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NEW BOUNDS FOR SZEMERÉDI’S THEOREM, III:
A POLYLOGARITHMIC BOUND FOR r4(N )

BEN GREEN AND TERENCE TAO

Dedicated to the legacy of Klaus Roth

Abstract. Define r4(N ) to be the largest cardinality of a set A ⊂ {1, . . . , N } that
does not contain four elements in arithmetic progression. In 1998, Gowers proved
that

r4(N )� N (log log N )−c

for some absolute constant c > 0. In 2005, the authors improved this to

r4(N )� Ne−c
√

log log N .

In this paper we further improve this to

r4(N )� N (log N )−c,

which appears to be the limit of our methods.
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§1. Introduction. Let N > 100 be a natural number (so that log log N is
positive). If k > 3 is a natural number we define rk(N ) to be the largest
cardinality of a set A ⊂ [N ] := {1, . . . , N } that does not contain an arithmetic
progression of k distinct elements.

Klaus Roth proved in 1953 [24] that r3(N ) � N (log log N )−1, and so in
particular1 r3(N ) = o(N ) as N → ∞. Since Szemerédi’s 1969 proof [29] that
r4(N ) = o(N ), and his later proof [30] that rk(N ) = ok(N ) for k > 5 (answering
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1 See §2 for the asymptotic notation used in this paper.
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A NEW BOUND FOR r4(N ) 945

a question from [10]), it has been natural to ask for similarly effective bounds
for these quantities. It is worth noting that the famous conjecture of Erdős [9]
asserting that every set of natural numbers whose sum of reciprocals is divergent
is equivalent to the claim that

∑
∞

n=1 rk(2n)/2n < ∞ for all k > 3 (see [33,
Exercise 10.0.6]).

A first attempt towards quantitative bounds for higher k was made by Roth
in [25], who provided a new proof that r4(N ) = o(N ). A major breakthrough
was made in 1998 by Gowers [11, 12], who obtained the bound rk(N ) �k

N (log log N )−εk for each k > 4, where εk := 1/22k+9
. In the other direction,

a classical result of Behrend [2] shows that r3(N ) � N exp(−c
√

log N ) for
some absolute constant c > 0 (see [8, 20] for a slight refinement of this bound),
and in [23] (see also [22]) the argument was generalized to give the bound
r1+2k (N )�k N exp(−c log1/(k+1) N ) for any k > 1.

In the meantime, there has been progress on r3(N ). Szemerédi (unpublished)
obtained the bound r3(N ) � Ne−c

√
log log N , and shortly thereafter Heath-

Brown [21] and Szemerédi [32] independently obtained the bound r3(N ) �
N (log N )−c for some absolute constant c > 0. The best known value of c has
been improved in a series of papers [4, 6, 7, 27, 28]. Sanders [28] was the first
to show that any c < 1 is admissible, and Bloom [4] improved the factor of
log log N in Sanders’s bound.

The only other direct progress on upper bounds for rk(N ) is our previous
paper [19], obtaining the bound r4(N )� Ne−c

√
log log N . The main objective of

this paper is to obtain a bound for r4(N ) of the same quality as the Heath-Brown
and Szemerédi bound for r3(N ).

THEOREM 1.1. We have r4(N ) � N (log N )−c for some absolute constant
c > 0.

An analogous result in finite fields was claimed (and published [15]) by us
around 12 years ago, although an error in this paper came to light some years
later. This was corrected around 5 years ago in [16]. These papers (like almost
all of the previously cited quantitative results on rk(N )) are based on the density
increment argument of Roth [24]. However we will use a slightly different
“energy decrement” and “regularity” approach here, inspired by the Khinchin-
type recurrence theorems for length-four progressions established by Bergelson
et al [3] in the ergodic setting, and by the authors [13] in the combinatorial
setting.

§2. Notation. We use the asymptotic notation X � Y or X = O(Y ) to
denote |X | 6 CY for some constant C . Given an asymptotic parameter N
going to infinity, we use X = o(Y ) to denote the bound |X | 6 c(N )Y for
some function c(N ) of N that goes to zero as N goes to infinity. We also write
X � Y for X � Y � X . If we need the implied constant C or decay function
c( ) to depend on an additional parameter, we indicate this by subscripts, e.g.
X = ok(Y ) denotes the bound |X | 6 ck(N )Y for a function ck(N ) that goes to
zero as N →∞ for any fixed choice of k.
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946 B. GREEN AND T. TAO

We will frequently use probabilistic notation, and adopt the convention
that boldface variables such as a or r represent random variables, whereas
non-boldface variables such as a and r represent deterministic variables (or
constants). We write P(E) for the probability of a random event E , and EX
and Var X for the expectation and variance of a real or complex random variable
X; we also use E(X|E) = EX1E/P(E) for the conditional expectation of X
relative to an event E of non-zero probability, where of course 1E denotes the
indicator variable of E . In this paper, the random variables X of which we will
compute expectations of will be discrete, in the sense that they take only finitely
many values, so there will be no issues of measurability. The essential range of
a discrete random variable X is the set of all values X for which P(X = X) is
non-zero.

By a slight abuse of notation, we also retain the traditional (in additive
combinatorics) use for E as an average, thus Ea∈A f (a) := (1/|A|)

∑
a∈A f (a)

for any finite non-empty set A and function f : A → C, where we use |A| to
denote the cardinality of A. Thus for instance Ea∈A f (a) = E f (a) if a is drawn
uniformly at random from A.

A function f : A → C is said to be 1-bounded if one has | f (a)| 6 1 for
all a ∈ A. We will frequently rely on the following probabilistic form of the
Cauchy–Schwarz inequality, the proof of which is an exercise.

LEMMA 2.1 (Cauchy–Schwarz). Let A, B be sets, let f : A → C be a 1-
bounded function, and let g : A × B → C be another function. Let a,b,b′ be
discrete random variables in A, B, B ′ respectively, such that b′ is a conditionally
independent copy of b relative to a, that is to say that

P(b = b,b′ = b′|a = a) = P(b = b|a = a)P(b = b′|a = a)

for all a in the essential range of a and all b, b′ ∈ B. Then we have

|E f (a)g(a,b)|2 6 Eg(a,b)g(a,b′). (2.1)

We will think of this lemma as allowing one to eliminate a factor f (a) from a
lower bound of the form |E f (a)g(a,b)| > η, at the cost of duplicating the factor
g, and worsening the lower bound from η to η2.

We also have the following variant of Lemma 2.1.

LEMMA 2.2 (Popularity principle). Let a be a random variable taking values
in a set A, and let f : A → [−C,C] be a function for some C > 0. If we have
E f (a) > η for some η > 0 then, with probability at least η/2C, the random
variable a attains a value a ∈ A for which f (a) > η/2.

Proof. If we set � := {a ∈ A : f (a) > η/2}, then

f (a) 6
η

2
+ C1a∈�
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and hence on taking expectations

E f (a) 6
η

2
+ CP(a ∈ �).

This implies that
P(a ∈ �) > η/2C

giving the claim. �

If θ ∈ R, we write ‖θ‖R/Z for the distance from θ to the nearest integer, and
e(θ) = e2π iθ . Observe from elementary trigonometry that

|e(θ)− 1| = 2|sin(πθ)| � ‖θ‖R/Z (2.2)

and hence also

1− cos(2πθ) = 2|sin(πθ)|2 � ‖θ‖2R/Z. (2.3)

We will also use the triangle inequalities

‖θ1 + θ2‖R/Z 6 ‖θ1‖R/Z + ‖θ2‖R/Z; ‖kθ‖R/Z 6 |k|‖θ‖R/Z (2.4)

for θ1, θ2 ∈ R/Z and k ∈ Z frequently in the sequel, often without further
comment.

For any prime p, we (by slight abuse of notation) let a 7→ a/p be the obvious
homomorphism from Z/pZ to R/Z that maps a (mod p) to a/p (mod 1) for
any integer a. We then define ep : Z/pZ→ C to be the character

ep(a) := e
(

a
p

)
= e2π ia/p

of Z/pZ.

§3. High-level overview of argument. We will establish Theorem 1.1 by
establishing the following result, related to the Khinchin-type recurrence
theorems mentioned earlier. It will be convenient to introduce the notation

3a,r(f) := Ef(a)f(a+ r)f(a+ 2r)f(a+ 3r)

whenever a, r are random variables on Z/pZ and f : Z/pZ → [−1, 1] is a
random function; of course, the notation can also be applied to deterministic
functions f : Z/pZ → [−1, 1]. Later on we will also need the conditional
variant

3a,r(f|E) := E(f(a)f(a+ r)f(a+ 2r)f(a+ 3r)|E) (3.1)

for some events E of non-zero probability. Informally, this quantity counts
the density of arithmetic progressions a, a+ r, a+ 2r, a+ 3r on the event E
weighted by f, where a, r need not be drawn uniformly or independently (and
f may also be coupled to a, r).
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948 B. GREEN AND T. TAO

THEOREM 3.1. Let p be a prime, let η be a real number with 0 < η 6 1
10 ,

and let f : Z/pZ → [−1, 1] be a function. Then there exist random variables
a, r ∈ Z/pZ, not necessarily independent, obeying the near-uniform distribution
bound

E f (a) = Ex∈Z/pZ f (x)+ O(η), (3.2)

the recurrence property

3a,r( f ) > (E f (a))4 − O(η), (3.3)

and the “thickness” bound

P(r = 0)� exp(−η−O(1))/p. (3.4)

We note that a variant of Theorem 3.1 was established by us in [13]
(answering a question in [3]), in which the random variable a was uniformly
distributed in Z/pZ, the random variable r was uniformly distributed in a subset
of Z/pZ of size�η p and was independent of a, and the condition (3.4) (which
is crucial to the quantitative bound in Theorem 1.1) was not present. Compared
to that result, Theorem 3.1 obtains the much more quantitative bound (3.4),
but at the expense of no longer enforcing independence between a and r. The
use of non-independent random variables a, r is an innovation of this current
paper; it is similar to the technique in previous papers of using “factors” (finite
partitions) to break up the domain Z/pZ into smaller “atoms” such as Bohr sets
and analyzing each atom separately. However there will be technical advantages
from the more general framework of pairs of independent random variables a, r.
In particular we will be able to avoid some of the boundary issues arising from
irregularity of Bohr sets, by using the smoother device of “regular probability
distributions” associated to such sets. Although f is allowed to attain negative
values in Theorem 3.1, in our applications we shall only be concerned with the
case when f is non-negative.

Let us now see how Theorem 1.1 follows from Theorem 3.1. Clearly we may
assume that N > 100. Suppose that A is a subset of {1, . . . , N } without any non-
trivial four-term arithmetic progressions. By Bertrand’s postulate, we may find a
prime p between (for example) 2N and 4N . If we define f : Z/pZ→ [−1, 1]
to be the indicator function 1A of A (viewed as a subset of Z/pZ), then we have

Ex∈Z/pZ f (x) =
|A|
p

(3.5)

and also
f (a) f (a + r) f (a + 2r) f (a + 3r) = 0 (3.6)

whenever a, r ∈ Z/pZ with r non-zero. Now let a, r be as in Theorem 3.1, with
η to be chosen later. From (3.2), (3.3), (3.5) we have

3a,r( f ) >
(
|A|
p

)4

− O(η).
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But by (3.6), (3.4), the left-hand side is O(exp(−η−O(1))/p). Setting η :=

c log−c p for a sufficiently small absolute constant c > 0, we conclude that(
|A|
p

)4

� log−c p

and hence A � N log−c/4 N , giving Theorem 1.1.

Remark. As mentioned previously, the arguments in [13] established a bound
of the form (3.3) with a and r independent, and also one could ensure that a
was uniformly distributed over Z/pZ. As a consequence, one could establish a
variant of Theorem 1.1, namely that for any N > 1, η > 0, and A ⊂ [N ], one
had

|A ∩ (A − r) ∩ (A − 2r) ∩ (A − 3r)|
N

>

(
|A|
N

)4

− η

for �η N choices of 0 6 r 6 N . Unfortunately our methods do not seem to
provide a good bound of this form due to our coupling together of a and r.

It remains to establish Theorem 3.1. As in [3, 13], the lower bound (3.3)
will ultimately come from the following consequence of the Cauchy–Schwarz
inequality that counts solutions to the equation x − 3y + 3z − w = 0 for x,
y, z, w in some subset of a compact abelian group; this inequality is a specific
feature of the theory of length-four progressions that is not available for longer
progressions2.

LEMMA 3.2 (Application of Cauchy–Schwarz). Let G = (G,+) be a compact
abelian group, let µ be the probability Haar measure on G, and let F : G → R
be a bounded measurable function. Then∫

G

∫
G

∫
G

F(x)F(y)F(z)F(x − 3y + 3z) dµ(x) dµ(y) dµ(z) >
(∫

G
F dµ

)4

.

Proof. Making the change of variables w = x − 3y and using Fubini’s
theorem, the left-hand side may be rewritten as∫

G

(∫
G

F(w + 3y)F(y) dµ(y)
)2

dµ(w),

which by the Cauchy–Schwarz inequality is at least(∫
G

∫
G

F(w + 3y)F(y) dµ(y) dµ(w)
)2

.

But by a further application of Fubini’s theorem, the expression inside the square
is (
∫

G F(x) dµ(x))2. The claim follows. �

2 For longer progressions, the relevant constraints coming from nilpotent algebra are significantly more
complicated than a single linear equation; see [35]. In any event, the counterexamples in [3] indicate that
no comparable positivity property with polynomial lower bounds will hold for higher length progressions.
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To see the relevance of this lemma to Theorem 3.1, and to motivate the
strategy of proof of that theorem, let us first test that theorem on some key
examples. To simplify the exposition, our discussion will be somewhat non-
rigorous in nature; for instance, we will make liberal use of the non-rigorous
symbol ≈ without quantifying the nature of the approximation.

Example 1 (A well-distributed pure quadratic factor). Let G be the d-torus
G = (R/Z)d for some bounded d = O(1), and let F : G → [−1, 1] be a
smooth function (independent of p); for instance, F could be a finite linear
combination of characters χ : G → S1 of G. Let α1, . . . , αd ∈ Z/pZ be
“generic” frequencies, in the sense that there are no non-trivial linear relations
of the form

k1α1 + · · · + kdαd = 0 (3.7)

with k1, . . . , kd = O(1) not all equal to zero. We also introduce some additional
frequencies β1, . . . , βd ∈ Z/pZ, for which we impose no genericity restrictions.
Let f : Z/pZ→ [−1, 1] be the function

f (a) := F(Q(a)),

where Q : Z/pZ→ G is the quadratic polynomial

Q(a) :=
(
α1a2
+ β1a
p

, . . . ,
αda2

+ βda
p

)
,

and where we use the obvious division by zero map a 7→ a/p from Z/pZ to
R/Z. For any tuples k = (k1, . . . , kd) ∈ Zd

≡ Ĝ and ξ = (ξ1, . . . , ξd) ∈ G, we
define the dot product

k · ξ := k1ξ1 + · · · + kdξd .

Because of our genericity hypothesis on the αi , we see from Gauss sum estimates
that

Ea∈Z/pZe(k · Q(a)) ≈ 0

for any bounded tuple k ∈ Zd when p is large. By the Weyl equidistribution
criterion, we thus see that when p is large, the quantity (αa2

+ βa)/p becomes
equidistributed in G as a ranges over Z/pZ. In particular, as F was assumed to
be smooth, we expect to have

E f (a) = Ea∈Z/pZ f (a) ≈
∫

G
F(x) dµ(x)

if a is drawn uniformly in Z/pZ. Now suppose that r is also drawn uniformly in
Z/pZ, independently of a. The tuple

(Q(a), Q(a+ r), Q(a+ 2r), Q(a+ 3r)) (3.8)
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will not become equidistributed in G4, because of the elementary algebraic
identity

Q(a)− 3Q(a+ r)+ 3Q(a+ 2r)− Q(a+ 3r) = 0, (3.9)

which is a discrete version of the fact that the third derivative of any quadratic
polynomial vanishes. However, this turns out to be the only constraint on this
tuple in the limit p→∞. Indeed, from the genericity hypothesis on the αi , one
can verify that the quadratic form

(a, r) 7→ k0 · Q0(a)+ k1 · Q0(a + r)+ k2 · Q0(a + 2r)+ k3 · Q0(a + 3r)

on (Z/pZ)2 for bounded tuples k0, k1, k2, k3 ∈ Zd vanishes if and only if
(k0, k1, k2, k3) is of the form (k,−3k, 3k,−k) for some tuple k, where

Q0(a) :=
(
α1a2

p
, . . . ,

αda2

p

)
denotes the purely quadratic component of Q(a). Using this and a variant of the
Weyl equidistribution criterion, one can eventually compute that

3a,r( f ) ≈
∫

G

∫
G

∫
G

F(x)F(y)F(z)F(x − 3y + 3z) dµ(x) dµ(y) dµ(z).

Applying Lemma 3.2, we conclude (a heuristic version of) Theorem 3.1 in this
case, taking a, r to be independent uniformly distributed variables on Z/pZ.

Example 2 (A well-distributed impure quadratic factor). Now we give a
“local” version of the first example, in which the function f exhibits “locally
quadratic” behaviour rather than “globally quadratic” behaviour. Let η > 0 be
a small parameter, and suppose that p is very large compared to η. We suppose
that the cyclic group Z/pZ is somehow partitioned into a number P1, . . . , Pm of
arithmetic progressions; the number m of such progressions should be thought
of as being moderately large (e.g. m ∼ exp(1/ηO(1)) for some parameter η > 0).
Consider one such progression, for example Pc = {bc + nsc : 1 6 n 6 Nc}

for some bc, sc ∈ Z/pZ and some Nc > 0; one should think of Nc as being
reasonably large, e.g. Nc � exp(−1/ηO(1))p. To each such progression Pc, we
associate a torus Gc = (R/Z)dc for some bounded dc with probability Haar
measure µc, a smooth function Fc : Gc → [−1, 1], and a collection ξc,1, . . . ,

ξc,dc ∈ R/Z of frequencies that are generic in the sense that there does not exist
any non-trivial relations of the form

k1ξc,1 + · · · + kdcξc,dc = O
(

1
Nc

)
(mod 1) (3.10)

for bounded k1, . . . , kdc ∈ Z. We then define the function f : Z/pZ→ [−1, 1]
by setting

f (bc + nsc) := Fc(ξc,d1n2, . . . , ξc,dc n2)
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for 1 6 c 6 m and 1 6 n 6 Nc. One could also add a lower order linear term to
the phases ξc,i n2, as in the preceding example, if desired, but we will not do so
here to simplify the exposition slightly.

Within each progression Pc, a Weyl equidistribution analysis (using the
genericity hypothesis) reveals that the tuple (ξc,d1n2, . . . , ξc,dc n2) becomes
equidistributed in Gc as p becomes large, so that

Ea∈Pc f (a) ≈
∫

Gc

Fc(x) dµc(x). (3.11)

Now we define the random variables a, r ∈ Z/pZ as follows. We first select a
random element c from {1, . . . ,m} with P(c = c) = |Pj |/p for c = 1, . . . ,m.
Conditioning on the event that c is equal to c, we then select a uniformly at
random from Pc, and also select r uniformly at random from an arithmetic
progression of the form

{nsc : |n| 6 exp(−1/η−C )Nc}, (3.12)

with a and r independent after conditioning on c = c. Note that a and r are only
conditionally independent, relative to the auxiliary variable c; if one does not
perform this conditioning, then a and r become coupled to each other through
their mutual dependence on c.

Without conditioning on c, the random variable a becomes uniformly
distributed on Z/pZ, thus

E f (a) = Ea∈Z/pZ f (a).

Also, from (3.11) we have the conditional expectation

E( f (a)|c = c) ≈
∫

Gc

Fc(x) dµc(x).

A modification of the equidistribution analysis from the first example also gives

3a,r( f |c = c)

'
∫

Gc

∫
Gc

∫
Gc

Fc(x)Fc(y)Fc(z)F(x − 3y + 3z) dµc(x) dµc(y) dµc(z),

where the conditional quartic form3a,r( f |c= c)was defined in (3.1), and hence
by Lemma 3.2 we have

3a,r( f |c = c) ' (E( f (a)|c = c))4.

Averaging in c (weighted by P(c = c)) to remove the conditional expectation on
the left-hand side, and then applying Hölder’s inequality, we obtain a heuristic
version of Theorem 3.1 in this case.
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Example 3 (A poorly distributed pure quadratic factor). We now return to the
situation of the first example, except that we no longer impose the genericity
hypothesis, that is to say we allow for a non-trivial relation of the form (3.7).
Without loss of generality we can take the coefficient kd of this relation to be
non-zero. Because of this relation, the quantity Q(a) studied in the first example
and the tuple (3.8) may not necessarily be as equidistributed as before. However,
we can use this irregularity of distribution to modify the representation of f (up
to a small error) in such a manner as to reduce the number d of quadratic phases
involved. Namely, we can write

f (a) := F̃
(

Q̃(a),
γ a
p

)
where

Q̃(a) :=
(

k−1
d α1a2

+ k−1
d β1a

p
, . . . ,

k−1
d αd−1a2

+ k−1
d βd−1a

p

)
,

γ := βd + k1k−1
d β1 + · · · + kd−1k−1

d βd−1,

F̃(x1, . . . , xd−1, y) := F(kd x1, . . . , kd xd−1,−k1x1 − · · · − kd−1xd−1 + y)

and where we take advantage of the field structure of Z/pZ to locate an inverse
k−1

d of kd in this field. For our quantitative analysis we will run into a technical
difficulty with this representation, in that the Lipschitz constant of F̃ will
increase by an undesirable amount compared to that of F when one performs
this change of variable, at least if one uses the standard metric on the torus. To
fix this, we will eventually have to work with more general tori

∏d
i=1 R/λiZ

than the standard torus (R/Z)d , but we ignore this issue for now to continue
with the heuristic discussion.

To remove the dependence on the linear phase γ a/p, we partition Z/pZ
into “(shifted) Bohr sets” B1, . . . , Bm for some moderately large m (e.g. m ∼
exp(1/η−C ) for some constant C > 0), defined by

Bc :=

{
a ∈ Z/pZ :

γ a
p
∈

[
c − 1

m
,

c
m

)
(mod 1)

}
for c = 1, . . . ,m. On each Bohr set Bc, we have the approximation

f (a) := F̃c(Q̃(a))

where F̃c(x, y) := F̃(x, c/m). Using the heuristic that Bohr sets behave like
arithmetic progressions, the situation is now similar to that in the second
example, with the number of quadratic phases involved reduced from d to d− 1,
except that there may still be some non-trivial relations among the surviving
quadratic phases (and one also now has some lower order linear terms in the
quadratic phases). To deal with this difficulty, we turn now to the consideration
of yet another example.
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Example 4 (A poorly distributed impure quadratic factor). We now consider
an example that is in some sense a combination of the second and third examples.
Namely, we suppose we are in the same situation as in the second example,
except that we allow some of the indices c to have “poor quadratic distribution”
in the sense that they admit non-trivial relations of the form (3.10). Again we may
assume without loss of generality that kdc is non-zero in such relations. Because
of such relations, we no longer expect to have the equidistribution properties
that were used in the second example. However, by modifying the calculations
in the third example, we can obtain a new representation of f (again allowing
for a small error) on each of the progressions Pc with poor quadratic distribution
to reduce the number dc of quadratic polynomials used in that progression by
one. Iterating this process a finite number of times, one eventually returns to the
situation in the second example in which no non-trivial relations occur, at which
point one can (heuristically, at least) verify Theorem 3.1 in this case.

The situation becomes slightly more complicated if one adds a lower order
linear term ζc,i n to the purely quadratic phases ξc,i n2 appearing in the second
example; this basically is the type of situation one encounters for instance at the
conclusion of the third example. In this case, every time one converts a non-
trivial relation of the form (3.10) on one of the cells Pc of the partition into a
new representation of f on that cell, one must subdivide that cell Pj into smaller
pieces, by intersecting Pj with various Bohr sets. However, the resulting sets still
behave somewhat like arithmetic progressions, and it turns out that we can still
iterate the construction a bounded number of times until no further non-trivial
relations between surviving quadratic phases remain on any of the cells of the
partition, at which point one can (heuristically, at least) verify Theorem 3.1 in
this case (as well as in the case considered in the third example).

Example 5 (A pseudorandom perturbation of a pure quadratic factor). In all
the preceding examples, the function f : Z/pZ→ [−1, 1] under consideration
was “locally quadratically structured”, in the sense that on local regions such as
Pc, the function f could be accurately represented in terms of quadratic phase
functions a 7→ Q(a). This is however not the typical behaviour expected for a
general function f : Z/pZ→ [−1, 1]. A more representative example would be
a function of the form

f (a) := f1(a)+ f2(a),

where f1 : Z/pZ→ R is a function of the type considered in the first example,
thus

f1(a) = F(Q(a))

for some quadratic function Q : Z/pZ→ G into a torus G = (R/Z)d and some
smooth F : G→ [−1, 1], and f2 : Z/pZ→ [−1, 1] is a function that is globally
Gowers uniform in the sense that

E
∏

(ω1,ω2,ω3)∈{0,1}3
f2(a+ ω1h1 + ω2h2 + ω3h3) ≈ 0, (3.13)
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where a,h1,h2,h3 are drawn independently and uniformly at random from
Z/pZ. A typical example to keep in mind is when F (and hence f1) takes values
in [0, 1], and f = f is a random function with f (a) equal to 1 with probability
f1(a) and 0 with probability 1− f1(a), independently as a ∈ Z/pZ varies; then
the f2(a) for a ∈ Z/pZ become independent random variables of mean zero,
and the global Gowers uniformity can be established with high probability using
tools such as the Chernoff inequality.

From the standard theory of the Gowers norms (see e.g. [33, Ch. 11]), one can
use the global Gowers uniformity of f2, combined with a number of applications
of the Cauchy–Schwarz inequality, to establish a “generalized von Neumann
theorem” that, in our current context, implies that f and f1 globally count
approximately the same number of length-four progressions in the sense that

3a,r( f ) ≈ 3a,r( f1); (3.14)

similarly one also has
E f (a) ≈ E f1(a). (3.15)

As a consequence, Theorem 3.1 for such functions follows (heuristically, at least)
from the analysis of the first example, at least if one assumes the genericity of
the frequencies ξ1, . . . , ξd .

Example 6 (A pseudorandom perturbation of an impure quadratic factor). We
now consider a situation that is to the second example as the fifth example was
to the first. Namely, we consider a function of the form

f (a) := f1(a)+ f2(a),

where f1 : Z/pZ→ [−1, 1] is a function of the type considered in the second
example, thus

f1(bc + nsc) := Fc(ξc,d1n2, . . . , ξc,dc n2)

for c = 1, . . . ,m and n = 1, . . . , Nc. As for the function f2 : Z/pZ →
[−1, 1], global Gowers uniformity of f2 will be too weak of a hypothesis for
our purposes, because the random variable r appearing in the second example
is now localized to a significantly smaller region than Z/pZ. Instead, we will
require the local Gowers uniformity hypothesis

E
∏

(ω1,ω2,ω3)∈{0,1}3
f2(a+ ω1h1 + ω2h2 + ω3h3) ≈ 0, (3.16)

where a is now the random variable from the second example (in particular, a
depends on the auxiliary random variable c), and once one conditions on an event
c = c for c = 1, . . . ,m, one draws h1,h2,h3 independently of each other and
from a, and each hi drawn uniformly from an arithmetic progression of the form

{nsc : |n| 6 exp(−1/η−Ci )Nc}, (3.17)
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for some constant Ci > 0 (for technical reasons, it is convenient to allow these
constants C1,C2,C3 to be different from each other, and also to be larger than
the constant C appearing in (3.12), so that h1,h2,h3 range over a narrower
scale than r). As with a and r, the random variables a,h1,h2,h3 are now
only conditionally independent relative to the auxiliary variable c, but are not
independent of each other without this conditioning, as they are coupled to each
other through c.

As it turns out, once one assumes this local Gowers uniformity of f2,
one can modify the Cauchy–Schwarz arguments used to establish the global
generalized von Neumann theorem to obtain the approximations (3.14), (3.15)
for the random variables a, r considered in the second example, at which point
Theorem 3.1 for this choice of f follows (heuristically, at least) from the analysis
of that example, at least if one assumes that there are no non-trivial relations of
the form (3.10).

Example 7 (Non-pseudorandom perturbation of a pure quadratic factor). We
now modify the fifth example by replacing the hypothesis (3.13) by its negation

E
∏

(ω1,ω2,ω3)∈{0,1}3
f2(a+ ω1h1 + ω2h2 + ω3h3)� 1 (3.18)

(it is not difficult to show that the left-hand side is non-negative). In this case, the
generalized von Neumann theorem used in that example does not give a good
estimate. However, in this situation one can apply the inverse theorem for the
Gowers norm established by us in [14]. To obtain good quantitative bounds, we
will use the version of that theorem that involves local correlation with quadratic
objects (as opposed to a somewhat weak global correlation with a single “locally
quadratic” object). Namely, if (3.18) holds, then one can partition Z/pZ into
a moderately large (e.g. O(exp(1/η−O(1)))) number of pieces P1, . . . , Pm , such
that on each piece Pc, the function f2 correlates with a “quadratically structured”
object. The precise statement is somewhat technical to state, but one simple
special case of this conclusion is that the pieces P1, . . . , Pm are arithmetic
progressions as in the second example, and for a “significant number” of the
progressions

Pc = {bc + nsc : 1 6 n 6 Nc}

there exists a frequency ξc ∈ R/Z such that

|E16n6Nc f2(bc + nsc)e(−ξcn2)| � 1.

(In general, one would take Pc to be Bohr sets of moderately high rank, rather
than arithmetic progressions, and the phase a 7→ ξca2/p would have to be
replaced by a more general locally quadratic phase function on such a Bohr
set, but we ignore these technicalities for the current informal discussion.) From
this and the cosine rule, it is possible to find a function g : Z/pZ → [−1, 1]
that is equal to (the real part of) a scalar multiple of the quadratic phases
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bc + nsc 7→ e(ξcn2) on each progression Pc, such that f2 + g has an energy
decrement compared to f2 in the sense that

Ea∈Z/pZ( f2(a)+ g(a))2 6 Ea∈Z/pZ f2(a)2 − ηC (3.19)

for some constant C > 0. In this situation, we can modify the decomposition
f = f1+ f2 by adding g to f2 and subtracting it from f1. (Strictly speaking, this
may make f1 and f2 range slightly outside of [−1, 1], but because f itself ranges
in [−1, 1], it turns out to be relatively easy to modify f1, f2 further to rectify this
problem.) The new function f1 has a similar “quadratic structure” to the previous
function f1, except that the quadratic structure is now localized to the cells
P1, . . . , Pm of the partition of Z/pZ, and the number of quadratic functions has
been increased by one. If the new function f2 is now locally Gowers uniform
in the sense of (3.16), then we are now essentially in the situation of the sixth
example (at least if there are no non-trivial relations of the form (3.10)), and
we can (heuristically at least) conclude Theorem 3.1 in this case by the previous
analysis. If f2 is locally Gowers uniform but there are additionally some relations
of the form (3.10), then one can hope to adapt the analysis of the fourth example
to reduce the quadratic complexity of f1 on all the poorly distributed cells, at
which point one restarts the analysis. If however f2 remains non-uniform, then
we need to argue using the analysis of the next and final example.

Example 8 (Non-pseudorandom perturbation of an impure quadratic factor).
Our final and most difficult example will be as to the sixth example as the seventh
example was to the fifth. Namely, we modify the sixth example by assuming that
the negation of (3.16) holds. Equivalently, one has the lower bound

E
( ∏
(ω1,ω2,ω3)∈{0,1}3

f2(a+ ω1h1 + ω2h2 + ω3h3)|c = c
)
� 1 (3.20)

on the local Gowers norm for a “significant fraction” of the c = 1, . . . ,m.
At the qualitative level, the inverse theorem in [14] for the global Gowers

norm allows one to also deduce a similar conclusion starting from the hypothesis
(3.20). However, the quantitative bounds obtained by this approach turn out to
be too poor for the purposes of establishing Theorems 3.1 or 1.1. Instead, one
must obtain a quantitative local inverse theorem for the Gowers norm that has
reasonably good bounds (of polynomial type) on the amount of correlation that
is (locally) attained. Establishing such a theorem is by far the most complicated
and lengthy component of this paper, although broadly speaking it follows the
same strategy as previous theorems of this type in [11, 14]. If one takes this local
inverse theorem for granted, then roughly speaking what we can then conclude
from the hypothesis (3.20) is that for a significant number of c = 1, . . . ,m,
one can partition the cell Pc into subcells Pc,1, . . . , Pc,mc , and locate a “locally
quadratic phase function” φc,i : Pc,i → R/Z on each such subcell (generalizing
the functions bc + nsc 7→ e(ξcn2) from the previous example), such that

|Ea∈Pc,i f2(bc,i )e(−φc,i (a))| � 1
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for a significant fraction of the c, i . Using this, one can again obtain an energy
decrement of the form (3.19), where now g is (the real part of) a scalar multiple
of the functions a 7→ e(φc,i (a)) on each Pc,i . By arguing as in the sixth example,
one can then modify f1 and f2 in such a way that the “energy” E f2(a)2 decreases
significantly, while f1 is now locally quadratically structured on a somewhat
finer partition of Z/pZ than the original partition P1, . . . , Pm , with the number
of quadratic phases needed to describe f1 on each partition having increased by
one. If the function f2 is now locally Gowers uniform (with respect to a new
set of random variables a, r adapted to this finer partition), and there are no
non-trivial relations of the form we can now (heuristically) conclude Theorem
3.1 from the analysis of the sixth example, assuming the addition of the new
quadratic phase has not introduced relations of the form (3.10). If such relations
occur, though, one can hope to adapt the analysis of the fourth example to
reduce the quadratic complexity of the poorly distributed cells, perhaps at the
cost of further subdivision of the cells. Finally, if the new version of f2 remains
non-uniform with respect to the finer partition, then one iterates the analysis of
this example to reduce the energy of f2 further. This process cannot continue
indefinitely due to the non-negativity of the energy (and also because none of the
other steps in the iteration will cause a significant increase in energy). Because
of this, one can hope to cover all cases of Theorem 3.1 by some complicated
iteration of the eight arguments described above.

Having informally discussed the eight key examples for Theorem 3.1, we
return now to the task of proving this theorem rigorously.

It will be convenient to work throughout the rest of the paper with a fixed
choice

1 < C1 < C2 < · · · < C5

of absolute constants, with each Ci assumed to be sufficiently large depending
on the previous C1, . . . ,Ci−1. For instance, for sake of concreteness one could
choose Ci := 22100i

; of course, other choices are possible. The implied constants
in the O( ) notation will not depend on the Ci unless otherwise specified. These
constants will serve as exponents for various scales η−Ci that will appear in our
analysis, with the point being that any scale of the form η−Ci for i = 2, . . . , 5
is extremely tiny with respect to any polynomial combination of the previous
scales η−C1, . . . , η−Ci−1 .

In all of the eight examples considered above, the function f was
approximated by some “quadratically structured” function, usually denoted
f1, with the approximation being accurate in various senses with respect to
some pair (a, r) of random variables. The rigorous argument will similarly
approximate f by a quadratically structured object; it will be convenient to
make this object a random function f rather than a deterministic one (though
as it turns out, this function will become deterministic again once an auxiliary
random variable c is fixed). The precise definition of “quadratically structured”
will be rather technical, and will eventually be given in Definition 6.1. For
now, we shall abstract the properties of “quadratic structure” that we will need,
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in the following proposition involving an abstract directed graph G = (V, E)
(encoding the “structured local approximants”), which we will construct more
explicitly later. We will shortly iterate this proposition to establish Theorem 3.1
and hence Theorem 1.1.

PROPOSITION 3.3 (Main proposition, abstract form). Let η be a real number
with 0 < η 6 1

10 , and let p be a prime with

p > exp(η−3C5). (3.21)

Let f : Z/pZ→ [0, 1] be a function. Then there exist the following:
(a) a (possibly infinite) directed graph G = (V, E), with elements v ∈ V

referred to as structured local approximants, and the notation v → v′

used to denote the existence of a directed edge from one structured local
approximant v to another v′;

(b) a triple (av, rv, fv) associated to f and to each structured local
approximant v ∈ V , where av, rv are random variables in Z/pZ, and
fv : Z/pZ→ [−1, 1] is a random function (with av, rv, fv not assumed to
be independent);

(c) a quadratic dimension d2(v) ∈ N assigned to each vertex v ∈ V ;
(d) a poorly distributed quadratic dimension dpoor

2 (v) ∈ N assigned to each
vertex v ∈ V , with 0 6 dpoor

2 (v) 6 d2(v); and
(e) an initial approximant v0 ∈ V , with d2(v0) = 0 (and hence dpoor

2 (v0) = 0).
Furthermore, whenever a structured local approximant vk ∈ V can be reached
from v0 by a path v0→ v1→ · · · → vk with 0 6 k 6 8η−2C2 , then the following
properties are obeyed:

(i) one has the “thickness” condition

P(rvk = 0)� exp(3η−C5)/p; (3.22)

(ii) we have the almost uniformity condition

|E f (avk )− Ea∈Z/pZ f (a)| 6 η; (3.23)

(iii) bad approximation implies energy decrement: if

|Efvk (avk )− f (avk )| > η (3.24)

or
|3avk ,rvk (fvk )−3avk ,rvk ( f )| > η (3.25)

then there exists a structured local approximant vk+1 ∈ V with vk→ vk+1
such that

E| f (avk+1)− fvk+1(avk+1)|
2 6 E| f (avk )− fvk k(avk )|

2
− ηC2

and
d2(vk+1) 6 d2(vk)+ 1.
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(iv) failure of “Khinchin-type recurrence” implies dimension decrement: if

3avk ,rvk (fvk ) 6 (Efvk (avk ))
4
− η, (3.26)

then there exists a structured local approximant vk+1 ∈ V with vk→ vk+1
obeying the bounds

E| f (avk+1)− fvk+1(avk+1)|
2 6 E| f (avk )− fvk (avk )|

2
+ η3C2,

d2(vk+1) 6 d2(vk),

dpoor
2 (vk+1) 6 dpoor

2 (vk)− 1.

The proof of this proposition will occupy the remainder of the paper. For
now, let us see how this proposition implies Theorem 3.1. Let p, η, f be as in
that theorem, and let C1, . . . ,C5 be as above. If the largeness criterion (3.21)
fails, then we may set r := 0, f := f , and draw a uniformly at random from
Z/pZ, and it is easy to see that the conclusions of Theorem 3.1 are obeyed (with
(3.3) following from Hölder’s inequality). Thus we may assume without loss of
generality that (3.21) holds.

Let G = (V, E), v0, d2( ), dpoor
2 ( ), and (av, rv, fv) be as in Proposition 3.3.

Suppose first that there exists a structured local approximant vk ∈ V that can be
reached from v0 by a path of length at most 8η−2C2 , and for which none of the
inequalities (3.24)–(3.26) hold, that is to say one has the bounds

|Efvk (avk )− fvk (avk )| 6 η, (3.27)
|3avk ,rvk (fvk )−3avk ,rvk ( fvk )| 6 η (3.28)

3avk ,rvk (fvk ) > (Efvk (avk ))
4
− η. (3.29)

From (3.29), (3.28), (3.27) and the triangle inequality (and the boundedness of
fvk , f ) we conclude that

3avk ,rvk ( fvk ) > (E f (avk ))
4
− O(η);

combining this with (3.22) and (3.23) we see that the random variables avk , rvk

obey the properties required of Theorem 3.1. Thus we may assume for sake of
contradiction that this situation never occurs, which by Proposition 3.3 implies
that whenever vk ∈ V is a structured local approximant that can be reached from
v0 by a path of length at most 8η−2C2 , then the conclusions of at least one of (iii)
and (iv) hold. Iterating this we may therefore construct a path

v0 → v1 → · · · → vk0+1

with
k0 := b8η−2C2c, (3.30)

such that for every 0 6 k 6 k0, one either has the energy decrement bounds

E| f (avk+1)− fk+1(avk+1)|
2 6 E| f (avk )− fk(avk )|

2
− ηC2,

d2(vk+1) 6 d2(vk)+ 1
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or the dimension decrement bounds

E| f (avk+1)− fk+1(avk+1)|
2 6 E| f (avk )− fk(avk )|

2
+ η3C2,

d2(vk+1) 6 d2(vk),

dpoor
2 (vk+1) 6 dpoor

2 (vk)− 1.

Since v0 already has the minimum quadratic dimension dpoor
2 (v0) = 0, we

see that we must experience an energy decrement at the k = 0 stage. Also, if k
is the j th index to experience an energy decrement, we see that dpoor

2 (vk+1) 6
d2(vk+1) 6 j , and so one can have at most j consecutive dimension decrements
after the kth stage; in other words, we must experience another energy decrement
within j+1 steps. By definition of k0, we have

∑
06 j62η−C2 ( j+1) < k0 if C2 is

large enough. We conclude that at least 2η−C2 energy decrements occur within
the path v0 → · · · → vk0+1. This implies that

E| f (avk0+1)− fk0+1(avk0+1)|
2 6 E| f (av0)− fk+1(av0)|

2
− (2η−C2)ηC2 + k0η

3C2 .

But if C2 is sufficiently large, this implies from (3.30) that

E| f (avk0+1)− fk0+1(avk0+1)|
2 < E| f (av0)− f0(av0)|

2
− 4

(for example), which leads to a contradiction because the left-hand side is
clearly non-negative, and the right-hand side non-positive. This gives the desired
contradiction that establishes Theorem 3.1 and hence Theorem 1.1.

It remains to establish Proposition 3.3. This will occupy the remaining
portions of the paper.

§4. Bohr sets. To define and manipulate the “structured local approximants”
that appear in Proposition 3.3, we will need to develop the theory of two
mathematical objects. The first is that of a Bohr set, which will be covered in
this section; the second is that of a dilated torus, which we will discuss in the
next section.

Definition 4.1 (Bohr set). A subset S of Z/pZ is said to be non-degenerate if
it contains at least one non-zero element. In this case we define the dual S-norm

‖a‖S⊥ := sup
ξ∈S

∥∥∥∥aξ
p

∥∥∥∥
R/Z

for any a ∈ Z/pZ, and then define the Bohr set B(S, ρ) ⊂ Z/pZ for any ρ > 0
by the formula

B(S, ρ) := {a ∈ Z/pZ : ‖a‖S⊥ < ρ}

where ‖θ‖R/Z denotes the distance from θ to the nearest integer. We refer to S
as the set of frequencies of the Bohr set, ρ as the radius, and |S| as the rank of
the Bohr set. We also define the shifted Bohr sets

n + B(S, ρ) := {a + n : a ∈ B(S, ρ)}

for any n ∈ Z/pZ.
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From (2.4) we have the triangle inequalities

‖a + b‖S⊥ 6 ‖a‖S⊥ + ‖b‖S⊥; ‖ka‖S⊥ 6 |k|‖a‖S⊥ (4.1)

for a, b ∈ Z/pZ and k ∈ Z; also we trivially have

‖a‖S⊥ 6 ‖a‖(S′)⊥

if S ⊂ S′ and a ∈ Z/pZ, or equivalently that B(S′, ρ) ⊂ B(S, ρ) for ρ > 0.
We will frequently use these inequalities in the sequel, usually without further
comment. In Lemma 4.6 below, we will show that ‖‖S⊥ is “dual” to a certain
word norm ‖‖S on Z/pZ. One could also define Bohr sets in the case when S is
degenerate, but this creates some minor complications in our arguments, so we
remove this case from our definition of a Bohr set.

We have the following standard size bounds for Bohr sets, whose proof may
be found in [33, Lemma 4.20].

LEMMA 4.2. If B(S, ρ) is a Bohr set, then |B(S, ρ)| > ρ|S| p and
|B(S, 2ρ)| 6 4|S||B(S, ρ)|.

In previous work on Roth-type theorems, one sometimes restricts attention to
regular Bohr sets, as first introduced in [6]; see [33, §4.4] for some discussion
of this concept. Due to our use of the probabilistic method, we will be able to
work with a technically simpler and “smoothed out” version of a regular Bohr
set, which we call the regular probability distribution on a Bohr set.

Definition 4.3. Let B(S, ρ) be a Bohr set. The regular probability distribution
pB(S,ρ) : Z/pZ→ R associated to B(S, ρ) is the function defined by the formula

pB(S,ρ)(a) := 2
∫ 1

1/2

1B(S,tρ)(a)
|B(S, tρ)|

dt; (4.2)

it is easy to see (from Fubini’s theorem) that this is indeed a probability
distribution on Z/pZ. A random variable a ∈ Z/pZ is said to be drawn regularly
from B(S, ρ) if it has probability density function pB(S,ρ), thus P(a = a) =
pB(S,ρ)(a) for all a ∈ Z/pZ.

More generally, for any shifted Bohr set n + B(S, ρ), we define the regular
probability distribution pn+B(S,ρ) : Z/pZ→ R by the formula

pn+B(S,ρ)(a) := pB(S,ρ)(a − n),

and say that a is drawn regularly from n + B(S, ρ) if it has probability
distribution pn+B(S,ρ).

Informally, to draw a random variable a regularly from n + B(S, ρ), one
should draw it uniformly from n+ B(S, tρ), where t is itself selected uniformly
at random from the interval [1/2, 1]. Note that if a is drawn regularly from
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n + B(S, ρ), then m + a will be drawn regularly from m + n + B(S, ρ) for
any m ∈ Z/pZ, and similarly ka will be drawn from kn + B(k−1

· S, ρ) for
any non-zero k ∈ Z/pZ, where k−1

· S := {k−1ξ : ξ ∈ S} is the dilate of the
frequency set S by k−1.

From Lemma 4.2 we see that if a is drawn regularly from a shifted Bohr set
n + B(S, ρ), then

P(a = a) 6
1

(ρ/2)|S| p
(4.3)

for all a ∈ Z/pZ. In practice, this will mean that the influence of any given value
of a will be negligible.

The presence of the averaging parameter t in (4.2) allows for the following
very convenient approximate translation-invariance property. Given two random
variables a, a′ taking values in a finite set A, we define the total variation
distance between the two to be the quantity

dTV(a, a′) :=
∑
a∈A

|P(a = a)− P(a′ = a)|,

or equivalently
dTV(a, a′) = sup

f
|E f (a)− E f (a′)|

where f : A→ C ranges over 1-bounded functions.
The next lemma gives some approximate translation-invariance properties

of Bohr sets. Its proof is a thinly disguised version of the arguments of
Bourgain [6].

LEMMA 4.4. Let n + B(S, ρ) be a shifted Bohr set, and let a be drawn
regularly from B(S, ρ). Let B(S′, ρ′) be another Bohr set with S′ ⊃ S.
(i) If h ∈ B(S′, ρ′), then a and a + h differ in total variation by at most

O(|S|ρ′/ρ).
(ii) More generally, if h is a random variable independent of a that takes

values in B(S′, ρ′), then a and a + h differ in total variation by at most
O(|S|ρ′/ρ).

Proof. To prove (i), it suffices to show that

E f (a+ h) = E f (a)+ O
(
|S|
ρ′

ρ

)
for any 1-bounded function f : Z/pZ→ C; the claim (ii) then also follows by
conditioning h to a fixed value h ∈ B(S′, ρ′), then multiplying by P(h = h) and
summing over h.

By translating f by n, we may assume that n = 0. We may assume that
ρ′ 6 ρ/10|S|, as the claim is trivial otherwise.
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From (4.2) we have

E f (a) = 2
∫ 1

1/2

∑
a∈Z/pZ

f (a)
1B(S,tρ)(a)
|B(S, tρ)|

dt

and

E f (a+ h) = 2
∫ 1

1/2

∑
a∈Z/pZ

f (a)
1B(S,tρ)−h(a)
|B(S, tρ)|

dt

so by the triangle inequality it suffices to show that∫ 1

1/2

∑
a∈Z/pZ |1B(S,tρ)(a)− 1B(S,tρ)−h(a)|

|B(S, tρ)|
dt � |S|

ρ′

ρ
. (4.4)

By the triangle inequality, the integrand here is bounded above by 2. Also,
from (4.1), we see that any a for which 1B(S,tρ)−h(a) 6= 1B(S,tρ)(a) lies in the
“annulus” B(S, tρ + ρ′)\B(S, tρ − ρ′). We conclude that the left-hand side of
(4.4) is bounded by∫ 1

1/2
O
(

min
(
|B(S, tρ + ρ′)| − |B(S, tρ − ρ′)|

|B(S, tρ − ρ′)|
, 1
))

dt

which, using the elementary bound min(x − 1, 1) � log x for x > 1, can be
bounded in turn by

O
(∫ 1

1/2
log
|B(S, tρ + ρ′)|
|B(S, tρ − ρ′)|

dt
)
.

The integral telescopes to

O
(∫ 1+ρ′/ρ

1
log |B(S, tρ)| dt −

∫ 1/2

1/2−ρ′/ρ
log |B(S, tρ)| dt

)
which can be bounded in turn by

O
(
ρ′

ρ
log
|B(S, 2ρ)|
|B(S, ρ/4)|

)
.

The claim now follows from Lemma 4.2. �

We will be interested in the Fourier coefficients Eep(λn) = Ee(λn/p) of
random variables n drawn regularly from Bohr sets B(S, ρ). As was noted by
Bourgain [6], these coefficients are controlled by a “word norm” ‖‖S , defined as
follows.

Definition 4.5 (Word norm). If S ⊂ Z/pZ is non-degenerate, and a is an
element of Z/pZ, we define the word norm ‖a‖S of a to be the minimum value
of
∑

s∈S |ns |, where (ns)s∈S ∈ ZS ranges over tuples of integers such that one
has a representation a =

∑
s∈S nss; note that such a representation always exists

because S is non-degenerate.
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Similarly to (4.1), we observe the triangle inequalities

‖a + b‖S 6 ‖a‖S + ‖b‖S; ‖ka‖S 6 |k|‖a‖S (4.5)

for a, b ∈ Z/pZ and k ∈ Z, which we will use frequently in the sequel, often
without further comment.

We now give a duality relationship between the word norm ‖‖S and the dual
S-norm ‖‖S⊥ .

LEMMA 4.6 (Duality). Let S be a non-degenerate subset of Z/pZ, and let
λ ∈ Z/pZ:
(i) for every n ∈ Z/pZ, one has ‖nλ/p‖R/Z 6 ‖n‖S⊥‖λ‖S;

(ii) conversely, if one has the estimate ‖nλ/p‖R/Z 6 A‖n‖S⊥ for some A > 1
and all n ∈ Z/pZ, then ‖λ‖S � |S|3/2 A.

Proof. To prove (i), we simply observe (using (2.4)) that for any n ∈ Z/pZ,
one has

‖nλ/p‖R/Z

=

∥∥∥∥∑
ξ∈S

aξ
nξ
p

∥∥∥∥
R/Z
6
∑
ξ∈S

|aξ |
∥∥∥∥nξ

p

∥∥∥∥
R/Z
6
∑
ξ∈S

|aξ |‖n‖S⊥ 6 ‖λ‖S‖n‖S⊥

as desired, where λ =
∑
ξ∈S aξ ξ is a representation of λ that minimizes∑

ξ∈S |ξ |.
Estimates such as (ii) go back to the work of Bourgain [6]. We will prove

this claim by a Fourier-analytic argument. We may assume that ‖λ‖S > |S|3/2,
as the claim is trivial otherwise. Let ψ : R → R be a non-negative smooth
even function (not depending on p or λ) supported on [−1, 1] and non-zero on
[−1/2, 1/2], whose Fourier transform ψ̂(ξ) :=

∫
R ψ(x)e(−ξ x) dx is also non-

negative. Set N := |S|−1
‖λ‖S , so in particular N > 1. We consider the kernel

KN : Z/pZ→ C defined by

KN (n) :=
∑
k∈Z

ep(kn)ψ
(

k
N

)
;

by the Poisson summation formula we have

KN (n (mod p)) = N
∑
m∈Z

ψ̂

(
Nn
p
− Nm

)

for any integer n, so in particular KN is non-negative.
By definition of N , the frequency λ has no representations of the form λ =∑
ξ∈S aξ ξ with supξ∈S |aξ | < N . Hence the Riesz-type product

∏
ξ∈S KN (ξn),
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when expanded, contains no terms of the form ep(λn) or ep(−λn), and is
therefore orthogonal to cos(2πλn/p). In particular we have the identity

En∈Z/pZ
∏
ξ∈S

KN (ξn) = En∈Z/pZ

(
1− cos

(
2πλn

p

))∏
ξ∈S

KN (ξn).

On the other hand, from two applications of (2.3) we have

1− cos
(

2πλn
p

)
�

∥∥∥∥λn
p

∥∥∥∥2

R/Z
6 A2

‖n‖2S⊥

6 A2
∑
ξ0∈S

∥∥∥∥ξ0n
p

∥∥∥∥2

R/Z
6 A2

∑
ξ0∈S

(
1− cos

(
2πξ0n

p

))
.

As KN is non-negative, we conclude that

En∈Z/pZ
∏
ξ∈S

KN (ξn)

� A2
∑
ξ0∈S

En∈Z/pZ

(( ∏
ξ∈S\ξ0

KN (ξn)
)

KN (ξ0n)
(

1− cos
(

2πξ0n
p

)))
. (4.6)

We can expand KN (ξ0n)(1− cos(2πξ0n/p)) as a Fourier series

∑
k∈Z

ep(kn)
(
ψ

(
k
N

)
−
ψ((k − 1)/N )+ ψ((k + 1)/N )

2

)
.

The expression inside parentheses is only non-vanishing for |k| 6 N + 1, and
has magnitude O(1/N 2). As ψ is non-negative everywhere and non-zero on
[−1/2, 1/2], we thus have a pointwise estimate of the form

ψ

(
k
N

)
−
ψ((k − 1)/N )+ ψ((k + 1)/N )

2
�

1
N 2

8∑
j=−8

ψ

(
k
N
−

j
4

)

(for example). By using the non-negativity of the Fourier coefficients of KN , this
gives the estimate

En∈Z/pZ

( ∏
ξ∈S\ξ0

KN (ξn)
)

KN (ξ0n)
(

1− cos
(

2πξ0n
p

))
�

1
N 2En∈Z/pZ

∏
ξ∈S

KN (ξn).

Comparing this with (4.6), we conclude that 1 � A2
|S|/N 2, and the claim

follows from the definition of N . �
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Next, we estimate the Fourier coefficients of a regular distribution on a Bohr
set in terms of the word norm.

LEMMA 4.7. Let S be a non-degenerate subset of Z/pZ. Suppose that n is
drawn regularly from B(S, ρ). Then we have

Eep(λn)�
|S|5/2

ρ‖λ‖S

for all λ ∈ Z/pZ, where we adopt the convention that the above estimate is
vacuously true if ‖λ‖S = 0.

Proof. For any h ∈ Z/pZ, one has from Lemma 4.4 that

Eep(λn) = Eep(λ(n+ h))+ O
(
|S|‖h‖S⊥

ρ

)
which we may rearrange as

(1− ep(λh))Eep(λn)�
|S|‖h‖S⊥

ρ
.

Since |1− ep(λh)| � ‖λh/p‖R/Z, we conclude that∥∥∥∥λh
p

∥∥∥∥
R/Z

Eep(λn)�
|S|‖h‖S⊥

ρ
.

Taking h so as to minimize the ratio ‖h‖S⊥/‖λh/p‖R/Z, the claim follows from
Lemma 4.6. �

We will take advantage of the fact that Bohr sets can be approximately
described as generalized arithmetic progressions. A key lemma in this regard
is the following.

LEMMA 4.8. Let 0 be a lattice in Rd . Then there exist linearly independent
generators v1, . . . , vd of 0 and real numbers N1, . . . , Nd > 0 such that

BRd (0, O(d)−3d/2t) ∩ 0 ⊂
{ d∑

i=1

nivi : |ni | < t Ni

}
⊂ BRd (0, t) ∩ 0 (4.7)

for all t > 0, where BRd (0, r) is the open Euclidean ball of radius r in Rd , and
the ni are understood to be integers. Furthermore, the determinant/covolume
det(0) obeys the bounds

det(0) = (2d)O(d)
d∏

i=1

N−1
i . (4.8)
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Proof. Applying [34, Theorem 1.6], we can find elements v1, . . . , vr of 0 for
some r 6 d, linearly independent over the rationals, and real numbers N1, . . . ,

Nd > 0 such that

BRd (0, O(d)−3d/2t) ∩ 0 ⊂
{ r∑

i=1

nivi : |ni | < t Ni

}
⊂ BRd (0, t) ∩ 0 (4.9)

for all t > 0, and such that

O(d)−7d/2
|BRd (0, t) ∩ 0| 6

∣∣∣∣{ r∑
i=1

nivi : |ni | < t Ni

}∣∣∣∣ 6 |BRd (0, t) ∩ 0|.

(Strictly speaking, the statement of [34, Theorem 1.6] only claims the latter
bound for t = 1, but the same argument gives the bound for all t > 0.) Sending t
to infinity, we conclude that the v1, . . . , vr generate 0; since, by virtue of being a
lattice, 0 is cocompact, this forces d = r . Also, volume packing arguments show
that as t → ∞, the cardinality |BRd (0, t)∩0| is asymptotic to the measure of
BRd (0, t) divided by det(0), while the cardinality of |{n1v1+· · ·+ndvd : |ni | 6
t Ni }| is asymptotic to

∏d
i=1(2t Ni ). We conclude (4.8) as desired. �

The following corollary describes how we may pick a “basis” for a Bohr set.

COROLLARY 4.9. Let S be a non-degenerate subset of Z/pZ, and set
d := |S|. Then there exist elements a1, . . . , ad of Z/pZ and real numbers
N1, . . . , Nd > 0 such that

d∏
i=1

N−1
i = (2d)O(d) p (4.10)

and
‖ai‖S⊥ 6 N−1

i (4.11)

for all i = 1, . . . , d. Furthermore, for any a ∈ Z/pZ, there exists a
representation

a = n1a1 + · · · + ndad (4.12)

with n1, . . . , nd integers of size

ni = (2d)O(d)Ni‖a‖S⊥ (4.13)

for i = 1, . . . , d. Finally, if one imposes the additional condition |ni | < Ni/2 for
all i = 1, . . . , d, then there is at most one such representation of this form (4.12)
for a given a.

Proof. For each s ∈ S, the fraction s/p can be viewed as an element of R/Z
of order at most p; as S is non-degenerate, we see that the tuple (s/p)s∈S is an
element of the torus (R/Z)S of order p. Let 0 be the preimage in RS of the
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group generated by this element, thus 0 is a lattice of RS that contains ZS as a
sublattice of index p; in particular, 0 has determinant p. Applying Lemma 4.8,
one can find generators v1, . . . , vd of 0 and real numbers N1, . . . , Nd obeying
(4.10) such that

BRS (0, O(d)−3d/2t) ∩ 0 ⊂
{ d∑

i=1

nivi : |ni | < t Ni

}
⊂ BRS (0, t) ∩ 0 (4.14)

for all t > 0.
By construction of 0, we can find elements a1, . . . , ad of Z/pZ such that

vi =

(
ai s
p

)
s∈S

(mod ZS) (4.15)

for i = 1, . . . , d . Applying (4.14) with t slightly larger than N−1
i for some i = 1,

. . . , d , we see that vi ∈ BRd (N−1
i ), and hence by (4.15) we have (4.11).

Finally, if a ∈ Z/pZ, then by definition of 0 we can find an element x of 0
in the preimage of (as/p)s∈S such that each component of x has magnitude less
than ‖a‖S⊥ ; in particular, x ∈ BRS (0,

√
d‖a‖S⊥). Applying (4.14), we conclude

that x =
∑d

i=1 nivi for some integers n1, . . . , nd obeying (4.13), giving the
desired representation (4.12).

Finally, we show uniqueness. If there were two representations of the form
(4.12) with |ni | < Ni/2 for all i = 1, . . . , d , then there exists a tuple (n′1,
. . . , n′d) ∈ Zd , not identically zero, with |n′i | < Ni for all i = 1, . . . , d and∑d

i=1 ni ai = 0, which implies that the vector
∑d

i=1 nivi lies in ZS . As the v1,

. . . , vd are linearly independent, this vector must have magnitude at least 1; but
this contradicts (4.7) (with t = 1). �

Linear and quadratic functions on Bohr sets. We will frequently need to deal
with locally linear or quadratic functions on Bohr sets. We review the definitions
of these now.

Definition 4.10. Let B be a subset of Z/pZ, and let G = (G,+) be an abelian
group. A function φ : B → G is said to be locally linear on B if one has

φ(n + h1 + h2)− φ(n + h1)− φ(n + h2)+ φ(n) = 0

whenever n, h1, h2 ∈ Z/pZ are such that n, n + h1, n + h2, n + h1 + h2 ∈ B.
Similarly, φ is said to be locally quadratic on B if one has∑

(ω1,ω2,ω3)∈{0,1}3
(−1)ω1+ω2+ω3φ(n + ω1h1 + ω2h2 + ω3h3) = 0 (4.16)

whenever n, h1, h2, h3 ∈ Z/pZ are such that n + ω1h1 + ω2h2 + ω3h3 ∈ B for
all (ω1, ω2, ω3) ∈ {0, 1}3.
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A function ψ : B × B → G is said to be locally bilinear on B if one has

ψ(h1 + h′1, h2) = ψ(h1, h2)+ ψ(h′1, h2)

whenever h1, h′1, h2 ∈ B are such that h1 + h′1 ∈ B, and similarly one has

ψ(h1, h2 + h′2) = ψ(h1, h2)+ ψ(h1, h′2)

whenever h1, h2, h′2 ∈ B are such that h2 + h′2 ∈ B.

Specializing (4.16) to the case h1 = h2 = h3 = h, we conclude that

φ(n)− 3φ(n + h)+ 3φ(n + 2h)− φ(n + 3h) = 0 (4.17)

whenever φ : B→ G is locally quadratic on B and n, n+h, n+2h, n+3h ∈ B.
It is well known (from the Weyl exponential sum estimates) that quadratic

exponential sums such as E16n6N e(αn2
+ βn) can only be large when the

quadratic phase αn2 is of “major arc” type in the sense that kαn2 is close to
constant on the range {1, . . . , N } of the summation variable n, for some bounded
positive integer k. The following proposition is an analogue of this phenomenon
on Bohr sets.

PROPOSITION 4.11 (Large local quadratic exponential sums). Let B(S, ρ) be
a Bohr set, let 0 < δ 6 1/2, let λ,µ : B(S, 10ρ)→ R/Z be locally linear maps,
and let φ : B(S, 10ρ)× B(S, 10ρ)→ R/Z be a locally bilinear phase such that

|Ee(φ(n,m)+ λ(n)+ µ(m))| > δ (4.18)

if n,m are drawn independently and regularly from B(S, ρ). Then there exists a
natural number

1 6 k 6 δ−O(C1|S|2)

such that
‖kφ(n,m)‖R/Z � δ−O(C1|S|2) ‖n‖S‖m‖S

ρ2 (4.19)

whenever n,m ∈ B(S, δC1ρ/(C1|S|)3|S|).

Proof. Let d := |S|, thus d > 1. By Corollary 4.9, we can find elements
a1, . . . , ad of Z/pZ and real numbers N1, . . . , Nd obeying the conclusions of
that corollary.

Suppose that 1 6 i, j 6 d are such that Ni , N j > d/δC1/2ρ (we allow i and
j to be equal). Then by (4.11) we have

‖ai‖S⊥, ‖a j‖S⊥ 6 d−1δC1/2ρ.

We can control the coefficient φ(ai , a j ) by the following argument. If we draw
bi and b j uniformly from {bi ∈ Z : 1 6 bi 6 δC1/4 Niρ/d} and {b j ∈ Z : 1 6
b j 6 δC1/4 N jρ/d} respectively and independently of each other and of n,m,
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then from two applications of Lemma 4.4 (comparing n with n + bi ai , and m
with m+ b j a j ) we have

Ee(φ(n+ bi ai ,m+ b j a j )+ λ(n+ bi ai )+ µ(m+ b j a j ))

= Ee(φ(n,m)+ λ(n)+ µ(m))+ O(δC1/4)

and hence from (4.18) (assuming C1 large enough) we have

|Ee(φ(n+ bi ai ,m+ b j a j )+ λ(n+ bi ai )+ µ(m+ b j a j ))| � δ.

By the pigeonhole principle, we can therefore find n,m ∈ B(S, ρ) such that

|Ee(φ(n + bi ai ,m + b j a j )+ λ(n + bi ai )+ µ(m + b j a j ))| � δ.

Using the local bilinearity of φ, the left-hand side may be written as

|Ee(bi b jφ(ai , a j )+ αbi + βb j + γ )|

for some α, β, γ ∈ R/Z depending on i, j, n,m whose exact values are not of
importance to us. Evaluating the expectations and using the triangle inequality,
we conclude that

E16bi6δC1/4 Niρ/d |E16b j6δC1/4 N jρ/de(b j (biφ(ai , a j )+ β))| � δ

and hence (by Lemma 2.2)

|E16b j6δC1/4 N jρ/de(b j (biφ(ai , a j )+ β))| � δ

for � δC1/4+1 Niρ/d values of bi in the range 1 6 bi 6 δC1/4 Niρ/d. This
average is a geometric series that can be explicitly computed, leading to the
bound

‖biφ(ai , a j )+ β‖R/Z �
d

δC1/4+1 N jρ

for� δC1/4+1 Niρ/d values of bi in the range 1 6 bi 6 δC1/4 Niρ/d . Applying
[17, Lemma A.4] (which is really an observation of Vinogradov, used often in
the theory of Weyl sums), we conclude that

‖ki, jφ(ai , a j )‖R/Z �
d2

δO(C1)Ni N jρ2

for some natural number ki, j with 1 6 ki, j � δ−O(C1). If we then “clear
denominators” by defining

k :=
∏

16i, j6d:Ni ,N j>d/δC1/2ρ

ki, j ,
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then 1 6 k � δ−O(C1d2) and

‖kφ(ai , a j )‖R/Z �
1

δO(C1d2)Ni N jρ2
(4.20)

for all 1 6 i, j 6 d with Ni , N j > d/δC1/2ρ.
For any n ∈ Z/pZ, we see from Corollary 4.9 that we can find integers n1,

. . . , nd with
ni � (2d)O(d)Ni‖n‖S⊥

such that
n = n1a1 + · · · + ndad .

In particular, if n ∈ B(S, δC1ρ/(C1d)3d), then ni is only non-zero when Ni >
d/δC1/2ρ. From these bounds, (4.20), and the local bilinearity of φ, we conclude
(4.19) as desired. �

Local U 2-inverse theorem. The global inverse U 2 theorem, which is a simple
and well-known exercise in discrete Fourier analysis, asserts that if a 1-bounded
function f : Z/pZ→ C obeys the bound

|E f (h0 + h1) f (h0 + h′1) f (h′0 + h1) f (h′0 + h′1)| > η (4.21)

where h0,h1,h′0,h′1 are drawn uniformly at random from Z/pZ, then there
exists ξ ∈ Z/pZ such that

|E f (h)ep(−ξh)| > η1/2 (4.22)

where h is also drawn uniformly at random from Z/pZ.
In this section we give a local version of the above claim, in which the random

variables h,h0,h1,h′0,h′1 are localized to a small Bohr set. If the rank of the
Bohr set is bounded, one can modify the above arguments to obtain a reasonable
inverse theorem of this nature, but in our application the rank of the Bohr set will
be rather large, and it will be important that this rank does not affect the lower
bound in correlations of the form (4.22). Fortunately, such a result is available,
and will be crucial in the proofs of the two remaining claims (Corollary 4.13 and
Theorem 8.1) needed to prove Theorem 1.1.

Here is a precise version of the claim.

THEOREM 4.12. Let S ⊂ Z/pZ be non-degenerate for some prime p, and let
0 < η < 1/2. Let ρ0, ρ1 be real parameters with 0 < ρ1 < ρ0 < 1/2 and such
that

ρ0 >
C |S|
η2 ρ1 (4.23)

for a sufficiently large absolute constant C. Let f : Z/pZ→ C be a 1-bounded
function such that

|E f (h0 + h1) f (h0 + h′1) f (h′0 + h1) f (h′0 + h′1)| > η, (4.24)
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where h0,h′0,h1,h′1 are drawn independently and regularly from B(S, ρ0),
B(S, ρ0), B(S, ρ1), B(S, ρ1) respectively. Then there exists ξ ∈ Z/pZ such that∑

n0∈Z/pZ
P(n0 = n0)|E f (n0 + n1)ep(−ξn1)|

2 > η/2

where n0,n1 are drawn independently and regularly from B(S, ρ0), B(S, ρ1)

respectively.

Proof. We thank Fernando Shao for supplying a proof of this result, which
was considerably simpler than our original argument.

For this proof, which is Fourier-analytic in nature, it will be convenient
to work explicitly with probability densities rather than probabilistic notation.
(However, in the lengthier proof of the local inverse U 3 theorem given in the
next section, the probabilistic notation will be significantly cleaner to use.) In
this argument, all sums will be over Z/pZ. We abbreviate

pi (h) := pB(S,ρi )(h) = P(hi = h)

for i = 0, 1 and h ∈ Z/pZ; clearly we have pi (h) > 0 and∑
h

pi (h) = 1. (4.25)

The hypothesis (4.24) may be written as∣∣∣∣ ∑
h0,h′0,h1,h′1

p0(h0)p0(h′0)p1(h1)p1(h′1) f (h0 + h1) f (h0 + h′1)

× f (h′0 + h1) f (h′0 + h′1)
∣∣∣∣ > η (4.26)

and our goal is to locate ξ ∈ Z/pZ such that

∑
n0

p0(n0)

∣∣∣∣∑
n1

p1(n1) f (n0 + n1)ep(−ξn1)

∣∣∣∣2 > η/2.
The first step is to replace the factor p0(h0) by the slightly different factor

p
1/2
0 (h0+ h1)p

1/2
0 (h0+ h′1). If we use the elementary inequality |x1/2

− y1/2
| 6

|x− y|1/2 for x, y > 0 and then apply Cauchy–Schwarz, Lemma 4.4, and (4.23),
we see that∑

h0

|p
1/2
0 (h0 + h1)− p

1/2
0 (h0)|p

1/2
0 (h0)

6
∑
h0

|p0(h0 + h1)− p0(h0)|
1/2p

1/2
0 (h0)

https://doi.org/10.1112/S0025579317000316 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000316


974 B. GREEN AND T. TAO

6

( ∑
h0∈Z/pZ

|p0(h0 + h1)− p0(h0)|

)1/2

=

( ∑
h0∈Z/pZ

bh1(h0)p0(h0 + h1)− bh1(h0)p0(h0)

)1/2

�

(
|S|ρ1

ρ0

)1/2

�
η

C1/2

for any h1 in the support of p1, where the 1-bounded function bh1 is given by
bh1(h0) := sgn(p0(h0 + h1)− p0(h0)). Similarly we have∑

h0

|p
1/2
0 (h0 + h′1)− p

1/2
0 (h0)|p

1/2
0 (h0 + h1)�

η

C1/2

whenever h′1 is also in the support of p1; by the triangle inequality, we conclude
that ∑

h0

|p
1/2
0 (h0 + h1)p0(h0 + h′1)

1/2
− p0(h0)| �

η

C1/2

for all h1, h′1 in the support of p1. From the 1-boundedness of f and (4.25), we
conclude that∣∣∣∣ ∑

h0,h′0,h1,h′1

|p
1/2
0 (h0 + h1)p

1/2
0 (h0 + h′1)− p0(h0)|

× p0(h′0)p1(h1)p1(h′1) f (h0 + h1) f (h0 + h′1) f (h′0 + h1) f (h′0 + h′1)
∣∣∣∣

�
η

C1/2 .

If C is large enough, the left-hand side is thus bounded by 0.1η (for example),
so by (4.26) and the triangle inequality we conclude that∣∣∣∣ ∑

h0,h′0,h1,h′1

p
1/2
0 (h0 + h1)p

1/2
0 (h0 + h′1)p0(h′0)p1(h1)p1(h′1)

× f (h0 + h1) f (h0 + h′1) f (h′0 + h1) f (h′0 + h′1)
∣∣∣∣ > 0.9η

If we write
f0(n) := f (n)p1/2

0 (n), (4.27)

we may rewrite the above estimate as∣∣∣∣ ∑
h0,h′0,h1,h′1

p0(h′0)p1(h1)p1(h′1)

× f0(h0 + h1) f0(h0 + h′1) f (h′0 + h1) f (h′0 + h′1)
∣∣∣∣ > 0.9η.
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A similar argument then lets us replace p0(h′0) with p
1/2
0 (h′0+ h1)p

1/2
0 (h′0+ h′1),

leaving us with∣∣∣∣ ∑
h0,h′0,h1,h′1

p0(h′0 + h1)
1/2p0(h′0 + h′1)

1/2p1(h1)p1(h′1)

× f0(h0 + h1) f0(h0 + h′1) f (h′0 + h1) f (h′0 + h′1)
∣∣∣∣ > 0.8η.

which we can simplify using (4.27) to∣∣∣∣ ∑
h0,h′0,h1,h′1

p1(h1)p1(h′1) f0(h0+h1) f0(h0+h′1) f0(h′0+h1) f0(h′0+h′1)
∣∣∣∣ > 0.8η.

Making the change of variables n := h1 − h′1, we may rewrite the left-hand
side as ∑

n

(p1 ∗ p̃1)(n)|( f0 ∗ f̃0)(n)|2

where f̃0(n) := f0(−n), and similarly for p1, and f ∗ g denotes the discrete
convolution

f ∗ g(n) :=
∑

m

f (m)g(n − m).

Using the Fourier transform, we may then rewrite the previous bound as

p4
∑
ξ,ξ ′

|p̂1(ξ
′)|2| f̂0(ξ)|

2
| f̂0(ξ + ξ

′)|2 > 0.8η (4.28)

where

f̂ (ξ) :=
1
p

∑
n

f (n)ep(−ξn).

From (4.25), the 1-boundedness of f , and the Plancherel identity we have

∑
ξ

| f̂0(ξ)|
2
=

1
p

∑
n

| f0(n)|2 6
1
p
.

By this, (4.28), and the pigeonhole principle, we may therefore find ξ ∈ Z/pZ
such that

p3
∑

ξ ′∈Z/pZ
| p̂1(ξ

′)|2| f̂0(ξ + ξ
′)|2 > 0.8η.

By the Plancherel identity again, the left-hand side may be rewritten as

∑
n0

∣∣∣∣∑
n1

f0(n0 − n1)p1(n1)ep(ξn1)

∣∣∣∣2
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and hence (by replacing n1 with −n1 and using (4.27))∑
n0

∣∣∣∣∑
n1

f (n0 + n1)p
1/2
0 (n0 + n1)p1(n1)ep(−ξn1)

∣∣∣∣2 > 0.8η.

By argument similar to those at the beginning of the proof, we may replace
p

1/2
0 (n0 + n1) by p

1/2
0 (n0) and conclude that

∑
n0

∣∣∣∣∑
n1

f (n0 + n1)p
1/2
0 (n0)p1(n1)e(−ξn1)

∣∣∣∣2 > 0.7η,

and the claim follows. �

As a corollary of this inverse theorem, we can establish that locally almost
linear phases on Bohr sets can be approximated by globally linear phases; this
will be needed in §7 to deal with poorly distributed quadratic factors.

Here is a precise statement.

COROLLARY 4.13. Let φ : n0 + B(S, ρ)→ R/Z be a function on a shifted
Bohr set n0 + B(S, ρ) that is “locally almost linear” in the sense that one has
the bound

‖φ(n0+h+k)−φ(n0+h)−φ(n0+k)+φ(n0)‖R/Z 6 A
‖h‖S⊥‖k‖S⊥

ρ2 (4.29)

for all h, k ∈ B(S, ρ/2) and some A > 1. Then there exists ξ ∈ Z/pZ such that∥∥∥∥φ(n0 + h)− φ(n0)−
ξh
p

∥∥∥∥
R/Z
� A1/2

|S|4
‖h‖S⊥

ρ
(4.30)

for all h ∈ B(S, ρ).

Proof. By translating in space, we may normalize so that n0 = 0; by shifting
φ by a phase, we may also suppose that φ(0) = 0. By replacing ρ with the
smaller quantity ρ/A1/2 if necessary, we may normalize A to be 1 (note that
(4.30) is trivial for ‖h‖S⊥ > ρ/A1/2). Thus, we now have a function φ : B(S, ρ)
→ R/Z with φ(0) = 0 such that the quantity

∂2φ(h, k) := φ(h + k)− φ(h)− φ(k) (4.31)

obeys the bound

‖∂2φ(h, k)‖R/Z 6
‖h‖S⊥‖k‖S⊥

ρ2 (4.32)

for all h, k ∈ B(S, ρ/2), and our task is to locate ξ ∈ Z/pZ such that∥∥∥∥φ(h)− ξh
p

∥∥∥∥
R/Z
� |S|4

‖h‖S⊥

ρ
(4.33)

for all h ∈ B(S, ρ).
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Let ρ0 := ρ/100, and set ρ1 := ρ/C |S|3 for some sufficiently large absolute
constant C . If we let f : Z/pZ→ C be the 1-bounded function

f (x) := 1B(S,ρ)e(φ(x)) (4.34)

and draw h0,h′0,h1,h′1 independently and regularly from B(S, ρ0), B(S, ρ0),
B(S, ρ1), B(S, ρ1) respectively, then from (4.31) we have

f (h0 + h1) f (h0 + h′1) f (h′0 + h1) f (h′0 + h′1)
= e(∂2φ(h0,h1)− ∂

2φ(h′0,h1)− ∂
2φ(h0,h′1)+ ∂

2φ(h′0,h′1)).

Applying (4.32) and taking expectations, we conclude that

|E f (h0 + h1) f (h0 + h′1) f (h′0 + h1) f (h′0 + h′1)| > 1/2

(for example). Applying Theorem 4.12 (which is applicable for C large enough),
we may thus find ξ ∈ Z/pZ such that∑

n0∈Z/pZ
P(n0 = n0)|E f (n0 + n1)ep(−ξn1)|

2 > 1/4

if n0,n1 are drawn independently and regularly from B(S, ρ0), B(S, ρ1)

respectively. In particular, there exists n ∈ B(S, ρ0) such that

|E f (n + n1)ep(−ξn1)| > 1/4.

By (4.34), (4.31) we have

f (n + n1) = e(φ(n1)+ φ(n)+ ∂2φ(n,n1))

so by (4.32) we conclude that∣∣∣∣Ee
(
φ(n1)−

ξn1

p

)∣∣∣∣� 1. (4.35)

For any h ∈ B(S, ρ1), we have from Lemma 4.4 that∣∣∣∣Ee
(
φ(n1 + h)−

ξ(n1 + h)
p

)
− Ee

(
φ(n1)−

ξn1

p

)∣∣∣∣� |S|‖h‖S⊥

ρ1
;

on the other hand, from (4.31) we have the identity

Ee
(
φ(n1 + h)−

ξ(n1 + h)
p

)
= e

(
φ(h)−

ξh
p

)
Ee
(
φ(n1)−

ξn1

p
+ ∂2φ(n1, h)

)
.

Combining this with (4.32), (4.35), and (2.2), we conclude that∥∥∥∥φ(h)− ξh
p

∥∥∥∥
R/Z
�

∣∣∣∣e(φ(h)− ξh
p

)
− 1

∣∣∣∣� |S|‖h‖S⊥

ρ1

for all h ∈ B(S, ρ1). As the claim (4.33) is trivial for h ∈ B(S, ρ)\B(S, ρ1), the
claim follows. �
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§5. Dilated tori. As mentioned in Example 3 of §3, to maintain good
quantitative control (and specifically, Lipschitz norm control) on the functions
F : G → [−1, 1] used to build quadratic approximants, one needs to generalize
the underlying domain G to more general tori than the standard tori (R/Z)d with
the usual norm structure. It turns out that it will suffice to work with dilated tori
of the form

G =
d∏

i=1

(R/λiZ),

where λ1, . . . , λd > 1 are real numbers. One can view this dilated torus as the
quotient of Rd by a dilated lattice 0 :=

∏d
i=1 λiZ. We can place a “norm” on G

by declaring ‖x‖G for x ∈ G to be the Euclidean distance in Rd from x to 0;
this generalizes the norm ‖‖R/Z from §2. This in turn defines a metric dG on G
by the formula

dG(x, y) := ‖x − y‖G .

The volume vol(G) of a dilated torus is defined to be the product

vol(G) :=
d∏

i=1

λi = det(0).

It will be important to keep this quantity under control during the iteration
process. In particular, when transforming from one dilated torus to another, the
volume of the new torus should behave like a linear function of the existing
torus; anything worse than this (e.g. quadratic behaviour) will lead to undesirable
bounds upon iteration.

We define the Pontryagin dual Ĝ of a dilated torus G to be the lattice

Ĝ :=
d∏

i=1

1
λi
Z.

Elements k of this dual will be called dual frequencies of the torus. If k = (k1,

. . . , kd) is a dual frequency and x = (x1, . . . , xd) is an element of G, we define
the dot product k · x ∈ R/Z in the usual fashion as

k · x = k1x1 + · · · + kd xd

noting that this gives a well-defined element of R/Z.
A dual frequency k is said to be irreducible if it is non-zero, and not of the

form k = nk′ for some other dual frequency k′ and some natural number n > 1.
If a dual frequency k is irreducible, then its orthogonal complement

k⊥ := {x ∈ G : k · x = 0}

is a (d − 1)-dimensional subtorus of G; it inherits a metric dk⊥ from the torus G
it lies in. We will need to pass to such a complement when dealing with poorly
distributed quadratic factors (as in the third or fourth examples in §3), however
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we encounter the technical issue that these complements k⊥ will not quite be
of the form of a dilated torus. However, we will be able to transform k⊥ into a
dilated torus using a bilipschitz transformation, as the following result shows.

THEOREM 5.1. Let G =
∏d

i=1(R/λiZ) be a dilated torus, and let k ∈
Ĝ be an irreducible dual frequency of G. Then there exists a dilated torus
G ′ =

∏d−1
i=1 (R/λ

′

iZ) and a Lie group isomorphism ψ : k⊥ → G ′ obeying the
bilipschitz bounds

‖ψ‖Lip, ‖ψ
−1
‖Lip � d O(d) (5.1)

and such that one has the volume bound

vol(G ′) = d O(d)
|k| vol(G), (5.2)

where |k| denotes the Euclidean magnitude of k in Rd .

Proof. The case d = 0 is vacuous and the case d = 1 is trivial, so we may
assume d > 1. One can identify k⊥ with the quotient V/0, where V := {x ∈
Rd
: k ·x = 0} is the hyperplane in Rd orthogonal to k (now viewed as an element

of Rd ), and 0 := V ∩
∏d

i=1(λiZ) is the restriction of the lattice
∏d

i=1(λiZ) to V .
As k is irreducible, there exists a vector e in the lattice

∏d
i=1(λiZ) with

k · e = 1; thus e has distance 1/|k| to V . One can form a fundamental domain of
Rd/

∏d
i=1(λiZ) by taking any fundamental domain for V/0 and performing the

Minkowski sum of that domain with the interval {te : 0 6 t 6 1}. By Fubini’s
theorem, the d-dimensional Lebesgue measure of such a sum will equal the
(d − 1)-dimensional Lebesgue measure of the fundamental domain of V/0 and
1/|k|; thus the covolume of

∏d
i=1(λiZ) in Rd equals 1/|k| times the covolume

of 0 in V . As the former covolume (determinant) is
∏d

i=1 λi = vol(G), we
conclude that 0 has covolume |k| vol(G) in V .

Applying Lemma 4.8, we can find linearly independent elements v1, . . . ,

vd−1 generating 0 such that

BV (0, O(d)−3d/2t) ∩ 0 ⊂
{ r∑

i=1

nivi : |ni | 6 t Ni

}
⊂ BV (0, t) ∩ 0 (5.3)

for all t > 0, where BV (0, r) is the Euclidean ball of radius r in V , and the ni
are understood to be integers, with the bound

d−1∏
i=1

N−1
i = (2d)O(d)

|k| vol(G). (5.4)

From (5.3) we conclude in particular that

O(d)−3d/2 N−1
i 6 |vi | 6 N−1

i (5.5)

for all 1 6 i 6 d .
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We now define the (d − 1)-dimensional dilated torus

G ′ :=
d−1∏
i=1

(R/N−1
i Z)

and the isomorphism φ : V/0→ G ′ by the formula

φ

(d−1∑
i=1

tivi (mod 0)
)
:= (t1 N−1

1 , . . . , td−1 N−1
d−1)

(
mod

d−1∏
i=1

N−1
i Z

)
for real numbers t1, . . . , td−1. It is easy to see that this is a Lie group
isomorphism, and the bound (5.2) follows from (5.4). It remains to establish
the bilipschitz bounds (5.1). It suffices to show that the linear isomorphism

d−1∑
i=1

tivi 7→ (t1 N−1
1 , . . . , td−1 N−1

d−1)

from V to Rd−1, together with its inverse, have an operator norm of O(d O(d)).
For the inverse map, this is clear from (5.5). For the forward map, it suffices from
Cramer’s rule to show that

|v1 ∧ · · · ∧ vi−1 ∧ x ∧ vi+1 ∧ · · · ∧ vd−1|

|v1 ∧ · · · ∧ vd−1|
�

d O(d)

λ′i

for all i = 1, . . . , d − 1 and all unit vectors x in V . But from (5.5) the
numerator is at most

∏
16i ′6d−1:i ′ 6=i N−1

i ′ , while the denominator is the volume
of a fundamental domain in V and is thus equal to d O(d)N−1

1 . . . N−1
d−1 thanks to

(5.4). The claim follows. �

§6. Constructing the approximants. In this section we construct the abstract
directed graph G = (V, E) that appears in Proposition 3.3. For the rest of the
paper, the prime p, the function f : Z/pZ→ [−1, 1], and the parameter η with
0 < η 6 1

10 are fixed, and we assume that (3.21) holds.
We begin with a description of the structured approximants v ∈ V .

Definition 6.1 (Structured local approximant). A structured local approximant
is a tuple

v = (C, c, (nc + B(Sc, ρc))c∈C , (Gc)c∈C , (Fc)c∈C , (4c)c∈C )

consisting of the following objects:
• a finite non-empty set C ;
• a random variable c, which we call the label variable, taking values in C ;
• a shifted Bohr set nc + B(Sc, ρc) associated to each label c ∈ C ;
• a dilated torus Gc associated to each label c ∈ C ;
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• a 1-Lipschitz function Fc : Gc → [−1, 1] associated to each label c ∈ C;
and

• a locally quadratic function 4c : nc + B(Sc, ρc) → Gc associated to each
label c ∈ C .

We denote the collection of all structured local approximants (up to isomor-
phism3) as V . Given any structured local approximant v ∈ V , we define the
random variables (av, rv, fv) associated to v by the following construction.
(1) First, let c be the random label variable appearing above.
(2) For each c ∈ C in the essential range of c, if we condition on the event

c = c, we draw av, rv independently and regularly from nc + B(Sc, ρc/2)
and B(Sc, exp(−η−C4)ρc) respectively, and then we let fv be the function

fv(a) := Fc(4c(a)).

Thus fv is deterministic when c is conditioned to be fixed, but random when
c is allowed to vary.

We also define the following additional statistics of the structured local
approximant v:
• the waste waste(v) is the quantity |E f (a)− Ea∈Z/pZ f (a)|;
• the 1-error Err1(v) is |Ef(a)− E f (a)|;
• the 4-error Err4(v) is |3a,r(f)−3a,r( f )|;
• the energy Energy(v) is E| f (a)− f(a)|2;
• the linear rank d1(v) is maxc∈C |Sc|;
• the quadratic dimension d2(v) is maxc∈C dim(Gc);
• the linear scale ρ(v) is minc∈C ρc;
• the quadratic volume vol(v) is the quantity maxc∈C vol(Gc);
• the poorly distributed quadratic dimension dpoor

2 (v) is the maximum value
of dim(Gc) over all poorly distributed c in the essential range of c, or zero if
no such c exists. Here, an element c in the essential range of c is said to be
poorly distributed if one has

3a,r( f |c = c) < E(f(a)|c = c)4 −
η

2
. (6.1)

This gives the set V of structured local approximants for Proposition 3.3; we
clearly have 0 6 dpoor

2 (v) 6 d2(v) for all v ∈ V .
We now also define the initial approximant.

Definition 6.2. The initial approximant v0 ∈ V is defined to be the tuple

v0 = (C, c, (nc + B(Sc, ρc))c∈C , (Gc)c∈C , (Fc)c∈C , (4c)c∈C )

defined as follows:
• C := Z/pZ, and c is drawn uniformly from C ;

3 This caveat is needed for the technical reason that V should be a set and not a proper class.
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• for each c ∈ C , we have nc := 0, Sc := {1}, and ρc := 1;
• for each c ∈ C , the group Gc is the standard 0-torus (R/Z)0 (that is to say, a

point);
• for each c ∈ C , the function Fc : Gc → [−1, 1] is the zero function Fc(x)
:= 0;

• for each c ∈ C , the function 4c : Z/pZ→ Gc is the unique (constant) map
from Z/pZ to the point Gc.

By chasing the definitions, we see that av0 is uniformly distributed in Z/pZ,
and we can compute several of the statistics of the initial approximant v0:

waste(v0) = dpoor
2 (v0) = d2(v0) = 0; d1(v0) = ρ(v) = vol(v) = 1. (6.2)

Now we define the edges of the graph G(V, E).

Definition 6.3. We let E be the set of all directed edges v → v′, where v,
v′ ∈ V are structured local approximants such that

d1(v
′) 6 d1(v)+ η

−C2,

d2(v
′) 6 d2(v)+ 1,

ρ(v′) > exp(−η−C5)ρ(v),

vol(v′) 6 exp(η−C3) vol(v),
|waste(v)− waste(v′)| 6 ηC3 .

From this definition and (6.2) we have the following bounds on the various
statistics of vertices of V that are not too far from the initial vertex v0, assuming
that each constant Ci is chosen sufficiently large depending on the preceding
constants C1, . . . ,Ci−1.

LEMMA 6.4. Suppose a vertex v = vk ∈ V can be reached from v0 by a path
v0 → v1 → · · · → vk with 0 6 k 6 8η−2C2 . Then we have

d1(v) 6 8η−3C2, (6.3)
d2(v) 6 8η−2C2, (6.4)
ρ(v) > exp(−η−2C5), (6.5)

vol(v) 6 exp(η−2C3), (6.6)
waste(v) 6 ηC3/2. (6.7)

From (6.7) we see in particular that the almost uniformity axiom in
Proposition 3.3(ii) is obeyed. The thickness axiom in Proposition 3.3(i) is also
easy, as the following corollary shows.

COROLLARY 6.5. Suppose a quadratic approximant v = vk ∈ V can be
reached from v0 by a path v0 → v1 → · · · → vk of length k at most 8η−2C2 .
Then we have P(rv = 0)� exp(η−C2

5 )/p.
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Proof. Write

v = (C, c, (nc + B(Sc, ρc))c∈C , (Gc)c∈C , (Fc)c∈C , (4c)c∈C ).

It suffices to show that

P(rv = 0|c = c)� exp(η−C2
5 )/p

for each c in the essential range of c. But once c is fixed to equal c, then rv
is drawn regularly from nc + B(Sc, exp(−η−C4)ρc). By Lemma 6.4, Sc has
cardinality at most 8η−3C2 and ρc is at least exp(−η−2C5). The claim now
follows from Lemma 4.2. �

It remains to verify the last two axioms (iii), (iv) of Proposition 3.3. We isolate
these statements formally, using Lemma 6.4 and Definition 6.3.

The first of these results, Theorem 6.6, states that “a bad approximation
implies an energy decrement”. The second, Theorem 6.7, states that “a bad lower
bound implies a dimension increment”.

THEOREM 6.6. Let the notation and hypotheses be as above. Suppose that
v ∈ V is a structured local approximant obeying (6.3)–(6.6). If we have

Err1(v) > η (6.8)

or
Err4(v) > η (6.9)

then there exists a structured local approximant v′ obeying the bounds

d(v′) 6 d(v)+ η−C2, (6.10)
d2(v

′) 6 d2(v)+ 1, (6.11)
ρ(v′) > exp(−η−C5)ρ(v), (6.12)

vol(v′) 6 exp(η−C3) vol(v), (6.13)
|waste(v′)− waste(v)| 6 ηC3, (6.14)

Energy(v′) 6 Energy(v)− ηC2 . (6.15)

THEOREM 6.7. Let the notation and hypotheses be as above. Suppose that
v ∈ V is a structured local approximant obeying (6.3)–(6.6), and let av, rv, fv
be the random variables associated to v. If we have

3av,rv (fv) 6 (Efv(av))4 − η, (6.16)

then there exists a quadratic approximant v′ ∈ V with

d(v′) 6 d(v)+ η−C2, (6.17)
d2(v

′) 6 d2(v), (6.18)

https://doi.org/10.1112/S0025579317000316 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000316


984 B. GREEN AND T. TAO

dpoor
2 (v′) 6 dpoor

2 (v)− 1, (6.19)

ρ(v′) > exp(−η−C5)ρ(v), (6.20)
vol(v′) 6 exp(η−C3) vol(v), (6.21)

|waste(v′)− waste(v)| 6 ηC3, (6.22)
Energy(v′) 6 Energy(v)+ η3C2 . (6.23)

It remains to prove Theorems 6.6 and 6.7. Theorem 6.6 will be proven in §8
using a difficult local inverse Gowers theorem, Theorem 8.1, that will be proven
in later sections. Theorem 6.7, on the other hand, will not rely on the local inverse
Gowers theorem; it is proven in §7.

§7. Bad lower bound implies dimension decrement. In this section we prove
Theorem 6.7. Let the notation and hypotheses be as in Theorem 6.7. We
abbreviate av, rv, fv as a, r, f respectively. We can write the left-hand side of
(6.16) as EA(c), where for any c ∈ C , the quantity A(c) is defined as the
conditional expectation

A(c) := 3a,r(f|c = c).

Similarly, we can write Ef(a) = EB(c), where B(c) := E(f(a)|c = c). By (6.16)
and Hölder’s inequality, we thus have

EB(c)4 − A(c) > η.

Applying Lemma 2.2, we must therefore have

P(B(c)4 − A(c) > η/2)� η.

By (6.1), we conclude that c is poorly distributed with probability �η. In
particular, there is at least one poorly distributed value of c.

Most of this section will be devoted to the proof of the following proposition,
which roughly speaking asserts that when c is poorly distributed, there is a linear
constraint between the quadratic frequencies that will ultimately allow us to
decrease the poorly distributed quadratic dimension dpoor

2 .

PROPOSITION 7.1. Let c be a poorly distributed element of the essential
range of c. Then there exists a natural number mc, a frequency ξc ∈ Z/pZ and
an irreducible dual frequency k′c ∈ Ĝc with

1 6 mc � exp(η−4C3) (7.1)

and
exp(−η−4C3)� |k′c| � exp(η−3C2) (7.2)

such that

‖k′c ·4c(a + 2mch)− k′c ·4c(a)‖R/Z � exp(−η−3C4) (7.3)

for all a ∈ B(Sc, ρc/2) and h ∈ B(Sc ∪ {ξc}, exp(−η−5C4)ρ).
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A key technical point here is that the upper bound on |k′c| involves only C2
and not C3 or C4; this is necessary to keep the bounds under control during the
iteration process. However, we will be able to tolerate the presence of the C3 and
C4 constants in the other components of Proposition 7.1.

Proof. We condition on the event c = c. By Definition 6.1, the random
variables a, r are now independent and regularly drawn from nc + B(Sc, ρc/2)
and B(Sc, exp(−η−C4)ρc) respectively, while f(n) = Fc(4c(a)). We conclude
that

E(Fc(4c(a))Fc(4c(a+ r))Fc(4c(a+ 2r))Fc(4c(a+ 3r))|c = c)
< E(Fc(4c(a))|c = c)4 − η/2.

Since 4c : Z/pZ→ Gc is locally quadratic on nc + B(Sc, ρc), which contains
the progression a, a+ r, a+ 2r, a+ 3r, we see from (4.17) that

4c(a)− 34c(a+ r)+ 34c(a+ 2r)−4c(a+ 3r) = 0

and so the left-hand side can be written as

E(F (3)c (4c(a),4c(a+ r),4c(a+ 2r))|c = c),

where F (3)c : G3
c → [−1, 1] is the function

F (3)c (x0, x1, x2) := Fc(x0)Fc(x1)Fc(x2)Fc(x0 − 3x1 + 3x2).

Applying Lemma 3.2, we have∫
G3

c

F (3)c (x0, x1, x2) dµc(x0) dµc(x1) dµc(x2) >

(∫
Gc

Fc(x) dµc(x)
)4

,

where µc is the probability Haar measure on Gc. By the triangle inequality, we
conclude that at least one of the assertions∣∣∣∣E(F (3)c (4c(a),4c(a+ r),4c(a+ 2r))|c = c)

−

∫
G3

c

F (3)c (x0, x1, x2) dµc(x0) dµc(x1) dµc(x2)

∣∣∣∣� η

or ∣∣∣∣E(Fc(4c(a))|c = c)−
∫

Gc

Fc(x) dµc(x)
∣∣∣∣� η

holds. Defining F̃ : G3
c → [−1, 1] by

F̃(x0, x1, x2)

=
1
10

(
F (3)c (x0, x1, x2)−

∫
G3

c

F (3)c (x0, x1, x2) dµc(x0) dµc(x1) dµc(x2)

)
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in the former case and

F̃(x0, x1, x2) :=
1

10

(
Fc(x0)−

∫
Gc

Fc(x0) dµc(x0)

)
in the latter case, we see that F̃ is 1-Lipschitz and of mean zero, and

|E(F̃(xc)|c = c)| � η, (7.4)

where xc ∈ G3
c is the random variable

xc := (4c(a),4c(a+ r),4c(a+ 2r)).

The Weyl equidistribution criterion, applied in the contrapositive, then suggests
that there should be a non-zero dual frequency k = (k1, k2, k3) ∈ Ĝ3

c to G3
c such

that E(e(k · xc)|c = c) is large. The next lemma makes this intuition precise.

LEMMA 7.2 (Weyl equidistribution). With the notation and hypotheses as
above, there exists a non-zero dual frequency k = (k1, k2, k3) ∈ Ĝ3

c to G3
c with

|k| � exp(O(η−3C2)) such that

|E(k · xc|c = c)| � exp(−O(η−3C2))/vol(Gc).

A key point here is that the bound on |k| does not depend on the volume of
the dilated torus Gc, which will typically be much larger than η−2C2−10.

Proof. Write Gc =
∏d

i=1(R/λiZ), thus λ1, . . . , λd > 1, and by (6.4) one has

d 6 8η−2C2 . (7.5)

The bound (7.4) is not possible when d = 0, so we may assume d > 1. We can
write G3

c =
∏3d

i=1(R/λiZ), where we extend λi periodically with period d .
Let ϕ : R → R be a fixed smooth even function supported on [−1, 1] that

equals 1 at the origin and whose Fourier transform ϕ̂(ξ) :=
∫
R φ(x)e(−xξ) dx

is non-negative; such a function may be easily constructed by convolving an
L2-normalized smooth function on [0, 1] with its reflection. Let A > 1 be a
parameter to be chosen later, and introduce the kernel K : G3

c → R+ by the
formula

K (t1, . . . , t3d) :=

3d∏
i=1

Ki (ti )

for ti ∈ R/λiZ, where

Ki (ti ) :=
∑

ki∈(1/λi )Z
ϕ

(
ki

A

)
e(ki ti ).
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By Poisson summation, the Ki and hence K are non-negative. A Fourier-analytic
calculation using the smoothness of ϕ gives∫

R/λiZ
Ki (ti )

dti
λi
= 1

and ∫
R/λiZ

Ki (ti ) sin2(π ti/λi )
dti
λi
�

1
A2λ2

i

(where the implied constant is allowed to depend on ϕ) and hence by (2.2) and
Cauchy–Schwarz we have∫

R/λiZ
Ki (ti )‖ti‖R/Z

dti
λi
�

1
A
,

which on taking tensor products gives∫
G3

c

K (x) dµ3
c(x) = 1

and ∫
G3

c

K (x)‖x‖G3
c

dµ3
c(x)�

d
A
,

where µ3
c is the Haar probability measure on G3

c . If we then take the convolution

F̃ ∗ K (x) :=
∫

Gc

F̃(x − y)K (y) dµ3
c(y)

then by the 1-Lipschitz nature of F̃ we see that

F̃ ∗ K (x) = F̃(x)+ O
(

d
A

)
.

Thus, if we choose

A :=
Cd
η

for a sufficiently large absolute constant C , we conclude from (7.4) that

|E(F̃ ∗ K (xc)|c = c)| � η.

However, by Fourier expansion and the fact that F̃ has mean zero,

F̃ ∗ K (xc) =
∑

k∈Ĝ3
c\{0}

( 3d∏
i=1

ϕ

(
ki

A

))
̂̃F(k)Ee(k · x),
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where k = (k1, . . . , k3d) with ki ∈ (1/λi )Z for i = 1, . . . , 3d , and

̂̃F(k) := ∫
G3

c

F̃(x)e(−k · x) dµ3
c(x).

Using the triangle inequality and crudely bounding |̂̃F(k)| by 1, we conclude that

∑
k∈Ĝ3

c\{0}

( d∏
i=1

∣∣∣∣ϕ(ki

A

)∣∣∣∣)|E(e(k · xc)|c = c)| � η.

The summand is only non-vanishing when supi |ki | 6 A, so that

|k| 6 d A � exp(O(η−3C2))

(thanks to (7.5) and the choice of A), and the number of such k is

O
( 3d∏

i=1

(Aλi )

)
� exp(O(η−3C2)) vol(T ).

Since ϕ is bounded, the claim now follows from the pigeonhole principle. �

We return to the proof of Proposition 7.1. Applying Lemma 7.2 and (6.5), we
see that there exists a non-zero triplet (k0

c , k1
c , k2

c ) ∈ Ĝ3
c with

|k0
c |, |k

1
c |, |k

2
c | � exp(η−3C2) (7.6)

and

E(e(k0
c ·4c(a)+k1

c ·4c(a+ r)+k2
c ·4c(a+2r))|c = c)� exp(−η−3C3). (7.7)

Among other things, the non-zero nature of this triplet forces Gc to be non-
trivial, and thus

dpoor
2 (v) > 1.

We also emphasize that the bound (7.6) involves C2 rather than C3; this will
become important when establishing the important upper bound of (7.2) later in
this proof.

We can use the exponential sum bound (7.7) to control the “second derivative”
of4c. Indeed, for any h1, h2 ∈ B(Sc, ρc/10), define the quantity ∂24c(h1, h2) ∈

R/Z by

∂24c(h1, h2) := 4c(a + h1 + h2)−4c(a + h1)−4c(a + h2)+4c(a)

for any a ∈ nc+ B(Sc, ρ/2). Since 0c is locally quadratic on nc+ B(Sc, ρ), this
quantity is well-defined, symmetric in h1, h2, and is also locally bilinear in h1
and h2.
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LEMMA 7.3. Let the notation and hypotheses be as above. Then for any i =
0, 1, 2, we have

|E(e(2ki
c · ∂

24c(r− r′,h− h′))|c = c)| � exp(−4η−3C3),

where, conditioning on the event c = c, the random variables r, r′,h,h′ are
drawn independently and regularly from the Bohr sets B(Sc, exp(−η−C4)ρ),
B(Sc, exp(−η−C4)ρ), B(Sc, exp(−η−2C4)ρ), B(Sc, exp(−η−2C4)ρ) respectively,
independently of a.

Proof. To simplify the notation we only consider the i = 2 case, as the
i = 0, 1 cases are similar. This will be “Weyl differencing” argument that relies
primarily on the Cauchy–Schwarz inequality.

Recall that after conditioning to the event c = c, the random variable a is
drawn regularly from B(Sc, ρ/2). Using Lemma 4.4, we see that a and a − h
differ in total variation by O(exp(−η−C4/2)), hence from (7.7) we have

|E(e(k0
c ·4c(a− h)+ k1

c ·4c(a− h+ r)+ k2
c ·4c(a− h+ 2r))|c = c)|

� exp(−η−3C3).

Similarly we may use Lemma 4.4 to compare r and r+ h, and conclude that

|E(e(k0
c ·4c(a− h)+ k1

c ·4c(a+ r)+ k2
c ·4c(a+ h+ 2r))|c = c)|

� exp(−η−3C3).

By the pigeonhole principle (and independence of a,h, r relative to the event
c = c), we may thus find ac ∈ nc + B(Sc, ρ/2) such that

|E(e(k0
c ·4c(ac − h)+ k1

c ·4c(ac + r)+ k2
c ·4c(ac + h+ 2r))|c = c)|

� exp(−η−3C3).

Using the identity

4c(ac + h+ 2r) = 4c(ac + h)+4c(ac + 2r)−4c(ac)+ ∂
24c(2r,h)

we can rewrite the left-hand side as

|E(b1(r)b2(h)e(k2
c · ∂

24c(2r,h))|c = c)| � exp(−η−3C3)

where b1, b2 : B(Sc, ρ)→ C are the 1-bounded functions

b1(r) := e(k1
c ·4c(ac + r)+ k2

c ·4c(ac + 2r)− k2
c ·4c(ac))

and
b2(h) := e(k0

c ·4c(ac − h)+ k2
c ·4c(ac + h)).

Applying Lemma 2.1 to eliminate the b1(r) factor, we conclude that

|E(b2(h)b2(h′)e(k2
c · ∂

24c(2r,h− h′))|c = c)| � exp(−2η−3C3).

Applying Lemma 2.1 again to eliminate the b2(h)b2(h′) factor, we obtain
the claim. �
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We return to the proof of Proposition 7.1. Let i = ic ∈ {0, 1, 2} be such
that ki

c is non-zero. Let r, r′,h,h′ be as in the above lemma, and let h′′ be a
further independent copy of h or h′, thus h′′ is also drawn regularly from B(Sc,

exp(−η−2C4)ρ) and independently of r, r′,h,h′ (after conditioning on c = c).
Applying Lemma 4.4 to compare r with r+ h′′, we have

|E(e(2ki
c · ∂

24c(r− r′ + h′′,h− h′))|c = c)| � exp(−4η−3C3),

so by the pigeonhole principle we can find r, r ′, h′ ∈ B(Sc, exp(−η−C4)ρc)

(depending on c, of course) such that

|E(e(2ki
c · ∂

24c(r − r ′ + h′′,h− h′))|c = c)| � exp(−4η−3C3).

By the local bilinearity of ∂24c, we may thus have

|E(e(2ki
c · ∂

24c(h′′,h)+ ψ(h)+ ψ ′′(h′′))|c = c)| � exp(−4η−3C3)

for some locally linear functions ψ,ψ ′′ : B(Sc, ρ/100) → R/Z (which can
depend on c).

Applying Proposition 4.11 (recalling from (6.3) that |Sc| 6 8 exp(−3C2)),
we conclude that there exists a non-zero multiple kc ∈ Ĝc of ki

c with

kc � exp(η−4C3) (7.8)

such that

‖kc · ∂
24c(n,m)‖R/Z � exp(η−3C4)

‖n‖Sc‖m‖Sc

ρ2
c

(7.9)

for n,m ∈ B(Sc, exp(−η−3C4)ρc).
Applying Corollary 4.13, we may thus find ξc ∈ Z/pZ such that∥∥∥∥kc ·4c(nc + h)− kc ·4c(nc)−

ξch
p

∥∥∥∥
R/Z
� exp(η−4C4)

‖h‖Sc

ρc
(7.10)

for all n ∈ Z/pZ (of course, the bound is only non-trivial when h lies in the Bohr
set B(Sc, exp(−η−4C4)ρ)).

The dual frequency kc ∈ Ĝc is non-zero, but not necessarily irreducible.
However, we may write kc = mck′c where mc is a positive natural number
and k′c ∈ Ĝc is irreducible, thus by (7.8) we have the bound (7.1). The same
argument gives the bound k′c � exp(η−4C3), but this is not sufficient to establish
the upper bound in (7.2). However, observe that ki

c must also be a multiple of the
irreducible vector k′c, and now the upper bound in (7.2) follows from (7.6).

We can also obtain a lower bound on k′c by observing that the slab{
x ∈ Gc : ‖k′c · x‖R/Z 6

1
2 |k
′
c|
}
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has measure at most |k′c| vol(Gc), and contains the Euclidean ball of radius 1/2
centred at the origin. This gives the lower bound

|k′c| �
1

dim(Gc)O(dim(Gc)) vol(Gc)

which by (6.4), (6.6) gives the lower bound in (7.2).
Now let a ∈ B(Sc, ρc/2) and h ∈ B(Sc ∪ {ξc}, exp(−η−5C4)ρc). Then we

have
jh ∈ B(Sc, 2mc exp(−η−5C4)ρc)

and ∥∥∥∥ jξch
p

∥∥∥∥
R/Z
� exp(−η−5C4)ρc

for all j , 0 6 j 6 2mc. From (7.10) and (7.1), we conclude that

‖kc ·4c(nc + jh)− kc ·4c(nc)‖R/Z � exp(−η−4C4)

(for example). On the other hand, from (7.9) we have

‖kc · (4c(a + jh)−4c(a)−4c(nc + jξch)+4c(nc))‖R/Z � exp(−η−4C4)

and hence by the triangle inequality we have

‖kc ·4c(a + jh)− kc ·4c(a)‖R/Z � exp(−η−4C4) (7.11)

for all j , 0 6 j 6 2mc.
This is close to (7.3), but we will need to replace the dual frequency kc here

with the irreducible dual frequency k′c. To do this, we first observe that as 4c is
locally quadratic on nc + B(Sc, ρc), we may write

4c(a + jh) = α + β j + γ j2 (7.12)

for all j , 0 6 j 6 2mc, and some α, β, γ ∈ Gc depending on c, a, h. Inserting
this formula into the preceding estimate, we conclude that

‖ j (kc · β)+ j2(kc · γ )‖R/Z � exp(−η−4C4)

for j , 0 6 j 6 2mc. Applying this for j = 1, 2 and using the triangle inequality,
we have

‖kc · β‖, ‖2(kc · γ )‖R/Z � exp(−η−4C4).

Since 2mck′c = 2kc and (2mc)
2k′c = (2mc)2kc, we conclude in particular

(using (7.1)) that

‖2mc(k′c · β)‖R/Z, ‖(2mc)
2(k′c · γ )‖R/Z � exp(−η−3C4)

and thus by (7.12) we obtain (7.3) as desired. This finally completes the proof of
Proposition 7.1. �
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We now return to the proof of Theorem 6.7. We are given a structured local
approximant

v = (C, c, (nc + B(Sc, ρc))c∈C , (Gc)c∈C , (Fc)c∈C , (4c)c∈C )

and need to construct a modification

v′ = (C ′, c′, (n′c′ + B(S′c′, ρ
′

c′))c′∈C ′, (G ′c′)c′∈C ′, (F ′c′)c′∈C ′, (4
′

c′)c′∈C ′)

that somehow incorporates the linear constraint identified in Proposition 7.1
to decrement the poorly distributed quadratic dimension of v′, in the spirit of
the third and fourth examples in §3. To avoid confusion, we shall restore the
subscripts (av, rv, fv) on the random variables associated to v as per Definition
6.1, to distinguish them from the corresponding random variables (av′, rv′, fv′)
that will be associated to v′.

We shall set C ′ := (Z/pZ)× C , and let c′ be the random variable

c′ := (av, c).

Clearly c′ takes values in the non-empty finite set C ′. Now we need to define n′c′,
S′c′, ρ

′

c′,G ′c′, F ′c′, 4
′

c′ for any given c′ = (a, c) in C ′. In the case where c is not
poorly distributed, we simply carry over the corresponding data from v without
further modification. That is to say, we define

(n′c′, S′c′, ρ
′

c′,G ′c′, F ′c′, 4
′

c′) := (nc, Sc, ρc,Gc, Fc, 4c)

whenever c′ = (a, c) with c not poorly distributed. If instead c′ = (a, c) with c
poorly distributed, then we introduce the natural number mc, the dual frequency
k′c ∈ Ĝc, and the frequency ξc ∈ Z/pZ from Proposition 7.1; of course we can
arrange matters so that mc, k′c, ξc depend only on c and not on a. Because of (7.1)
and the hypothesis (3.21), the quantity 2mc is invertible in the field Z/pZ, and
so we may define the dilate (2mc)

−1
· Sc of Sc inside Z/pZ, and can similarly

define the dilate (2mc)
−1ξc of ξc. We will need to do this division here to cancel

some denominators appearing later in the argument.
In this poorly distributed case, we define the “linear” data n′c′, S′c′, ρ

′

c′ by

n′c′ := a,

S′c′ := (2mc)
−1
· Sc ∪ {(2mc)

−1ξc},

ρ′c′ := exp(−η−6C4)ρc,

thus the shifted Bohr set n′c′+B(S′c′, ρ
′

c′) will be a small subset of nc+B(Sc, ρc)

in which the radius ρc has been reduced and an additional frequency ξc/2mc has
been added. As we shall see, this particular choice of this linear data will allow
us to utilize the approximate constraint (7.3).

The constraint (7.3) has the effect of approximately restricting 4c (on a
suitable Bohr set) to a coset of the orthogonal complement (k′c)

⊥
= {x ∈ Gc :
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k′c · x = 0} of k′c in Gc. Applying Theorem 5.1, (6.4), and the crucial bound (7.2),
we may find a dilated torus G̃c =

∏dim(Gc)−1
i=1 (R/λ̃c,iZ) with volume

vol(G̃c)� exp(η−4C2) vol(Gc) (7.13)

as well as a Lie group isomorphism ψc : (k′c)
⊥
→ G̃c obeying the bilipschitz

bounds
‖ψ‖Lip, ‖ψ

−1
‖Lip 6 exp(η−4C2).

In particular, if we define the even more dilated torus

G ′c :=
dim(Gc)−1∏

i=1

(R/exp(η−4C2)λ̃c,iZ)

and let δc : G ′c → G̃c be the rescaling map

δc : (xi )
dim(Gc)−1
i=1 7→ (exp(−η−4C2)xi )

dim(Gc)−1
i=1

then we see that ψ−1
◦δc : G ′c→ (k′c)

⊥ is a 1-Lipschitz Lie group isomorphism.
An element of n′c′ + B(S′c, ρ

′
c) can be uniquely represented in the form

n′c′ + 2mch for h ∈ B(Sc ∪ {ξc}, exp(−η−6C4)ρc). From (7.3), we know that the
point 4c(n′c′ + 2mch)− 4c(n′c′) lies within a O(exp(−η−3C4))-neighbourhood
of the subtorus (k′c)

⊥. Using the lower bound in (7.2), we can find a locally linear
projection πc from this neighbourhood to the subtorus itself (e.g. by viewing the
subtorus locally as a graph in dim(Gc)− 1 of the dim(Gc) coordinates and then
projecting in the direction of the remaining coordinate), which moves each point
in the neighbourhood by at most O(exp(−η−2C4)). From the 1-Lipschitz nature
of Fc, we thus have

Fc(4c(n′c′ + 2mch))

= Fc(πc(4c(n′c′ + 2mch)−4c(n′c′))+4c(n′c′))+ O(exp(−η−2C4)).

We can rewrite this as

Fc(4c(n′c′ + 2mch)) = F ′c′(4
′

c′(n
′

c′ + 2mch))+ O(exp(−η−2C4)), (7.14)

where F ′c′ : G
′
c → [−1, 1] is the 1-Lipschitz function

F ′c′(x) := Fc(ψ
−1
c (δc(x)))+4c(n′c′)

and 4′c′ : n
′

c′ + B(S′c, ρ
′
c)→ G ′c takes the form

4′c′(n
′

c′ + 2mch) := δ−1
c (ψc(πc(4c(n′c′ + 2mch)−4c(n′c′))+4c(n′c′))).

The map 4′c′ is the composition of a locally quadratic map with three locally
linear maps, and is hence also locally quadratic. This concludes the construction
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of all the required quadratic data G ′c′, F ′c′, 4
′

c′ when c′ arises from a poorly
distributed c.

It remains to verify the claims (6.17)–(6.23) of Theorem 6.7. The claim
(6.17) is clear; in fact, the frequency sets S′c′ are either equal to their original
counterparts Sc or have the addition of just one further frequency ξc, so we even
obtain the improved bound d(v′) 6 d(v)+ 1 in our construction here. Since the
dilated torus G ′c′ is either equal to Gc when c is not poorly distributed, or has
one lower dimension than Gc if c is poorly distributed, we obtain the bounds
(6.18), (6.19). Since ρ′c′ is either equal to ρc when c is not poorly distributed, or
exp(−η−6C4)ρc when c is poorly distributed, we obtain (6.20) (with a little room
to spare). As for the volume bound, G ′c′ clearly has the same volume as Gc when
c is not poorly distributed, and when c is poorly distributed we have

vol(G ′c′) = exp(−η−4C2 dim(G̃c′)) vol(G̃c′)

which by (7.13), (6.3) is bounded in turn by exp(−η−5C2) vol(Gc), which yields
(6.21), again with a little bit of room to spare (because the bounds here only
increased the volume by factors that involved C2 rather than C3).

Now we establish (6.22). From the triangle inequality we have

|waste(v′)− waste(v)| 6 |E f (av′)− E f (av)|
6
∑
c∈C

P(c = c)|E( f (av′)|c = c)− E( f (av)|c = c)|

so it will suffice to show that

|E( f (av′)|c = c)− E( f (av)|c = c)| 6 ηC3 (7.15)

for each c in the essential range of c.
The claim is trivial when c is not poorly distributed, since in this case av

and av′ have identical distribution after conditioning to c = c. If c is poorly
distributed, then (after conditioning to c = c) av is drawn regularly from
nc + B(Sc, ρc/2), while av′ has the distribution of av + 2mchc where hc is
drawn regularly from B(Sc ∪ {ξc}, exp(−η−6C4)ρc) independently of av (after
conditioning to c = c). The required bound (6.22) now follows from Lemma 4.4
(and (6.3)).

Finally, we prove (6.23). Our task is to show that

E| f (av′)− fv′(av′)|2 6 E| f (av)− fv(av)|2 + η3C2 .

By the triangle inequality as before, it suffices to show that

E(| f (av′)− fv′(av′)|2|c = c) 6 E(| f (av)− fv(av)|2|c = c)+ η3C2

for all c in the essential range of c. This is trivial for c not poorly distributed, so
assume c is poorly distributed. From (7.14) we then have

fv′(av′) = fv(av′)+ O(exp(−η−2C4))

https://doi.org/10.1112/S0025579317000316 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000316


A NEW BOUND FOR r4(N ) 995

and also
fv(a) = Fc(4c(a))

for a ∈ B(Sc, ρc), so by the triangle inequality it suffices to show that

E(| f (av′)− Fc(4c(av′))|2|c = c) 6 E(| f (av)− Fc(4c(av))|2|c = c)+ η4C2

(for example). But this follows by repeating the proof of (7.15), with the function
f replaced by | f − Fc ◦4c|

2. This completes the proof of Theorem 6.7.

§8. Bad approximation implies energy decrement. The remaining task in the
paper is to prove Theorem 6.6. In this section we will establish this result
contingent on a local inverse Gowers norm theorem (Theorem 8.1) that will be
proven in later sections. We begin by stating the (rather technical) precise form
of that theorem that we will need.

THEOREM 8.1 (Local inverse U 3 theorem). Let p be a prime, and let S be
a subset of Z/pZ containing at least one non-zero element. Let η be a real
parameter with 0 < η < 1

2 . Let K be the quantity

K :=
1
η
+ |S|, (8.1)

and let ρ0, ρ1, ρ2, . . . , ρ10 be real numbers satisfying

0 < ρ10 < · · · < ρ0 < 1/2

as well as the separation condition

ρi+1 > exp(K C2)ρi (8.2)

for all i = 0, . . . , 9. Assume that the prime p is huge relative to the reciprocal
of these parameters, in the sense that

p > ρ−K C3
2

10 . (8.3)

Let f : Z/pZ→ C be a 1-bounded function such that

|E f (h0 + h1 + h2) f (h0 + h′1 + h2) f (h′0 + h1 + h2) f (h′0 + h′1 + h2)

× f (h0 + h1 + h′2) f (h0 + h′1 + h′2) f (h′0 + h1 + h′2) f (h′0 + h′1 + h′2)|
> η (8.4)

whenever h0,h′0,h1,h′1,h2,h′2 are drawn independently and regularly from
B(S, ρ0), B(S, ρ0), B(S, ρ1), B(S, ρ1), B(S, ρ2), and B(S, ρ2) respectively.
Then there exists a positive integer k < exp(K O(C1)), a set S′ ⊂ Z/pZ, S′ ⊃ S,
with

|S′| 6 |S| + O(η−O(C1)), (8.5)
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a locally quadratic phase φ : B(S′, ρ9) → R/Z, and a function β : Z/pZ →
Z/pZ such that∑

n∈Z/pZ
P(n = n)

∣∣∣∣E f (n + km)e
(
−φ(m)−

β(n)m
p

)∣∣∣∣� ηO(C1) (8.6)

if n,m are drawn independently and regularly from BS(0, ρ0) and BS′(0, ρ10)

respectively.

Remarks. The parameters ρ3, . . . , ρ8 do not have any role in the statement
of this result, but they appear in the proof. We have retained them to avoid a
potentially confusing relabelling.

Informally, this theorem asserts that if f has a large U 3 norm on B(S, ρ0),
then f will correlate with a locally quadratic phase n+km 7→ φ(m)+β(n)m/p
on translates n+k · BS′(0, ρ10) of k · BS′(0, ρ10), with polynomial bounds on the
correlation. Although we will not make crucial use of this fact in our arguments,
it may be noted that the homogeneous component φ of this locally quadratic
phase does not depend on the translation parameter n. In the bounded rank case
|S| = O(1), a theorem very roughly of this form was established in [14]; the key
point in Theorem 8.1 is that the inverse theory of [14] can be localized to a Bohr
set without having the lower bound ηO(C1) on the correlation appearing in (8.6)
depend on the rank |S| or radius ρ0 of the Bohr set (although these parameters
certainly influence the range of the variables n,m appearing in (8.6)).

The proof of Theorem 8.1 will occupy most of the remainder of this paper. To
a large extent, it may be understood separately of our main arguments, requiring
little of the notation of §3, for example. In this section, we will assume Theorem
8.1 and use it to establish Theorem 6.6.

For the remainder of this section, the notation and hypotheses will be as in
Theorem 6.6. Namely, we fix a prime p, a function f : Z/pZ→ [−1, 1], and a
parameter 0 < η 6 1/10, and assume (3.21). We also suppose that

v = (C, c, (nc + B(Sc, ρc))c∈C , (Gc)c∈C , (Fc)c∈C , (4c)c∈C )

is a structured local approximant obeying (6.3)–(6.6), and one of (6.8) or (6.9)
holds. Our objective is to construct a structured local approximant

v′ = (C ′, c′, (n′c′ + B(S′c′, ρ
′

c′))c′∈C ′, (G ′c′)c′∈C ′, (F ′c′)c′∈C ′, (4
′

c′)c′∈C ′)

obeying the bounds (6.10)–(6.15). The situation here is a formalization of
Example 8 from §3.

Let a = av, r = rv, f = fv be the random variables associated to v in
Definition 6.1. We can unify the hypotheses (6.8), (6.9) by introducing the
quadrilinear form

3a,r(f0, f1, f2, f3) := Ef0(a)f1(a+ r)f2(a+ 2r)f3(a+ 3r),

defined for arbitrary random (or deterministic) bounded functions f0, f1, f2,

f3 : Z/pZ → R. From the definitions of Err1 and Err4 ( just prior to (6.1)),
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the hypothesis (6.8) may be written as

|3a,r( f, 1, 1, 1)−3a,r(f, 1, 1, 1)| > η,

while (6.9) can be similarly written as

|3a,r( f, f, f, f )−3a,r(f, f, f, f)| > η.

Applying the triangle inequality and the quadrilinearity of 3a,r, we conclude
that

|3a,r(f0, f1, f2, f3)| � η

for some random functions f0, f1, f2, f3, each of which is either equal to 1, f , or
f − f, and with at least one of the functions f0, f1, f2, f3 equal to f − f. For sake
of concreteness we will assume that it is f3 that is equal to f − f, thus

|3a,r(f0, f1, f2, f − f)| � η; (8.7)

the other cases are treated similarly (with some changes to the numerical
constants below) and are left to the interested reader.

We can write the left-hand side of (8.7) as∣∣∣∣∑
c∈C

P(c = c)E(f0(a)f1(a+ r)f2(a+ 2r)( f − f)(a+ 3r)|c = c)
∣∣∣∣.

Applying Lemma 2.2, we conclude that with probability � η, the variable c
attains a value c for which we have the lower bound

|E(f0(a)f1(a+ r)f2(a+ 2r)( f − f)(a+ 3r)|c = c)| � η. (8.8)

We now use a local version of the standard “generalized von Neumann
theorem” argument (based on several applications of the Cauchy–Schwarz
inequality) to obtain some local correlation of f − fc with a quadratic phase.

PROPOSITION 8.2. Let the notation and hypotheses be as above. For each
(a, c) in the essential range of (a, c), there exists a natural number ka,c with

1 6 ka,c < η−C3, (8.9)

a set S̃a,c ⊂ Z/pZ with S̃a,c ⊃ Sc and

|S̃a,c| 6 |Sc| + η
−C2, (8.10)

and a locally quadratic function γn,a,c : B(S̃a,c, exp(−η−11C4)ρc) → R/Z for
each n ∈ Z/pZ, such that

Re
∑

a,c∈Z/pZ
P(a = a, c = c)

×E(( f − fc)(a + 6n+ 6ka,cm)e(−γn,a,c(m))|a = a, c = c) > ηC2/10, (8.11)

where, after conditioning to the event a = a, c = c, the random variables
n and m are drawn regularly and independently from the Bohr sets B(Sc,

exp(−η−2C4)ρ) and B(S̃a,c, exp(−η−12C4)ρc) respectively.
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Proof. Suppose for now that c obeys (8.8). From Definition 6.1, once we
condition to the event c = c, the random variables a, r are independent and
regularly drawn from B(Sc, ρc/2) and B(Sc, exp(−η−C4)ρc) respectively; from
(6.4) we have the bounds

|Sc| 6 8η−3C2 and ρc > exp(−η−2C5). (8.12)

Also, the function f is now the deterministic function

fc(a) := Fc(4c(a))

on the Bohr set B(Sc, ρc), and f0, f1, f2 become deterministic functions f0,c, f1,c
and f2,c taking values in [−2, 2]. Thus we have

|E( f0,c(a) f1,c(a+ r) f2,c(a+ 2r) f3,c(a+ 3r)|c = c)| � η

where f3,c := f − fc.
We now do a linear change of variable with conveniently chosen numerical

coefficients that will facilitate a certain use of the Cauchy–Schwarz inequality to
eliminate the bounded functions f0,c, f1,c, f2,c, leaving only the function f3,c.
Continuing to condition on the event that c = c, let n1,n2 and n3 be drawn
regularly and independently from the Bohr sets B(Sc, exp(−η−2C4)ρc), B(Sc,

exp(−η−3C4)ρc), and B(Sc, exp(−η−4C4)ρc) respectively, independently of the
previous random variables. We can use Lemma 4.4 (and (8.12)) to compare a
with a− 3n2 − 12n3, and conclude that

|E( f0,c(a− 3n2 − 12n3) f1,c(a+ r− 3n2 − 12n3) f2,c(a+ 2r− 3n2 − 12n3)

× f3,c(a+ 3r− 3n2 − 12n3)|c = c)| � η.

By another application of Lemma 4.4, we may compare r with r+ 2n1 + 3n2 +

6n3, and conclude that

|E( f0,c(a− 3n2 − 12n3) f1,c(a+ r+ 2n1 − 6n3) f2,c(a+ 2r+ 4n1 + 3n2)

× f3,c(a+ 3r+ 6(n1 + n2 + n3))|c = c)| � η.

Finally, we use Lemma 4.4 to replace a by a− 3r, so that

|E( f0,c(a− 3r− 3n2 − 12n3) f1,c(a− 2r+ 2n1 − 6n3)

× f2,c(a− r+ 4n1 + 3n2) f3,c(a+ 6(n1 + n2 + n3))|c = c)| � η.

The purpose of this odd-seeming change of variables is that each of the functions
f0,c, f1,c, f2,c now has an argument that involves only two of the three random
variables n1,n2,n3, while the argument of the key function f3,c depends on n1,

n2,n3 only through their sum n1 + n2 + n3.
One can achieve a similar effect for the other three choices f0, f1, f2 for key

function by suitable adjustment to the constants above; we leave the details to
the interested reader.
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By Lemma 2.2, we see that with probability� η (conditioning on c = c), the
random variable a attains a value a such that

|E( f0,c(a − 3r− 3n2 − 12n3) f1,c(a − 2r+ 2n1 − 6n3)

× f2,c(a − r+ 4n1 + 3n2) f3,c(a + 6(n1 + n2 + n3))|a = a, c = c)| � η.

(8.13)

Let a be such that (8.13) holds. We can then find an r ∈ Z/pZ (depending on
a, c) such that

|E( f0,c(a − 3r − 3n2 − 12n3) f1,c(a − 2r + 2n1 − 6n3)

× f2,c(a − r + 4n1 + 3n2) f3,c(a + 6(n1 + n2 + n3))|a = a, c = c)| � η.

We now suppress the additive structure on the first three arguments by rewriting
the above bound as

|E( f0,c,a(n2,n3) f1,c,a(n1,n3)

× f2,c,a(n1,n2) f3,c(a+ 6(n1 + n2 + n3))|c = c)| � η,

where f0,c,a, f1,c,a, f2,c,a : Z/pZ × Z/pZ → [−2, 2] are bounded functions
whose exact form

f0,c,a(n2, n3) := f0,c(a − 3r − 3n2 − 12n3),

f1,c,a(n1, n3) := f1,c(a − 2r + 2n1 − 6n3),

f2,c,a(n1, n2) := f2,c(a − r + 4n1 + 3n2)

will not be relevant in the arguments that follow.
We can eliminate the factor f0,c,a using Lemma 2.1 to conclude that

|E( f1,c,a(n1,n3) f1,c,a(n′1,n3) f2,c,a(n1,n2) f2,c,a(n′1,n2)

× f3,c(a + 6(n1 + n2 + n3)) f3,c(a + 6(n′1 + n2 + n3))|a = a, c = c)| � η2

where n′1 is an independent copy of n1 (and also independent of n2,n3) on the
event a= a, c= c. We can similarly apply Lemma 2.1 to eliminate the f1,c,a(n1,

n3) f1,c,a(n′1,n3) variables to conclude that

|E( f2,c,a(n1,n2) f2,c,a(n′1,n2) f2,c,a(n1,n′2) f2,c,a(n′1,n′2)
× f3,c(a + 6(n1 + n2 + n3)) f3,c(a + 6(n′1 + n2 + n3))

× f3,c(a + 6(n1 + n′2 + n3)) f3,c(a + 6(n′1 + n′2 + n3))|a = a, c = c)| � η4

and finally apply Lemma 2.1 to eliminate the f2,c,a terms and arrive at

|E( f3,c(a+ 6(n1+n2+n3)) f3,c(a+ 6(n′1+n2+n3))

× f3,c(a+ 6(n1+n′2+n3)) f3,c(a+ 6(n′1+n′2+n3))

× f3,c(a+ 6(n1+n2+n′3)) f3,c(a+ 6(n′1+n2+n′3))
× f3,c(a+ 6(n1+n′2+n′3)) f3,c(a+ 6(n′1+n′2+n′3))|a= a, c= c)|� η8,
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where n′2,n′3 are independent copies of n2,n3 respectively on a = a, c = c, with
n1,n2,n3,n′1,n′2,n′3 all independent relative to a = a, c = c.

We now apply Theorem 8.1, replacing η by a small multiple of η8, and
choosing ρi := exp(−η−(i+2)C4)ρ for i = 0, . . . , 10, and using the bounds
(8.12), (3.21) to justify the hypothesis (8.3). We conclude that for c obeying
(8.8) and a obeying (8.13), we can find a natural number ka,c obeying (8.9), a
set S̃a,c with Sc ⊂ S̃a,c ⊂ Z/pZ obeying (8.10), a locally quadratic function
φa,c : B(S̃a,c, exp(−η−11C4)ρ)→ R/Z, and a function βa,c : Z/pZ→ Z/pZ
such that∑
n∈Z/pZ

P(n = n|a = a, c = c)

× |E( f3(a + 6n + 6km)e(−φa,c(m)− βa,c(n)m)|a = a, c = c)| � ηC2/20

if n,m are drawn independently and regularly from B(Sc, exp(−η−2C4)ρc)

and B(Sa,c, exp(η−12C4)ρc) respectively on the event a = a, c = c. Taking
expectations in a (and choosing Sa,c = Sc, φa,c = 0 and βa,c = 0 if (8.8) or
(8.13) is not satisfied), we conclude that∑
n,a,c∈Z/pZ

P(n = n, a = a, c = c)

× |E( f3(a + 6n + 6km)e(−φa,c(m)− βa,c(n)m)|a = a, c = c)| > ηC2/10.

In particular, if we set γn,a,c(m) := φa,c(m) + βa,c(n)m + θn,a,c for a suitable
phase θn,a,c ∈ R/Z, then γn,a,c is locally quadratic on B(S̃a,c, exp(−η−11C4)ρ)

and

Re
∑

n,a,c∈Z/pZ
P(n = n, a = a, c = c)

×E( f3(a + 6n + 6km)e(−γn,a,c(m))|a = a, c = c)| > ηC2/10,

giving the claim. �

Let n,m, ka,c, S̃a,c, γn,a,c be as in the above proposition. The conclusion
(8.11) of Proposition 8.2 may be rewritten more compactly as

ReE(( f − f)(a+ 6n+ 6ka,cm)e(−γn,a,c(m))) > ηC2/10. (8.14)

We now introduce the modified random function f′ : Z/pZ → [−2, 2] by the
formula

f′(l) := f(l)+ ηC2/2 cos
(

2πγn,a,c

(
l − a− 6n

6ka,c

))
, (8.15)

where we extend γn,a,c arbitrarily outside of B(S′c, exp(−η−11C4)ρc). Note from
(8.9) and (3.21) that we can divide by 6ka,c in Z/pZ without difficulty.

We claim that the function f′ is a little closer to f than f is.

https://doi.org/10.1112/S0025579317000316 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000316


A NEW BOUND FOR r4(N ) 1001

LEMMA 8.3. We have

E|( f − f′)(a+ 6n+ 6ka,cm)|2 6 Energy(v)− ηC2 .

Proof. From (8.15) we have

f′(a+ 6n+ 6ka,cm) = f(a+ 6n+ 6ka,cm)+ ηC2/2 cos(2πγn,a,c(m)),

and so

|( f − f′)(a+ 6n+ 6ka,cm)|2

= |( f − f)(a+ 6n+ 6ka,cm)|2

− 2ηC2/2E( f − f)(a+ 6n+ 6ka,cm) cos(2πγn,a,c(m))
+ O(ηC2). (8.16)

On the other hand, for any (a, c) in the essential range of (a, c), we may use
Lemma 4.4 to compare n with n+ ka,cm, and conclude that

E(|( f − f)(a + 6n+ 6ka,cm)|2|a = a, c = c)
= E(|( f − f)(a + 6n)|2|a = a, c = c)+ O(η2C3)

(for example), and hence on taking expectations in a

E(|( f − f)(a+ 6n+ 6ka,cm)|2|c = c)
= E(|( f − f)(a+ 6n)|2|c = c)+ O(η2C3).

Applying Lemma 4.4 again to compare a with a+ 6n, we conclude that

E(|( f − f)(a+ 6n+ 6ka,cm)|2|c = c) = E(|( f − f)(a)|2|c = c)+ O(η2C3).

and hence on taking averages in c

E(|( f − f)(a+ 6n+ 6ka,cm)|2|c = c) = Energy(v)+ O(η2C3). (8.17)

Taking expectations in (8.16) and using (8.15), (8.17), we obtain the claim. �

There is a very minor technical issue that f′ does not quite take values in [−1,
1], which is what is needed in the definition of an approximant. However, this is
easily fixed by truncation, or more precisely by introducing the random function
f′′ : Z/pZ→ [−1, 1] defined by

f′′(l) := min(max(f′(l),−1), 1). (8.18)

Since f (l) already lies in [−1, 1], we see that f′′(l) is at least as close to f (l) as
f′(l) is, thus we have the pointwise bound

|( f − f′′)(l)| 6 |( f − f′)(l)|
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for any l ∈ Z/pZ. From the above lemma, we thus have

E|( f − f′′)(a+ 6n+ 6ka,cm)|2 6 Energy(v)− ηC2 . (8.19)

We can now construct the new structured approximant

v′ = (C ′, c′, (n′c′ + B(S′c′, ρ
′

c′))c′∈C ′, (G ′c′)c′∈C ′, (F ′c′)c′∈C ′, (4
′

c′)c′∈C ′)

as follows. We write the dilated torus Gc as Gc =
∏dim(Gc)

i=1 R/λi,cZ.
(i) We set C ′ := (Z/pZ)× (Z/pZ)× C and c′ := (n, a, c).

(ii) If c′ = (n, a, c) is in C ′, we set

n′c′ := a + 6n,

S′c′ := (6ka,c)
−1
· S̃a,c,

ρ′c′ := exp(−η−12C4)ρc,

G ′c′ :=
dim(Gc)∏

i=1

(R/100λi,cZ)× (R/Z).

(iii) If c′ = (n, a, c) is in C ′, we define F ′c′ : G
′

c′ → [−1, 1] to be the function

F ′c′(x, y) := min
(
max

(
Fc
( 1

100 · x
)
+ ηC2/2 cos(2πy),−1

)
, 1
)

for x ∈
∏dim(Gc)

i=1 (R/100λi,cZ) and y ∈ R/Z, where x 7→ 1
100 ·

x is the obvious contraction map from
∏dim(Gc)

i=1 (R/100λi,cZ) to∏dim(Gc)
i=1 (R/λi,cZ).

(iv) If c′ = (n, a, c) is in C ′, we define 4′c′ : n′c′ + B(S′c′, ρ
′

c′)→ G ′c′ by the
formula

4′c′(l) :=
(

100 ·4c(l), γn,a,c

(
l − a − 6n

6ka,c

))
for l ∈ n′c′ + B(S′c′, ρ

′

c′) (which implies in particular that (l − a − 6n)/
6ka,c ∈ B(S̃a,c, exp(−η−12C4)ρc)), where x 7→ 100 · x is the obvious
dilation map from

∏dim(Gc)
i=1 (R/λi,cZ) to

∏dim(Gc)
i=1 (R/100λi,cZ) (the

inverse of the map x 7→ 1
100 · x from part (iii)).

Since Fc is 1-Lipschitz, it is easy to see (thanks to the contraction by 1
100 )

that F ′c′ is also 1-Lipschitz; similarly, as 4c and γn,a,c are locally quadratic on
nc + B(Sc, ρc) and B(S̃a,c, exp(η−11C4)ρc) respectively, we see that 4′c′ is also
locally quadratic on n′c′+B(S′c′, ρ

′

c′). From (8.15), (8.18), Definition 6.1, and the
above constructions we see that

f′′ = fv′

and hence by (8.19)

E|( f − fv′)(a+ 6n+ 6ka,cm)|2 6 Energy(v)− ηC2 .

https://doi.org/10.1112/S0025579317000316 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000316


A NEW BOUND FOR r4(N ) 1003

From Definition 6.1 and the above constructions, we also see that av′ has
the same distribution as a + 6n + 6ka,cm (after conditioning to any positive
probability event of the form (n, a, c) = (n, a, c)), which gives the required
energy decrement (6.15).

The bound (6.10) follows from (8.10), while from construction we clearly
have dim(G ′c′) = dim(Gc) + 1, which gives (6.11). Since we have ρ′c′ :=
exp(−η−12C4)ρc, the bound (6.12) is clear; also, from (6.4) we have

vol(G ′c′) = 100dim(G ′c′ ) vol(Gc) 6 exp(O(η−2C2)) vol(Gc)

which gives (6.13). It remains to establish (6.14). By the definition of Err1 (just
before (6.1)) and the triangle inequality, it suffices to show that

|E f (av′)− E f (a)| 6 ηC3 .

But as mentioned previously, av′ has the same distribution as a + 6n + 6ka,cm,
and by using Lemma 4.4 as in the proof of Lemma 8.3 we have

E f (a+ 6n+ 6ka,cm) = E f (a)+ O(η2C3)

giving the claim. This completes the proof of Theorem 6.6, assuming the local
inverse Gowers norm theorem (Theorem 8.1).

§9. Local inverse U 3 theorem. We now turn to the proof of Theorem 8.1,
which is the last component needed in the proof of Theorem 1.1. Let us begin
by recalling the setup of this theorem. We let S be a subset of Z/pZ, take a
parameter η satisfying 0 < η < 1

2 , and define the quantity K by (8.1), thus

1
η
, |S| 6 K . (9.1)

We suppose that

0 < ρ10 < · · · < ρ0 <
1
2

are scales obeying the separation condition (8.2) and the largeness condition
(8.3), and suppose that f : Z/pZ → C is a 1-bounded function obeying (8.4).
Our task is to locate a natural number k with k < exp(K O(C1)), a set S′ with
S ⊂ S′ ⊂ Z/pZ obeying (8.5), a locally quadratic phase φ : B(S′, ρ9)→ R/Z,
and a function β : Z/pZ → Z/pZ obeying (8.6). We will initially work at
the scale ρ0, but retreat to smaller scales as the argument progresses (mainly to
ensure that the error terms in Lemma 4.4 are negligible), until we are working
at the final scales ρ9 and ρ10. Let us comment once more that the intermediate
scales ρ3, . . . , ρ8 play no role in the actual statement of Theorem 8.1.

In this section, all sums will be over Z/pZ unless otherwise stated.
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9.1. First step: associate a frequency ξ(n2) to each derivative of f . We now
begin the (lengthy) proof of this theorem, which broadly follows the same inverse
U 3 strategy in previous literature [11, 14], but localized to a Bohr set, the key
aim being to reduce the dependence of constants on the rank or radius of this
Bohr set as much as possible.

The first step is to use the local inverse U 2 theorem (Theorem 4.12) to
associate a frequency ξ(n2) ∈ Z/pZ to many “derivatives” x 7→ f (x + n2) f (x)
of f .

THEOREM 9.2. Let the notation and hypotheses be as in Theorem 8.1. Then
there exists a set � ⊂ B(S, 2ρ2) obeying the largeness condition

P(h2 − h′2 ∈ �) > η/4 (9.2)

when h2,h′2 are drawn independently and regularly from B(S, ρ2), and a
function ξ : Z/pZ→ Z/pZ such that∑
n0∈Z/pZ

P(n0 = n0)|E f (n0 + n1 + n2) f (n0 + n1)ep(−ξ(n2)n1)|
2 >

η

8
1�(n2)

(9.3)
for all n2 ∈ Z/pZ, and n0,n1 are drawn independently and regularly from B(S,
ρ0), B(S, ρ1) respectively.

Proof. For each n2 ∈ Z/pZ, let fn2 : Z/pZ → C denote the 1-bounded
function

fn2(n) := f (n + n2) f (n).

Then we may rewrite the left-hand side of (8.4) as

|E fh2−h′2(h0 + h2 + h1) fh2−h′2(h0 + h2 + h′1)

× fh2−h′2(h
′

0 + h2 + h1) fh2−h′2(h
′

0 + h2 + h′1)|.

By Lemma 4.4 and (8.2), the random variables h0,h′0 differ in total variation
from h0 + h2,h′0 + h2 respectively by at most η/4 (for example). We conclude
that

|E fh2−h′2(h0 + h1) fh2−h′2,0(h0 + h′1) fh2−h′2(h
′

0 + h1) fh2−h′2(h
′

0 + h′1)| > η/2.

By the triangle inequality, the left-hand side is at most∑
h

P(h2 − h′2 = h)|E fh(h0 + h1) fh(h0 + h′1) fh(h′0 + h1) fh(h′0 + h′1)|.

The inner expectation is bounded by 1. Applying Lemma 2.2 (with a = h2−h′2),
we conclude that there is a set � ⊂ Z/pZ obeying (9.2) such that

|E fn2(h0 + h1) fn2(h0 + h′1) fn2(h
′

0 + h1) fn2(h
′

0 + h′1)| > η/4
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for all n2 ∈ �. Applying Theorem 4.12, we see that for each n2 ∈ �, there exists
ξ(n2) ∈ Z/pZ such that∑

n0∈Z/pZ
P(n = n0)|E fn2(n0 + n1)ep(−ξ(n2)n1)|

2 > η/8.

For n2 6∈ �, we set ξ(n2) arbitrarily (e.g. to zero). The claim follows. �

9.3. Second step: ξ is approximately linear 1% of the time. The next step,
following Gowers [11], is to obtain some approximate linearity control on the
function ξ : Z/pZ → Z/pZ. Define an additive quadruple to be a quadruplet
Ea = (a(1), a(2), a(3), a(4)) ∈ (Z/pZ)4 such that

a(1) + a(2) = a(3) + a(4), (9.4)

and let Q ⊂ (Z/pZ)4 denote the space of all additive quadruples. We call an
additive quadruple (a(1), a(2), a(3), a(4)) ∈ Q bad if

‖ξ(a(1))+ ξ(a(2))− ξ(a(3))− ξ(a(4))‖S >
K C1

ρ1
, (9.5)

where the word norm ‖‖S was defined in Definition 4.5. Let BQ ⊂ Q denote the
space of all bad additive quadruples.

THEOREM 9.4. Let the notation and hypotheses be as in Theorem 8.1, and
let � and ξ : Z/pZ→ Z/pZ be as in Theorem 9.2. If h2,h′2,k2,k′2 are drawn
independently and regularly from B(S, ρ2), then with probability� ηO(1), one
has

(h2 − h′2,k2 − k′2,k2 − h′2,h2 − k′2) ∈ �
4
∩ (Q \BQ). (9.6)

Proof. Let n0,n1 be drawn independently and regularly from the Bohr sets
B(S, ρ0), B(S, ρ1) respectively. From (9.3) we have∑

n0

P(n0 = n0)|E f (n0 + n1 + n2) f (n0 + n1)ep(−ξ(n2)n1)| � η

for any n2 ∈ �. Using (9.2), we conclude that∑
n0

∑
n2∈�

P(n0 = n0,h2 − h′2 = n2)|E f (n0 + n1 + n2) f (n0 + n1)

× ep(−ξ(n2)n1)| � η2,

where h2,h′2 are drawn independently and regularly from B(S, ρ2), and are
independent of n0,n1. By the pigeonhole principle, one can thus find n0 ∈ Z/pZ
such that∑

n2∈�

P(h2 − h′2 = n2)|E f (n0 + n1 + n2) f (n0 + n1)ep(−ξ(n2)n1)| � η2.
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We can rewrite the left-hand side as

EFn0(h2 − h′2) f (n0 + n1 + h2 − h′2) f (n0 + n1)ep(−ξ(h2 − h′2)n1)

for some 1-bounded function Fn0 : Z/pZ → C depending on n0. Using
Lemma 4.4 to compare n1 with n1 + h′2, we conclude that

|EFn0(h2 − h′2) f (n0 + n1 + h2) f (n0 + n1 + h′2)ep(−ξ(h2 − h′2)(n1 + h′2))|
� η2.

We rearrange the left-hand side as∑
n1

P(n1 = n1)E f (n0 + n1 + h2) f (n0 + n1 + h′2)Gn0,n1(h2,h′2)

where Gn0,n1 : Z/pZ× Z/pZ→ C is the 1-bounded function

Gn0,n1(h2, h′2) := Fn0(h2 − h′2)ep(−ξ(h2 − h′2)(n1 + h′2)). (9.7)

By Hölder’s inequality, we conclude that∑
n1

P(n1 = n1)|E f (n0 + n1 + h2) f (n0 + n1 + h′2)Gn0,n1(h2,h′2)|
4
� ηO(1).

From this point onward we cease to keep careful track of powers of η. On the
other hand, by using two applications of Lemma 2.1 to eliminate the 1-bounded
functions f , we have

|E f (n0 + n1 + h2) f (n0 + n1 + h′2)Gn0,n1(h2,h′2)|
4

6 EGn0,n1(h2,h′2)Gn0,n1(h2,k′2)Gn0,n1(k2,h′2)Gn0,n1(k2,k′2)

where (k2,k′2) is an independent copy of (h2,h′2). We thus have

EGn0,n1(h2,h′2)Gn0,n1(h2,k′2)Gn0,n1(k2,h′2)Gn0,n1(k2,k′2)� ηO(1)

which by the triangle inequality and (9.7) gives∑
h2,k2,h′2,k

′

2

1h2−h′2,k2−k′2,k2−h′2,h2−k′2∈�
P(h2 = h2;k2 = k2;h′2 = h′2;k

′

2 = k′2)

× |Eep(−(ξ(h2 − h′2)+ ξ(k2 − k′2)− ξ(k2 − h′2)− ξ(h2 − k′2))n1)|

� ηO(1).

By Lemma 2.2, we conclude that with probability � ηO(1), the tuple (h2,k2,

h′2,k′2) attains a value (h2, k2, h′2, k′2) for which

h2 − h′2, k2 − k′2, h2 − k′2, k2 − h′2 ∈ �

and

|Eep(−(ξ(h2−h′2)+ ξ(k2−k′2)−ξ(k2−h′2)−ξ(h2−k′2))n1)| � ηO(1)
� K−O(1)

(9.8)
thanks to (9.1). Since (h2−h′2, k2−k′2, h2−k′2, k2−h′2) is an additive quadruple,
the claim now follows from Lemma 4.7, (8.2), and (9.1). �
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We localize this claim slightly, though for notational reasons we will not
move from ρ2 immediately to ρ3 and beyond, but instead first work in some
intermediate scales between ρ2 and ρ3. For any natural number j , define

ρ2, j := exp(−C1 j K )ρ2,

thus
ρ2 = ρ2,0 > ρ2,1 > · · · > ρ2, j > ρ3

if (for example) j 6 K C2
1 .

It will be necessary to break the symmetry between the four components of
an additive quadruple, by restricting the second component to a tiny Bohr set, the
third component to a larger Bohr set, and the first and fourth components to an
even larger Bohr set. More precisely, given an additive quadruple Ea0 = (a(1),0,
a(2),0, a(3),0, a(4),0) ∈ Q, a subset S′ ⊂ Z/pZ, and radii 0 < r2 6 r3 6 r4 6
1/2, we say that a random additive quadruple Ea = (a(1), a(2), a(3), a(4)) ∈ Q
is centred at Ea0 with frequencies S′ and scales r2, r3, r4 if a(2), a(3), a(4) are
drawn independently and regularly from a(2),0 + B(S′, r2), a(2),0 + B(S′, r2),
and a(2),0 + B(S′, r2) respectively. Note that this property also describes the
distribution of a(1), since we have the constraint

a(1) = a(3) + a(4) − a(2).

In practice, r4 will be much larger than r2, r3, so (by Lemma 4.4) a(1) will
be approximately regularly drawn from a(1),0 + B(S′, r4), but will be highly
coupled to the other three components of the quadruple (in particular, it will stay
close to a(4)). We thus see that for i = 1, 2, 3, 4, each a(i) is either exactly or
approximately drawn regularly from a(i),0+ B(S′, rli ), where li ∈ {0, 1, 2} is the
quantity defined by the formulae

l1 := 0; l2 := 2; l3 := 1; l4 := 0. (9.9)

COROLLARY 9.5. Let the notation and hypotheses be as in Theorem 8.1, and
let� and ξ be as in Theorem 9.2. Then there exists a random additive quadruple
Ea ∈ Q centred at some quadruple Ea0 ∈ Q with frequencies S and scales ρ2,2,

ρ2,1, ρ2,0, such that Ea ∈ �4
∩ (Q \BQ) with probability� ηO(1).

Proof. Let h2,k2,h′2,k′2,n2,1,n2,2 be drawn independently and regularly
from B(S, ρ2,0), B(S, ρ2,0), B(S, ρ2,0), B(S, ρ2,0), B(S, ρ2,1) and B(S, ρ2,2)

respectively. From Theorem 9.4, we have

(h2 − h′2,k2 − k′2,h2 − k′2,k2 − h′2) ∈ �
4
∩ (Q \BQ)

with probability �ηO(1). Using Lemma 4.4, we may replace k′2 by k′2 − n2,2,
and similarly replace h2 by h2 + n2,1 − n2,2, to conclude that

(h2 − h′2 + n2,1,k2 − k′2 + n2,2,h2 − k′2 + n2,1,k2 − h′2) ∈ �
4
∩ (Q \BQ)
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with probability�ηO(1). By the pigeonhole principle, we may thus find k2, k′2,
h2 ∈ Z/pZ such that

(h2 − h′2 + n2,1, k2 − k′2 + n2,2, h2 − k′2 + n2,1, k2 − h′2) ∈ �
4
∩ (Q \BQ)

with probability�ηO(1). The left-hand side is an additive quadruple centred at
(h2, k2 − k′2, h2 − k′2, k2) with frequencies S and scales ρ2,2, ρ2,1, ρ2,0, and the
claim follows. �

9.6. Third step: ξ is approximately linear 99% of the time on a rough set.
The next general step in the standard inverse U 3 argument is to upgrade this
weak additive structure, which is of a “1 percent” nature, to a more robust “99
percent” additive structure. There are two basic ways to proceed here. The first
way is to invoke the Balog–Szemerédi–Gowers theorem [1, 11], followed by
standard sum set estimates including Freiman’s theorem (see e.g. [33, Ch. 2]).
It is likely that this approach will eventually work here, but these results need
to be localized efficiently to Bohr sets, and also to allow for the fact that
ξ(a(1))+ξ(a(2))−ξ(a(3))−ξ(a(4)) no longer vanishes, but instead has controlled
word norm. This would require reworking of large portions of the standard
additive combinatorics literature. We have thus elected instead to follow the
second approach, also due to Gowers [12], in which a certain probabilistic
argument is used to “purify” a 1 percent additive map to a 99 percent additive
map, albeit on a set that has no particular structure itself. To deal with this set we
will use a more recent innovation, namely a variant4 of the arithmetic regularity
lemma [13], [18] to make the subsets of Z/pZ on which one has good control of
ξ suitably “pseudorandom” in the sense of Gowers.

We turn to the details. We first locate a reasonably large quadruple of sets
A(1), A(2), A(3), A(4) on which ξ is “almost a Freiman homomorphism” in the
sense that most quadruples falling inside A(1)× A(2)× A(3)× A(4) are somewhat
good. We call an additive quadruple (a(1), a(2), a(3), a(4)) ∈ Q very bad if

‖ξ(a(1))+ ξ(a(2))− ξ(a(3))− ξ(a(4))‖S >
1
ρ3
, (9.10)

and let VBQ ⊂ BQ denote the space of all very bad additive quadruples.

THEOREM 9.7. Let the notation and hypotheses be as in Theorem 8.1, and
let � and ξ be as in Theorem 9.2. Let Ea be the random additive quadruple from
Corollary 9.5. Then there exist sets A(1), A(2), A(3), A(4) ⊂ � such that

EW (Ea)� ηC1+O(1), (9.11)

where W : Q→ R is the weight function

W (Ea) := 1A(1)×A(2)×A(3)×A(4)(Ea)(1− η
−C1/1001VBQ(Ea)). (9.12)

4 The actual arithmetic regularity lemma, which creates arithmetic regularity on almost all regions of
space, has quantitative bounds of tower-exponential type, which are far too poor for our application;
however we will only need to create a single neighbourhood in which arithmetic regularity exists, and this
can be done with much more efficient quantitative bounds.
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The idea here is that W is a weight function that strongly penalizes very bad
quadruples, and so Theorem 9.7 is asserting that “most” of the quadruples in
A(1) × A(2) × A(3) × A(4) are not very bad.

Proof. We will construct the sets A(i) by the probabilistic method, adapting
an argument from [12] in which the A(i) are created by applying a number
of random linear “filters” to the graph of ξ to eliminate most of the additive
quadruples that are not (almost) preserved by ξ .

We turn to the details. Let m be the integer

m :=
⌊

log ηC1

3 log 100

⌋
. (9.13)

We then select jointly independent random variables h j ∈ Z/pZ and λ j ∈ Z/pZ
for each for j = 1, . . . ,m, by selecting each h j regularly from B(S, ρ2), and
selecting λ j uniformly at random from Z/pZ; we also choose these random
variables to be independent of Ea. For j = 1, . . . ,m, we then let 4j : Z/pZ→
R/Z be the random map

4j (n) := ξ(n)h j +
λ j n

p
(9.14)

and then define the random sets

A(i) :=
m⋂

j=1

A(i), j

for i = 1, 2, 3, 4, where

A(1), j = A(2), j = A(3), j :=
{
n ∈ � : ‖4j (n)‖R/Z 6 1

200

}
and

A(4), j :=
{
n ∈ � : ‖4j (n)‖R/Z 6 1

10

}
.

We will show that

E1A(1)×A(2)×A(3)×A(4)(Ea)� ηO(1)100−3m (9.15)

and
E1A(1)×A(2)×A(3)×A(4)(Ea)1BQ(Ea)� 2−m

× 100−3m (9.16)

which will give the claim thanks to (9.13) and (9.12), if C1 is large enough.
We first show (9.15). By Corollary 9.5 and linearity of expectation, it suffices

to show that
P(a(i) ∈ A(i) for i = 1, 2, 3, 4)� 100−3m (9.17)

whenever (a(1), a(2), a(3), a(4)) lies in �4
∩ (Q \BQ). Actually, we will only

show the weaker assertion that (9.17) holds for all but at most O(mO(1) p2) of
the available additive quadruples (a(1), a(2), a(3), a(4)); this still suffices, since
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by (4.3), (9.1) each exceptional additive quadruple is attained with probability
O(1/ρO(K )

3 p3), and the additional factor of p will dominate all the losses in
m, K , ρ3 thanks to (8.3), (9.13).

Fix an additive quadruple Ea = (a(1), a(2), a(3), a(4)) in �4
∩ (Q \BQ). The

left-hand side of (9.17) factors as
m∏

j=1

P(a(i) ∈ A(i) for i = 1, 2, 3, 4) (9.18)

so it will suffice to show that for each j = 1, . . . ,m, one has

P(a(i) ∈ A(i), j for i = 1, 2, 3, 4) > 100−3
− O

(
1
m

)
for all but O(mO(1) p2) quadruples (a(1), a(2), a(3), a(4)) ∈ Q \BQ. Note
however that from (9.14) we have

4j (a(1))+4j (a(2))−4j (a(3))−4j (a(4))
= (ξ(a(1))+ ξ(a(2))− ξ(a(3))− ξ(a(4)))h j

and hence by the hypothesis (a(1), a(2), a(3), a(4)) ∈ Q \BQ and the range of h j
we have ∥∥∥∥4j (a(1))+4j (a(2))−4j (a(3))−4j (a(4))

p

∥∥∥∥
R/Z
6

1
100

(for example). In particular, we see from the triangle inequality that the claim
a(4) ∈ A(4), j is implied by the claims a(i) ∈ A(i), j for i = 1, 2, 3. Thus it suffices
to show that

P(a(i) ∈ A(i), j for i = 1, 2, 3) > 100−3
− O

(
1
m

)
for all but O(mO(1) p2) triples (a(1), a(2), a(3)) ∈ (Z/pZ)3, noting that a(4) is
determined by a(1), a(2), a(3). We can write the left-hand side as

P
(
(ξ(a(1)), ξ(a(2)), ξ(a(3)))h j + (a(1), a(2), a(3))λ j

p
∈ [−1/200, 1/200]3

)
,

where we view the interval [−1/200, 1/200] as a subset of R/Z. Thus it will
suffice to show the equidistribution property

inf
x∈(R/Z)3

P
(
(a(1), a(2), a(3))λ j

p
∈ x + [−1/200, 1/200]3

)
> 100−3

− O
(

1
m

)
.

Let ψ : (R/Z)3→ [0, 1] be a Lipschitz cutoff supported on [−1/20, 1/20]3 that
equals one on [−1/200+1/m, 1/200−1/m]3 and has Lipschitz constant O(m).
Then we may lower bound the left-hand side by

inf
x∈(R/Z)3

Eλ∈Z/pZψ

(
(a(1), a(2), a(3))λ

p
− x

)
. (9.19)
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By standard Fourier expansion (see e.g. [17, Lemma A.9]), we may write

ψ(y) =
∑

k∈Z3:k=O(mO(1))

cke(k · y)+ O
(

1
m

)

for all y ∈ (R/Z)3 and some bounded Fourier coefficients ck = O(1); integrating
in x , we see in particular that c0 = 10−3

+ O(1/m). We may thus write (9.19)
as

10−3
+ O

(
1
m

)
+ O

( ∑
k∈Z3\{0}:k=O(mO(1))

|Eλ∈Z/pZep(k · (a(1), a(2), a(3))λ)|
)

which gives the desired claim as long as there are no relations of the form

k · (a(1), a(2), a(3)) = 0

for some non-zero k ∈ Z3 with k = O(mO(1)). But it is easy to see that the
number of (a(1), a(2), a(3)) with such a relation is O(mO(1) p2), thus concluding
the proof of (9.15).

Now we show (9.16). By linearity of expectation as before, it suffices to show
that

P(a(i) ∈ A(i) for i = 1, 2, 3, 4)� 2−m
× 100−3m

for all but O(mO(1) p2) of the quadruples (a(1), a(2), a(3), a(4)) in VBQ. Using
the factorization (9.18), it suffices to show that for each j = 1, . . . ,m, one has

P(a(i) ∈ A(i), j for i = 1, 2, 3, 4) 6 2−1
× 100−3

+ O
(

1
m

)
for all but O(mO(1) p2) of the quadruples (a(1), a(2), a(3), a(4)) in VBQ.

The left-hand side may be written as

P
(
(ξ(a(1)), . . . , ξ(a(4)))h j

p
+ Eaλ j ∈ [−1/200, 1/200]3 × [−1/10, 1/10]

)
,

which we bound above by

P
(
(ξ(a(1)), ξ(a(2)), ξ(a(3)))h j + (a(1), a(2), a(3))λ j ∈ [−1/200, 1/200]3,∥∥∥∥σh j

p

∥∥∥∥
R/Z
6

1
8

)
,

where σ := ξ(a(1)) + ξ(a(2)) − ξ(a(3)) − ξ(a(4)). By arguing as in the proof of
(9.15), we see that after deleting O(mO(1) p2) exceptional tuples, one has

sup
x∈(R/Z)3

P((a(1), a(2), a(3))λ j ∈ x + [−1/200, 1/200]3) 6 100−3
+ O

(
1
m

)
,
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so by Fubini’s theorem and the independence of h j and λ j it will suffice to show
that

P
(∥∥∥∥σh j

p

∥∥∥∥
R/Z
6

1
8

)
6 2−1

+ O
(

1
m

)
.

However, by Lemma 4.6 and the hypothesis (a(1), a(2), a(3), a(4)) ∈ VBQ we
may find h ∈ Z/pZ such that∥∥∥∥σh

p

∥∥∥∥
R/Z

> K−O(1)
‖h‖S⊥ρ3.

In particular, h is non-zero. By repeatedly doubling h until ‖ηh/p‖R/Z exceeds
1
4 , we may also assume that

1
2
>

∥∥∥∥ηh
p

∥∥∥∥
R/Z

>
1
4

and thus
‖h‖S⊥ � K O(1)ρ3.

From Lemma 4.4 we conclude that

P
(∥∥∥∥η(h j + h)

p

∥∥∥∥
R/Z
6

1
8

)
= P

(∥∥∥∥ηh j

p

∥∥∥∥
R/Z
6

1
8

)
+ O

(
1
m

)
.

But from the triangle inequality we see that the events ‖η(h j + h)/p‖R/Z 6 1
8 ,

‖ηh j/p‖R/Z 6 1
8 are disjoint. The claim follows. �

9.8. Fourth step: the rough set is pseudorandom in a Bohr set. The sets A(i)
provided by Theorem 9.7 are currently rather arbitrary. In particular we have no
control on the pseudorandomness of these sets (as measured by local Gowers U 2

norms) in the Bohr sets we are working with. However, it is possible to use an
“energy decrement argument” to pass to smaller5 Bohr sets in which the sets A(i)
do enjoy good pseudorandomness properties, basically by converting any large
Fourier coefficient of any of the A(i) in a Bohr set into a refinement of the Bohr
sets (which add the frequency of the large Fourier coefficient to the frequency
set S) on which the indicator function 1A(i) has smaller variance. Furthermore,
it is possible to shrink the Bohr sets in this fashion without destroying the
conclusion (9.11) of Theorem 9.7.

Here is a precise statement.

5 This is somewhat analogous to the variants of the Szemerédi regularity lemma [31] in which one locates
a single regular pair inside an arbitrary large random graph. In contrast to the full regularity lemma that
strives to ensure that almost all pairs are regular, the “one regular pair” versions of the lemma enjoy
significantly better quantitative bounds. In our current application, such good quantitative bounds are
essential, so we cannot appeal to analogues of the regularity lemma such as the arithmetic regularity
lemma of the first author [13].
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THEOREM 9.9. Let the notation and hypotheses be as in Theorem 8.1, and let
� and ξ be as in Theorem 9.2. Let A(1), A(2), A(3), A(4),W be as in Theorem 9.7.
Then there exists a natural number j , j 6 η−103C1 , an additive quadruple Ea1 =

(a(1),1, a(2),1, a(3),1, a(4),1) ∈ Q, and a set S1, S ⊂ S1 ⊂ Z/pZ with |S1| 6
|S| + j , with the following properties.
(i) (Few very bad quadruples) We have

EW (Ea)� ηC1+O(1), (9.20)

where Ea is a random additive quadruple centred at Ea1 with frequencies S1
and scales ρ2, j+2, ρ2, j+1, and ρ2, j .

(ii) (Local Fourier pseudorandomness) For each i = 1, 2, 3, 4, we have

|E fi (a(i) + h0 + h1) fi (a(i) + h0 + h′1) fi (a(i) + h′0 + h1)

× fi (a(i) + h′0 + h′1)| 6 η
100C1,

where fi : Z/pZ→ [−1, 1] denotes the balanced function

fi (a(i)) := 1A(i)(a(i))− αi , (9.21)

αi denotes the mean
αi := E1A(i)(a(i)), (9.22)

and where a(i) and h0,h′0,h1,h′1 are drawn independently and regularly
from the Bohr sets a(i),1 + B(S1, ρ2, j+li ) and B(S1, ρ2, j+10),
B(S1, ρ2, j+10), B(S1, ρ2, j+11), B(S1, ρ2, j+11) respectively, with the
quantity li given by (9.9).

Proof. We will formulate the “energy decrement” argument here as a “score
maximization” argument. Define a 4-neighbourhood to be a tuple

N = (Ea1, j, S1),

where Ea1 ∈ Q is an additive quadruple, j is a natural number between 0 and
η−103C1 , and S1 is a subset of Z/pZ containing S with |S1| 6 |S| + j ; we refer
to j as the depth of the 4-neighbourhood N . Given such a neighbourhood, we
define the score Score(N ) of the 4-neighbourhood to be the quantity

Score(N ) := EW (Ea)− η2C1

4∑
i=1

Ei (N )− η103C1 j, (9.23)

where Ea = (a(1), a(2), a(3), a(4)) is a random additive quadruple centred at Ea1
with frequencies S1 and scales ρ2, j+2, ρ2, j+1, ρ2, j , and Ei is the energy-type
quantity

Ei (N ) := Var 1A(i)(a(i)). (9.24)

https://doi.org/10.1112/S0025579317000316 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000316


1014 B. GREEN AND T. TAO

If we define N0 to be the 4-neighbourhood

N0 := (Ea0, 0, S),

then Theorem 9.7 tells us that

Score(N0)� ηC1+O(1). (9.25)

We choose
N := (Ea1, j, S1)

to be a 4-neighbourhood that comes within η103C1 (for example) of maximizing
the adjusted score. Then we must have

Score(N ) > Score(N0)− η
103C1 � ηC1+O(1)

which from (9.23) implies the bound (9.20), as well as the bound

j 6 η−103C1 − 103

(for example). It will then suffice to show that property (ii) of the theorem holds.
It remains to show (ii). Let i = 1, 2, 3, 4, and write

Ea1 = (a(1),1, a(2),1, a(3),1, a(4),1).

Suppose for contradiction that

|E fi (a(i)+h0+h1) fi (a(i)+h0+h′1) fi (a(i)+h′0+h1) fi (a(i)+h′0+h′1)|> η
100C1,

(9.26)
where fi is given by (9.21), and a(i),h0,h′0,h1,h′1 are drawn independently
and regularly from the Bohr sets a(i),1 + B(S1, ρ2, j+li ), B(S1, ρ2, j+10),
B(S1, ρ2, j+10), B(S1, ρ2, j+11), B(S1, ρ2, j+11), with li given by (9.9).

We will use (9.26) to construct a random 4-neighbourhood N of depth j + 20
obeying the estimates

EW (N) = W (N )+ O(η103C1) (9.27)

and
EEi ′(N) 6 Ei ′(N )− η500C11i=i ′ + O(η103C1) (9.28)

for i ′ = 1, 2, 3, 4. If we have the estimates (9.27), (9.28), we conclude from
(9.23) and linearity of expectation that

EScore(N) > Score(N )+ η600C1,

contradicting the near-maximality of Score(N ).
It remains to construct N obeying (9.27), (9.28). We begin by noting that for

each a(i) ∈ Z/pZ, the Gowers uniformity-type quantity

E fi (a(i) + h0 + h1) fi (a(i) + h0 + h′1) fi (a(i) + h′0 + h1) fi (a(i) + h′0 + h′1)
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can be factored as∑
h0,h′0

P(h0 = h0,h′0 = h′0)|E fi (a(i) + h0 + h1) fi (a(i) + h′0 + h1)|
2

and thus takes values between 0 and 1. By (9.26) and Lemma 2.2, we may thus
find a set E ⊂ Z/pZ with

P(a(i) ∈ E)� η100C1

such that

E fi (a(i) + h0 + h1) fi (a(i) + h0 + h′1) fi (a(i) + h′0 + h1) fi (a(i) + h′0 + h′1)
� η100C1

for all a(i) ∈ E . Applying Theorem 4.12, we may thus find, for each a(i) ∈ E , a
frequency ξ(a(i)) ∈ Z/pZ such that∑

n0

P(n0 = n0)E|E fi (a(i) + n0 + n1)ep(−ξ(a(i))n1)|
2
� η100C1,

where n0,n1 are drawn independently and regularly from B(S1, ρ2, j∗+10) and
B(S1, ρ2, j∗+11) respectively, independently of the a(i).

If we define ξ(a(i)) arbitrarily for a(i) 6∈ E (e.g. setting ξ(a(i)) = 0), we thus
have ∑

n0,a(i)

P(n0 = n0, a(i) = a(i))E|E( fi (a(i) + n0 + n1)ep(−ξ(a(i))n1))|
2

� η200C1 .

In particular, there exists a 1-bounded function g : Z/pZ × Z/pZ → C such
that

|Eg(n0, a(i)) fi (a(i) + n0 + n1)ep(−ξ(a(i))n1)| � η200C1 . (9.29)

We now construct the random 4-neighbourhood N as follows. We first
construct a random additive quadruple Ek = (k1,k2,k3,k4) centred at the
origin (0, 0, 0, 0) with frequency set S1 and scales ρ2, j+10+l2−li , ρ2, j+10+l3−li ,
ρ2, j+10+l4−li , and independent of all previous random variables. We then set

N := (Ea+ Ek, j + 20, S1 ∪ {ξ(a(i))}).

It is easy to verify that N is a (random) 4-neighbourhood.
We now verify (9.27). The left-hand side of (9.27) can be expanded as

EW (Ea+ Ek+ Eh),

where, once Ea and Ek are chosen, the random additive quadruple Eh = (h1,h2,h3,

h4) is selected to be centred at (0, 0, 0, 0) with frequencies S1 ∪ {ξ(a(i))} and
scales ρ2, j+22, ρ2, j+21, ρ2, j+20.
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From two applications of Lemma 4.4 (and the fact that W = O(η−C1/100)),
we have

EW (Ea+ Ek+ Eh) = EW (Ea+ Ek)+ O(η103C1) = EW (Ea)+ O(η103C1)

(for example). The claim (9.27) now follows from (9.23).
Now we verify (9.28). By (9.24), we have

Ei ′(N) =
∑
Ea,Ek

P(Ea = Ea, Ek = Ek)E|1A(i ′)(a(i ′) + ki ′ + hi ′)− αi ′,Ea,Ek |
2,

where Ea = (a(1), . . . , a(4)), Ek = (k1, . . . , k4), and αi ′,Ea,Ek is the quantity

αi ′,Ea,Ek := E1A(i ′)(a(i ′) + ki ′ + hi ′). (9.30)

By Pythagoras’ theorem, we thus have

Ei ′(N) =
∑
Ea,Ek

P(Ea = Ea, Ek = Ek)E|1A(i ′)(a(i ′)+ ki ′ + hi ′)− αi ′ |
2
− |αi ′,Ea,Ek − αi ′ |

2,

where αi ′ is defined in (9.22). We shall shortly establish the bound

|αi ′,Ea,Ek − αi ′ |
2
� η400C11i ′=i . (9.31)

Assuming this bound, we conclude that

EEi ′(N) 6
∑
Ea,Ek

P(Ea = Ea, Ek = Ek)E|1A(i ′)(a(i ′) + ki ′ + hi ′)− αi ′ |
2

= E|1A(i ′)(a(i ′) + ki ′ + hi ′)− αi ′ |
2
− η500C11i ′=i .

By applying Lemma 4.4 twice as in the proof of (9.27) to replace a(i ′)+ki ′ +hi ′

by a(i ′) for i ′ = 2, 3, 4 (and by using Lemma 4.4 six times for i ′ = 1, after
writing a(1) in terms of a(2), a(3), a(4), and similarly for k(1) and h(1)) we thus
have

EEi ′(N) 6 E|1A(i ′)(a(i ′))− αi ′ |
2
− η500C11i ′=i + O(η103C1).

This will give (9.28) as soon as we establish (9.31). This is trivial for i ′ 6= i , so
suppose that i = i . By (9.30) and (9.21), it suffices to show that∑

Ea,Ek

P(Ea = Ea, Ek = Ek)|E fi (a(i) + ki + hi )|
2
� η400C1 . (9.32)

To prove this, we introduce random variables n0,n1 drawn independently and
regularly from B(S1, ρ2, j+10) and B(S1, ρ2, j+11) independently of all previous
variables. From (9.29) we have

|E fi (a(i) + n0 + n1)g(n0, a(i))ep(−ξ(a(i))n1)| � η200C1
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for some 1-bounded function g. After using Lemma 4.4 to compare n1 and n1+

hi for each fixed choice of n0 and a(i), we conclude that

|E fi (a(i) + n0 + n1 + hi )g(n0, a(i))ep(−ξ(a(i))(n1 + hi ))| � η200C1 .

But we have ∥∥∥∥ξ(a(i))hi

p

∥∥∥∥
R/Z
6 ‖hi‖S1∪{ξ(a(i))} � ρ j+li+20

and hence by (2.2)

ep(−ξ(a(i))(n1 + hi )) = ep(−ξ(a(i))n1)+ O(η103C1).

We conclude that

|E( fi (a(i) + n0 + n1 + hi )g(n0, a(i))ep(−ξ(a(i))n1))| � η200C1 .

For fixed choices of a(i),h(i),n1, we see from Lemma 4.4 that ki and n0 + n1

differ in total variation by O(η103C1). Thus we have

|E( fi (a(i) + ki + hi )g(ki − n1, a(i))ep(−ξ(a(i))n1))| � η200C1,

and the claim now follows after using Lemma 2.1 to eliminate the g(ki − n1,

a(i))ep(−ξ(a(i))n1) factor. �

A useful consequence of the bounds in Theorem 9.9(ii) is the following weak
mixing bound, which roughly speaking asserts that the convolution of 1A(i) with
a bounded function is essentially constant.

LEMMA 9.10. Let the notation and hypotheses be as above, and let � and ξ
be as in Theorem 9.2. Let A(1), . . . , A(4) be as in Theorem 9.7, and let j, a(1),∗,
. . . , a(4),∗, S1, f1, . . . , f4 be as in Theorem 9.9. Then for any i = 1, 2, 3, 4, any
li < m 6 10, and any 1-bounded function g : Z/pZ→ C, one has∑

n

P(n = n)|E fi (n − k)g(k)|2 � η50C1, (9.33)

where n,k are drawn independently and regularly from a(i),∗ + B(S1, ρ2, j ) and
B(S1, ρ2, j+m) respectively. Dually, for any 1-bounded function G : Z/pZ→ C,
one has ∑

k

P(k = k)|E fi (n− k)G(n)| � η25C1 . (9.34)

Proof. In preparation for invoking Theorem 9.9(ii), we introduce random
variables h0,h1,h′1 drawn independently and regularly from B(S1, ρ2, j∗+10),
B(S1, ρ2, j∗+11), and B(S1, ρ2, j∗+11) respectively, independently of n and k.
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Using Lemma 4.4 to compare n,k with n + h0, k − h1 respectively, we may
transform (9.33) to the estimate∑

n,h0

P(n = n,h0 = h0)|E( fi (n + h0 − k− h1)g(k− h1))|
2
� η50C1 .

By the triangle inequality in L2, it thus suffices to show that∑
n,h0

P(n = n,h0 = h0)|E( fi (n + h0 − k − h1)g(k − h1))|
2
� η50C1 (9.35)

for all k ∈ B(S1, ρ2, j∗+m).
Fix k. We may expand out the left-hand side of (9.35) as

E fi (n+ h0 − h1 − k)g(k − h1) fi (n+ h0 − h′1 − k)g(k − h′1).

Using Lemma 4.4 to compare n with n+ h0 − h1 − h′1 − k, we can thus rewrite
(9.35) as

|E fi (n+ h0 + h′1)g(k − h1) fi (n+ h0 + h1)g(k − h′1)| � η50C1,

which by the triangle inequality and the 1-boundedness of g would follow from∑
n,h1,h′1

P(n = n,h1 = h1,h′1 = h1)|E fi (n+h0+ h′1) fi (n+h0+ h1)| � η50C1,

which by Cauchy–Schwarz will follow in turn from∑
n,h1,h′1

P(n = n,h1 = h1,h′1 = h1)|E fi (n+h0+h′1) fi (n+h0+h1)|
2
� η100C1 .

But this follows from Theorem 9.9(ii) (relabelling n as a(i)).
Finally, we show (9.34). By subtracting EG(n) from G (and dividing by 2

to recover 1-boundedness), we may assume that EG(n) = 0. It then suffices to
show that ∑

k

P(k = k)g(k)E1A(i)(n− k)G(n)� η25C1

for any 1-bounded function g. But the left-hand side may be rearranged as∑
n

P(n = n)G(n)(E1A(i)(n − k)g(k)− αiEg(k))� η25C1,

and the claim follows from (9.33) and the Cauchy–Schwarz inequality. �
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9.11. Fifth step: a frequency function ξ ′ that is approximately linear 99% of the
time on a Bohr neighbourhood. The next step is to obtain additive structure on
almost all of a Bohr neighbourhood, rather than just the subsets A(i).

THEOREM 9.12. Let the notation and hypotheses be as in Theorem 8.1, and
let ξ be as in Theorem 9.2. Let A(1), . . . , A(4) be as in Theorem 9.7, and let j,
a(1),1, a(2),1, a(3),1, a(4),1, S1, α1, . . . , α4 be as in Theorem 9.9. Let a1 ∈ Z/pZ
be the quantity

a1 := a(1),1 + a(2),1 = a(3),1 + a(4),1,

and let a and a(2) be drawn regularly and independently from a1 + B(S1, ρ2, j )

and a(2),1 + B(S1, ρ2, j+2) respectively. Then there is a function ξ ′ : Z/pZ →
Z/pZ, such that with probability at least 1− O(ηC1/200), the random variable a
attains a value a for which we have the estimates

E1A(2)(a(2))1A(1)(a − a(2)) = α1α2 + O(η20C1), (9.36)

and

P
(

a − a(2) ∈ A(1); a(2) ∈ A(2); ‖ξ ′(a)− ξ(a − a(2))− ξ(a(2))‖S >
1
ρ3

)
� ηC1/200α1α2. (9.37)

Proof. Let a be drawn regularly from a1 + B(S1, ρ2, j ), and let (a(1), a(2),
a(3), a(4)) be a random additive quadruple centred at (a(1),1, a(2),1, a(3),1, a(4),1)
with frequencies S1 and scales ρ2, j+2, ρ2, j+1, ρ2, j , independently of a. From
the definition of an additive quadruple, we have a(1) = a(3) + a(4) − a(2). From
Theorem 9.9(i) we thus have

EW (a(3) + a(4) − a(2), a(2), a(3), a(4))� ηC1+O(1). (9.38)

From Lemma 4.4 we see that once we condition a(2) and a(3) to be fixed, a(4)
and a− a(3) differ in total variation by O(η100C1). Thus we may replace a(4) by
a− a(3) in (9.38) to conclude that

EW (a− a(2), a(2), a(3), a− a(3))� ηC1+O(1).

If we then define

σ := E1A(1)(a− a(2))1A(2)(a(2))1A(3)(a(3))1A(4)(a− a(3))

then from (9.12) we see that

σ � ηC1+O(1) (9.39)

and

E1A(1)(a− a(2))1A(2)(a(2))1A(3)(a(3))1A(4)(a− a(3))
× 1VBQ(a− a(2), a(2), a(3), a− a(3))� η−C1/100σ. (9.40)
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We can express σ in the form

σ = Eg12(a)g34(a), (9.41)

where g12, g34 : Z/p/Z→ R are the functions

g12(a) := E1A(1)(a − a(2))1A(2)(a(2)) (9.42)

and
g34(a) := E1A(3)(a(3))1A(4)(a − a(3)).

From Lemma 9.10, we have∑
n

P(n = n)|E f1(n − k)1A(2)(a(2),1 + k)|2 � η50C1

if n,k are drawn independently and regularly from a(i),1+B(S1, ρ2, j ) and B(S1,

ρ2, j+m) respectively. Note that the pair (n,k) has the same distribution as (a −
a(2),1, a(2) − a(2),1), thus∑

a

P(a = a)|E f1(a − a(2))1A(2)(a(2))|
2
� η50C1 .

From (9.21), (9.22), (9.42) we have

E f1(a − a(2))1A(2)(a(2)) = g12(a)− α1α2

and thus ∑
a

P(a = a)|g12(a)− α1α2|
2
� η50C1 . (9.43)

Similarly we have ∑
a

P(a = a)|g34(a)− α3α4|
2
� η50C1 . (9.44)

From Cauchy–Schwarz and the triangle inequality we conclude that∑
a

P(a = a)|g12(a)g34(a)− α1α2α3α4| � η25C1,

and hence by (9.41) and the triangle inequality

σ = α1α2α3α4 + O(η25C1). (9.45)

In particular, from (9.39) one has

α1α2α3α4 � ηC1+O(1). (9.46)

From (9.45), (9.46) and (9.40) we have

Eh(a)� ηC1/100α1α2α3α4,

https://doi.org/10.1112/S0025579317000316 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579317000316


A NEW BOUND FOR r4(N ) 1021

where
h(a) := EW (a − a(2), a(2), a(3), a − a(3)). (9.47)

By Markov’s inequality, we conclude that we have

h(a)� ηC1/200α1α2α3α4 (9.48)

with probability 1− O(ηC1/200). Similarly, from (9.43), (9.44) and Chebyshev’s
inequality we also have

g12(a) = α1α2 + O(η20C1) (9.49)

and
g34(a) = α3α4 + O(η20C1) (9.50)

with probability 1− O(ηC1/200).
Now let a be a value of a be such that (9.48)–(9.50) hold. From (9.50) we

have in particular that

E1A(3)(a(3))1A(4)(a − a(3))� α3α4;

comparing this with (9.48) and (9.47), we see that we may find a(3)(a) ∈ A(3)
(depending only on a) with a − a(3)(a) ∈ A(4) such that

E1A(1)(a − a(2))1A(2)(a(2))1VBQ(a − a(2), a(2), a(3)(a), a − a(3)(a))

� ηC1/200α1α2.

If we then set ξ ′(a) := ξ(a(3)(a)) + ξ(a − a(3)(a)) (and define ξ ′(a) arbitrarily
when (9.48), (9.49), or (9.50) fail), then the claims (9.36), (9.37) follow from
(9.49) and the definition (9.10) of VBQ. �

The function ξ ′ has better additive structure than ξ , in that it respects almost
all additive quadruples in a Bohr set, rather than almost all additive quadruples
in a rough set. More precisely, we have the following.

PROPOSITION 9.13. Let the notation and hypotheses be as in Theorem 9.12.
Suppose that a, a′,h are selected independently and regularly from a1 + B(S1,

ρ2, j ), a1 + B(S1, ρ2, j ), and B(S1, ρ2, j+3) respectively. Then with probability
1− O(ηC1/200) we have

‖ξ ′(a)− ξ ′(a+ h)− ξ ′(a′)+ ξ ′(a′ + h)‖S 6
4
ρ3
. (9.51)

Proof. Let a(2) be drawn regularly from a(2),1+B(S1, ρ2, j+2), independently
of a, a′,h. For each a, a′, h ∈ Z/pZ, let Ia,a′,h denote the random indicator
variable

Ia,a′,h := 1A(2)(a(2))1A(2)(a(2) + h)1A(1)(a − a(2))1A(1)(a
′
− a(2)).
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Suppose that we can show that with probability 1 − O(ηC1/200), the triple
(a, a′,h) attains a value (a, a′, h) for which one has the estimates

EIa,a′,h > 0.9α2
1α

2
2, (9.52)

EIa,a′,h1‖ξ ′(a)−ξ(a−a(2))−ξ(a(2))‖S>1/ρ3 6 0.1α2
1α

2
2, (9.53)

EIa,a′,h1‖ξ ′(a′)−ξ(a′−a(2))−ξ(a(2))‖S>1/ρ3 6 0.1α2
1α

2
2, (9.54)

EIa,a′,h1‖ξ ′(a+h)−ξ(a−a(2))−ξ(a(2)+h)‖S>1/ρ3 6 0.1α2
1α

2
2, (9.55)

EIa,a′,h1‖ξ ′(a′+h)−ξ(a′−a(2))−ξ(a(2)+h)‖S>1/ρ3 6 0.1α2
1α

2
2 . (9.56)

Assuming these estimates, we conclude from the union bound that with
probability 1 − O(ηC1/200), the random variable (a, a′,h) attains a value
(a, a′, h) for which there exists at least one element a(2) of Z/pZ obeying
the constraints

a(2), a(2) + h ∈ A(2),
a − a(2), a′ − a(2) ∈ A(1),

‖ξ ′(a)− ξ(a − a(2))− ξ(a(2))‖S 6
1
ρ3
,

‖ξ ′(a′)− ξ(a′ − a(2))− ξ(a(2))‖S 6
1
ρ3
,

‖ξ ′(a + h)− ξ(a − a(2))− ξ(a(2) + h)‖S 6
1
ρ3
,

‖ξ ′(a′ + h)− ξ(a′ − a(2))− ξ(a(2) + h)‖S 6
1
ρ3

and (9.51) then follows from the triangle inequality.
It remains to establish (9.52)–(9.56). We first prove (9.53). By Markov’s

inequality, it suffices to show that

EIa,a′,h1‖ξ ′(a)−ξ(a−a(2))−ξ(a(2))‖S>1/ρ3 � ηC1/200α2
1α

2
2 .

We rewrite the left-hand side as

Eg1(a(2))g2(a(2))1A(2)(a(2))1A(1)(a− a(2))1‖ξ ′(a)−ξ(a−a(2))−ξ(a(2))‖S>1/ρ3

where
g1(a(2)) := E1A(1)(a

′
− a(2))

and
g2(a(2)) := E1A(2)(a(2) + h).

But from (9.37) we have

E1A(2)(a(2))1A(1)(a− a(2))1‖ξ ′(a)−ξ(a−a(2))−ξ(a(2))‖S>1/ρ3 � ηC1/200α1α2,

from Lemma 4.4 one has

g1(a(2)) = α1 + O(η10C1)

and from (9.33) one has

g2(a(2)) = α2 + O(η10C1)
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with probability 1 − O(η10C1) (for example), with the trivial bound g(a(2)) =
O(1) otherwise, and the claim (9.53) then follows from (9.46).

The proofs of (9.54)–(9.56) are similar to (9.53) and are omitted. It thus
remains to prove (9.52). From (9.34) and Markov’s inequality, we see that with
probability 1− O(ηC1/200), the random variable h attains a value h for which

E1A(2)(a(2))1A(2)(a(2) + h) > 0.99α2
2 .

For any h obeying this inequality, define E(h) ⊂ Z/pZ to be the set

E(h) := A(2) ∩ (A(2) − h),

so that
P(a(2) ∈ E(h)) > 0.99α2

2 .

By (9.33) and the Chebyshev inequality, we conclude that with probability 1 −
O(ηC1/200), the random variable (a,h) attains a value (a, h) for which one has

P(a(2) ∈ E(h); a − a(2) ∈ A(1)) > 0.98α1α
2
2 .

For any (a, h) of the above form, define E ′(a, h) ⊂ Z/pZ to be the set

E ′(a, h) := E(h) ∩ (a − A(1)),

then
P(a(2) ∈ E ′(a, h)) > 0.98α1α

2
2 .

By one last application of (9.33) and the Chebyshev inequality, we see that
with probability 1 − O(ηC1/200), the random variable (a′, a,h) attains a value
(a′, a, h) for which one has

P(a(2) ∈ E ′(a, h); a′ − a(2) ∈ A(1)) > 0.97α2
1α

2
2

which gives (9.52) as required. �

9.14. Sixth step: a frequency function ξ ′′ that is approximately linear 100% of the
time on a Bohr set. We now use a standard “majority vote” argument to upgrade
the “99% linear” structure of ξ ′ to a “100% linear” structure of a closely related
function ξ ′′ (cf. [5]). More precisely, one has the following.

THEOREM 9.15. Let the notation and hypotheses be as in Theorem 8.1. Let
j, S1 be as in Theorem 9.9, and let a1, ξ ′ be as in Theorem 9.12. Then there is a
function ξ ′′ : B(S1, ρ3)→ Z/pZ such that

‖ξ ′′(n + m)− ξ ′′(n)− ξ ′′(m)‖S 6
24
ρ3

(9.57)

for all n,m ∈ B(S1, ρ3/2), and such that for any n ∈ B(S1, ρ3), if a is drawn
regularly from a1 + B(S1, ρ2, j ), one has

‖ξ ′(a)− ξ ′(a− n)− ξ ′′(n)‖S 6
8
ρ3

(9.58)

with probability 1− O(ηC1/200).
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Proof. Let a,h be drawn independently and regularly from a∗ + B(S1,

ρ2, j ) and B(S1, ρ2, j+3) respectively. From Proposition 9.13 and the pigeonhole
principle, we may find a′0 ∈ Z/pZ such that

P
(
‖ξ ′(a)−ξ ′(a+h)−ξ ′(a′0)+ξ

′(a′0+h)‖S 6
4
ρ3

)
> 1−O(ηC1/200). (9.59)

Fix this a′0. Now let n by an arbitrary element of B(S1, ρ3). Then using
Lemma 4.4 to compare a with a− n and h with h+ n, we obtain

P
(
‖ξ ′(a− n)− ξ ′(a+ h)− ξ ′(a′0)+ ξ

′(a′0 + h+ n)‖S 6
4
ρ3

)
> 1− O(ηC1/200).

Combining this with (9.59) and the triangle inequality, we see that

P
(
‖ξ ′(a)− ξ ′(a− n)+ ξ ′(a′0 + h)− ξ ′(a′0 + h+ n)‖S 6

8
ρ3

)
> 1− O(ηC1/200).

Thus, by the pigeonhole principle, we may find hn ∈ Z/pZ such that

P
(
‖ξ ′(a)− ξ ′(a− n)+ ξ ′(a′0 + hn)− ξ

′(a′0 + hn + n)‖S 6
8
ρ3

)
> 1− O(ηC1/200).

If we thus define

ξ ′′(n) := ξ ′(a′0 + hn + n)− ξ ′(a′0 + n)

then we have obtained (9.58).
Now suppose that n,m ∈ B(S1, ρ3/2). From (9.58), we see that with

probability at least 1− O(ηC1/200) we have

‖ξ ′(a)− ξ ′(a− n)− ξ ′′(n)‖S 6
8
ρ3
,

‖ξ ′(a)− ξ ′(a− m)− ξ ′′(m)‖S 6
8
ρ3
,

and
‖ξ ′(a)− ξ ′(a− n − m)− ξ ′′(n + m)‖S 6

8
ρ3
.

Using Lemma 4.4 to compare a with a − n in the second inequality, we also
conclude

‖ξ ′(a− n)− ξ ′(a− n − m)− ξ ′′(m)‖S 6
8
ρ3
,

with probability 1−O(ηC1/200). Thus there is a positive probability that the first,
third, and fourth estimates hold simultaneously, and the claim (9.57) follows
from the triangle inequality. �
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The function ξ ′′ is still closely related to ξ , and in particular a variant of the
correlation estimate (9.3) is obeyed by ξ ′′.

PROPOSITION 9.16. Let the notation and hypotheses be as in the preceding
theorem. Then there exist a0 ∈ B(S, 3ρ2) and ξ0 ∈ Z/pZ such that∑

n0,n

P(n0 = n0,n = n)|E f (n0 + h+ a0 − n) f (n0 + h)ep((ξ
′′(n)− ξ0)h)|2

� ηC1+O(1),

where n,n0,h are drawn independently and regularly from the Bohr sets B(S1,

ρ3/4), B(S, ρ0), B(S1, ρ4) respectively.

With this proposition and the previous theorem, we may now safely forget
about the original function ξ , and work now with ξ ′′; the parameters a1, j will
also no longer be relevant.

Proof. Let n, a, a(2) be drawn independently and regularly from B(S1, ρ3/4),
a1 + B(S1, ρ2, j ), and B(S1, ρ2, j+2) respectively. From (9.58) we have

‖ξ ′(a)− ξ ′(a− n)− ξ ′′(n)‖S �
1
ρ3

with probability 1 − O(ηC1/200). Similarly, from (9.36), (9.37), (9.46) we see
that with probability 1− O(ηC1/200), the random variable a attains a value a for
which

P
(

a − a(2) ∈ A(1); a(2) ∈ A(2); ‖ξ ′(a)− ξ(a − a(2))− ξ(a(2))‖S 6
1
ρ3

)
� α1α2.

Using Lemma 4.4 to compare a and a − n, we also see that with probability
1− O(ηC1/200), the random variable (a,n) attains a value (a, n) for which

P
(

a − n − a(2) ∈ A(1); a(2) ∈ A(2);

‖ξ ′(a − n)− ξ(a − n − a(2))− ξ(a(2))‖S 6
1
ρ3

)
� α1α2.

From the union bound and Fubini’s theorem, we conclude that with probability
�α1α2, we simultaneously have the statements

a− n− a(2) ∈ A(1),
a(2) ∈ A(2),

‖ξ ′(a)− ξ ′(a− n)− ξ ′′(n)‖S �
1
ρ3
,

‖ξ ′(a− n)− ξ(a− n− a(2))− ξ(a(2))‖S 6
1
ρ3
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and hence by the triangle inequality

‖ξ ′(a)− ξ(a− n− a(2))− ξ(a(2))− ξ ′′(n)‖S �
1
ρ3
.

By the pigeonhole principle, we may thus find a, a(2) ∈ Z/pZ such that the
statements

a − n− a(2) ∈ A(1),
a(2) ∈ A(2),

‖ξ ′(a)− ξ(a − n− a(2))− ξ(a(2))− ξ ′′(n)‖S �
1
ρ3

simultaneously hold with probability �α1α2, and thus with probability
�ηC1+O(1) thanks to (9.46). Writing a0 := a − a(2) and ξ0 := ξ(a(2)) − ξ ′(a),
and recalling from Theorem 9.7 that A(1) ∈ S, we thus have

P(a0 − n ∈ S; ‖ξ ′′(n)+ ξ(a0 − n)− ξ0‖S � 1/ρ3)� ηC1+O(1).

In particular, since n ∈ B(S1, ρ3/4) and S ⊂ B(S, 2ρ2), we have a0 ∈ B(S,
3ρ2).

Let n0,n1 be drawn independently and regularly from B(S, ρ0), B(S, ρ1)

respectively, independently of all previous random variables. From the above
estimate and (9.3), we see that with probability�ηC1+O(1), the random variable
n attains a value n for which the statements

a0 − n ∈ S (9.60)
‖ξ ′′(n)+ ξ(a0 − n)− ξ0‖S1 � 1/ρ3 (9.61)∑

n0

P(n0 = n0)

× |E f (n0 + n1 + a0 − n) f (n0 + n1)ep(−ξ(a0 − n)n1)|
2 > η/8 (9.62)

simultaneously hold.
Let n obey the above estimates (9.60)–(9.62). If we now draw h regularly

from B(S1, ρ4), then by using Lemma 4.4 to compare n1 with n1 + h in (9.62),
we obtain∑

n0

P(n0 = n0)|E f (n0 + n1 + h+ a0 − n) f (n0 + n1 + h)

× ep(−ξ(a0 − n)(n1 + h))|2 � η

and thus by the triangle inequality in L2∑
n0,n1

P(n0 = n0,n1 = n1)|E f (n0 + n1 + h+ a0 − n) f (n0 + n1 + h)

× ep(−ξ(a0 − n)(n1 + h))|2 � η.
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We may delete the deterministic phase ep(−ξ(a0 − n)n1) to obtain∑
n0,n1

P(n0 = n0,n1 = n1)|E f (n0 + n1 + h+ a0 − n) f (n0 + n1 + h)

× ep(−ξ(a0 − n)h)|2 � η.

Since h takes values in B(S1, ρ4), we see from (9.61) that

ep(−ξ(a0 − n)h) = ep((ξ
′′(n)− ξ0)h)+ O(η100)

(for example), and so∑
n0,n1

P(n0 = n0,n1 = n1)|E f (n0 + n1 + h+ a0 − n) f (n0 + n1 + h)

× ep((ξ
′′(n)− ξ0)h)|2 � η.

Using Lemma 4.4 to compare n0 with n0 + n1, we conclude that∑
n0,n1

P(n0 = n0,n1 = n1)|E f (n0 + h+ a0 − n) f (n0 + h)ep((ξ
′′(n)− ξ0)h)|2

� η.

Multiplying by P(n = n) and summing in n, we obtain the claim. �

9.17. Seventh step: derivatives of f correlate with a locally bilinear form. We
now pass to the “cohomological” phase of the argument, in which we remove
the error ξ ′′(n+m)− ξ ′′(n)− ξ ′′(m) in the linearity of ξ ′′ that appears in (9.57).
This improved linearity of the form (n, h) 7→ ξ(n)h in the n aspect will come at
the expense of the h aspect, which will now merely be locally linear instead of
globally linear. However, this is a worthwhile tradeoff for our purposes (and in
any event local linearity is more natural in this context than global linearity).

More precisely, the purpose of this subsection is to establish the following
result towards the proof of Theorem 8.1.

THEOREM 9.18. Let the notation and hypotheses be as in Theorem 8.1. Then
there exists a set S1 with S ⊂ S1 ⊂ Z/pZ and |S1| 6 |S|+O(η−O(C1)), a locally
bilinear map

4 : B(S1, ρ4)× B(S1, ρ4)→ R/Z,

a shift a1 ∈ B(S, 4ρ2), and a frequency ξ1 ∈ Z/pZ such that∑
n0,n1

P(n0 = n0,n1 = n1)

×

∣∣∣∣E f (n0 +m1 + a1 − n1) f (n0 +m1)e
(
4(n1,m1)−

ξ1m1

p

)∣∣∣∣2
� ηC1+O(1) (9.63)

if n0,m1,n1 are drawn independently and regularly from B(S, ρ0), B(S1, ρ5),
and B(S1, ρ6) respectively.
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Once the proof of this theorem is completed, the auxiliary data ξ, ξ ′, ξ ′′, j ,
�,VBQ used in the previous parts of the section are no longer needed and may
be discarded.

We now prove Theorem 9.18. Let j∗, S1 be as in Theorem 9.9, let a∗, ξ ′ be
as in Theorem 9.12, let ξ ′′ : B(S1, ρ3) → Z/pZ be as in Theorem 9.15, and
let a0, ξ0 be as in Proposition 9.16. We will use a “cohomological” argument to
construct the required bilinear map 4. Namely, we define the cocycle µ : B(S1,

ρ3/2)× B(S1, ρ3/2)→ Z/pZ to be the quantity

µ(n,m) := ξ ′′(n + m)− ξ ′′(n)− ξ ′′(m). (9.64)

Clearly (9.57) is symmetric, and we have the cocycle equation

µ(n1, n2 + n3)+ µ(n2, n3) = µ(n1, n2)+ µ(n1 + n2, n3) (9.65)

as well as the auxiliary equations

µ(n1, n2) = µ(n2, n1); µ(n1, 0) = 0

whenever n1, n2, n3 ∈ B(S1, ρ3/4). From (9.57) we also have the estimate

‖µ(n,m)‖S 6
24
ρ3

(9.66)

for all n,m ∈ B(S1, ρ3/4).
To construct the bilinear map 4, we will show that a certain projection of µ

is a “coboundary” is a certain sense. Let φ : ZS
→ Z/pZ be the homomorphism

φ((ns)s∈S) :=
∑
s∈S

nss.

From (9.66), we see that for each n,m ∈ B(S1, ρ3/4) we have a representation
of the form

µ(n,m) = φ(µ̃(n,m)) (9.67)

for some lift µ̃(n,m) ∈ ZS of size

|µ̃(n,m)| 6 24/ρ3. (9.68)

This lift µ̃(n,m) is only defined up to an element of the kernel ker(φ) := {p ∈
ZS
: φ(p)= 0} of φ; to eliminate this ambiguity we will apply a projection. Since

S contains a non-zero element, φ : ZS
→ Z/pZ is a surjective homomorphism,

and in particular, ker(φ) is a sublattice of ZS of index p. Applying Lemma 4.8,
we may find generators v1, . . . , v|S| of ker(φ) and real numbers N1, . . . , N|S| > 0
with

|S|∏
i=1

Ni = O(K )O(K ) p (9.69)
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such that

BRS (0, O(K )−3K/2t) ∩ ker(φ) ⊂ {n1v1 + · · · + n|S|v|S| : |ni | 6 t Ni }

⊂ BRS (0, t) ∩ ker(φ) (9.70)

for all t > 0.
By relabelling, we may take the Ni to be non-increasing. Let d , 0 6 d 6 |S|

be such that

N1 > · · · > Nd >
ρ3

exp(K C1)
> Nd+1 > · · · > N|S|. (9.71)

From (9.69), (8.3) we see that d cannot equal |S|. Let V be the d-dimensional
subspace of RS spanned by v1, . . . , vd , let V⊥ be the orthogonal complement of
V in RS , and let π : RS

→ V⊥ be the orthogonal projection.
We claim that π(µ̃(n,m)) is now uniquely determined by µ(n,m) for n,

m ∈ B(S1, ρ3/4). Indeed, if µ̃(n,m) and µ̃′(n,m) both obeyed (9.67), (9.68),
then their difference (call it w) would be of magnitude O(1/ρ3) and lies in the
kernel of φ. By (9.70) with t = exp(−K C1)ρ3, we conclude that w lies in V , and
hence π(µ̃(n,m)) and π(µ̃′(n,m)) agree.

A variant of the above argument shows that π ◦ µ̃ also continues to obey the
cocycle equation.

LEMMA 9.19 (Projected lift is a cocycle). One has

π(µ̃(n1, n2 + n3))+ π(µ̃(n2, n3)) = π(µ̃(n1, n2))+ π(µ̃(n1 + n2, n3))

and additionally

π(µ̃(n1, n2)) = π(µ̃(n2, n1)); π(µ̃(n1, 0)) = 0

for all n1, n2, n3 ∈ B(S1, ρ3/4).

Proof. By (9.68), the quantityw := µ̃(n1, n2+n3)+µ̃(n2, n3)−µ̃(n1, n2)−

µ̃(n1 + n2, n3) has magnitude O(1/ρ3); by (9.67), (9.65), w lies in the kernel
of φ. Repeating the previous arguments, we conclude that w ∈ V . Applying
the homomorphism π , we obtain the first claim. The second claim is proven
similarly. �

We can in fact make π ◦ µ̃ a coboundary, after shrinking the domain
somewhat.

PROPOSITION 9.20 (Projected lift is a coboundary). There exists a map F :
B(S1, 2 exp(−K C2

1 )ρ3)→ V⊥ with

F(n)�
K O(C1)

ρ3
(9.72)

for all n ∈ B(S1, 2 exp(−K C2
1 )ρ3), such that

π(µ̃(n1, n2)) = F(n1 + n2)− F(n1)− F(n2)

for all n1, n2 ∈ B(S1, exp(−K C2
1 )ρ3).
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Proof. As a first attempt at constructing F , we introduce the average

F1(n) := Eπ(µ̃(n,n3))

for n ∈ B(S1, ρ3/4), where n3 is drawn regularly from B(S1, ρ3/4). From (9.68)
we have

|F1(n)| 6
24
ρ3

for all n ∈ B(S1, ρ3/4). Also, since |S1| � K O(C1), if we replace n3 by n3 in
Lemma 9.19 and take expectations using Lemma 4.4, we conclude that

F1(n1)+ F1(n2) = π(µ̃(n1, n2))+ F1(n1 + n2)+ O
(K O(C1)‖n2‖S⊥1

ρ2
3

)
for all n1, n2 ∈ B(S1, ρ3/8).

If we now introduce the modified cocycle

σ1(n1, n2) := π(µ̃(n1, n2))+ F1(n1 + n2)− F1(n1)− F1(n2)

for n1, n2 ∈ B(S1, ρ3/8), then we have the cocycle equation

σ1(n1, n2 + n3)+ σ1(n2, n3) = σ1(n1, n2)+ σ1(n1 + n2, n3), (9.73)

the auxiliary equations

σ1(n1, n2) = σ1(n2, n1); σ1(n1, 0) = 0

and the bound

σ1(n1, n2)�
K O(C1)‖n2‖S⊥1

ρ2
3

(9.74)

for n1, n2 ∈ B(S1, ρ3/16).
We now make σ1 a coboundary by using a basis for B(S1, ρ3/16). Set

d := |S1| 6 K O(C1). By Corollary 4.9, we can find a1, . . . , ad of Z/pZ and
real numbers N1, . . . , Nd > 0 such that

‖ai‖S⊥1
6 N−1

i (9.75)

for all i = 1, . . . , d , and such that for any a ∈ Z/pZ, there exists a representation

a = m1a1 + · · · + mdad (9.76)

with m1, . . . ,md integers of size

mi � exp(O(K O(C1)))Ni‖a‖S⊥1
(9.77)

for i = 1, . . . , d , with at most one such representation obeying the bounds |mi |<

Ni/2 for i = 1, . . . , d .
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By relabelling we may assume that Ni > 32d ′/ρ3 for i = 1, . . . , d ′ and Ni <

32d ′/ρ3 for i = d ′+1, . . . , d for some 06 d ′ 6 d . By (9.75) we have ai ∈ B(S1,

ρ3/32d ′) for all i = 1, . . . , d ′. In particular, from (9.73) we see that for any
n ∈ B(S1, ρ3/32) and 1 6 i, j 6 d ′, we have

σ1(n1, ai + a j )+ σ1(ai , a j ) = σ1(n1, ai )+ σ1(n1 + ai , a j )

and hence by swapping i and j and subtracting

σ1(n1 + a j , ai )− σ1(n1, ai ) = σ1(n1 + ai , a j )− σ1(n1, a j ).

Let P ⊂ Zd ′ denote the collection of tuples (m1, . . . ,md ′) ∈ Zd ′ with |mi | 6
ρ3/2Ni for i = 1, . . . , d ′, and for each m ∈ P and i = 1, . . . , d , define the
quantity

fi (m) := σ1(φ(m), ai )

where φ : Zd ′
→ Z/pZ is the homomorphism

φ(m1, . . . ,md ′) :=

d ′∑
k=1

mkak .

Then from (9.75) we have φ(P) ⊂ B(S1, ρ3/32). The above identity then says
that the “1-form” ( f1, . . . , fd ′) is “closed” or “curl-free” in the sense that

fi (m + e j )− fi (m) = f j (m + ei )− f j (m) (9.78)

whenever i, j = 1, . . . , d ′ and m,m + ei ,m + e j ∈ P , where e1, . . . , ed ′ is the
standard basis for P . This implies that there exists a function H : P → V⊥

such that F(0) = 0 and fi (m) = H(m + ei ) − H(m) whenever i = 1, . . . , d
and m,m + ei ∈ P . Indeed, one can define H to be an “antiderivative” of the
( f1, . . . , fd ′) by setting

H(m) :=
L−1∑
l=0

fil (ml)

whenever 0 = m0, . . . ,mL = m is a path in P with ml+1 = ml + eil for l = 0,
. . . , L − 1; a “homotopy” argument using (9.78) shows that the right-hand side
does not depend on the choice of path. From (9.74), (9.75) we have

fi (m)�
K O(C1)

Niρ
2
3

for m ∈ P and i = 1, . . . , d ′, which on “integrating” (and recalling that d ′ 6
d � K O(C1)) implies that

H(m)�
K O(C1)

ρ3

for all m ∈ P .
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Since σ1(0, ei ) = 0, we have fi (0) = 0 and hence H(ei ) = 0 for all i = 1,
. . . , d ′. Thus we have

σ1(φ(m), φ(ei )) = H(m + ei )− H(m)− H(ei )

whenever m,m + ei ∈ P . An induction (on the magnitude of a vector m′) using
(9.73) then shows that

σ1(φ(m), φ(m′)) = H(m + m′)− H(m)− H(m′)

whenever m,m′,m+m′ ∈ P . Now, if n ∈ B(S1, 2 exp(−K C2
1 )ρ), then by (9.76),

(9.77) we see that n = φ(m) for some m ∈ P . If we then define F2 : B(S1,

2 exp(−K C2
1 )ρ)→ V⊥ by setting F2(n) := H(m), we conclude that

F2(n)�
K O(C1)

ρ3

and
σ1(n, n′) = F2(n + n′)− F2(n)− F2(n′)

for all n, n′ ∈ B(S1, exp(−K C2
1 )ρ). Setting F := F2 − F1, we obtain the

claim. �

Let F be as in Proposition 9.20. We use F to construct the locally bilinear
form 4 : B(S1, ρ4) × B(S1, ρ4)→ R/Z as follows. We first define the locally
linear map ι : B(S1, ρ4)→ RS by the formula

ι(m) :=
({

ms
p

})
s∈S
,

where x 7→ {x} is the signed fractional map from R/Z to (−1/2, 1/2]; note that
ι takes values in the box [−ρ4, ρ4]

S . We then define

4(n,m) :=
ξ ′′(n)m

p
− F(n) · ι(m) (9.79)

for n,m ∈ B(S1, ρ4), where · denotes the dot product on RS . It is clear that 4 is
locally linear in m; we also claim that it is locally linear in n, thus

4(n1 + n2,m)−4(n1,m)−4(n2,m) = 0 (9.80)

whenever n1, n2, n1 + n2 ∈ B(S1, ρ4). By (9.64) and Proposition 9.20, the left-
hand side of (9.80) may be written as

µ(n1, n2)m
p

− π(µ̃(n1, n2)) · ι(m) mod 1.

From (9.67) we have

µ(n1, n2)m
p

= µ̃(n1, n2) · ι(m) mod 1
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so to prove (9.80), it suffices to show that ι(m) lies in V⊥. This is equivalent to
showing that ι(m) · vi = 0 for i = 1, . . . , d . Since vi ∈ ker(φ), we have

ι(m) · vi = 0 mod 1.

On the other hand, we have ι(m) = O(K 1/2ρ4), and from (9.70) with t = N−1
i

followed by (9.71), we have

|vi | 6 N−1
i <

exp(K C1)

ρ3

and hence |ι(m) · vi | < 1. The claim follows.
Now we verify (9.63). Let a0, ξ0 be as in Proposition 9.16. Let n,n0,h,

n1, m1 be drawn independently and regularly from the Bohr sets B(S1, ρ3/4),
B(S, ρ0), B(S1, ρ4), B(S1, ρ6), B(S1, ρ5) respectively. From Proposition 9.16
we have∑

n0,n

P(n0 = n0,n = n)|E f (n0 + h+ a0 − n) f (n0 + h)ep((ξ
′′(n)− ξ0)h)|2

� ηC1+O(1).

Using Lemma 4.4 to replace n by n+ n1, and to replace h by h+m1, we have∑
n0,n,n1

P(n0 = n0,n = n,n1 = n1)|E f (n0 + h+m1 + a0 − n − n1)

× f (n0 + h+m1)ep((ξ
′′(n + n1)− ξ0)(h+m1))|

2
� ηC1+O(1)

and thus by the triangle inequality we have∑
n0,n,n1,h

P(n0 = n0,n = n,n1 = n1,h = h)|E f (n0 + h +m1 + a0 − n − n1)

× f (n0 + h +m1)ep((ξ
′′(n + n1)− ξ0)(h +m1))|

2
� ηC1+O(1).

The phase e((ξ ′′(n + n1)− ξ0)h) is deterministic and may thus be omitted:∑
n0,n,n1,h

P(n0 = n0,n = n,n1 = n1,h = h)|E f (n0 + h +m1 + a0 − n − n1)

× f (n0 + h +m1)ep((ξ
′′(n + n1)− ξ0)m1)|

2
� ηC1+O(1).

As the expectation only depends on the sum n0 + h rather than the individual
variables n0, h, we thus have∑

n0,n,n1

P(n0 + h = n0,n = n,n1 = n1)|E f (n0 +m1 + a0 − n − n1)

× f (n0 +m1)ep((ξ
′′(n + n1)− ξ0)m1)|

2
� ηC1+O(1).
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By Lemma 4.4 we may replace n0 + h here by n0. From (9.57) we have

‖(ξ ′′(n + n1)− ξ
′′(n)− ξ ′′(n1))m1‖R/Z � η100C1

and so ∑
n0,n,n1

P(n0 = n0,n = n,n1 = n1)|E f (n0 + a0 +m1 − n − n1)

× f (n0 +m1)ep((ξ
′′(n)+ ξ ′′(n1)− ξ0)m1)|

2
� ηC1+O(1).

By the pigeonhole principle, there thus exists n ∈ B(S∗, ρ3/4) such that∑
n0,n1

P(n0 = n0n1 = n1)|E f (n0 + a0 +m1 − n − n1) f (n0 +m1)

× ep((ξ
′′(n)+ ξ ′′(n1)− ξ0)m1)|

2
� ηC1+O(1),

which, if we write a1 := a0 − n and ξ1 := ξ0 − ξ
′′(n), simplifies to∑

n0,n1

P(n0 = n0n1 = n1)|E f (n0 +m1 + a1 − n1) f (n0 +m1)

× ep((ξ
′′(n1)− ξ1)m1)|

2
� ηC1+O(1).

Since a0 ∈ B(S, 3ρ2) and n ∈ B(S∗, ρ3/4), we have a1 ∈ B(S, 4ρ2).
Now, from (9.79) one has

ep(ξ
′′(n1)m1) = e(4(n1,m1))e(−F(n1) · ι(m1));

but since m1 ∈ B(S∗, ρ5), we have ι(m1) = O(Kρ5), and hence by (9.72) we
have

‖F(n1) · ι(m1)‖R/Z � η100C1,

and so ∑
n0,n1

P(n0 = n0;n1 = n1)|E f (n0 +m1 + a1 − n1) f (n0 +m1)

× e(4(n1,m1)− ξ1m1)|
2
� ηC1+O(1),

which gives (9.63). The proof of Theorem 9.18 is now complete.

9.21. Eighth step: making the frequency function symmetric. The next step is
the “symmetry step” from [14, 26], which uses the Cauchy–Schwarz inequality
to ensure that 4 is essentially symmetric.

THEOREM 9.22. Let the notation and hypotheses be as in Theorem 9.18. For
n,m ∈ B(S1, ρ4), define

{n,m} := 4(n,m)−4(m, n).

Then there exists a natural number k with 1 6 k � exp(K O(C1)) such that

‖k{n,m}‖R/Z 6
‖n‖S⊥1
ρ8

‖m‖S1

ρ8

for all n,m ∈ B(S1, ρ9).
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Proof. Let n0,m1,n1 be as in Theorem 9.18. From (9.63) and the pigeonhole
principle, we may find n0 ∈ Z/pZ such that∑

n1

P(n1 = n1)|E f (n0 +m1 + a1 − n1) f (n0 +m1)

× e(4(n1,m1)− ξ1m1)|
2
� ηC1+O(1)

which by the boundedness of the expectation implies∑
n1

P(n1 = n1)|E f (n0 +m1 + a1 − n1) f (n0 +m1)

× e(4(n1,m1)− ξ1m1)| � ηC1+O(1)

and thus we may find a 1-bounded function b1 : Z/pZ→ C such that

|Eb1(n1) f (n0+m1+ a1− n1) f (n0+m1)e(4(n1,m1)− ξ1m1)| � ηC1+O(1).

Writing b2(n) := f (n0 + a1 + n) and b3(n) := f (n0 +m1)e(−ξ1m1), we may
simplify this as

|Eb1(n1)b2(m1 − n1)b3(m1)e(4(n1,m1))| � ηC1+O(1).

Using the Cauchy–Schwarz inequality (Lemma 2.1) to eliminate the b3(m1)

factor, we conclude that

|Eb1(n1)b1(n′1)b2(m1−n1)b2(m1−n′1)e(4(n1,m1)−4(n′1,m1))| � η2C1+O(1)

where n′1 is an independent copy of n1. Writing k := n1 + n′1 −m1, and noting
from the local bilinearity of 4 that

4(n1,m1)−4(n′1,m1) = 4(n1 − n′1,m1)

= 4(n1 − n′1,n1 + n′1 − k)
= 4(n1,n1)−4(n′1,n′1)+ {n1,n′1}
−4(n1,k)+4(n′1,k)

we conclude that

|Eb3(n1,k)b4(n′1,k)e({n1,n′1})| � η2C1+O(1),

where b3, b4 : Z/pZ× Z/pZ→ C are the 1-bounded functions

b3(n1, k) := b1(n1)b2(k − n1)e(4(n1, n1)−4(n1, k))

and
b4(n′1, k) := b1(n′1)b2(k − n′1)e(−4(n

′

1, n′1)+4(n
′

1, k)).
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For fixed n1,n′1, we see from Lemma 4.4 that k differs from m1 in total variation
by O(η100C1), and hence

|Eb3(n1,m1)b4(n′1,m1)e({n1,n′1})| � η2C1+O(1).

By the pigeonhole principle, we may thus find m1 ∈ Z/pZ such that

|Eb3(n1,m1)b4(n′1,m1)e({n1,n′1})| � η2C1+O(1).

Using Cauchy–Schwarz (Lemma 2.1) to eliminate b4(n′1,m1), and using the
local bilinearity of { , }, we conclude that

|Eb3(n1,m1)b3(l1,m1)e({n1 − l1,n′1})| � η4C1+O(1),

where l1 is an independent copy of n1; using a further application of Cauchy–
Schwarz (Lemma 2.1) to eliminate b3(n1,m1)b3(l1,m1), we conclude that

|Ee({n1 − l1,n′1 − l′1})| � η8C1+O(1),

where l′1 is an independent copy of n′1 (thus n1,n′1, l1, l′1 are jointly independent
and drawn regularly from B(S1, ρ6)). In particular, by the pigeonhole principle
one can find l1, l ′1 ∈ B(S1, ρ6) such that

|Ee({n1 − l1,n′1 − l ′1})| � η8C1+O(1).

By local bilinearity, one can rewrite {n1 − l1,n′1 − l ′1} as {n1,n′1} plus locally
linear functions of n1 and n′1. The claim now follows from Proposition 4.11. �

9.23. Ninth step: integrating the frequency function. We may now finally
prove Theorem 8.1. Let the notation and hypotheses be as in that theorem, let
S1 and 4 be as in Theorem 9.18, and let k be as in Theorem 9.22. Thus if we
let n0,n1,m1 be drawn independently and regularly from B(S, ρ0), B(S1, ρ6),
B(S1, ρ5) respectively, we have∑

n0,n1

P(n0 = n0,n1 = n1)|E f (n0 + m1 + a1 − n1) f (n0 +m1)

× e(4(n1,m1)− ξ1m1)|
2
� ηC1+O(1). (9.81)

Now let n2,m2 be drawn independently and regularly from the Bohr sets
B(S1, ρ9), B(S1, ρ10) respectively, independently of all previous random
variables. By Lemma 4.4, we may replace n1,m1 by n1 + 2kn2 and m1 + 2km2
in (9.81), leading to∑
n0,n1,n2

P(n0 = n0, . . . ,n2 = n2)|E f (n0 +m1 + 2km2 + a1 − n1 − 2kn2)

× f (n0 +m1 + 2km2)e(4(n1 + 2kn2,m1 + 2km2)− ξ1(m1 + 2km2))|
2

� ηC1+O(1).
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Thus we may find n1 ∈ B(S1, ρ6), m1 ∈ B(S1, ρ5) such that∑
n0,n2

P(n0 = n0,n2 = n2)|E f (n0 + m1 + 2km2 + a1 − n1 − 2kn2)

× f (n0 + m1 + 2km2)e(4(n1 + 2kn2,m1 + 2km2)− ξ1(m1 + 2km2))|
2

� ηC1+O(1),

which we can simplify slightly as∑
n0,n2

P(n0 = n0,n2 = n2)|E f (n0 + 2km2 + a2 − 2kn2)

× f (n0 + m1 + 2km2)e(4(n1 + 2kn2,m1 + 2km2)− 2kξ1m2)|
2

� ηC1+O(1),

where a2 := a1+m1−n1; since a1 ∈ B(S, 4ρ2), m1 ∈ B(S1, ρ5), n1 ∈ B(S1, ρ6),
we have a2 ∈ B(S, 5ρ2). By the local bilinearity of 4, we have

4(n1 + 2kn2,m1 + 2km2)

= 4(n1,m1)+ 2k4(n2,m1)+ 2k4(n1,m2)+ 4k24(n2,m2)

= 4(n1,m1)+ 2k4(n2,m1)+ 2k4(n1,m2)+ 2k24(n2 +m2, n2 +m2)

− 2k24(n2, n2)− 2k24(m2,m2)+ 2k2
{n2,m2}

and so we have∑
n0,n2

P(n0 = n0,n2 = n2)|EF(n0, n2 −m2)G(n0,m2)e(2k2
{n2,m2})|

2

� ηC1+O(1),

where
F(n,m) := f (n + a2 − 2km)e(−k24(m,m)) (9.82)

and

G(n,m) := f (n + m1 + 2km)e(2k4(n1,m)− 2k24(m,m)− 2kξ1m).

By Theorem 9.22, one has ‖k{n2,m2}‖R/Z � η100C1 , and thus∑
n0,n2

P(n0 = n0,n2 = n2)|EF(n0, n2 −m2)G(n0,m2)|
2
� ηC1+O(1).

By boundedness of the expectation, this implies that∑
n0,n2

P(n0 = n0,n2 = n2)|EF(n0, n2 −m2)G(n0,m2)| � ηC1+O(1)

and thus

|EF(n0,n2 −m2)G(n0,m2)H(n0,n2)| � ηC1+O(1)
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for some 1-bounded function H : Z/pZ × Z/pZ → C. By Cauchy–Schwarz
(Lemma 2.1), we thus have

|EF(n0,n2 −m2)G(n0,m2)F(n0,n2 −m′2)G(n0,m2)| � η2C1+O(1),

where m′2 is an independent copy of m2; by a second application of Cauchy–
Schwarz (Lemma 2.1), we then have

|EF(n0,n2−m2)F(n0,n2−m′2)F(n0,n′2−m2)F(n0,n′2−m′2)| � η4C1+O(1),

where n′2 is an independent copy of n2. Since the distributions of m2,m′2 are
symmetric, we thus have

|EF(n0,n2+m2)F(n0,n2+m′2)F(n0,n′2+m2)F(n0,n′2+m′2)| � η4C1+O(1).

In particular, with probability �η4C1+O(1), the random variable n0 attains a
value n0 for which

|EF(n0,n2+m2)F(n0,n2+m′2)F(n0,n′2+m2)F(n0,n′2+m′2)| � η4C1+O(1).

(9.83)
If n0 is such that (9.83) holds, then we may apply Theorem 4.12 and conclude
that there exists a frequency β(n0) ∈ Z/pZ such that∣∣∣∣∑

n2

P(n2 = n2)EF(n0, n2 +m2)e(−β(n0)m2)

∣∣∣∣� η2C1+O(1)

and thus (defining β(n0) arbitrarily if (9.83) does not hold),∑
n0,n2

P(n0 = n0,n2 = n2)|EF(n0, n2 +m2)e(−β(n0)m2)| � η6C1+O(1)

and hence there exists n2 ∈ B(S1, ρ9) with∑
n0

P(n0 = n0)|EF(n0, n2 +m2)e(−β(n0)m2)| � η6C1+O(1).

Applying (9.82), we conclude that∑
n0

P(n0 = n0)|E f (n0 + a3 − 2km2)e(−k24(m2,m2)− β(n0)m2)|

� η6C1+O(1),

where a3 := a2 − 2kn2; since a2 ∈ B(S, 5ρ2), n2 ∈ B(S1, ρ9), and k =
O(exp(K O(C1))), we have a3 ∈ B(S, 6ρ2). In particular, by Lemma 4.4, n0 and
n0 + a3 differ in total variation by O(η100C1+O(1)), and thus∑

n0

P(n0 = n0)|E f (n0 − 2km2)e(−k24(m2,m2)− β(n0)m2)| � η6C1+O(1).

Theorem 8.1 then follows after a change of variables, noting that the map m2 7→

4(m2,m2) is locally quadratic on B(S1, ρ9).
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11. W. T. Gowers, A new proof of Szemerédi’s theorem for progressions of length four. Geom. Funct.

Anal. 8(3) (1998), 529–551.
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