draw a,, r,, independently and regularly from n. + B(S;, pc/2)
and B(S,, exp(—n’a) pc) respectively, and then we let f, be the function

f,(a) := F.(Ec(a)).

Thus £, is deterministic when c is conditioned to be fixed, but random when
¢ is allowed to vary.

We also define the following additional statistics of the structured local
approximant v:
the waste waste(v) is the quantity |E f(a) — Eqez/pz f(@)];
the 1-error Erry(v) is |[Ef(a) — Ef(a)[;
the 4-error Erra(v) is [Aar(f) — Aar(f)];
the energy Energy(v) is E| f (a) — f(a)lz;
the linear rank di(v) is maxX.cc |S¢|;
the quadratic dimension d(v) is max.cc dim(G.);
the linear scale p(v) is ming.ec pc;
the quadratic volume vol(v) is the quantity max.cc vol(G.);
the poorly distributed quadratic dimension dgoor(v) is the maximum value
of dim(G,) over all poorly distributed c in the essential range of ¢, or zero if
no such c exists. Here, an element c in the essential range of c is said to be
poorly distributed if one has

Aar(fle=c) < E€@le=c)* - 2. 6.1)

This gives the set V of structured local approximants for Proposition 3.3; we
clearly have 0 < dgoor(v) < dy(v) forallv e V.
We now also define the initial approximant.

Definition 6.2. The initial approximant vg € V is defined to be the tuple

vo = (C, ¢, (ne + B(Se, pe))eec, (Geleecs (Fe)eecs (Ec)eer)

defined as follows:
e C :=1Z/pZ,and ¢ is drawn uniformly from C;

3 This caveat is needed for the technical reason that V should be a set and not a proper class.

https://doi.org/10.1112/50025579317000316 Published online by Cambridge University Press


https://doi.org/10.1112/S0025579317000316

982 B. GREEN AND T. TAO

for each ¢ € C, we have n. := 0, S, := {1}, and p. := 1;
for each ¢ € C, the group G is the standard O-torus (R/Z)° (that is to say, a

point);

e for each ¢ € C, the function F, : G, — [—1, 1] is the zero function F.(x)
=0

e for each ¢ € C, the function E. : Z/pZ — G, is the unique (constant) map
from Z/ pZ to the point G.

By chasing the definitions, we see that a,, is uniformly distributed in Z/ pZ,
and we can compute several of the statistics of the initial approximant vg:

waste(vo) = db” (v0) = da(v) = 0; di(v0) = p(v) = vol(v) = 1. (6.2)
Now we define the edges of the graph G(V, E).

Definition 6.3. We let E be the set of all directed edges v — v’, where v,
v’ € V are structured local approximants such that

di(v") <di(v) + <,
(V) < dr(v) +1,
p(W') = exp(—n~)p(v),
vol(v') < exp(n~ ) vol(v),
|waste(v) — waste(v')| < 17C3

From this definition and (6.2) we have the following bounds on the various
statistics of vertices of V that are not too far from the initial vertex vg, assuming
that each constant C; is chosen sufficiently large depending on the preceding
constants Cq, ..., C;_1.

LEMMA 6.4. Suppose a vertex v = vy € V can be reached from vy by a path
vg—> v —> - —> v with0 < k < 8n‘2c2. Then we have

di(v) < 8773, (6.3)
dr(v) < 8772, (6.4)
p(v) = exp(—n %), (6.5)
vol(v) < exp(n72C3), (6.6)
waste(v) < /2. 6.7)

From (6.7) we see in particular that the almost uniformity axiom in
Proposition 3.3(ii) is obeyed. The thickness axiom in Proposition 3.3(i) is also
easy, as the following corollary shows.

COROLLARY 6.5. Suppose a quadratic approximant v = v € V can be
reached from vo by a path vy — vi — --- — v of length k at most 87~ 2C2.
Then we have P(r, = 0) < exp(n_csz)/p.
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Proof. Write

v=1(C,c¢, (nc+ B(S¢, pc))cec, (Ge)eecs (Fe)eec, (Be)eer)-

It suffices to show that
P(r, = Olc = ¢) < exp(~%3)/p

for each ¢ in the essential range of c. But once c is fixed to equal c, then r,
is drawn regularly from n. + B(S., exp(—n_c4)pc). By Lemma 6.4, S, has
cardinality at most 8773C2 and p. is at least exp(—n‘zCS). The claim now
follows from Lemma 4.2. O

It remains to verify the last two axioms (iii), (iv) of Proposition 3.3. We isolate
these statements formally, using Lemma 6.4 and Definition 6.3.

The first of these results, Theorem 6.6, states that “a bad approximation
implies an energy decrement”. The second, Theorem 6.7, states that “a bad lower
bound implies a dimension increment”.

THEOREM 6.6. Let the notation and hypotheses be as above. Suppose that
v € V is a structured local approximant obeying (6.3)—(6.6). If we have

Erri(v) > n (6.8)

or
Errg(v) > n (6.9)

then there exists a structured local approximant v’ obeying the bounds

d') <d(w) + 10, (6.10)

(V) < dy(v) + 1, (6.11)

p(V') = exp(—n~)p(v), (6.12)

vol(v') < exp(n~ ) vol(v), (6.13)

|waste(v') — waste(v)| < n©, (6.14)
Energy(v') < Energy(v) — ;7 (6.15)

THEOREM 6.7. Let the notation and hypotheses be as above. Suppose that
v € V is a structured local approximant obeying (6.3)—(6.6), and let a,, ry, £,
be the random variables associated to v. If we have

Aay.r, (F) < Efy@)" =1, (6.16)
then there exists a quadratic approximant v’ € 'V with

d(w) +n~©, (6.17)

d(v') <
) < da(v), (6.18)

(V'
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W) <dy 7 (v) — 1, (6.19)

p(V') = exp(—n~ ) p(v), (6.20)

vol(v') < exp(n~ ) vol(v), (6.21)

|waste(v') — waste(v)| < 13, (6.22)
Energy(v') < Energy(v) + n°¢2. (6.23)

It remains to prove Theorems 6.6 and 6.7. Theorem 6.6 will be proven in §8
using a difficult local inverse Gowers theorem, Theorem 8.1, that will be proven
in later sections. Theorem 6.7, on the other hand, will not rely on the local inverse
Gowers theorem; it is proven in §7.

§7. Bad lower bound implies dimension decrement. In this section we prove
Theorem 6.7. Let the notation and hypotheses be as in Theorem 6.7. We
abbreviate a,, ry, f, as a, r, f respectively. We can write the left-hand side of
(6.16) as EA(c), where for any ¢ € C, the quantity A(c) is defined as the
conditional expectation

A(c) == Aar(fle =0).

Similarly, we can write Ef(a) = EB(c), where B(c) := E(f(a)|c = ¢). By (6.16)
and Holder’s inequality, we thus have

EB(c)* — A(c) > 1.
Applying Lemma 2.2, we must therefore have
P(B(e)* — A(c) > 1/2) > 1.

By (6.1), we conclude that ¢ is poorly distributed with probability >>n. In
particular, there is at least one poorly distributed value of c.

Most of this section will be devoted to the proof of the following proposition,
which roughly speaking asserts that when ¢ is poorly distributed, there is a linear
constraint between the quadratic frequencies that will ultimately allow us to
decrease the poorly distributed quadratic dimension dg oot

PROPOSITION 7.1. Let ¢ be a poorly distributed element of the essential
range of ¢. Then there exists a natural number m, a frequency &. € 7./ pZ and
an irreducible dual frequency k.. € G with

1 < me < exp(n™*®) (7.1)
and
exp(—n ) < [kl < exp(n~>?) (7.2)
such that
I - Be(a +2mch) — k. - Ec(@)llr/z < exp(—n %) (7.3)

foralla € B(Se, pc/2) and h € B(Se U (£}, exp(—n ) p).
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A key technical point here is that the upper bound on || involves only C»
and not C3 or Cy; this is necessary to keep the bounds under control during the
iteration process. However, we will be able to tolerate the presence of the C3 and
C4 constants in the other components of Proposition 7.1.

Proof. We condition on the event ¢ = c. By Definition 6.1, the random
variables a, r are now independent and regularly drawn from n. + B(S,, p./2)
and B(S,, exp(—n_c“)pc) respectively, while f(n) = F.(E.(a)). We conclude
that

E(F:(Ec(a)) Fe(Ec(a+ 1) Fe(Ec(a + 2r) Fe(Ec(a + 31))|c = ¢)
< E(F.(Ec(@)|ec = o)* — /2.

Since B, : Z/pZ — G is locally quadratic on n. + B(S,, p.), which contains
the progression a, a + r, a + 2r, a + 3r, we see from (4.17) that

Ec(@) —3E.(a+r1)+3E.(@a+2r) — E(a+3r) =0
and so the left-hand side can be written as
E(F®(8.(a), Ec(a+1), Ec(a+2r))|e = o),
where FC(3) : G? — [—1, 1] is the function
F) (x0, x1, x2) 1= Fe(x0) Fe(x1) Fe(x2) Fe(xo — 3x1 + 3x2).

Applying Lemma 3.2, we have

4
/G o, a1 02) dpre(wo) dpe(x1) dppe(x2) > ( / FC(X)nd(x)> ,

c

where (. is the probability Haar measure on G.. By the triangle inequality, we
conclude that at least one of the assertions

‘E(FL@(EC(a), Ec(@+r), Ec(@a+2r)|c=c)

— /3F§3)(XO,X1,x2) dpe(x0) dpe(x1) dpe(x2)| > 1
G

P

or

‘E(Fc(Ec(a))lc =0) —/ Fe(x)dpe(x)| > n

c

holds. Defining F: Gg — [—1, 1] by

F (x0, X1, X2)

1
= 1—0(F§3>(xo, X1, X2) — / 3 ES) (x0, x1, x2) d e (x0) duc(xl)dﬂc(m))
G

c
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in the former case and

- 1
F(xg, x1, x2) := E(Fc(xo) —fG Fe(xo) d,uc(xo))

in the latter case, we see that Fis 1-Lipschitz and of mean zero, and
[E(F (xo)le = o) > 1, (7.4)
where X, € G? is the random variable
X. 1= (Ec(a), Ec(a+T1), Ec(a+2r)).

The Weyl equidistribution criterion, applied in the contrapositive, then suggests
that there should be a non-zero dual frequency k = (k1, k3, k3) € Gg to Gg such
that E(e(k - x¢)|c = ¢) is large. The next lemma makes this intuition precise.

LEMMA 7.2 (Weyl equidistribution). With the notation and hypotheses as
above, there exists a non-zero dual frequency k = (k1, kp, k3) € Gg to Gg with
k| < exp(O(n~32)) such that

IE(k - Xcle = ¢)| 3> exp(— O (7)) /vol(G).

A key point here is that the bound on |k| does not depend on the volume of
the dilated torus G .., which will typically be much larger than ~2¢2~10,

Proof. Write G, = H?ZI(R/MZ), thus A1, ..., Ag = 1, and by (6.4) one has

d < 8n7%, (1.5)

The bound (7.4) is not possible when d = 0, so we may assume d > 1. We can
write GE = ]_[?il (R/X;Z), where we extend A; periodically with period d.

Let ¢ : R — R be a fixed smooth even function supported on [—1, 1] that
equals 1 at the origin and whose Fourier transform ¢(§) := fR ¢ (x)e(—x&)dx
is non-negative; such a function may be easily constructed by convolving an
L?-normalized smooth function on [0, 1] with its reflection. Let A > 1 be a
parameter to be chosen later, and introduce the kernel K : GS — RT by the
formula

3d
K, ..., [3d) = l_[K,'(ti)

i=1

for t; € R/A;Z, where

ki
Ki):== ) ¢<Z>e(kiri>.

k,‘E(l/)L,‘)Z
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By Poisson summation, the K; and hence K are non-negative. A Fourier-analytic
calculation using the smoothness of ¢ gives

dt;
Ki(ti) — =1
R/ 7Z Ai

and
1

/ Ki(t;) sin®(t; /0) dii <
R/M7Z s Y Azkl.z

(where the implied constant is allowed to depend on ¢) and hence by (2.2) and
Cauchy—Schwarz we have

| ke 5 <

AU i |R/Z —— )
R/MZ AR A A
which on taking tensor products gives

/ K@) dulx) =1
G3

c

and

d
/ K@) xllgdid(x) < =,
G3 ¢ A

c

where ME’ is the Haar probability measure on G? If we then take the convolution

Fa Ko = / Flx— WK did0)

c

then by the 1-Lipschitz nature of F we see that

FxK(x) =F(x)+ 0<%).

Thus, if we choose
A= —
n
for a sufficiently large absolute constant C, we conclude from (7.4) that
E(F * K (xc)|e = ¢)] > 1.

However, by Fourier expansion and the fact that F has mean zero,

FxK(x.) = Z (]_[ (p(j))F(k)Ee(k - X),

keGA\(0} =1
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where k = (ky, ..., k3g) withk; € (1/A;)Z fori =1, ..., 3d, and

F o) :=/ Foe(—k - x) dpid (x).
G3

c

Using the triangle inequality and crudely bounding |F (k)| by 1, we conclude that

d

> (IT

keG3\(o}p =1

ki
w(Z) D IE(e(k - xc)|le =) > n.

The summand is only non-vanishing when sup; |k;| < A, so that
k| <dA < exp(0(n>)

(thanks to (7.5) and the choice of A), and the number of such £ is

3d
O(H(Axi)) < exp(0(n~*) vol(T).

i=1
Since ¢ is bounded, the claim now follows from the pigeonhole principle. (]

We return to the proof of Proposition 7.1. Applying Lemma 7.2 and (6.5), we
see that there exists a non-zero triplet (k, k!, k2) € G2 with
21, eI, 12| < exp(n™>2) (7.6)
and

Ee(k?-Ec(@)+k! - Ec@+1)+k2 - Be(@a+2m)le = ) > exp(—n ). (1.7)

Among other things, the non-zero nature of this triplet forces G, to be non-
trivial, and thus
& (v) > 1.

We also emphasize that the bound (7.6) involves C; rather than Cs; this will
become important when establishing the important upper bound of (7.2) later in
this proof.

We can use the exponential sum bound (7.7) to control the “second derivative”
of E.. Indeed, for any &1, hy € B(S., p./10), define the quantity 828, (hy, hy) €
R/Z by

32Ec(h1, ha) := Ecla +hi1 + ho) — Bela + h1) — Ecla + h2) + Ee(a)
forany a € n. + B(S., p/2). Since I' is locally quadratic on n. + B(S;, p), this

quantity is well-defined, symmetric in %1, />, and is also locally bilinear in /A
and h,.
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LEMMA 7.3. Let the notation and hypotheses be as above. Then for any i =
0,1, 2, we have

IE(e(2k! - 3*Ec(r — ', h — W))|e = ¢)| > exp(—4n>),

where, conditioning on the event ¢ = c, the random variables r,x’, h, h' are
drawn independently and regularly from the Bohr sets B(S, exp(—n_c4)p),
B(S,, exp(—n’c“)p), B(S,., exp(—n’zc“)p), B(S,, exp(—n’zc“)p) respectively,
independently of a.

Proof. To simplify the notation we only consider the i = 2 case, as the
i =0, 1 cases are similar. This will be “Weyl differencing” argument that relies
primarily on the Cauchy—Schwarz inequality.

Recall that after conditioning to the event ¢ = ¢, the random variable a is
drawn regularly from B(S,, p/2). Using Lemma 4.4, we see that a and a — h
differ in total variation by 0(exp(—n_c4/ 2)), hence from (7.7) we have

IE(e(k? - Ec(a—h) +k! - Ec(a—h+1)+k% Ec(a—h+2r)|c=0)]
> exp(—n79).
Similarly we may use Lemma 4.4 to compare r and r + h, and conclude that
IE(e(k? - Ec(a—h)+ k! B.a+r)+k2- Ec(@a+h+2r)lc=c)
> exp(—n ).

By the pigeonhole principle (and independence of a, h, r relative to the event
¢ = ¢), we may thus find a. € n, + B(S,, p/2) such that

IE(e(k? - Ec(ae —h) + k! - Bc(ae +1) + k2 - Ec(ae +h+2r))|e = o)
> exp(—n ).

Using the identity
Ec(@c +h+2r) = Ec(ac +h) + Ec(ac +2r) — Ec(ac) + 9*Ec(2r, h)
we can rewrite the left-hand side as
E(b1(0by(Wek? - 9*Ec2r, h)le = )] > exp(—n %)
where by, by : B(S., p) — C are the 1-bounded functions
bi(r) = e(k! - Bclac + 1) + k7 - Be(ac +2r) — k2 - Be(ar)

and
by(h) = e(k? - Ec(ae — h) + k2 - Eclae + ).

Applying Lemma 2.1 to eliminate the b (r) factor, we conclude that
IE(b2(h)by(W)e (k2 - 3*Ec(2r, h — h))|e = ¢)| > exp(—2n ).

Applying Lemma 2.1 again to eliminate the b;(h)b,(h’) factor, we obtain
the claim. O
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We return to the proof of Proposition 7.1. Let i = i. € {0, 1,2} be such
that kf. is non-zero. Let r, r’, h, h’ be as in the above lemma, and let h” be a
further independent copy of h or h', thus h” is also drawn regularly from B(S,,
exp(—n~2%)p) and independently of r, r’, h, h' (after conditioning on ¢ = ¢).
Applying Lemma 4.4 to compare r with r + h”, we have

IE(e(2k. - 9*E.(r — ¥ +h", h —h))|c = ¢)| > exp(—4n ),

so by the pigeonhole principle we can find r, 7',/ € B(S.,exp(—n~*)p.)
(depending on c, of course) such that

[E(e(2Kk. - 0*Ec(r — ' + " h — h'))[e = )| > exp(—4n ).
By the local bilinearity of 3> &, we may thus have
|E(e(2k£. 028", h) 4+ Y (h) + ¥ (W")]e = )| > exp(—4n )

for some locally linear functions ¥, ¥" : B(S¢, p/100) — R/Z (which can
depend on c¢).

Applying Proposition 4.11 (recalling from (6.3) that |S¢] < 8exp(—3Cr)),
we conclude that there exists a non-zero multiple k. € G of k’ with

ke < exp(n~4€3) (7.8)
such that

~3Csy Inlls, |lm]ls,
p?

ke - 9*Ec(n, m)|Ir/z < exp(n (7.9)

forn,m € B(S,, exp(—n_3c4),oc).
Applying Corollary 4.13, we may thus find &, € Z/ pZ such that

Ech

h
< <exp(n—4c4)m (7.10)
R/Z Pc

ke - Be(ne +h) — ke - B¢

for all n € Z/ pZ (of course, the bound is only non-trivial when # lies in the Bohr
set B(Se, exp(—n~*4)p)).

The dual frequency k. € a is non-zero, but not necessarily irreducible.
However, we may write k. = mck|. where m, is a positive natural number
and k. € G is irreducible, thus by (7.8) we have the bound (7.1). The same
argument gives the bound k. <« exp(n~*C3), but this is not sufficient to establish
the upper bound in (7.2). However, observe that ké must also be a multiple of the
irreducible vector k., and now the upper bound in (7.2) follows from (7.6).

We can also obtain a lower bound on k. by observing that the slab

{xEG ke - xllr/z < 2|k|}
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has measure at most |k..| vol(G.), and contains the Euclidean ball of radius 1/2
centred at the origin. This gives the lower bound

1
dim(G,.) 0@m(Go) vol(G..)

/

ko] >

which by (6.4), (6.6) gives the lower bound in (7.2).
Now let a € B(S¢, pc/2) and h € B(S, U {&.}, exp(—n_SC“)pc). Then we
have
jh € B(Sc, 2mcexp(—n ) pc)

and

<L exp(—n ) p,
R/Z

forall j,0 < j < 2m. From (7.10) and (7.1), we conclude that

H Jj&ch
p

ke - Be(ne + jh) — ke - Be(ne)lrjz < exp(—n~4)

(for example). On the other hand, from (7.9) we have
ke - (Be(a + jh) — Ec(a) — Be(ne + j&ch) + Be(ne) vz < exp(—n~*)
and hence by the triangle inequality we have
lke - Be(a + jh) — ke - Ec(@)lr/z < exp(=n~*) (7.11)

forall j,0 < j < 2me.

This is close to (7.3), but we will need to replace the dual frequency k. here
with the irreducible dual frequency k... To do this, we first observe that as E is
locally quadratic on n. + B(S,, p.), we may write

Ecla+ jh) =a+Bj +vj? (7.12)

forall j,0 < j < 2m,, and some «, B, ¥y € G, depending on c, a, h. Inserting
this formula into the preceding estimate, we conclude that

17 (ke - B) 4 j>(ke - Y)IIR/Z < exp(—n 44

for j,0 < j < 2m.. Applying this for j = 1, 2 and using the triangle inequality,
we have

ke - Bl 12CKke - ) llryz < exp(—n~*).
Since 2m k. = 2k, and (2m.)’k. = (2m.)2k., we conclude in particular
(using (7.1)) that

12me (KL - B)IR/z, |2me) (KL - y) IRz < exp(—n )

and thus by (7.12) we obtain (7.3) as desired. This finally completes the proof of
Proposition 7.1. O
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We now return to the proof of Theorem 6.7. We are given a structured local
approximant

v=(C,¢c, (nc+ B(S¢, pc)ecec, (Ge)eec, (Fe)eec, (Be)eec)

and need to construct a modification
! __ / / / / / / / r:w/
v = (C. ¢ () + B(SL, pl))eec. (Gldeecr (Fi)oeer, (El)eect)

that somehow incorporates the linear constraint identified in Proposition 7.1
to decrement the poorly distributed quadratic dimension of v/, in the spirit of
the third and fourth examples in §3. To avoid confusion, we shall restore the
subscripts (ay, ry, f;,) on the random variables associated to v as per Definition
6.1, to distinguish them from the corresponding random variables (a,, ry/, f)
that will be associated to v’.

We shall set C’ := (Z/pZ) x C, and let ¢’ be the random variable

¢ = (a,, 0.

Clearly ¢’ takes values in the non-empty finite set C’. Now we need to define n,,
S, p..,G., F,, g, forany given ¢ = (a, c) in C’. In the case where c is not
poorly distributed, we simply carry over the corresponding data from v without
further modification. That is to say, we define

/ / ’ ’ ’ rN .
(nc’a SC,’ pc’v GCH FC/’ EC’) M (nC7 SC’ pC’ GC7 FC’ EC)

whenever ¢’ = (a, ¢) with ¢ not poorly distributed. If instead ¢’ = (a, ¢) with ¢
poorly distributed, then we introduce the natural number m., the dual frequency
k.. € G, and the frequency &, € Z/pZ from Proposition 7.1; of course we can
arrange matters so that m., ké, &, depend only on ¢ and not on a. Because of (7.1)
and the hypothesis (3.21), the quantity 2m. is invertible in the field Z/pZ, and
so we may define the dilate (2me)~ 1 - S, of S, inside Z /pZ, and can similarly
define the dilate (2m.) '€, of &.. We will need to do this division here to cancel
some denominators appearing later in the argument.
In this poorly distributed case, we define the “linear” data n/,, S/, p., by

n.,:.=a,
S = 2me) 7t S Ul@me) e,
pl = exp(—n " p,,

thus the shifted Bohr set n/, 4+ B(S.,, p.,) will be a small subset of n. + B(S, pc)
in which the radius p. has been reduced and an additional frequency &./2m, has
been added. As we shall see, this particular choice of this linear data will allow
us to utilize the approximate constraint (7.3).

The constraint (7.3) has the effect of approximately restricting E, (on a
suitable Bohr set) to a coset of the orthogonal complement (ké)J— ={x e G,:
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k.-x =0} of k. in G.. Applying Theorem 5.1, (6.4), and the crucial bound (7.2),
we may find a dilated torus G, = ]_[?':“}(G“)_l (R/Ac.iZ) with volume

vol(G.) < exp(n~*2) vol(G.) (7.13)

as well as a Lie group isomorphism v/, : (ké)L — G, obeying the bilipschitz
bounds
19 llLips 19~ lLip < exp(n~ ).

In particular, if we define the even more dilated torus

dim(G.)—1
Gi= ] Rlexptr*™iciz)

i=1
and let 8. : G — G, be the rescaling map

dim(G.)—1 — dim(G.)—1
Se + (x)EM(GI™E s (exp(—n 42 x;) I (C)

then we see that ¢ 1 0§, : G.— (ké)J- is a 1-Lipschitz Lie group isomorphism.

An element of n/, + B(S,, p.) can be uniquely represented in the form
n', +2mch for h € B(S. U {&}, exp(—n~%) p,). From (7.3), we know that the
point E.(n), + 2mch) — Ec(n,,) lies within a O (exp(—n~34))-neighbourhood
of the subtorus (ké)l. Using the lower bound in (7.2), we can find a locally linear
projection 1, from this neighbourhood to the subtorus itself (e.g. by viewing the
subtorus locally as a graph in dim(G.) — 1 of the dim(G.) coordinates and then
projecting in the direction of the remaining coordinate), which moves each point
in the neighbourhood by at most O (exp(—n~2¢*)). From the 1-Lipschitz nature
of F,, we thus have

Fc(Ec(n/C/ + 2mch))
= Fc(nC(Ec(né/ + 2mch) — EC(”::/)) + EC(”ZJ)) + O(exp(_n—2C4)).

We can rewrite this as
Fe(Be(nly 4 2mch)) = FL(EL (1l + 2mch)) + O(exp(—n~ %)),  (7.14)
where F/, : G — [—1, 1] is the 1-Lipschitz function
Fl(x) := Fe(¥; ' (8(x))) + Ec(n),)
and E/, : n/, + B(S,, p.) — G, takes the form
B, (n), + 2mch) = 87 (Yo (e (Be(nly + 2meh) — Be(nl)) + Be(nl))).

The map E;, is the composition of a locally quadratic map with three locally
linear maps, and is hence also locally quadratic. This concludes the construction
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of all the required quadratic data G/,, F/,, ), when ¢’ arises from a poorly
distributed c.

It remains to verify the claims (6.17)—(6.23) of Theorem 6.7. The claim
(6.17) is clear; in fact, the frequency sets S/, are either equal to their original
counterparts S, or have the addition of just one further frequency &, so we even
obtain the improved bound d(v") < d(v) + 1 in our construction here. Since the
dilated torus G/, is either equal to G. when c is not poorly distributed, or has
one lower dimension than G, if ¢ is poorly distributed, we obtain the bounds
(6.18), (6.19). Since ,02 , is either equal to p, when c is not poorly distributed, or
exp(—n*(’C“) pe when c is poorly distributed, we obtain (6.20) (with a little room
to spare). As for the volume bound, G/, clearly has the same volume as G, when
¢ is not poorly distributed, and when c is poorly distributed we have

vol(G.,) = exp(—n~*¢ dim(G)) vol(G )

which by (7.13), (6.3) is bounded in turn by exp(—7>¢?) vol(G,), which yields
(6.21), again with a little bit of room to spare (because the bounds here only
increased the volume by factors that involved C5 rather than C3).

Now we establish (6.22). From the triangle inequality we have

|waste(v') — waste(v)| < [Ef(ay) — Ef(ay)]
< Z]P’(C = o)|E(f(ay)|ec =c) — E(f(ay)|c = ¢)]

ceC

so it will suffice to show that

[E(f @y)le = ¢) — E(f @)le = )] < n© (7.15)

for each c in the essential range of c.

The claim is trivial when ¢ is not poorly distributed, since in this case a,
and a,s have identical distribution after conditioning to ¢ = c. If ¢ is poorly
distributed, then (after conditioning to ¢ = ¢) a, is drawn regularly from
ne + B(S¢, pc/2), while a,y has the distribution of a, + 2m h,. where h, is
drawn regularly from B(S, U {&.}, exp(—n’6c4),oc) independently of a, (after
conditioning to ¢ = ¢). The required bound (6.22) now follows from Lemma 4.4
(and (6.3)).

Finally, we prove (6.23). Our task is to show that

E|f (ay) — fu@)* <E|f @) — fu(@)| + 1.
By the triangle inequality as before, it suffices to show that
E(lf @) — f @) Ple = o) <E(f @) — @)l = o) + 7

for all ¢ in the essential range of ¢. This is trivial for ¢ not poorly distributed, so
assume c is poorly distributed. From (7.14) we then have

fy(ay) = f,(ay) + O(exp(—n~264))
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and also
f,(a) = F.(Ec(a))

fora € B(S;, pc), so by the triangle inequality it suffices to show that
E(lf @av) = Fe(Be@))Ple = o) <E(f @) — Fe(Bc@))’le = ) + 7

(for example). But this follows by repeating the proof of (7.15), with the function
f replaced by | f — F, o E.|*. This completes the proof of Theorem 6.7.

§8. Bad approximation implies energy decrement. The remaining task in the
paper is to prove Theorem 6.6. In this section we will establish this result
contingent on a local inverse Gowers norm theorem (Theorem 8.1) that will be
proven in later sections. We begin by stating the (rather technical) precise form
of that theorem that we will need.

THEOREM 8.1 (Local inverse U3 theorem). Let p be a prime, and let S be
a subset of 7./ pZ containing at least one non-zero element. Let n be a real
parameter with 0 < n < % Let K be the quantity

1
K:=;+|S|, 8.1)

and let po, p1, P2, - - -, p10o be real numbers satisfying
O<pro<---<py<1/2
as well as the separation condition
pi+1 = exp(K)p; (8.2)

foralli =0,...,9. Assume that the prime p is huge relative to the reciprocal
of these parameters, in the sense that

_ch
pP=2Poy - (8.3)
Let f : 7/ pZ — C be a 1-bounded function such that

|Ef(ho + h; + hy) f(ho + h| + hy) f(hy +hy + hy) f(hy + h| + hy)
x f(ho +hy +h)) f(ho +h| +h)) £ (hy + hy + h) f(h +h} +h)|
> (8.4)

whenever ho, hy, hy, |, hy, W, are drawn independently and regularly from
B(S, po), B(S, po), B(S,p1), B(S,p1), B(S, p2), and B(S, p2) respectively.
Then there exists a positive integer k < exp(K°€V), aset ' C Z/pZ, S’ D S,
with

5] < IS|+ 0 (=2, (8.5)
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a locally quadratic phase ¢ : B(S’, p9) — R/Z, and a function B : 7./ pZ —

Z] pZ such that
> = mfesn+kme( —pm - B0 ) s 0@ se)
nez/pZ p

if n, m are drawn independently and regularly from Bgs(0, pg) and Bg (0, p1o)
respectively.

Remarks. The parameters p3, ..., pg do not have any role in the statement
of this result, but they appear in the proof. We have retained them to avoid a
potentially confusing relabelling.

Informally, this theorem asserts that if f has a large U 3 norm on B(S, po),
then f will correlate with a locally quadratic phase n +km — ¢ (m) + B(n)m/p
on translates n +k - Bg/ (0, p1g) of k- Bs'(0, p19), with polynomial bounds on the
correlation. Although we will not make crucial use of this fact in our arguments,
it may be noted that the homogeneous component ¢ of this locally quadratic
phase does not depend on the translation parameter n. In the bounded rank case
|S| = O(1), atheorem very roughly of this form was established in [14]; the key
point in Theorem 8.1 is that the inverse theory of [14] can be localized to a Bohr
set without having the lower bound 7€V on the correlation appearing in (8.6)
depend on the rank |S| or radius pg of the Bohr set (although these parameters
certainly influence the range of the variables n, m appearing in (8.6)).

The proof of Theorem 8.1 will occupy most of the remainder of this paper. To
a large extent, it may be understood separately of our main arguments, requiring
little of the notation of §3, for example. In this section, we will assume Theorem
8.1 and use it to establish Theorem 6.6.

For the remainder of this section, the notation and hypotheses will be as in
Theorem 6.6. Namely, we fix a prime p, a function f : Z/pZ — [—1, 1], and a
parameter 0 < n < 1/10, and assume (3.21). We also suppose that

v=(C,¢, (nec + B(S¢, pc))cec, (Ge)eec, (Fe)eec, (Ec)eer)

is a structured local approximant obeying (6.3)—(6.6), and one of (6.8) or (6.9)
holds. Our objective is to construct a structured local approximant

U/ = (C/v c/v (n;/’ + B(Sé/v IOZJ))C,GC/? (Géf)c’eC” (FL/-’)()/€C,7 (E;’)C,GC/)

obeying the bounds (6.10)-(6.15). The situation here is a formalization of
Example 8 from §3.

Let a = a,,r = r,,f = f, be the random variables associated to v in
Definition 6.1. We can unify the hypotheses (6.8), (6.9) by introducing the
quadrilinear form

Aar(fo, f1, 2, £3) := Efp(a)f; (a 4+ r)f2(a + 2r)f3(a + 3r),

defined for arbitrary random (or deterministic) bounded functions fy, f, f2,
f3 : Z/pZ — R. From the definitions of Err; and Errq (just prior to (6.1)),
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the hypothesis (6.8) may be written as
[Aar(f, 1,1, 1) — Aar(f, 1,1, D] > 7,
while (6.9) can be similarly written as

[Aax(f, fo fo ) = Aax(® £ £, D] > 0.

Applying the triangle inequality and the quadrilinearity of Ay, we conclude
that
|Aa,l'(f07 flv f29 f3)| >> 77

for some random functions fy, f1, 5, f3, each of which is either equal to 1, f, or
f — £, and with at least one of the functions fy, f1, f, f3 equal to f — f. For sake
of concreteness we will assume that it is f3 that is equal to f — f, thus

| Aa,r(fo, £1, £2, f =D > n; (8.7)

the other cases are treated similarly (with some changes to the numerical
constants below) and are left to the interested reader.
We can write the left-hand side of (8.7) as

ZP(C =oEf@fi(a+rfh@+2r)(f —fa+3r)jc=c)|.
ceC

Applying Lemma 2.2, we conclude that with probability > 7, the variable ¢
attains a value ¢ for which we have the lower bound

[E(fo(@fi(a+r)f2(a+2r)(f —Ha+3r)le=c)| > n. (8.8)

We now use a local version of the standard “generalized von Neumann
theorem” argument (based on several applications of the Cauchy-Schwarz
inequality) to obtain some local correlation of f — f. with a quadratic phase.

PROPOSITION 8.2. Let the notation and hypotheses be as above. For each
(a, c) in the essential range of (a, ¢), there exists a natural number k, . with

1 <kge<n™©, (8.9)
a set S'Q,C C Z/ pZ with S’a,c O S, and
1Sa,cl < 1Sel + 172, (8.10)

and a locally quadratic function yn 4.c : B(S’a’c, exp(—n‘”c“)pc) — R/Z for
eachn € 7/ pZ, such that

Re Z Pl@=a,c=rc)
a,ceZ/pZ
x E(f — fo)(a+ 6n + 6ky cm)e(—Yna.c(m)la=a,c=0 > /" 8.11)
where, after conditioning to the event a = a,c¢ = c, the random variables

n and m _are drawn regularly and independently from the Bohr sets B(S.,
exp(—n_2C4)p) and B(Sq.c, exp(—n_12C4)pc) respectively.
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Proof. Suppose for now that ¢ obeys (8.8). From Definition 6.1, once we
condition to the event ¢ = ¢, the random variables a, r are independent and
regularly drawn from B(S., p./2) and B(S, exp(—n’c“) pc) respectively; from
(6.4) we have the bounds

S| <8777 and  p. > exp(—n ). (8.12)
Also, the function f is now the deterministic function

fe(a) = F.(Ec(a))

on the Bohr set B(S., p.), and fo, 1, f2 become deterministic functions fy ¢, f1.c
and f> . taking values in [—2, 2]. Thus we have

|E(f0,c(a)f1,c(a + r)fZ,c(a + 21‘)][3,6-(3 + 31')|C = C)' >

where f3.:= f — f.

We now do a linear change of variable with conveniently chosen numerical
coefficients that will facilitate a certain use of the Cauchy—Schwarz inequality to
eliminate the bounded functions fy ¢, fi1.c, f2.c, leaving only the function f3 ..
Continuing to condition on the event that ¢ = ¢, let n;, ny and n3 be drawn
regularly and independently from the Bohr sets B(S., exp(—1n~>*)p.), B(S,
exp(—n*3c4) pe), and B(S,, exp(—n*“c“) pc) respectively, independently of the
previous random variables. We can use Lemma 4.4 (and (8.12)) to compare a
with a — 3ny — 12n3, and conclude that

IE(fo,C(a —3np — 12n3)f1,c(a +r—3n, — 12n3)f2,c(a + 2r — 3ny — 12n3)
X fazc(a+3r —3m — 12n3)[c = ¢)| > 1.

By another application of Lemma 4.4, we may compare r with r 4+ 2n; + 3n, +
6n3, and conclude that

[E(fo.c(a —3np — 12n3) fi..(a +r + 2n; — 6n3) 2. .(a+ 2r + 4n; + 3ny)
X f3c(@+3r+6(m +ny +n3))lc=c)| > n.

Finally, we use Lemma 4.4 to replace a by a — 3r, so that

IE(fo,c(@a—3r —3m — 12n3) f1 .(a — 2r 4 2n; — 6n3)
X fac@a—r+4n; +3m) fi(a+ 6(n; +ny +n3))lc =c)| > 1.

The purpose of this odd-seeming change of variables is that each of the functions
Jo.c» fi.c» f2.c now has an argument that involves only two of the three random
variables nj, ny, n3, while the argument of the key function f3 . depends on ny,
ny, n3 only through their sum n; + ny + n3.

One can achieve a similar effect for the other three choices fy, f;, f> for key
function by suitable adjustment to the constants above; we leave the details to
the interested reader.
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By Lemma 2.2, we see that with probability 3> 1 (conditioning on ¢ = ¢), the
random variable a attains a value a such that
|E(f07c(a —3r—3np — 12n3)f1’c(a —2r+2n; — 6113)
X facla—r+4n +3m) f3.(a+6m; +n +n3))la=a,c=c)|>n.
(8.13)
Let a be such that (8.13) holds. We can then find an r € Z/pZ (depending on
a, c¢) such that
|E(fo,c(a —3r —3np — 12m3) f1.c(a — 2r +2n; — 6n3)
X facla—r+4n; +3m) f3 (a +6(n +my +n3))la=a,c=c)|>n.

We now suppress the additive structure on the first three arguments by rewriting
the above bound as

|E(f0,c,a (n2, n3)fl,c,a(nl ,N3)
X f2,c,a(, m) f3 c(a+6(n1 +ny +n3))|c = )| > 7,

where f0.c.as fl.c.ar f2.ca @ Z/pZ x Z/pZ — [—2, 2] are bounded functions
whose exact form

Jo.c.a(na, n3) := focla —3r —3ny — 12n3),
flea(ny,n3) = ficla —2r +2ny — 6n3),
fZ,c,a(nla ny) 1= fZ,c(a —r+4n1 4+ 3ny)

will not be relevant in the arguments that follow.
We can eliminate the factor fj . , using Lemma 2.1 to conclude that

|E(f1,c,a (ng, n3)f1,c,a(n/19 n3)f2,c,a (ng, n2)f2,c,a(n/17 n)
X f3.ca+6(m; +m +m)) f3c(a+6m; +ny+n3))a=a,c=c)l>n
where n’1 is an independent copy of n; (and also independent of n,, n3) on the

eventa = a, ¢ = ¢. We can similarly apply Lemma 2.1 to eliminate the fi . ,(ny,
n3) f1,¢,a (], n3) variables to conclude that

|E(f2,c,a (ny, n2)f2,c,a(n/1 s n2)f2,c,a (ny, n,2)f2,c,a(n,1 s n/z)
X f3.c(a+ 6y +n +n3)) 3 (a + 6(n} + 0y + n3))
X fa.c(@+6(m +n) +n3)) f3c(a+6Mm) +n)+m3))la=a,c=c)>n

and finally apply Lemma 2.1 to eliminate the f ., terms and arrive at

|E(f3,c(a+6(; +n2+n3)) 3 . (a + 6(n} +ny +n3))
X f3.c(a+6(n; +nj+n3)) f3 (a+6(n] +nj +n3))
X f3,c(a+6(m; +ny+n3)) f3.(a+6(m] +ny+nj))
X f.c(@+6(m; +n,+n3)) f3..(a+6(m) +n5+ns))la=a,c=c)| >,
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where n’2, n/3 are independent copies of n,, n3 respectively on a = a, ¢ = ¢, with
nj,ny, n3, N, n, n/3 all independent relative toa = a, ¢ = c.

We now apply Theorem 8.1, replacing 1 by a small multiple of 1%, and
choosing p; = exp(—n_(i+2)c4)p for i = 0,...,10, and using the bounds
(8.12), (3.21) to justify the hypothesis (8.3). We conclude that for ¢ obeying
(8.8) and a obeying (8.13), we can find a natural number k, . obeying (8.9), a
set S’a,C with S, C S’a,c C Z/pZ obeying (8.10), a locally quadratic function
Ga.c : B(Syc,exp(—n~ 1) p) — R/Z, and a function B, : Z/pZ — 7] pZ
such that

Z Pm=nla=a,c=c)

nel/pZ
X |E(f3(a + 6n + 6km)e(—@a.c(m) — By c(m)m)la = a, ¢ = ¢)| > n*

if n,m are drawn independently and regularly from B(S,, exp(—n~>%*)p.)
and B(S.., exp(n’lzc“)pc) respectively on the event a = a,c¢ = c. Taking
expectations in a (and choosing S; . = S¢, ¢ac = 0 and B, = 0 if (8.8) or
(8.13) is not satisfied), we conclude that

Z Pm=n,a=a,c=c)

n,a,ceZ/pZ
x [E(f3(a + 6n + 6km)e(—¢q,c(m) — Bo(mm)la = a, ¢ = o) = n</1.

In particular, if we set y;, 4.c(m) := ¢g.c(m) + Bu.c(n)m + On.a.c for a suitable
phase 6, 4. € R/Z, then y, 4 . is locally quadratic on B(S, ¢, exp(—n‘“c“)p)

and
Re Z P(n:n,a:a’c:c)
n,a,ceZ/pZ
x E(f3(a + 6n + 6km)e(—y,.q..(m))|a =a, c = c)| > n</1°,
giving the claim. 0

Let n, m, k, , Sa,c, Yn.a.c be as in the above proposition. The conclusion
(8.11) of Proposition 8.2 may be rewritten more compactly as

ReE((f — (@ + 6n + 6ka cm)e(—yn,a.c(m))) > /17, (8.14)
We now introduce the modified random function f' : Z/pZ — [-2, 2] by the
formula ; 6
F() = £) + nS" cos( 27 ymac| ——22) ), (8.15)
- 6ka.c

where we extend y,, 4 . arbitrarily outside of B(S.., exp(—n‘“c“) pc)- Note from
(8.9) and (3.21) that we can divide by 6k, ¢ in Z/ pZ without difficulty.
We claim that the function f’ is a little closer to f than f is.
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LEMMA 8.3. We have
E|(f —f)(a + 6n + 6ky cm)|?> < Energy(v) — 2.
Proof. From (8.15) we have
f'(a + 6n + 6k, cm) = f(a + 6n + 6k, cm) + 72 coS(27 Yn.a.c(M)),
and so

I(f —f)(a+ 6n+ 6k, cm)|?
= |(f — £)(a + 6n + 6ky cm)|?
— 202 E(f — £)(a + 6n + 6ka cm) cOS(2T ¥, a,c(M))
+ 0. (8.16)

On the other hand, for any (a, c¢) in the essential range of (a, ¢), we may use
Lemma 4.4 to compare n with n + k, ¢m, and conclude that

E((f —£)(a + 6n + 6k, cm)|*|]a =a, ¢ = ¢)
=E((f —Ha+6n)*la=a,c=c)+ 0@n*?)

(for example), and hence on taking expectations in a

E(/(f — f)(a+ 6n + 6ky m)|*|c = ¢)
=E(|(f — D@+ 6m)|*lc =c) + 0n*%).

Applying Lemma 4.4 again to compare a with a 4+ 6n, we conclude that
E(I(f = B(a+6n+ 6k, m)’le = ¢) = E(I(f — H@)*le = o) + 00n*P).
and hence on taking averages in ¢
E(/(f — f)(a + 6n + 6ky ;m)|*|c = ¢) = Energy(v) + O(n*“).  (8.17)
Taking expectations in (8.16) and using (8.15), (8.17), we obtain the claim. [

There is a very minor technical issue that f" does not quite take values in [—1,
1], which is what is needed in the definition of an approximant. However, this is
easily fixed by truncation, or more precisely by introducing the random function
t':7Z/pZ — [—1, 1] defined by

£’ (1) := min(max(f (1), —1), 1). (8.18)

Since f(I) already lies in [—1, 1], we see that £/ (/) is at least as close to f(I) as
f'(1) is, thus we have the pointwise bound

[ SIGIETAES 101
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for any [ € Z/pZ. From the above lemma, we thus have
E|(f —f")(a + 6n + 6ky cm)|*> < Energy(v) — n°2. (8.19)
We can now construct the new structured approximant
= (C'. ¢, (g + B(Sy, po))erects (Gu)eecr, (Fi)eec, (Ep)erect)

as follows. We write the dilated torus G, as G, = Hdlm(G”) R/A; 2.

(i) WesetC':=(Z/pZ) x (Z/pZ) x C and ¢’ := (n, a, ¢).
(i) Ifc' = (n,a,c)isin C’, we set

n., :=a -+ 6n,

Sé/ = (6ku,c)_1 : Sa,a"

oL = exp(—n~ ) p,,

dim(G,.)
G.:= [] ®/100% .Z) x (R/Z).
i=1

(i) Ifc¢" = (n,a,c)isin C’, we define F/, : G/, — [—1, 1] to be the function
Fl(x,y) = min(max(Fc(llm x)+ n©2/2 cos(2my), -1),1)

for x e [["™C)(R/1004;.Z) and y € R/Z, where x > 1f5 -
x is the obvious contraction map from ]_[?lzn;(G")(R/ 100%; .Z) to
[T ®/24,c2).

(iv) Ifc¢’ = (n,a,c)isin C’, we define E/, : n/, + B(S.,, p..) — G., by the

formula
l—a—6n
2() = <100' =0 ’/(T))

for I € n, + B(S.,, p.,) (which implies in particular that (I —a — 6n)/
6ky.c € B(S’a ¢, exp(— _12C4)pc)), where x — 100 - x is the obvious
dilation map from ]_[dlm(G )(R/)\i,cZ) to ]—[?i:n}(Gf)(R/ 100A; cZ) (the
inverse of the map x +— m x from part (iii)).

Since F, is 1-Lipschitz, it is easy to see (thanks to the contraction by ﬁ)
that F C/,, is also 1-Lipschitz; similarly, as E. and y, 4 . are locally quadratic on
ne + B(S,, pc) and B(S‘a,c, exp(n’“c“)pc) respectively, we see that E/C, is also
locally quadratic on n/, 4 B(S.,, p.,). From (8.15), (8.18), Definition 6.1, and the
above constructions we see that

£ —f,
and hence by (8.19)
E|(f — fu/)(a + 6n + 6ky cm)|* < Energy(v) — n
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From Definition 6.1 and the above constructions, we also see that a,, has
the same distribution as a + 6n 4 6k, ¢m (after conditioning to any positive
probability event of the form (m, a,c) = (n, a, ¢)), which gives the required
energy decrement (6.15).

The bound (6.10) follows from (8.10), while from construction we clearly
have dim(G/,) = dim(G.) + 1, which gives (6.11). Since we have p/, :=
exp(—n’lzc“) Pe, the bound (6.12) is clear; also, from (6.4) we have

vol(GL,) = 1009MC) vol(G,) < exp(0(n~2)) vol(G,)

which gives (6.13). It remains to establish (6.14). By the definition of Err; (just
before (6.1)) and the triangle inequality, it suffices to show that

IEf(ay) — Ef(a)] < n©.

But as mentioned previously, a,y has the same distribution as a + 6n + 6k, ¢m,
and by using Lemma 4.4 as in the proof of Lemma 8.3 we have

Ef(a+ 6n+ 6ky cm) = Ef(a) + O(7*)

giving the claim. This completes the proof of Theorem 6.6, assuming the local
inverse Gowers norm theorem (Theorem 8.1).

§9. Local inverse U> theorem. We now turn to the proof of Theorem 8.1,
which is the last component needed in the proof of Theorem 1.1. Let us begin
by recalling the setup of this theorem. We let S be a subset of Z/pZ, take a
parameter 1 satisfying 0 < n < %, and define the quantity K by (8.1), thus

1
= IS| < K. 0.1
n

We suppose that
0<plo<--<po<3

are scales obeying the separation condition (8.2) and the largeness condition
(8.3), and suppose that f : Z/pZ — C is a 1-bounded function obeying (8.4).
Our task is to locate a natural number k with k < exp(K 0(C))y, a set §’ with
S C §' C Z/pZ obeying (8.5), a locally quadratic phase ¢ : B(S’, pg) — R/Z,
and a function B : Z/pZ — Z/pZ obeying (8.6). We will initially work at
the scale pg, but retreat to smaller scales as the argument progresses (mainly to
ensure that the error terms in Lemma 4.4 are negligible), until we are working
at the final scales pg and pjg. Let us comment once more that the intermediate
scales p3, ..., pg play no role in the actual statement of Theorem 8.1.

In this section, all sums will be over Z/ pZ unless otherwise stated.
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9.1. First step: associate a frequency &(ny) to each derivative of f. We now
begin the (Iengthy) proof of this theorem, which broadly follows the same inverse
U3 strategy in previous literature [11, 14], but localized to a Bohr set, the key
aim being to reduce the dependence of constants on the rank or radius of this
Bohr set as much as possible.

The first step is to use the local inverse U 2 theorem (Theorem 4.12) to
associate a frequency &(njy) € 7/ pZ to many “derivatives” x — f(x +n2) f(x)

of f.

THEOREM 9.2. Let the notation and hypotheses be as in Theorem 8.1. Then
there exists a set Q2 C B(S, 2p2) obeying the largeness condition

P(hy — by € Q) > n/4 9:2)

when hy, W, are drawn independently and regularly from B(S, p3), and a
function & : 7./ pZ. — 7./ pZ such that

>~ B = no)[Ef (no + i +n2) F(no +mi)e,(=Enm) > Slam2)
no€Z/pZ
9.3)
forallny € 7/ pZ, and ng, ny are drawn independently and regularly from B(S,
p0), B(S, p1) respectively.

Proof. For each ny € Z/pZ, let f,, : Z/pZ — C denote the 1-bounded
function

far () := f(n +n2) f ().
Then we may rewrite the left-hand side of (8.4) as

|E i, —n, (ho + ho +hy) fi, g, (ho +ho +h))
X fip—n, (g +ho +hy) fyy, gy (hg +ho +hi)|.
By Lemma 4.4 and (8.2), the random variables hy, h6 differ in total variation

from hg + hy, hj, + h; respectively by at most 1/4 (for example). We conclude
that

|E iy, (ho + h1) fuy —ny.0(ho + ) f, —py, (hg + hi) fio, p, (hg +hi)| > n/2.
By the triangle inequality, the left-hand side is at most

> " P(hy — ) = B)[Efi(ho + hy) Fir (ho + 1) Fir () + hy) fi () + ).
h

The inner expectation is bounded by 1. Applying Lemma 2.2 (with a = hy —h)),
we conclude that there is a set Q C Z/ pZ obeying (9.2) such that
I fuy (ho + 1) fuy (ho + 1)) foy (G + hp) fn, (G + h)| > /4
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for all np € Q. Applying Theorem 4.12, we see that for each ny € €2, there exists
&(ny) € Z/ pZ such that

Y P@=no)E fn, (no + mi)e, (= ma)ny)|> > n/8.
no€Z/pZ

For ny ¢ 2, we set £(n,) arbitrarily (e.g. to zero). The claim follows. O

9.3. Second step: & is approximately linear 1% of the time. The next step,
following Gowers [11], is to obtain some approximate linearity control on the
function &€ : Z/pZ — 7/ pZ. Define an additive quadruple to be a quadruplet
a= (a(l), ag), a3y, a(4)) € (Z/pZ)4 such that

aay +ae) =ag) +aw), (9.4)

and let Q C (Z/pZ)* denote the space of all additive quadruples. We call an
additive quadruple (a(1), a2), a3y, a@)) € Q bad if

K&
& (aqy) + &(a)) —&(a@)) — E(aw)lls > o 9.5)

where the word norm ||||s was defined in Definition 4.5. Let BQ C Q denote the
space of all bad additive quadruples.

THEOREM 9.4. Let the notation and hypotheses be as in Theorem 8.1, and
let Qand & : 7./ pZ — 1] pZ be as in Theorem 9.2. If hy, W), ko, K, are drawn

independently and regularly from B(S, p2), then with probability > n°WY, one
has
(hy —h, ks — Ky, ky —h), hy — k) € @' N (Q\BQ). 9.6)

Proof. Let ng, n; be drawn independently and regularly from the Bohr sets
B(S, po), B(S, p1) respectively. From (9.3) we have

> Py = n)[Ef (no + 01 + n2) f (no + me, (—£(ma)my)| > 1
no
for any ny € 2. Using (9.2), we conclude that

> > Png =no,hy — Wy = n)[Ef (no + my + na) f(no + m)

no nyeQ

x ep(—E(n)m)| > n,

where hy, h) are drawn independently and regularly from B(S, p2), and are
independent of ng, n;. By the pigeonhole principle, one can thus find ng € Z/ pZ
such that

Y P(hy — by = np)[Ef (no + m1 +n2) f (n0 + m)e, (=& (na)my)| > .

n,eQ
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We can rewrite the left-hand side as
EFyy(hy —h)) £ (no + 01 + hy — h}) f(no + ny)e,(—& (hy — hh)ny)

for some 1-bounded function Fy, : Z/pZ — C depending on ng. Using
Lemma 4.4 to compare n; with nj + h/z, we conclude that

|EFy, (hy — h)) f(no +my +ho) £ (no + 0y + hb)e,(—&(hy — h5)(ny + h)))|
> nz.
We rearrange the left-hand side as
Z]P’(nl =n)Ef(no+n1 +hy) f(no +ni +hy) Gy, (ha, b))
n
where G, 5, : Z/pZ x Z]/pZ — C is the 1-bounded function
Gro.ny (ha, By) i= Fyy(ha — hh)ep(—&(hy — hy) (n1 + hy)). .7
By Holder’s inequality, we conclude that
Y Py =n)[Ef (o +ni +h2) f(ng +n1 + )Gy n, (h, W) > 0D,
ni

From this point onward we cease to keep careful track of powers of 1. On the
other hand, by using two applications of Lemma 2.1 to eliminate the 1-bounded
functions f, we have

IEf (n0 + n1 +ha) f(no + ni +h5) Gy, (o, hy)[*
< EGno,m (h27 /2)Gn0,n1 (th klz)Gno,m (k27 /Q)Gno,nl (st klz)

where (kz, k) is an independent copy of (hy, h}). We thus have
EG pm (ho, 03) G m, (ho, K5) G gy (K2, 05) Gy, (Ko, k) > @0
which by the triangle inequality and (9.7) gives

. _ . !/ /. /o /
> Dok ko ha—kje@P(2 = hoi Ky = ko; b = hy; k) = k)
h ko, by, k)

X |Eep(—(§(hy — hy) 4 &(ka — ky) — &(ka — h5) — E(hy — k5))my)|
> 770(1)-
By Lemma 2.2, we conclude that with probability > r)O(l), the tuple (hy, ko,
h),, K)) attains a value (h2, k2, h, k%) for which
hy — kY, ky — ky, hy — Ky, ko — b € Q
and
Eep (= (5 (ha—h)) + & (ka—kp)—€ (ka—h5) = (ha—kp)mp)| > ) > K—(gg

thanks to (9.1). Since (hy —hy, ko —k)y, hy — k), ko —hY) is an additive quadruple,
the claim now follows from Lemma 4.7, (8.2), and (9.1). O
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We localize this claim slightly, though for notational reasons we will not
move from pp immediately to p3 and beyond, but instead first work in some
intermediate scales between p; and p3. For any natural number j, define

p2,j = exp(—C1jK)p2,

thus
P2 =020>P2,1> "> P22 P3

if (for example) j < K .

It will be necessary to break the symmetry between the four components of
an additive quadruple, by restricting the second component to a tiny Bohr set, the
third component to a larger Bohr set, and the first and fourth components to an
even larger Bohr set. More precisely, given an additive quadruple ag = (a(1).0.
amy,0, 4@3),0, A@4),0) € Q, a subset S CZ/pZ,andradii 0 < rp <r3 <rg <
1/2, we say that a random additive quadruple a = (a(1), a(2), a3), a@)) € Q
is centred at aop with frequencies S’ and scales ry, r3, r4 if ap), ag3), ag) are
drawn independently and regularly from a0 + B(S’, r2), a@).0 + B(S', r2),
and a(),0 + B(S', rp) respectively. Note that this property also describes the
distribution of a(y), since we have the constraint

ag) =a@E) tag —age).

In practice, r4 will be much larger than r;, r3, so (by Lemma 4.4) a() will
be approximately regularly drawn from a1y o + B(S’, r4), but will be highly
coupled to the other three components of the quadruple (in particular, it will stay
close to a(4)). We thus see that for i = 1,2, 3, 4, each a; is either exactly or
approximately drawn regularly from a0+ B(S’, r;), where [; € {0, 1, 2} is the
quantity defined by the formulae

I :=0; Iy :==2; I3 :=1, Iy == 0. 9.9)

COROLLARY 9.5. Let the notation and hypotheses be as in Theorem 8.1, and
let Q2 and & be as in Theorem 9.2. Then there exists a random additive quadruple
a € Q centred at some quadruple ay € Q with frequencies S and scales p; 3,
02.1, 2.0, such that a € Q* N (Q\ BQ) with probability > n°W,

Proof. Let hy, ko, b}, K,, np 1,ny 2 be drawn independently and regularly
from B(S, 02,0), B(S, 02,0), B(S, p2,0), B(S, 02,0), B(S, p2,1) and B(S, p2,2)
respectively. From Theorem 9.4, we have

(hy —h), ko — k5, hy — Kb, ky —h)) € 2N (Q\BQ)

with probability 31, Using Lemma 4.4, we may replace kj by ki — my 5,
and similarly replace hy by hy +n» | — nz 2, to conclude that

(hy —h) +mp 1, ky — K, +mpo, hy — Kk, +my 1, ky —h)) € QYN (Q\BQ)
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with probability 372, By the pigeonhole principle, we may thus find ks, kj,
hy € 7/ pZ such that

(hy —hy +my 1, ko — kb +mp0, hy — kb +mp1, ko —hy) € *N(Q\BQ)

with probability 37" The left-hand side is an additive quadruple centred at
(ha, ky — kY, hy — k), k2) with frequencies S and scales 02,2, 02,1, 02,0, and the
claim follows. O

9.6. Third step: § is approximately linear 99% of the time on a rough set.
The next general step in the standard inverse U3 argument is to upgrade this
weak additive structure, which is of a “1 percent” nature, to a more robust “99
percent” additive structure. There are two basic ways to proceed here. The first
way is to invoke the Balog—Szemerédi—Gowers theorem [1, 11], followed by
standard sum set estimates including Freiman’s theorem (see e.g. [33, Ch. 2]).
It is likely that this approach will eventually work here, but these results need
to be localized efficiently to Bohr sets, and also to allow for the fact that
&(aqy) +&(a@)) —&(a@)) —&(aw) no longer vanishes, but instead has controlled
word norm. This would require reworking of large portions of the standard
additive combinatorics literature. We have thus elected instead to follow the
second approach, also due to Gowers [12], in which a certain probabilistic
argument is used to “purify” a 1 percent additive map to a 99 percent additive
map, albeit on a set that has no particular structure itself. To deal with this set we
will use a more recent innovation, namely a variant* of the arithmetic regularity
lemma [13], [18] to make the subsets of Z/pZ on which one has good control of
& suitably “pseudorandom” in the sense of Gowers.

We turn to the details. We first locate a reasonably large quadruple of sets
Ay, A@), A@3), A on which & is “almost a Freiman homomorphism” in the
sense that most quadruples falling inside A1y x A(2) X A3) X A4) are somewhat
good. We call an additive quadruple (a(1), a¢), a3y, aw)) € Q very bad if

1
& (aq)) + &(ae)) —&(a@E) —E(aw)lls > P (9.10)

and let VBQ C BQ denote the space of all very bad additive quadruples.

THEOREM 9.7. Let the notation and hypotheses be as in Theorem 8.1, and
let Q and & be as in Theorem 9.2. Let a be the random additive quadruple from
Corollary 9.5. Then there exist sets A1y, A@), A@3), A4y C Q2 such that

EW (@) » n© o0, 9.11)
where W : Q — R is the weight function

W (@) = 14 x A0 x A xAm @1 — 17 101y50@@)). (9.12)

4 The actual arithmetic regularity lemma, which creates arithmetic regularity on almost all regions of
space, has quantitative bounds of tower-exponential type, which are far too poor for our application;
however we will only need to create a single neighbourhood in which arithmetic regularity exists, and this
can be done with much more efficient quantitative bounds.
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The idea here is that W is a weight function that strongly penalizes very bad
quadruples, and so Theorem 9.7 is asserting that “most” of the quadruples in
Ay x Ay x A@gy x A are not very bad.

Proof. We will construct the sets Ay by the probabilistic method, adapting
an argument from [12] in which the A(;) are created by applying a number
of random linear “filters” to the graph of & to eliminate most of the additive
quadruples that are not (almost) preserved by &.

We turn to the details. Let m be the integer

log n©!
mo=| —21_| 9.13)
31og 100

We then select jointly independent random variablesh; € Z/pZ and A ; € Z/pZ
for each for j = 1,...,m, by selecting each h; regularly from B(S, p2), and
selecting A ; uniformly at random from Z/pZ; we also choose these random
variables to be independent of a. For j = 1, ..., m, we then let &; : Z/pZ —
R/Z be the random map

~ Ajn
Ei(n) :=&mh; + 7 9.14)

and then define the random sets

m
Aw =) Aw.
j=1

fori =1, 2,3, 4, where

A, =Aw,j=Ap),j={neQ:IE0lr/z < 55}
and
Aw,j = {n € Q:E;j(n)|r/z < 1%}
We will show that

]EIA“) ><A(2) XA(3) XA(4) (5) >> 770(1) 100_3”” (915)

and
E1 A xAp x A x A, @) 1BQ(@) < 27" x 100" (9.16)

which will give the claim thanks to (9.13) and (9.12), if C| is large enough.
We first show (9.15). By Corollary 9.5 and linearity of expectation, it suffices
to show that
P(ag) € Ag fori = 1,2,3,4) > 100" (9.17)

whenever (a1, a), a3y, ag)) lies in Q*n (Q\ BQ). Actually, we will only
show the weaker assertion that (9.17) holds for all but at most O (m?® pz) of
the available additive quadruples (a(1), a@2), a). a4)); this still suffices, since
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by (4.3), (9.1) each exceptional additive quadruple is attained with probability
o/ ,030 (&) p?), and the additional factor of p will dominate all the losses in
m, K, p3 thanks to (8.3), (9.13).

Fix an additive quadruple @ = (a(1y, a2), a3, aa)) in Q% N (Q\ BQ). The

left-hand side of (9.17) factors as

m
1_[ Plagy € Ay fori =1,2,3,4) (9.18)
j=1
so it will suffice to show that foreach j = 1, ..., m, one has

1
P(ag) € Ag,j fori =1,2,3,4) > 1007 — 0<—)
m

for all but O(m%WYp?) quadruples (a,aw),aa), aw) € Q\BQ. Note
however that from (9.14) we have

Ei(aq)) + Ejlap) — Ejaz) — Ejlaw)
= (&(aq)) +&(ap) —§(az)) — &(aw))h;
and hence by the hypothesis (a(1), a(2), a), a@4)) € Q\ BQ and the range of h;
we have

1
gz 100

Eilaq)) + Ejlap) — Ejaz)) — Ejlaw)
P

(for example). In particular, we see from the triangle inequality that the claim
a4y € Ay, ; is implied by the claims a(;y € A(;, j fori =1, 2, 3. Thus it suffices
to show that

1
Plag) € Agy,j fori =1,2,3) > 10077 — 0(_>
m

for all but O(m%W p?) triples (a(1), ap), ag)) € (Z/pZ)3, noting that a) is
determined by a(1), a(2), az). We can write the left-hand side as
IP,((S(Cl(l)), £(aw)), E(azy)hj + (aqy, aw), az)A;
p

where we view the interval [—1/200, 1/200] as a subset of R/Z. Thus it will
suffice to show the equidistribution property

) ) A' _ 1
inf P((a(l) 42 46D} 41 200, 1/200]3) > 10073 — 0(—).
xe(R/Z)? p n

€ [—1/200, 1 /200]3>,

Let ¢ : (R/Z)*> — [0, 1] be a Lipschitz cutoff supported on [—1/20, 1/20]° that
equals one on [—1/200+1/m, 1/200— 1/m]? and has Lipschitz constant O (m).
Then we may lower bound the left-hand side by

. (awy, a@), a@))r
inf EAGZ/pw(M - x). (9.19)
xe(R/7Z)3 P
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By standard Fourier expansion (see e.g. [17, Lemma A.9]), we may write

1
v(y) = >, cre(k - y) + O(Z)

keZ?:k=0(mOW)

forally e (R/ 7)3 and some bounded Fourier coefficients ¢y = O(1); integrating
in x, we see in particular that ¢p = 1073 + O(1/m). We may thus write (9.19)
as

_ 1
1077 + 0(;) + 0( > [Exez/pzepk - (aq), a), a(3>)k)|)
keZ3\{0}:k=0(mOM)

which gives the desired claim as long as there are no relations of the form

k- (aqy, a@y.a3) =0

for some non-zero k € Z3 with k = Om°W). But it is easy to see that the
number of (a(1y, a(2), ac3)) with such a relation is O (m ) p?), thus concluding
the proof of (9.15).
Now we show (9.16). By linearity of expectation as before, it suffices to show
that
Plagy € Ay fori =1,2,3,4) < 27" x 100"

for all but O(mPWM p?) of the quadruples (a1, a(2), ag), aw)) in VBQ. Using
the factorization (9.18), it suffices to show that for each j = 1, ..., m, one has

1
Plagy € Agy,j fori =1,2,3,4) <271 x 1007 + 0(—)
m

for all but O (m 9" p?) of the quadruples (a(1), a¢2), ag), a@)) in VBQ.
The left-hand side may be written as

P((S(a(l)), .. &@a@)h;
p

+ak; € [—1/200, 1/200]° x [—1/10, 1/10]),
which we bound above by
P((é(a(l))» £(a@), Ea)h; + (aqy, ap), az)r; € [—1/200, 1/2007°,

;)
g o I
Rz 8

where o := &(aq)) +&(aw)) — &(a@)) — §(aw)). By arguing as in the proof of
(9.15), we see that after deleting O (m°( p?) exceptional tuples, one has

O'hj
p

1
sup  P((aqy, aq), agy)r;j € x +[—1/200, 1/2001%) < 100~ + 0(—),
xe(R/Z)3 m
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so by Fubini’s theorem and the independence of h; and A ; it will suffice to show

that
1 . 1
P << )<27'+o(—).
R/Z 8 m

However, by Lemma 4.6 and the hypothesis (a(1), a(), a@3), a@) € VBQ we
may find 4 € Z/pZ such that

O'hj
p

oh
p

> K9 nl|sLp3.

R/Z

In particular, & is non-zero. By repeatedly doubling / until ||nh/p|r/z exceeds
}L, we may also assume that

>

12Hﬂ
2 P lr/z

=

and thus

hlls: < KO ps.
From Lemma 4.4 we conclude that

h; h;
(|75, < 0) e (15, <) o ()
p R/Z 8 P lr/z 8 m

But from the triangle inequality we see that the events ||n(h; + h)/plir/z < %,

inh;/plr/z < % are disjoint. The claim follows. ]

9.8. Fourth step: the rough set is pseudorandom in a Bohr set. The sets A
provided by Theorem 9.7 are currently rather arbitrary. In particular we have no
control on the pseudorandomness of these sets (as measured by local Gowers U?>
norms) in the Bohr sets we are working with. However, it is possible to use an
“energy decrement argument” to pass to smaller” Bohr sets in which the sets Ay
do enjoy good pseudorandomness properties, basically by converting any large
Fourier coefficient of any of the A(;) in a Bohr set into a refinement of the Bohr
sets (which add the frequency of the large Fourier coefficient to the frequency
set §) on which the indicator function 14, has smaller variance. Furthermore,
it is possible to shrink the Bohr sets in this fashion without destroying the
conclusion (9.11) of Theorem 9.7.

Here is a precise statement.

5 This is somewhat analogous to the variants of the Szemerédi regularity lemma [31] in which one locates
a single regular pair inside an arbitrary large random graph. In contrast to the full regularity lemma that
strives to ensure that almost all pairs are regular, the “one regular pair” versions of the lemma enjoy
significantly better quantitative bounds. In our current application, such good quantitative bounds are
essential, so we cannot appeal to analogues of the regularity lemma such as the arithmetic regularity
lemma of the first author [13].
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THEOREM 9.9. Let the notation and hypotheses be as in Theorem 8.1, and let
Q and& be asin Theorem 9.2. Let A(1y, A, A@3), A@4), W be asin Theorem 9.7.
Then there exists a natural number j, j < n_103c', an additive quadruple a; =
(a(l),l, ao),1, 4Q3),1, a(4)’1) € Q and a set S, S C S1 C Z/pZ with |S1] <
|S| + Jj, with the following properties.

(i) (Few very bad quadruples) We have
EW@) > n+o0, (9.20)

where a is a random additive quadruple centred at a, with frequencies S

and scales 3 j12, p2,j+1, and p3 ;.
(i) (Local Fourier pseudorandomness) For eachi = 1,2, 3, 4, we have

IE f; (agy +ho + hy) fi(ag) +ho +h)) fi(ag) + hy +hy)
x fi(ag +hy +h))| < !0,

where f; : 7/ pZ — [—1, 1] denotes the balanced function

filaw)) == 1a, (a@) — ai, 9.21)

o; denotes the mean
o = EIA(I.) (a([)), (9.22)

and where ag;y and hy, hy, hy, W are drawn independently and regularly
from the Bohr sets ag),1 + B(S1,02,j+;) and B(S1, p2,j+10),
B(S1, p2,j+10), B(S1, p2,j+11), B(S1, p2,j+11) respectively, with the
quantity l; given by (9.9).

Proof. We will formulate the “energy decrement” argument here as a “score
maximization” argument. Define a 4-neighbourhood to be a tuple

N = (al7 j9 Sl)a

where a; € Q is an additive quadruple, j is a natural number between 0 and
n_103cl, and S is a subset of Z/ pZ containing S with |S1| < |S| 4 j; we refer
to j as the depth of the 4-neighbourhood N. Given such a neighbourhood, we
define the score Score(N) of the 4-neighbourhood to be the quantity

4
Score(N) := EW (a) — n*¢! ZEi (N) — n10°C1j, (9.23)
i=1

where a = (a()), a(2), a(3), a4)) is a random additive quadruple centred at d;
with frequencies Sy and scales p2 j12, 02,j+1, p2,j, and E; is the energy-type
quantity

E;(N) := Var 15, (a()). (9.24)
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If we define Ny to be the 4-neighbourhood
No := (do, 0, 5),

then Theorem 9.7 tells us that

Score(Np) > n<1+oM), (9.25)
‘We choose
N := (a1, j, S1)
103C,

to be a 4-neighbourhood that comes within n
the adjusted score. Then we must have

(for example) of maximizing

Score(N) > Score(Ny) — n103cl > nc1+0(1)

which from (9.23) implies the bound (9.20), as well as the bound

i< 77_103C‘ —103

(for example). It will then suffice to show that property (ii) of the theorem holds.
It remains to show (ii). Leti = 1, 2, 3, 4, and write
ar = (aqy,1,a@),1, 43,1, a@,1)-

Suppose for contradiction that

|E /i (ai)+ho+h1) fi (ag)+ho+h’) fi @) +hg+h) fi g +hg+h))| > 7',

(9.26)
where f; is given by (9.21), and ag;, ho, hjy, hy, h} are drawn independently
and regularly from the Bohr sets a1 + B(S1, 02,j+;), B(S1, p2,j+10)

B(S1, p2,j+10)> B(S1, p2,j+11), B(S1, p2,j+11), with /; given by (9.9).
We will use (9.26) to construct a random 4-neighbourhood N of depth j + 20
obeying the estimates

EWN) = W(N) + 0(n'") (9.27)

and
EE;(N) < Ex(N) — n"C 1, + 0" 9.28)

for i’ = 1,2,3,4. If we have the estimates (9.27), (9.28), we conclude from
(9.23) and linearity of expectation that

E Score(N) > Score(N) + nf’oocl,

contradicting the near-maximality of Score(N).
It remains to construct N obeying (9.27), (9.28). We begin by noting that for
each a¢y € Z/ pZ, the Gowers uniformity-type quantity

E fi(aiy +ho + hy) fi (agy +ho +h)) f; (ag) + hy + hy) f; (ag) + hg + h))
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can be factored as
> Phg = ho. by = ho)[E fi (ag) + ho +hu) fi(ag) + hg +hp)
ho,hj,

and thus takes values between 0 and 1. By (9.26) and Lemma 2.2, we may thus
find aset E C Z/pZ with

IP’(a(i) e E)> n100C1
such that

E f;i(agy + ho + hy) fi (aiy + ho + ) fi (ai) + hy + ) fi(ag) + hy +h)
> n100C

for all ay € E. Applying Theorem 4.12, we may thus find, for each a;) € E, a
frequency & (a(;)) € Z/pZ such that

> Py = no)EIE i (ag) + no + mi)e, (=& (@g)mp)|* 3> n'%¢,

no

where ng, n; are drawn independently and regularly from B(Si, 02, j,+10) and
B(S1, p2,j,+11) respectively, independently of the a;).

If we define & (a(;)) arbitrarily for a¢y ¢ E (e.g. setting & (a(;)) = 0), we thus
have

Z P(ng = no, ag) = a@)EE(fi(ag) + no + e, (—E(ag)m))|?

n0,A()

> n200C1 .

In particular, there exists a 1-bounded function g : Z/pZ x Z/pZ — C such
that

IEg(ng, a)) fi (@) + no + ny)e, (—£(ag)ny)| > 77001, (9.29)

We now construct the random 4-neighbourhood N as follows. We first
construct a random additive quadruple k = (ki, ko, k3, kq) centred at the
origin (0, 0, 0, 0) with frequency set S; and scales 02 j11044,—1;5 02, j+10413—1;»
02, j+10+14—1;» and independent of all previous random variables. We then set

N:=@+Kk, j+20,5 U{E@p))).

It is easy to verify that N is a (random) 4-neighbourhood.
We now verify (9.27). The left-hand side of (9.27) can be expanded as

EW@ +k + h),

where, once a and K are chosen, the random additive quadruple h= (h, hy, hs,
hy) is selected to be centred at (0, 0, 0, 0) with frequencies S; U {§(a(;))} and

scales 02, j+22, 02,j+21, £2,j+20-
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From two applications of Lemma 4.4 (and the fact that W = 0 (n~€1/100y),

we have
EW@+K+h) =EWG+K) + 00N =EW@ + 00"

(for example). The claim (9.27) now follows from (9.23).
Now we verify (9.28). By (9.24), we have

E/(N) =Y P@=a.k=kE|la, (a@) + ki +hi) —a; 5 7l
a.k
where @ = (aq1y, .. ., a@), k = (ki, ..., ka), and @, ; 7 is the quantity
oy a0 =Ela, (agy + kit +hy). (9.30)
By Pythagoras’ theorem, we thus have
E/(N) =Y P@=a.k=KbE|la, (ap) + ki +hy) —ail* = |ey ;  — il
ak
where «; is defined in (9.22). We shall shortly establish the bound
ey g1 — e > 0 . (9.31)
Assuming this bound, we conclude that
s a2 2
EE/(N) < Y P@=ad.k=KkE|la, (au) + ki +hir) — ey

ak
=Ella,, @) + ki +hi) — i = % 1y
By applying Lemma 4.4 twice as in the proof of (9.27) to replace a(;) + k;s +h;
by ar) for i’ = 2,3,4 (and by using Lemma 4.4 six times for i’ = 1, after

writing ay) in terms of a(z), a(3), a4), and similarly for Ky and h(;)) we thus
have

3
EEi(N) < Ella,, @) — ail* =i + 0! ).

This will give (9.28) as soon as we establish (9.31). This is trivial for i’ # i, so
suppose that i = i. By (9.30) and (9.21), it suffices to show that

Y PG =a.k=K)IEfi(ag + ki +h)? > 5", (9.32)
a.k
To prove this, we introduce random variables ng, n; drawn independently and

regularly from B(Sy, p2,j+10) and B(S1, p2,j+11) independently of all previous
variables. From (9.29) we have

IEf; (i) 4+ 0o + n1)g(ng, agy)e, (—£(agy)ny)| > 720
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for some 1-bounded function g. After using Lemma 4.4 to compare nj and n; +
h; for each fixed choice of ng and a;), we conclude that

IEf; (ag) +no + 01 +hy)gng, ag)e,(—& (@) My + hy))| > >0,

But we have

< lhills,ug@e)) <K Pj+1420

” &(ag))h;
p R/Z

and hence by (2.2)

ep(—&(ag))(my +hy)) =e,(—&(ag))ny) + 0(,)1036’1)‘

We conclude that

IE(f; (a(i) +ngp +n; + h;)g(no, a(i))ep(_g(a(i))nl)ﬂ > 77200Cl )

For fixed choices of a(;), h(;, ny, we see from Lemma 4.4 that k; and ng + ny
differ in total variation by 0(77103C1 ). Thus we have

IE(fi(ag) + ki +h)g(k; —ny, ag))e,(—E(@g)ny))| > n>0C,

and the claim now follows after using Lemma 2.1 to eliminate the g(k; — np,
agy)ep(—&(ag))ny) factor. .

A useful consequence of the bounds in Theorem 9.9(ii) is the following weak
mixing bound, which roughly speaking asserts that the convolution of 14, with
a bounded function is essentially constant.

LEMMA 9.10. Let the notation and hypotheses be as above, and let Q2 and &
be as in Theorem 9.2. Let A(yy, ..., Aw) be as in Theorem 9.7, and let j, a(y),+,
e, a@) % 51, f1, ..., fa be as in Theorem 9.9. Then for any i = 1,2, 3,4, any
l; < m < 10, and any 1-bounded function g : 7./ pZ — C, one has

> Pm=nEfi(n—Kkgk)* < ', (9.33)

where n, K are drawn independently and regularly from a;) « + B(S1, p2,;) and
B(S1, p2, j+m) respectively. Dually, for any 1-bounded function G : 7./ pZ — C,
one has
2 _Pk=DIEfi@n—kHGm)| <. (9.34)
k

Proof. In preparation for invoking Theorem 9.9(ii), we introduce random
variables hg, hy, h/1 drawn independently and regularly from B(S1, 02,j,+10),
B(S1, p2,j,+11), and B(Sy, p2,j.+11) respectively, independently of n and k.
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Using Lemma 4.4 to compare n, k with n + hg, k — hj respectively, we may
transform (9.33) to the estimate

> P =n,ho = ho)|E(fi(n + ho — k — h)g(k — h1)|* <« 7.

n,ho

By the triangle inequality in L2, it thus suffices to show that

> P =n,ho = ho)|E(fi(n + ho — k —hp)g(k —hp)[> < n”° (9.35)

n,ho

for all k € B(S1, 02, j,4m)-
Fix k. We may expand out the left-hand side of (9.35) as

Ef;(n+hy —h; —k)g(k —h)) fi(n+hy — W, — k)g(k — h)).

Using Lemma 4.4 to compare n with n +hg — h; —h} — k, we can thus rewrite
(9.35) as

IEf;(n 4 ho +h))g(k —hy) fi(n 4+ ho + hy)g(k — h})| <« n°°C1,

which by the triangle inequality and the 1-boundedness of g would follow from

> Pm=nh;=hi, W =h)Efi(n+ho+h)) fi(n+ho+ k)| < nC,
n,hl,h/l

which by Cauchy—Schwarz will follow in turn from

Z Pm=n,h =hy, /1:h1)|Efl(n+h0+h/1)fl(n+h()+h1)|2 < nlOOCI.
n,hy,h}

But this follows from Theorem 9.9(ii) (relabelling n as a;)).

Finally, we show (9.34). By subtracting EG(n) from G (and dividing by 2
to recover 1-boundedness), we may assume that EG(n) = 0. It then suffices to
show that

> Pk =kg®ELy, 0~ HGm) <« ™
k

for any 1-bounded function g. But the left-hand side may be rearranged as

D P =nGn)(Ela, (n —kgk) —oEg(k)) < n*>,

and the claim follows from (9.33) and the Cauchy—Schwarz inequality. (]
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9.11. Fifth step: a frequency function &' that is approximately linear 99% of the
time on a Bohr neighbourhood. The next step is to obtain additive structure on
almost all of a Bohr neighbourhood, rather than just the subsets A ;.

THEOREM 9.12. Let the notation and hypotheses be as in Theorem 8.1, and
let & be as in Theorem 9.2. Let Ay, ..., Aw) be as in Theorem 9.7, and let j,
aay,1,awo),1,aay,1, a@),1, S1, &1, ..., a4 be as in Theorem 9.9. Let ay € 7/ pZ
be the quantity

aj = aq,1 +a@e),1 =aga),1 taw,,

and let a and a(p) be drawn regularly and independently from ay + B(S1, p2,;)
and a1 + B(S1, p2,j+2) respectively. Then there is a function §' : 7/ pZ —
7] pZ, such that with probability at least 1 — O (n€1/2%0), the random variable a
attains a value a for which we have the estimates

Ela, (@) la,, (@ —a@) = ajan + 0(n*), (9.36)

and

1
HD(“ —ap) € Aqyae) € A 1§ (@) —§(a —ap) — &@p)ls > E)
< /0. (9.37)

Proof. Let a be drawn regularly from a; + B(S1, p2,;), and let (a(y), ae),
), a(4)) be a random additive quadruple centred at (a(l),l »4(2),1, A(3),1, A(4), 1)
with frequencies Sy and scales 0 j12, 02,j+1, P2, j, independently of a. From
the definition of an additive quadruple, we have a(;) = a3y + a@) — a(2). From
Theorem 9.9(i) we thus have

EW (ag) + a4 — a). a2). a3), a@) > ' 700, (9.38)

From Lemma 4.4 we see that once we condition a2y and a(3) to be fixed, aw)
and a — a3y differ in total variation by O (n'%°€1). Thus we may replace ay by
a — a3) in (9.38) to conclude that

EW(a—ap),ap),a3),a—ag) > nc1+0(1).
If we then define
o :=Ela,(@—ap)la,@2)las@a)lay@—ag)
then from (9.12) we see that
o > nCtom (9.39)

and

Ela, (@a—ap)la, @2)lag@az)la,@—aa)
x lvo(@ — a), a@), @), a —a@) < n~V'%. (9.40)

https://doi.org/10.1112/50025579317000316 Published online by Cambridge University Press


https://doi.org/10.1112/S0025579317000316

1020 B. GREEN AND T. TAO

We can express o in the form
o =Egia(a)gaa(a),
where g12, g34 : Z/p/Z — R are the functions
g12(a) :=Ela, (@ —ap)lay (@)
and
ga(a) = Elg; (@) lay (@ —ag)).
From Lemma 9.10, we have

D Pm=n)Efi(n — k)4, @)1+ k) <

n

(9.41)

(9.42)

if n, k are drawn independently and regularly from a(;) 1 + B(S1, p2,;) and B(Sy,
02, j+m) respectively. Note that the pair (n, K) has the same distribution as (a —

awo),1,a@2) — aw),1), thus

Z]P’(a =a)[Efi(a —ap)la, (ap)* < 0.
a

From (9.21), (9.22), (9.42) we have

Efi(a —ap))lay (@) = gi2(a) —ajaz
and thus
3P = )lgia(@) — el < .
a

Similarly we have

Y P(a=a)lg(a) — azau|* < 0.
a

From Cauchy—Schwarz and the triangle inequality we conclude that

Y P(a=a)lgin(a)g(a) — armazas] K 0>,
a

and hence by (9.41) and the triangle inequality

o = ajoa3os + O(nzscl).
In particular, from (9.39) one has
ajaaazay > nC oW,
From (9.45), (9.46) and (9.40) we have
Eh(a) < nC‘/100a1a2a3a4,
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where
h(a) = EW(a —awY),a),a3),ad — a(3)). (9.47)

By Markov’s inequality, we conclude that we have
(@) < </ a 00304 (9.48)

with probability 1 — O (n€1/29)_ Similarly, from (9.43), (9.44) and Chebyshev’s
inequality we also have

g12(a) = ajop + 0 (1) (9.49)

and
g34(a) = azay + O (n*C) (9.50)

with probability 1 — O (n€1/200),
Now let a be a value of a be such that (9.48)—(9.50) hold. From (9.50) we
have in particular that

Elag (@@)lag (@ —ag) > azo;

comparing this with (9.48) and (9.47), we see that we may find a3)(a) € A
(depending only on a) with a — a3)(a) € A, such that

Ela, (@ —a@p)lay (@) lveola —ap), aw), as)(a), a —az)(a))

& 7620 gy,
If we then set £'(a) := £(a3)(a)) + &(a — a(3)(a)) (and define £’ (a) arbitrarily
when (9.48), (9.49), or (9.50) fail), then the claims (9.36), (9.37) follow from
(9.49) and the definition (9.10) of VBQ. O

The function & has better additive structure than &, in that it respects almost
all additive quadruples in a Bohr set, rather than almost all additive quadruples
in a rough set. More precisely, we have the following.

PROPOSITION 9.13. Let the notation and hypotheses be as in Theorem 9.12.
Suppose that a, a’, h are selected independently and regularly from a; + B(S1,
02,j), a1 + B(S1, p2,;), and B(S1, p2,j43) respectively. Then with probability
1 — 0 (€729 we have

4
E'(@ —&'(a+h) —&'@)+&@ +h)s < oy 9.51)

Proof. Leta() be drawn regularly from a(2),1 + B(S1, 02, j+2), independently
of a,a’, h. For each a,d’,h € Z/pZ, let 1, o, denote the random indicator
variable

Liah = 1ag@2)1an @) + M) 1ag (@ —a@)lag (@ —aw).
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Suppose that we can show that with probability 1 — O (n€1/2%0), the triple
(a, a’, h) attains a value (a, a’, h) for which one has the estimates

Ely o > 09703, (9.52)

Elo.a'h e @)—&ta-a)—E@a) s> 1/ps < 0-lafa, (9.53)
Elo.a 1/ (@)~6(@/—a)—t@als>1/p; < 01003, (9.54)
Elo.a' L5/ @b —£(a-ac)~E @y +h) s> 1/ps < 0-l7a3, (9.55)
Elo,a'.n Lg (@+h)—&(@ —ae)~E@p +hlls>1/py < 0.1ajas. (9.56)

Assuming these estimates, we conclude from the union bound that with
probability 1 — o</ 200y the random variable (a,a’,h) attains a value
(a,a’, h) for which there exists at least one element a() of Z/pZ obeying
the constraints

ap),ae) +h € A,
a—aep), a/ —aeo) c A(]),

1
€' (@) — &(a — a@)) — E(ap)lls < —,
03
1
1" (@") — &@@' — ap) —&@@p)lls < —,
03
1
1" (a + h) —&(a —ap)) —&ap) +h)lls < o
1
1€ (@’ + h) —&@@" —ap) —&(ap) + h)ls < s

and (9.51) then follows from the triangle inequality.
It remains to establish (9.52)—(9.56). We first prove (9.53). By Markov’s
inequality, it suffices to show that

C1/200 2 2
Ela o n L /@) —&(a—ac) —&@o)ls>1/0s < 1°7 2P atos.

We rewrite the left-hand side as

Egi(a@)g2(a2)ap @2)a, @ —a2) 1z @-t@-ap)—@e)ls>1/03
where
g1(a@) == Ely, @ —aep)
and
g2(a@)) = Ela, (a@) +h).
But from (9.37) we have

C1/200

Elay @) 1ag, @ —a@) g @-t@-an)—t@o)ls>1/m K1 ooz,

from Lemma 4.4 one has

gi1(ap) = + 0 (')

and from (9.33) one has

2(@) =a + 0n'%)
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with probability 1 — O ('¢1) (for example), with the trivial bound glap) =
O (1) otherwise, and the claim (9.53) then follows from (9.46).

The proofs of (9.54)—(9.56) are similar to (9.53) and are omitted. It thus
remains to prove (9.52). From (9.34) and Markov’s inequality, we see that with
probability 1 — O (€1/290), the random variable h attains a value 4 for which

Elo, (a2)1ag @@ + 1) > 0.9903.
For any & obeying this inequality, define E(h) C Z/pZ to be the set
E(h) :=Ap) N(Ap) —h),

so that
P(a@) € E(h)) > 0.99a3.

By (9.33) and the Chebyshev inequality, we conclude that with probability 1 —
0 (n©1/299) the random variable (a, h) attains a value (a, ) for which one has

P(aq) € E(h); a —agp) € Agy) = 0.98a103.
For any (a, h) of the above form, define E’(a, h) C Z/pZ to be the set
E'(a,h) :=E(h)N(a— Ay,

then
P(a@) € E'(a, h)) > 0.98a103.

By one last application of (9.33) and the Chebyshev inequality, we see that
with probability 1 — 0 (n€1/29) the random variable (a’, a, h) attains a value
(a’, a, h) for which one has

P(a) € E'(a, h);d’ —ap) € A = 0.97aia3
which gives (9.52) as required. O

9.14. Sixth step: a frequency function &” that is approximately linear 100% of the
time on a Bohr set. 'We now use a standard “majority vote” argument to upgrade
the “99% linear” structure of £’ to a “100% linear” structure of a closely related
function £” (cf. [5]). More precisely, one has the following.

THEOREM 9.15. Let the notation and hypotheses be as in Theorem 8.1. Let
j, 81 be as in Theorem 9.9, and let a|, &' be as in Theorem 9.12. Then there is a
function & . B(S1, p3) — 7/ pZ such that
" " " 24
1§87 (n+m) — &7 (n) — " (m)|ls < . (9.57)

for all n,m € B(S1, p3/2), and such that for any n € B(S1, p3), if a is drawn
regularly from ay + B(S1, p2,;), one has

/ / 4 8
I§(a) =& (a—n) =& (n)lls < s (9.58)
with probability 1 — O (n©1/209).
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Proof. Let a,h be drawn independently and regularly from a, + B(Si,
02,) and B(Sy, p2, j+3) respectively. From Proposition 9.13 and the pigeonhole
principle, we may find a(, € Z/pZ such that

4
P(us’(a)—s’(a+h>—s’<a5>+s’(a()+h)||s < E) > 1-0n“?™). (9.59)

Fix this aj. Now let n by an arbitrary element of B(Si, p3). Then using
Lemma 4.4 to compare a with a — n and h with h + n, we obtain

4
IP’(IIS/(a —n)—§&'(a+h) — & (ay) +&(ap +h+n)s < E)
> 1= 0(nC1/2%0),

Combining this with (9.59) and the triangle inequality, we see that

8
P(lls’(a) —&g@-n)+&@y+h —&@+h+n)s < E)
>1-0@%).

Thus, by the pigeonhole principle, we may find h,, € Z/pZ such that

IP’(IIS/(a) —&'@—n)+E&(ay+ hn) — &' (ag+ hy +n)lls < %)
>1—-0@2%).
If we thus define
£"(n) :=&"(ay + hn +n) — &' (ay + n)

then we have obtained (9.58).
Now suppose that n,m € B(S], p3/2). From (9.58), we see that with
probability at least 1 — O (n¢1/2%) we have

€' (@) —&'(a—n) —&")|s <

8

03
8

1€ @) —&'(a—m) —§"(m)||s < —,
03

and .
I€'@) —&'@—n—m) —&"(+mls <

Using Lemma 4.4 to compare a with a — n in the second inequality, we also
conclude

/ i 1 8
I§'@—n)—&@—n—m)—&E (m)ls < P
with probability 1 — O (n€1/290). Thus there is a positive probability that the first,
third, and fourth estimates hold simultaneously, and the claim (9.57) follows

from the triangle inequality. (]
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The function &” is still closely related to &, and in particular a variant of the
correlation estimate (9.3) is obeyed by &”.

PROPOSITION 9.16. Let the notation and hypotheses be as in the preceding
theorem. Then there exist ay € B(S, 3p2) and &y € 7/ pZ such that

> P = ng.n = m)[Ef (o +h +ag — n) f (no + e, (" (n) — E)h) 2

no,n

> nCrrom,

where n, ng, h are drawn independently and regularly from the Bohr sets B(Sy,
p3/4)> B(Sa 100)! B(Sl ) 104) respeCtively‘

With this proposition and the previous theorem, we may now safely forget
about the original function &, and work now with £”; the parameters a;, j will
also no longer be relevant.

Proof. Letn, a, a2y be drawn independently and regularly from B(S1, p3/4),
a1 + B(S1, p2,j), and B(Sy, p2, j4+2) respectively. From (9.58) we have

1
€' (@) —&'(a—m) — ") ls < —
03

with probability 1 — O (n€1/2%). Similarly, from (9.36), (9.37), (9.46) we see
that with probability 1 — O (y€1/290), the random variable a attains a value a for
which

1
P(a —ap) € Aqyae) € A 1€ (@) —§(a —ap) —&@e)ls < E)
> oo,

Using Lemma 4.4 to compare a and a — n, we also see that with probability
1- O(ncl/zoo), the random variable (a, n) attains a value (a, n) for which

IP’(a —n—ap) € Ay ap) € A
, 1
(@ —n)—&@@—n—ap) —&@p)ls < p > .

From the union bound and Fubini’s theorem, we conclude that with probability
>aja, we simultaneously have the statements

a—n—ap) € A(]),

a) € A,
1
I€"(@) —&'(a—m) —&"m|s < —,
p3

1
|€(a—mn) —&@—n—ap) —&@p)lls < o
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and hence by the triangle inequality

1
I€(a) —§(@a—n—ap) —&ap) — "M < o

By the pigeonhole principle, we may thus find a, ap) € Z/pZ such that the
statements

a—n-—agp S A(l),
ap) € Aw),

1
IE"(@) —&(@ —n —a@) —&ap) — "M € o

simultaneously hold with probability >>ajop, and thus with probability
01190 thanks to (9.46). Writing ag := a — a) and & := £(ag)) — &'(a),
and recalling from Theorem 9.7 that Ay € S, we thus have

P(ag —n € S; [|E"(n) 4 £(ap — n) — &lls < 1/p3) > n©1 oD,

In particular, since n € B(Sy, p3/4) and S C B(S, 2p2), we have ag € B(S,

3p2).

Let ng, n; be drawn independently and regularly from B(S, pg), B(S, p1)
respectively, independently of all previous random variables. From the above
estimate and (9.3), we see that with probability >>,7C1+0(1)’ the random variable
n attains a value n for which the statements

ay—nesS (9.60)
" (n) + &(ap — n) — &lls, < 1/p3 9.61)

> Py = n)
x |Ef(no 4+ ny 4+ ag — n) f(no +ny)e,(—E(ao — n)np)|* = n/8 (9.62)

simultaneously hold.

Let n obey the above estimates (9.60)—(9.62). If we now draw h regularly
from B(S1, pa), then by using Lemma 4.4 to compare n; with n| + h in (9.62),
we obtain

Y P = no)|Ef (no +m1 +h+ap — n) f(ng +ny + h)

no

x ep(—E(ag —m)(my + ) >
and thus by the triangle inequality in L?

> P =ng,n; =n)[Ef(no+ni +h+ao—n)f(no+ni +h)

no,ny

x ep(—E(ap —n)(ny +h)> > 7.
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We may delete the deterministic phase e, (—&(ag — n)n) to obtain

> Pmg =no.n =n)[Ef(no+ni +h+ag—n)fno+ni +h

no,ni

x ep(—E(ag —m)|* > n.
Since h takes values in B(S, p4), we see from (9.61) that

ep(—E(ap —mh) = e, (£ () — &h) + O (')

(for example), and so

Y P(ng = no, ny = n)[Ef (no+ni +h+ag—n) f(no+ni +h)

x ep((E"(n) — E)h)|* > 1.

Using Lemma 4.4 to compare ng with ng + nj, we conclude that

Z P(ng = ng, my = n)[Ef (no +h +ao — n) f(no + he, (" (n) — £0)h) >

no,ni

>n.
Multiplying by P(n = n) and summing in n, we obtain the claim. O

9.17. Seventh step: derivatives of f correlate with a locally bilinear form. We
now pass to the “cohomological” phase of the argument, in which we remove
the error " (n +m) — &” (n) — &” (m) in the linearity of £&” that appears in (9.57).
This improved linearity of the form (n, h) — &(n)h in the n aspect will come at
the expense of the i aspect, which will now merely be locally linear instead of
globally linear. However, this is a worthwhile tradeoff for our purposes (and in
any event local linearity is more natural in this context than global linearity).

More precisely, the purpose of this subsection is to establish the following
result towards the proof of Theorem 8.1.

THEOREM 9.18. Let the notation and hypotheses be as in Theorem 8.1. Then
there exists a set Sy with S C S1 C Z/ pZ and |S1| < |S|+ O (n~ %€V, alocally
bilinear map

E : B(S1, p4) x B(S1, p4) - R/Z,

a shift a1 € B(S, 4p2), and a frequency &1 € Z/ pZ such that
> Py =ng, n; =n)

no,ni

— - gmy |
x |Ef(no+my +ap —ny) f(no +my)e c(nl,ml)—T

> partom 9.63)

if ng, my, ny are drawn independently and regularly from B(S, pg), B(S1, ps),
and B(S1, pe) respectively.
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Once the proof of this theorem is completed, the auxiliary data &, &', &”, j,
2, VBQ used in the previous parts of the section are no longer needed and may
be discarded.

We now prove Theorem 9.18. Let j,, S1 be as in Theorem 9.9, let ay, £’ be
as in Theorem 9.12, let §&” : B(S1, p3) — Z/pZ be as in Theorem 9.15, and
let ag, & be as in Proposition 9.16. We will use a “cohomological” argument to
construct the required bilinear map E. Namely, we define the cocycle n : B(Sy,
03/2) x B(S1, p3/2) — Z/pZ to be the quantity

p(n,my = §&"(n+m)y —&"(n) — " (m). (9.64)
Clearly (9.57) is symmetric, and we have the cocycle equation

u(ny, no +n3) + w(ng, n3) = p(ng, n2) + w(ny + na, n3) (9.65)

as well as the auxiliary equations

u(ng, ny) = u(ng, ny); n(ny,0) =0

whenever ny, n2, n3 € B(S1, p3/4). From (9.57) we also have the estimate
24
lun, m)lls < — (9.66)
P3

for all n, m € B(Sy, p3/4).
To construct the bilinear map =, we will show that a certain projection of p
is a “coboundary” is a certain sense. Let ¢ : Z5 — 7/ pZ be the homomorphism

$((ny)ses) == D nys.

seS

From (9.66), we see that for each n, m € B(S], p3/4) we have a representation
of the form

p(n,m) = ¢(iu(n, m)) (9.67)

for some lift ft(n, m) € 75 of size
|i(n, m)| < 24/p3. (9.68)

This lift fi(n, m) is only defined up to an element of the kernel ker(¢) := {p €
75 : ¢ (p) = 0} of ¢; to eliminate this ambiguity we will apply a projection. Since
S contains a non-zero element, ¢ : Z5 — 7/ pZ is a surjective homomorphism,
and in particular, ker(¢) is a sublattice of Z5 of index p. Applying Lemma 4.8,
we may find generators vy, . . ., v|s| of ker(¢) and real numbers Ny, ..., Njg >0
with

S|

[[Ni=0&)°®p (9.69)

i=1
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such that

Bgs (0, O(K) 7 /21ty Nker(¢) C {nivi + -+ + nysjvys) : |nil < 1N;)
C Bgrs(0, 1) Nker(¢) (9.70)

forallt > 0.
By relabelling, we may take the N; to be non-increasing. Let d, 0 < d < |S]|
be such that
03
—_—
exp(K 1)

From (9.69), (8.3) we see that d cannot equal |S|. Let V be the d-dimensional
subspace of RS spanned by vy, ..., vy, let V- be the orthogonal complement of
V in RS, and let 7 : RS — V< be the orthogonal projection.

We claim that 7 (fi(n, m)) is now uniquely determined by w(n, m) for n,
m € B(S1, p3/4). Indeed, if ft(n, m) and @' (n, m) both obeyed (9.67), (9.68),
then their difference (call it w) would be of magnitude O (1/p3) and lies in the
kernel of ¢. By (9.70) with t = exp(—KC1 )p3, we conclude that w lies in V, and
hence 7 (ft(n, m)) and 7 (i’ (n, m)) agree.

A variant of the above argument shows that 7 o [t also continues to obey the
cocycle equation.

Ny >--->Ny> Ngy1 = -+ 2 Nig|. 9.71)

LEMMA 9.19 (Projected lift is a cocycle). One has

m(i(ny, ny + n3)) + w(w(ng, n3)) = w(pn(ny, n)) + 7 ((ny + na, n3))
and additionally

m(it(ny, n2)) = w(a(nz, ny)); w(ii(n1,0)) =0
forallny, ny,n3 € B(Sy, p3/4).
Proof. By (9.68), the quantity w := ji(ny, no +n3)+(ny, n3)—i(ny, ny) —
f(n1 + no, n3) has magnitude O(1/p3); by (9.67), (9.65), w lies in the kernel
of ¢. Repeating the previous arguments, we conclude that w € V. Applying

the homomorphism 7, we obtain the first claim. The second claim is proven
similarly. 0

We can in fact make m o i a coboundary, after shrinking the domain
somewhat.

PROPOSITION 9.20 (Projected lift is a coboundary). There exists a map F :
B(S1, 2exp(—K ) p3) — VL with
K OCD)

F(n) < 9.72)

03
foralln € B(S1, 2exp(—K 1) p3), such that

m((ny, ny)) = F(ny +np) — F(ny) — F(ny)
forall ny,ny € B(Sy, exp(—K 1) ps).
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Proof. As a first attempt at constructing F', we introduce the average
Fi(n) := En(it(n, n3))

forn € B(S1, p3/4), where n3 is drawn regularly from B(S1, p3/4). From (9.68)
we have

24
|F1(n)| < —
03

for all n € B(Sy, p3/4). Also, since |S1| K KO©€D if we replace n3 by n3 in
Lemma 9.19 and take expectations using Lemma 4.4, we conclude that

N K9Cny g1
Fi(ny) + Fi(n2) = n(u(ny, n2)) + Fi(ng +n2) + O(Tl)
3

for all ny, ny, € B(Sy, p3/8).
If we now introduce the modified cocycle
o1(n1, n2) :=n((n, n2)) + Fi(ny + na2) — Fi(ny) — Fi(n2)
for ny, ny, € B(S1, p3/8), then we have the cocycle equation
o1(n1, n2 + n3) + o1(n2, n3) = o1(n1, n2) + o1(n1 + no, n3), (9.73)
the auxiliary equations
o1(ny, n2) = o1(n2, ny); o1(n1,0) =0

and the bound
KOyl g1
o1(ny, n) L ———5—+ (9.74)
P3
for ny, no € B(S1, p3/16).
We now make o7 a coboundary by using a basis for B(Si, p3/16). Set
d = |81| < K9, By Corollary 4.9, we can find ay, ..., aq of Z/pZ and

real numbers Ny, ..., N; > 0 such that
laillse < N 9.75)
foralli =1, ...,d, and such that for any a € Z/ pZ, there exists a representation
a=miay+ -+ mgaqg (9.76)
withmy, ..., my integers of size
mi < exp(O(K PN llall g1 (9.77)
fori =1, ..., d, with at most one such representation obeying the bounds |m;| <

Ni/2fori=1,...,d.
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By relabelling we may assume that N; > 32d’/ps fori =1,...,d and N; <
32d'/psfori =d'+1,...,d forsome0 < d <d.By(9.75) we have a; € B(S1,
03/32d’) for all i = 1,...,d . In particular, from (9.73) we see that for any
n € B(S1, p3/32)and 1 < i, j < d’, we have

o1(n1,a; +aj) +oi(a;,a;) =o1(ny,a;) +o1(n +a;, a;)
and hence by swapping i and j and subtracting

oi(ny +aj,a;) —oi1(ny,a;) =o1(n +a;,a;) —oi(ng, aj).

Let P C Z4 denote the collection of tuples (my,...,mg) € 74" with |m;| <
03/2N; fori = 1,...,d , and for eachm € P andi = 1,...,d, define the
quantity

fi(m) := o1(p(m), a;)
where ¢ : 74 — Z/ pZ is the homomorphism

d/
p(my,...,mg) = kaak-
k=1

Then from (9.75) we have ¢ (P) C B(S1, p3/32). The above identity then says

that the “1-form” (fi, ..., fu) is “closed” or “curl-free” in the sense that
film +ej) — fi(m) = fj(m +e;) — fj(m) (9.78)
wheneveri, j=1,...,d andm,m +e;, m +ej € P,whereey, ..., ey is the

standard basis for P. This implies that there exists a function H : P — V=
such that F(0) = 0 and f;(m) = H(m + e¢;) — H(m) wheneveri = 1,...,d
and m, m + ¢; € P. Indeed, one can define H to be an “antiderivative” of the
(f1, ..., fa) by setting

L—1
H(m) =Y fi(m)
=0
whenever 0 = my, ..., m; = m isapathin P withm;11 = m; + ¢; forl =0,

..., L —1; a “homotopy” argument using (9.78) shows that the right-hand side
does not depend on the choice of path. From (9.74), (9.75) we have

KOCD)
film) <
Nip3
form € Pandi = 1,...,d’, which on “integrating” (and recalling that d’ <
d <« K9©V)yimplies that
KOC)
H(m) K«
p3

forallm € P.

https://doi.org/10.1112/50025579317000316 Published online by Cambridge University Press


https://doi.org/10.1112/S0025579317000316

1032 B. GREEN AND T. TAO
Since 01(0, ¢;) = 0, we have f;(0) = 0 and hence H(¢;) = O foralli =1,
..., d'. Thus we have

o1(¢(m), p(ei))) = H(m + e;) — H(m) — H(e;)

whenever m, m + ¢; € P. An induction (on the magnitude of a vector m’) using
(9.73) then shows that

o1(¢p(m), ¢(m") = H(m +m') — H(m) — H(m")

whenever m, m’, m+m’ € P.Now, ifn € B(S;, Zexp(—Kclz)p), then by (9.76),
(9.77) we see that n = ¢ (m) for some m € P. If we then define F> : B(Sy,
ZCXp(—KC%)p) N by setting F>(n) := H (m), we conclude that

KO
F(n) K

03

and
o1(n,n') = Fa(n +n') — F2(n) — F2(n)

for all n,n’ € B(Sl,exp(—KC%)p). Setting F' := F, — F}|, we obtain the
claim. O

Let F be as in Proposition 9.20. We use F to construct the locally bilinear
form E : B(S1, pa) X B(S1, pa) — R/Z as follows. We first define the locally
linear map ¢ : B(Sy, pg) — RS by the formula

().,

where x — {x} is the signed fractional map from R/Z to (—1/2, 1/2]; note that
¢ takes values in the box [—p4, ,04]5 . We then define

En,m) = 5 (mm
p

— F) -t(m) (9.79)
forn,m € B(S1, p4), where - denotes the dot product on RS. It is clear that E is
locally linear in m; we also claim that it is locally linear in n, thus

E(ny +ny,m)— E(ny,m) — E(ny,m) =0 (9.80)

whenever ny, no, ny + ny € B(S1, p4). By (9.64) and Proposition 9.20, the left-
hand side of (9.80) may be written as

plmy, n)m 7 (i (ny, n2)) - t(m) mod 1.

From (9.67) we have
u(ny, na)m

= ji(n1, n2) - t(m) mod 1
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so to prove (9.80), it suffices to show that ((m) lies in VL. This is equivalent to
showing that ¢(m) - v; =0fori =1, ...,d. Since v; € ker(¢), we have

t(m)-v; =0mod 1.

On the other hand, we have t(m) = O(K'/2p4), and from (9.70) with t = N,
followed by (9.71), we have

exp(K1)
03

lvil < N7 <

1

and hence |t(m) - v;| < 1. The claim follows.

Now we verify (9.63). Let ag, &y be as in Proposition 9.16. Let n, ng, h,
n;, m; be drawn independently and regularly from the Bohr sets B(S1, p3/4),
B(S, po), B(S1, psa), B(S1, ps), B(S1, ps5) respectively. From Proposition 9.16
we have

> Pmo = ng.n = m)[Ef (o +h+ag — n) f (no + he,((E"(n) — Eh)

no,n

>> ncl‘l’o(l).

Using Lemma 4.4 to replace n by n 4 nj, and to replace h by h + m;, we have

Z Pmp =no,n=n,n; =n)|Ef(no+h+m; +ap—n—ny)

no,n,ni

x f(no +h+mpe,((E"(n +n1) = &)+ mp) > 3> n© o0
and thus by the triangle inequality we have

Y. Pmo=no,n=nn=ni,h=hEf(o+h+m +a—n—n)

ng,n,ni,h

X f(no+h+mp)e, (" (n +ny) — &) (h +mp))> > o100,

The phase e((§”(n + n1) — &y)h) is deterministic and may thus be omitted:

Z Pmp =no,n=n,n; =n;,h=n)Ef(no+h+m; +a —n—ny)

no,n,ni,h

X f(no +h+mpe,(("(n +n1) — &mp)]* > n oW,

As the expectation only depends on the sum ng + & rather than the individual
variables ng, h, we thus have

> Pmo+h=no.n=nn =n)Ef(no+m +a—n—n)

no,n,ni

x f(no +mi)ep(("(n +np) — §o)mp) > 3> n<HOWD,
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By Lemma 4.4 we may replace ng + h here by ng. From (9.57) we have
IE"(n +n1) — " (n) — £ (n))my gz < '

and so

Z Pmp =no,n=n,n; =n))|Ef(no +ao+my —n—ny)

X o +m)e, (€ 00) + 8" (ar) — Eymp) P > 1O,

By the pigeonhole principle, there thus exists n € B(Sx, p3/4) such that
Y Pg = non; = n1)|Ef(ng +ap +my —n —n1) f (ng + my)

x ep((E" () +&"(m1) — &ymy) |2 > nO 00,

which, if we write a| := ap — n and & := & — &”(n), simplifies to

Y P(ng = nony = n))[Ef (no +my +ay —ny) f(no +my)

no,ni
x ep((€"(n1) — £my)[? > n©1 oM,

Since ag € B(S, 3pz) and n € B(Sx, p3/4), we have a; € B(S, 4p2).
Now, from (9.79) one has

epE"(nmy) = e(E(ni, my))e(—F(ny) - t(my));

but since m; € B(Sx, p5), we have ((m;) = O(Kps), and hence by (9.72) we

have

I F(ny) - cmy) gz < 0",

and so

> Pmg = ng; m = n)[Ef (no +my + ar — np) f(no +my)

no,ni

x e(E(n1,my) = §mp)f? > o0,
which gives (9.63). The proof of Theorem 9.18 is now complete.

9.21. Eighth step: making the frequency function symmetric. The next step is
the “symmetry step” from [14, 26], which uses the Cauchy—Schwarz inequality
to ensure that E is essentially symmetric.

THEOREM 9.22. Let the notation and hypotheses be as in Theorem 9.18. For
n,m € B(S1, p4), define

{n,m} .= E(n,m) — E(m, n).
Then there exists a natural number k with 1 < k < exp(K 0Dy such that

||n||sll lm]ls,

lk{n, m}r/z <
08

foralln,m € B(Sy, pg).
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Proof. Letng, mj, n; be as in Theorem 9.18. From (9.63) and the pigeonhole
principle, we may find ng € Z/ pZ such that

Y P =n)|Ef(no +my +ar —n1) f(no +my)

ny

x e(E(ny, my) — &my)[> > n©1+towm

which by the boundedness of the expectation implies

Y Py =n)|Ef(no +mi +ar —n1) f(ng +my)

ni

x e(E(ny, my) — &my)| > n&1HoO

and thus we may find a 1-bounded function b; : Z/pZ — C such that
[Eby (1) f (no +my +aj —ny) f(no +mp)e(Emy, my) — £ymy)| > < oW,

Writing by (n) := f(ng 4+ a1 + n) and b3(n) := f(ng + mp)e(—&my), we may
simplify this as

IEb1 (n1)ba(m; — ny)bz(my)e(E (my, my))| 3> n1To0,

Using the Cauchy—Schwarz inequality (Lemma 2.1) to eliminate the b3(my)
factor, we conclude that

|Eb1 (n1)by (0;)by (my—ny)by(m;—n'))e(E(ny, my)—E (), m;))| > n?1+oM

where n/ is an independent copy of nj. Writing k := n; + n} — my, and noting
from the local bilinearity of & that

Em;,m) — E(n}, m;) = E(n; —n}, my)

E(m; —n}, n; +n} —k)
— E(my, k) + E(m, k)

we conclude that
[Ebs (n1, k)ba(n}, Ke({ny, m}))] > n*1 00,
where b3, by : Z/pZ x 7/ pZ — C are the 1-bounded functions
b3(n1, k) == bi(n)ba(k — np)e(E(ni, n1) — E(ny, k)

and
ba(n}. k) 1= bi(n)ba(k — n))e(—E(n}, n}) + E(n}, k).
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For fixed ny, n’l, we see from Lemma 4.4 that k differs from m in total variation
by 0(17100C1 ), and hence

|Eb3(ny, my)bs(n), mp)e({ng, nj})| > n?1 o0,

By the pigeonhole principle, we may thus find m| € Z/ pZ such that

[Bb3(ny, m1)ba(ni, mi)e({ny, miH| > n* @O0,
Using Cauchy—Schwarz (Lemma 2.1) to eliminate b4(n’l ,mp), and using the
local bilinearity of {, }, we conclude that

|Ebs(ny, m1)b3(ly, mp)e({ng — 1y, n}})| > p*crrod),

where 1; is an independent copy of n;; using a further application of Cauchy-
Schwarz (Lemma 2.1) to eliminate b3(ny, m)b3(1;, m), we conclude that

[Ee({n; — 1,0, — I })| > n3C1+0D

where I is an independent copy of n} (thus ny, n/, 1;, I} are jointly independent
and drawn regularly from B(S7, pe)). In particular, by the pigeonhole principle
one can find /1, [] € B(S1, pe) such that

[Ee({n; — [;, 0, — [[})] > n3C1+OD,

By local bilinearity, one can rewrite {n; — /1, n} — [{} as {nj, n/} plus locally
linear functions of n; and n. The claim now follows from Proposition 4.11. [

9.23. Ninth step: integrating the frequency function. We may now finally
prove Theorem 8.1. Let the notation and hypotheses be as in that theorem, let
S1 and E be as in Theorem 9.18, and let k be as in Theorem 9.22. Thus if we
let ng, n;, m; be drawn independently and regularly from B(S, po), B(S1, ps),
B(S1, ps) respectively, we have

> P = ng, ny = n)[Ef(no +mi +ar —n1) f(no +my)

no,np

x e(E(ny, mp) — &my)|? > nCTo0, (9.81)

Now let ny, my be drawn independently and regularly from the Bohr sets
B(S1, p9), B(S1, p1o) respectively, independently of all previous random
variables. By Lemma 4.4, we may replace n;, mj by nj + 2knp and m; + 2km;
in (9.81), leading to

> Py =no.....m =n)[Ef(no+my + 2kmy + a; — ny — 2kny)

no,ny,nz

X f(no +my + 2kmy)e(E(ny 4 2kny, my 4 2kmy) — & (my + 2kmy))|>
>> ncl+0(l)_
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Thus we may find n; € B(S1, pe), m1 € B(S1, ps) such that

Z P(ng = ng, np = no)|E f(ng + my + 2kmy + a; — ny — 2kns)

no,n2

X F(no +my + 2kma)e(E(n) + 2kna, my + 2kmy) — & (m| + 2kmy))|?
> GO,

which we can simplify slightly as

Z P(ng = ng, np = n2)|E f (no + 2kmy + az — 2kny)

no,nz

X f(ng +my + 2kmy)e(E(ny + 2kny, my + 2kmy) — 2kgym,)|?
> pcrtom,

where a; := aj+m—ny;since ay € B(S, 4p2),my € B(S1, ps),n1 € B(S1, pe),
we have a; € B(S, 5p2). By the local bilinearity of E, we have

E(ny + 2kny, mp + 2kmy)
= B(ny, my) + 2kE(nz, my) + 2k E(ny, my) + 4k> E (n, my)
= E(n1, m) + 2kE(n2, my) + 2kE(n1, my) + 2k>E(n2 + my, ny + my)
—2k>E(n2, n2) — 2k*E(my, my) + 2k*{n,, my}

and so we have

Z P(ng = no, Ny = n2)|EF (ng, na — my)G(ng, m)e(2k>{nz, my})|*

no,n2

> 77C1+0(1)’

where
Fn,m):= f(n+ay — ka)e(—sz(m, m)) (9.82)

and
G(n,m) = 7(}1 +my 4 2km)e(2kE (ny, m) — 2k23(m, m) — 2k& m).

By Theorem 9.22, one has [|k{ny, my}|lr/z < n'%C1 and thus

S P(ng = no, 2 = n) [EF (g, 2 — m) G (ng, ma) 3 nC1+00,

no,n2

By boundedness of the expectation, this implies that

Z P(ng = ng, np = np)|EF (ng, no —my)G(ng, my)| > TIC1+0(1)

no,n2

and thus
|EF (ng, no — my)G(ng, my) H (ng, mp)| > n©1 oM
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for some 1-bounded function H : Z/pZ x Z/pZ — C. By Cauchy-Schwarz
(Lemma 2.1), we thus have

IEF (ng, ny — my)G(ng, my) F (ng, ny — m5)G (ng, myp)| > n?¢1+0M,
2

where m), is an independent copy of my; by a second application of Cauchy—
Schwarz (Lemma 2.1), we then have

IEF (ng, ny —my) F (ng, ny —m}) F (ng, ny —my) F (ng, ny —mb)| > p*C1T00),

where n, is an independent copy of mj. Since the distributions of my, m), are
symmetric, we thus have

|EF (ng, ny +my) F (ng, ng +m)) F (ng, 0y +my) F(ng, ny+mb)| 3> n*1+00,

In particular, with probability >>n*C1T9(M  the random variable ng attains a
value n( for which

IEF (no, my+m) F (ng, my +mb) F (no, ny +my) F (ng, ny+m))| > 00

(9.83)
If ng is such that (9.83) holds, then we may apply Theorem 4.12 and conclude
that there exists a frequency B(ng) € Z/pZ such that

> Blny = m)EF (9, 1 + ma)e(—B(r)ma) | 3> 0D

nz

and thus (defining B(ng) arbitrarily if (9.83) does not hold),
3" P(ng = g, my = 1) [EF (g, 15 + ma)e(—(noymy)| 3> oC1+00
ng,na
and hence there exists ny € B(Sy, pg) with
3" Png = no)[EF (n0, n2 + mye(—Bnoymy)| 3 7600,
no
Applying (9.82), we conclude that
Y “P(ng = no)|Ef (no + a3 — 2kmy)e(—k* & (my, mp) — B(ng)my)|

no

> 776Cl+0(1)’

where a3 := a» — 2kn»; since ap € B(S,5p02), no € B(Si, p9), and k =
O(exp(KO(C'))), we have a3 € B(S, 602). In particular, by Lemma 4.4, ng and
ng + a3 differ in total variation by O (5'%°€1+9() "and thus

> P(ng = no)|Ef (no — 2kmy)e(—k*E(my, my) — B(ng)my)| 3> 1 +0W,
no

Theorem 8.1 then follows after a change of variables, noting that the map my —

E (my, my) is locally quadratic on B(Sy, p9).
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