ON THE ISOMORPHISM OF INTEGRAL GROUP RINGS. II

SUDARSHAN K. SEHGAL*

1. Introduction. Let Z(G) denote the integral group ring of a group G. Let \mathscr{C} be the class of groups G with the property that for any isomorphism $\theta: Z(G) \to Z(H)$, we have $\theta(g) = \pm h$, $h \in H$, for all $g \in G$. We study this class in § 2 and establish that it contains classes of torsion-free abelian groups, torsion abelian groups, and ordered groups.

In § 4, we prove the following result.

THEOREM. Let G be a group which contains a normal abelian subgroup A such that $G/A \in \mathcal{C}$. Suppose that $\theta: Z(G) \to Z(H)$ is an isomorphism such that $\theta(\Delta(G, A)) = \Delta(H, B)$ for a suitable normal subgroup B of H. Then $G \simeq H$. (Here $\Delta(G, A)$ is the kernel of the natural map $Z(G) \to Z(G/A)$.)

Jackson (3) and Whitcomb (6) proved the special case of this theorem when G is supposed to be finite metabelian. The lemmas needed are given in § 3. In § 5, we extend (to arbitrary finite groups) a result of Passman (4), proved by him for finite nilpotent groups. As a corollary, it follows that if two finite groups have isomorphic integral group rings, then they have isomorphic derived series.

In the last section we give an easy proof of a theorem of Banaschewski.

2. The class \mathscr{C} . The following lemma was proved in (5).

LEMMA 1. Let G be an abelian group. Suppose that $\gamma \in Z(G)$ is such that $\gamma^n = 1$ for some natural number n. Then $\gamma = \pm t$, where t is a torsion element of G.

LEMMA 2. Let G be a torsion-free abelian group. Then $U_{Z(G)}$, the group of units of Z(G), is given by

$$U_{Z(G)} = \pm G = \{\pm g | g \in G\}.$$

Proof. We can suppose, without loss of generality, that G is finitely generated and hence free. Suppose that $G = \langle x_1, \ldots, x_n \rangle$. For $g = x_1^{\alpha_1} \ldots x_n^{\alpha_n}$, set $\deg(g) = \sum_{i=1}^{n} \alpha_i$. Let $\gamma, \mu \in Z(G)$ be such that $\gamma \mu = 1$. Let m and t be the maximum degrees of terms appearing in γ and μ , respectively. Due to the fact that Z(G) is free of zero divisors, it follows that $\gamma \mu$ has a term of degree

Received April 23, 1968.

^{*}I wish to thank the National Research Council of Canada for partial support during the time this work was done.

m + t. Therefore m + t = 0. Similarly, supposing s and u to be the minimum degrees of terms appearing in γ and μ , respectively, we conclude that s + u = 0. Thus $s \leq m$ yields $-s \geq -m$, i.e. $u \geq t$, and hence u = t and m = s. Therefore, all the terms appearing in γ have degree m and those in μ are of degree -m.

Let us use induction on n, the number of generators of G. If n = 1, then clearly $\gamma = \pm x_1^{\alpha_1}$. If n > 1, we use the same argument as above on the degree in x_1 , namely $d_1(g) = \alpha_1$, and conclude that $\gamma = x^d \gamma_1$ and $\mu = x^{-d} \mu_1$, where $\gamma_1, \mu_1 \in Z(G_1), G_1 = \langle x_2, \ldots, x_n \rangle$.

Now by induction, $\gamma_1 = \pm g_1$, $g_1 \in G$, and $\gamma = \pm g$, $g \in G$.

Remark. The last lemma follows from the next but we have included the direct proof because of its independent interest.

LEMMA 3. Let G be an ordered group. Then

$$U_{\mathbf{Z}(G)} = \pm G = \{\pm g \mid g \in G\}.$$

Proof. Let $\gamma = \sum_{i=1}^{s} a_{i}g_{i}$, $\mu = \sum_{i=1}^{t} b_{j}h_{j}$ be such that $\gamma \mu = 1$. Suppose that

$$g_{s} = \max_{1 \le i \le s} \{g_{i}\}, \qquad g_{1} = \min_{1 \le i \le s} \{g_{i}\},$$
$$h_{t} = \max_{1 \le i \le t} \{h_{i}\}, \qquad h_{1} = \min_{1 \le i \le t} \{h_{i}\}.$$

Then $g_s h_t = 1 = g_1 h_1$. Since $h_1 \leq h_t$, it follows that $h_1^{-1} \geq h_t^{-1}$, i.e. $g_1 \geq g_s$, and therefore $g_1 = g_s$. We conclude that $\gamma = \pm g$.

An immediate consequence of these lemmas is the following result.

PROPOSITION 1. C contains G if it is of any of the following types:

- (i) torsion abelian,
- (ii) torsion-free abelian,
- (iii) ordered.

3. Some lemmas. For any normal subgroup H of G, let $p_H: Z(G) \to Z(G/H)$ be the linear extension of the natural homomorphism $G \to G/H$. Then $\Delta(G, H)$, the kernel of p_H , is the ideal generated by $\{(1 - h) | h \in H\}$. We shall write $\Delta(H)$ instead of $\Delta(G, H)$ if no confusion can arise. Furthermore, for $\sum_{g} a_{gg} = \gamma \in Z(G)$, we denote by $c(\gamma)$ the integer $\sum_{g} a_{g}$. We need the following lemmas.

LEMMA 4. Suppose that $g \in G$ is such that $g \equiv 1 \mod (\Delta(G))^2$. Then $g \in G'$, the derived group of G.

Proof. Let us first suppose that G is abelian. We can assume that G is finitely generated, say, $G = \langle g_1, g_2, \ldots, g_r \rangle$. Let $g = \prod_{i=1}^r g_i^{a_i}$. Since

$$g-1 \equiv \sum_{i} a_{i}(g_{i}-1) \mod (\Delta(G))^{2},$$

we have $\sum_{i} a_{i}(g_{i} - 1) \in (\Delta(G))^{2}$. Therefore

(*)
$$\sum_{i} a_{i}(g_{i}-1) = \sum x(g_{1}^{\alpha_{1}} \dots g_{r}^{\alpha_{r}}-1)(g_{1}^{\beta_{1}} \dots g_{r}^{\beta_{r}}-1), \quad x \in Z(G).$$

Extend the endomorphism $\gamma_j: g_i \to g_j^{\delta_{ij}}$ of G to Z(G). Applying this to both sides of (*) we obtain:

$$a_j(g_j-1) = \sum x_{st}(g_j^s-1)(g_j^t-1), \qquad x_{st} \in Z(\langle g_j \rangle),$$

and therefore,

$$(a_j - y)(g_j - 1) = 0$$
, where $y(g_j - 1) = \sum x_{st}(g_j^s - 1)(g_j^t - 1)$.

Suppose that $a_j \neq 0$, then since $c(y) \neq 0$, we can say that $(a_j - y) \neq 0$. It follows that g_j has finite order n_j and $a_j - y = m(1 + g_j + \ldots + g_j^{n_j-1})$, $m \in \mathbb{Z}$. Therefore $a_j = mn_j$ and g = 1.

Now let G be arbitrary and let $\beta: G \to G/G'$ be the natural map. Then $g^{\beta} \equiv 1 \mod (\Delta(G/G'))^2$, therefore $g^{\beta} = 1$ and $g \in G'$. This completes the proof of the lemma.

Corollary 1. $G/G' \simeq \Delta(G)/(\Delta(G))^2$.

Proof. Let $\theta: G \to \Delta(G)/(\Delta(G))^2$ be given by $\theta(g) = (g-1) \mod (\Delta(G))^2$. Then θ is a homomorphism as gh - 1 = (g-1) + (h-1) + (g-1)(h-1). It is an epimorphism because of the same reason. By Lemma 4, the kernel of θ is G', and the proof is complete.

The next corollary was proved by Higman (2) for finite abelian groups.

COROLLARY 2. Let G be an abelian group such that $Z(G) \simeq Z(H)$. Then $G \simeq H$.

Proof. Let $\theta: Z(G) \to Z(H)$ be the given isomorphism. Then $c(\theta(g)) = \pm 1$. Normalize θ by defining $\mu: Z(G) \to Z(H)$ by $\mu(g) = c(\theta(g))\theta(g)$ for $g \in G$, and linear extension. It is easy to see that μ is an isomorphism and $c(\mu(g)) = 1$ for all $g \in G$. Now

 $\mu(\Delta(G)) = \Delta(H)$ and $G \simeq \Delta(G)/(\Delta(G))^2 \simeq \Delta(H)/(\Delta(H))^2 \simeq H$.

Similarly, we have the following result.

Corollary 3. $Z(G) \simeq Z(H) \Rightarrow G/G' \simeq H/H'$.

LEMMA 5. Let N be a normal subgroup of G. Then

$$\gamma \in Z(N), \qquad \gamma \equiv 0 \mod \Delta(G, G) \Delta(G, N) \Rightarrow \gamma \equiv 0 \mod (\Delta(N, N))^2.$$

Proof. Choose a set of coset representatives $\{g_i\}$ of $G \mod N$. Define for $g_i n \in G$, $\sigma(g_i n) = n$ and extend this linearly to $\sigma: Z(G) \to Z(N)$. Now $\gamma = \sum_i \gamma_i (n_i - 1), \ \gamma_i \in \Delta(G, G), \ n_i \in N$. Therefore

$$\gamma = \gamma^{\sigma} = \sum_{i} \gamma^{\sigma}_{i}(n_{i} - 1) \text{ and } \gamma \in (\Delta(N, N))^{2}.$$

COROLLARY 4. Let N be a normal subgroup of G. Then

$$g \in G$$
, $g \equiv 1 \mod \Delta(G, G) \Delta(G, N) \Rightarrow g \in N'$.

Proof. Since $g - 1 \equiv 0 \mod \Delta(G, G) \Delta(G, N)$, we have gN = N and $g \in N$.

Now by Lemma 5, $g - 1 \equiv 0 \mod \Delta(N, N)^2$, and hence $g \in N'$ by Lemma 4.

LEMMA 6. Let A be a normal subgroup of G. Then

$$A/A' \simeq \Delta(G, A)/\Delta(G)\Delta(G, A).$$

Proof. Define the map $\theta: A \to \Delta(G, A)/\Delta(G)\Delta(G, A)$ by $\theta(a) = 1 - a$. The kernel of θ is A' by the last corollary. That θ is an epimorphism follows from the fact that

 $g(a-1) \equiv a-1 \mod \Delta(G)\Delta(G, A).$

4. Proof of the main Theorem.

PROPOSITION 2. Suppose that G has a normal abelian subgroup A such that $G/A \in \mathcal{C}$. Suppose that there is a normalized isomorphism $\theta: Z(G) \to Z(H)$ such that $\theta(\Delta(G, A)) = \Delta(H, B)$ for a suitable normal subgroup B of H. Then B is abelian and $H/B \in \mathcal{C}$.

Proof. Since $\theta(\Delta(G, A)) = \Delta(H, B)$, we have:

$$Z(G/A) \simeq Z(G)/\Delta(G, A) \simeq Z(H)/\Delta(H, B) \simeq Z(H/B).$$

Let $\lambda: Z(G/A) \to Z(H/B)$ be the isomorphism. Then $\lambda(\bar{g}) = \bar{h} \in H/B$ for all $\bar{g} \in G/A$. Actually, $\lambda(G/A) = H/B$. Now, given an isomorphism $\mu: Z(H/B) \to Z(K)$, we need to prove that for $\bar{h} \in H/B$, $\mu(\bar{h}) = k \in K$. Consider $\mu\lambda: Z(G/A) \to Z(K)$. We know that $\bar{h} = \lambda(\bar{g})$ for some $\bar{g} \in G/A$. Since $G/A \in \mathscr{C}$, $(\mu\lambda)(\bar{g}) = k, k \in K$. It follows that $\mu(\bar{h}) = k$ and $H/B \in \mathscr{C}$. Furthermore, B is abelian, since by Lemma 6:

$$A/A' \simeq \Delta(G, A)/\Delta(G)\Delta(G, A) \simeq \Delta(H, B)/\Delta(H)\Delta(H, B) \simeq B/B'.$$

Remark. It is easy to see that if in the above proposition A = G', then B = H' satisfies the condition $\theta(\Delta(G, A)) = \Delta(H, B)$.

Remark. If in the above proposition G/A is ordered (in particular, torsion-free abelian) we do not need to assume the existence of B, since in this case it can be proved that there always exists a B with the property

$$\theta(\Delta(G, A)) = \Delta(H, B).$$

THEOREM 1. Suppose that G has a normal abelian subgroup A such that $G/A \in \mathscr{C}$. Suppose that there is an isomorphism $\theta: Z(G) \to Z(H)$ such that $\theta(\Delta(G, A)) = \Delta(H, B)$ for a suitable normal subgroup B of H. Then $G \simeq H$.

Proof. We can assume that θ is normalized; then due to Proposition 2, B is abelian and $H/B \in \mathscr{C}$. For $g \in G$, let $\theta(g) = \gamma$. Then since $H/B \in \mathscr{C}$, we have:

$$\gamma \equiv h_1 \mod(\Delta(H, B)), \quad h_1 \in H.$$

Now

$$\begin{split} \gamma &= h_1 + \sum_{b \in B} \alpha_b (1 - b), \qquad \alpha_b \in Z(H), \\ &\equiv h_1 + \sum_{b \in B} n_b (1 - b) \mod(\Delta(H) \cdot \Delta(B)), \quad \text{where } n_b = c(\alpha_b), \\ &\equiv h_1 + 1 - \prod_b b^{n_b} \mod(\Delta(H) \cdot \Delta(B)), \\ &\equiv h_1 \prod_b b^{-n_b} \mod(\Delta(H) \cdot \Delta(B)). \end{split}$$

Thus for $g \in G$, if $\theta(g) = \gamma$, there exists $h_{\gamma} \in H$ such that

$$\gamma \equiv h_{\gamma} \mod (\Delta(H) \cdot \Delta(B)).$$

This h_{γ} is unique since if $h' \equiv h \mod(\Delta(H) \cdot \Delta(B))$, then $h'h^{-1} \in B' = \{1\}$ by Corollary 4, and hence h' = h. Define $\lambda: G \to H$ by $\lambda(g) = h_{\gamma} \in H$. Then λ is a well-defined homomorphism. Notice that we have:

$$g \xrightarrow{\theta} \gamma \xrightarrow{\phi_1} h_\gamma \xrightarrow{\theta^{-1}} \mu \xrightarrow{\phi_2} g_\mu \qquad (g, g_\mu \in G),$$

where ϕ_2 is the map obtained (as was ϕ_1) by using θ^{-1} instead of θ . We see that $g_{\mu} = g$ since

$$\begin{aligned} (\phi_2 \theta^{-1} \phi_1 \theta)(g) &= \phi_2 \theta^{-1}(\theta(g) + \delta), & \text{where } \delta \in \Delta(H) \Delta(B), \\ &= \phi_2(g + \beta), & \text{where } \theta^{-1}(\delta) = \beta \in \Delta(G) \Delta(A), \\ &= g & (\text{due to uniqueness of } g_{\mu}). \end{aligned}$$

Thus $\phi_2 \theta^{-1} \phi_1 \theta = I_G$, and similarly $\phi_1 \theta \phi_2 \theta^{-1} = I_H$. It follows that $\lambda = \phi_1 \theta$ is an isomorphism.

5. Group rings of finite groups. Suppose that $\theta: Z(G) \to Z(H)$ is a normalized isomorphism, where G (and hence H) is a finite group. We proved in (5) that for any normal subgroup A of G, $\theta(\sum_{a \in A} a) = (\sum_{b \in B} b)$ and $A \leftrightarrow B = \Phi(A)$ is a one-to-one correspondence between normal subgroups of G and those of H. This correspondence preserves union, intersection, and order. This is a result of Passman (4) who also proved the next proposition for finite nilpotent groups.

PROPOSITION 3. Suppose that $\Phi(A) = B$. Then (i) $Z(G/A) \simeq Z(H/B)$, (ii) $A/A' \simeq B/B'$, and (iii) $\Phi(A') = B'$.

Proof. Since the annihilator of $(\sum_{a \in A} a)$ in Z(G) is $\Delta(G, A)$, it follows that $\theta(\Delta(G, A)) = \Delta(H, B)$. Therefore

$$Z(G/A) \simeq Z(G)/\Delta(G, A) \simeq Z(H)/\Delta(H, B) \simeq Z(H/B).$$

https://doi.org/10.4153/CJM-1969-130-2 Published online by Cambridge University Press

1186

To prove (ii) we only have to notice that Lemma 6 yields:

$$A/A' \simeq \Delta(G, A)/\Delta(G)\Delta(G, A) \simeq \Delta(H, B)/\Delta(H)\Delta(H, B) \simeq B/B'.$$

We now prove (iii). Suppose that $\Phi(A') = C$. Then we have a sequence of isomorphisms

$$Z(G/A') \rightarrow Z(G)/\Delta(A') \rightarrow Z(H)/\Delta(C) \rightarrow Z(H/C),$$

where $\bar{g} \to g \mod \Delta(A') \to \theta(g) \mod \Delta(C) \to \theta(g) \mod C$. Thus we have the isomorphism $\lambda: Z(G/A') \to Z(H/C)$ given by $\lambda(\bar{g}) = \theta(g) \mod C$. Now A/A' is a normal subgroup of G/A' and $\Phi(A/A')$ is a normal subgroup of H/C. From

$$\lambda\left(\sum_{a\in A}\bar{a}\right) = \left(\sum_{a\in A}\theta(a) \bmod C\right) = \left(\sum_{b\in B}b \bmod C\right),$$

we conclude that $\Phi(A/A') = B/C$. Since A/A' is abelian, B/C is abelian and $C \supset B'$. Therefore, due to (ii) and equality of orders of A/A' and B/C, we have C = B'. This completes the proof.

THEOREM 2. Suppose that G is a finite group and $Z(G) \simeq Z(H)$. Then the derived series of G and H are isomorphic. In particular, if G is solvable, then so is H.

Proof. Suppose that G_i and H_i are *i*th terms of the derived series of G and H, respectively. Let $\theta: Z(G) \to Z(H)$ be the normalized isomorphism and $\Phi(G_i) = H_i$. Then by Proposition 3 (iii), $\Phi(G_{i+1}) = H_{i+1}$. Also $\theta(\Delta(G, G_i)) = \Delta(H, H_i)$, and by Lemma 6,

 $G_i/G_{i+1} \simeq \Delta(G, G_i)/\Delta(G) \cdot \Delta(G, G_i) \simeq \Delta(H, H_i)/\Delta(H) \cdot \Delta(H, H_i) \simeq H_i/H_{i+1}.$

This completes the proof by induction.

6. A theorem of Banaschewski. For $\gamma = \sum_{g \in G} a_g g \in Z(G)$, let $\gamma^* = \sum_{g \in G} a_g g^{-1}$. Then

(i)
$$(\gamma + \mu)^* = \gamma^* + \mu^*$$
,

- (ii) $(\gamma \mu)^* = \mu^* \gamma^*$, and
- (iii) $(a\gamma)^* = a\gamma^*$ for $a \in Z$.

We say that a map $\theta: Z(G) \to Z(H)$ is *-preserving if $\theta(\gamma^*) = (\theta(\gamma))^*$ for all $\gamma \in Z(G)$. We offer a simple proof of the following theorem proved by Banaschewski (1) for finite groups.

THEOREM 3. Suppose that $\theta: Z(G) \to Z(H)$ is a *-preserving isomorphism. Then $G \simeq H$.

Proof. Let
$$\theta(g) = \gamma = \sum a_h h$$
; then $1 = \theta(gg^{-1}) = \theta(g)\theta(g^*) = \gamma\gamma^*$. Now $\gamma\gamma^* = (\sum a_h^2) \cdot e + \sum_{h \neq e} \beta_h h$

implies that $\sum a_h^2 = 1$ and $\gamma = \pm h$, $h \in H$. Thus $G \simeq H$.

SUDARSHAN K. SEHGAL

References

- 1. B. Banaschewski, Integral group rings of finite groups, Can. Math. Bull. 10 (1967), 635-642.
- 2. G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
- 3. D. A. Jackson, On a problem in the theory of integral group rings, Ph.D. Thesis, Oxford University, Oxford, 1967.
- 4. D. S. Passman, Isomorphic groups and group rings, Pacific J. Math. 15 (1965), 561-583.
- 5. S. K. Sehgal, On the isomorphism of integral group rings. I, Can. J. Math. 21 (1969), 410-413.
- 6. A. Whitcomb, *The group ring problem*, Ph.D. Thesis, University of Chicago, Chicago, Illinois, 1968.

University of Alberta, Edmonton, Alberta