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Abstract
We introduce a free boundary model to study the effect of vesicle transport onto neurite growth. It consists of systems
of drift-diffusion equations describing the evolution of the density of antero- and retrograde vesicles in each neurite
coupled to reservoirs located at the soma and the growth cones of the neurites, respectively. The model allows for a
change of neurite length as a function of the vesicle concentration in the growth cones. After establishing existence
and uniqueness for the time-dependent problem, we briefly comment on possible types of stationary solutions.
Finally, we provide numerical studies on biologically relevant scales using a finite volume scheme. We illustrate the
capability of the model to reproduce cycles of extension and retraction.

1. Introduction

Mature neurons are highly polarised cells featuring functionally distinct compartments, the axons and
the dendrites. Axons are ‘cables’ that have the ability to transmit electrical signals to other neurons
and can extend up to a length of 1 m in humans. Dendrites form complex tree-like structures and act
as recipients for axons of other neurons. This polarity is established during the maturing proceess as
initially, newborn neurons feature several undifferentiated extensions of similar length called neurites
that are highly dynamic [8, 18]. Eventually, one of these neurites is selected to become the axon. This
is often called neurite outgrowth. The understanding of this process is still incomplete, despite progress
in characterising the role of molecular mechanisms as well as influence of intra- and extracellular sig-
naling molecules, see [30] for more details and further references. In this work, we focus on a single
aspect of this process, namely the fact that the actual growth or shrinkage of neurites is due to the inser-
tion or retraction of vesicles (i.e., circular structures composed of lipid membranes) at the outer tips
of the neurites (growth cones). The vesicles themselves are produced in the cell body (soma) and then
form complexes with motor proteins that allow for active transport along microtubules. The direction of
transport is determined by the type of motor protein: kinesin results in anterograde transport (into the
growth cones), while dynein motors move vesicles retrogradely to the soma. Both kinesins and dyneins
are present on vesicles during their transport along microtubules, but only one of them is usually active
at any given time [13, 33]; see Figure 1 for a sketch. The actual increase of the surface area of the
plasma membrane is then due to the insertion of vesicles into the growth cone (exocytosis). Retraction,
on the other hand, is accompanied by the removal of membrane material from the growth cone through
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Figure 1. Sketch of a developing neuron. Here, a) represents the cell nucleus/soma where vesicles are
produced, b) a neurite and c) a growth cone, that is, the location where vesicles are inserted/removed
into the cell membrane.

endocytosis [26, 27, 31]. Clearly, the (dis-)assembly of microtubules during growth and retraction is
important, yet we neglect this effect in the present study in order to not further complicate the model
and as we are primarily interested in the role of vesicle transport. Addition of microtubule dynamics is
postponed to future work.

1.1. Relation to existing work

While there are different models for the underlying biochemical processes of selecting the neurite which
eventually becomes the axon (see also [25] for a recent review), mathematical models examining the
role of vesicle transport in this process are relatively scarce. On the other hand, there are several models
for molecular motor-based transport, also in axons [5, 15, 16, 24, 29]. All these models feature linear
transport terms which do not take into account size exclusion or finite volume effects. Our starting point
is a model with non-linear transport terms proposed in [4] which, again, focuses on transport in a grown
axon. In particular in [4], a limited transport capacity inside the neurites is taken into account by size
exclusion effects and antero- and retrogradely moving particles are modelled separately. We will use
this approach as a basis for the transport within the neurites in our model. In [19], a similar approach is
taken, yet on a microscopic particle level. Furthermore, [19] extends the model by coupling two copies
of it to pools representing the amount of vesicles present at the soma and growth cones, respectively.
The aim of this paper is to introduce a macroscopic model in the spirit of both [4, 19], yet additionally
allowing the length of the respective neurites to change. Different to [4] (see also [7]), our model will
have linear diffusion but non-linear transport terms. Such a model can also be justified as limit of a
discrete lattice model, see [6, 20]. We are able to show that the solution stays within a given interval
(usually taken to be [0, 1]) so that the size exclusion property is preserved. Then, these equations which
model transport inside the neurons are, as in [19], coupled to ordinary differential equations for the
evolution of the vesicle concentration at soma and tip, respectively. One of the main novelties is then to
add a mechanism which allows for growth or shrinkage of the neurites depending on how many vesicles
are present in the growth cones. Such free boundary models for neuron development have previously
mostly been studies in the context of microtubule assembly, see [11, 17, 23]. These models focus on
a single neurite in which transport of microtubules is modelled again by a linear diffusion advection
equation on a domain of varying length. This is then coupled to an Ordinary Differential Equation
(ODE) at one end of the domain accounting for the extension/retraction due to the microtubules. This
coupling is sometimes performed via Dirichlet condition. Closer to our approach is the coupling through
flux (Robin)-type boundary condition as in [5]. However, in this work, the authors only assume a linear
relation for the boundary terms contrary to our study.
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1.2. Contribution and outline

We make the following contributions:

• Based on [4, 19], we introduce a macroscopic model for vesicle transport in developing neuron cells
that includes multiple neurites, coupled with ODEs for the vesicle concentration in soma and growth
cones. We use a non-linear transport mechanism to include finite size effects extending paradigm
used in most of the previous models.

• We add a mechanism that allows for a change of neurite length depending on the respective vesicle
concentration, which renders the model a free boundary problem.

• We rigorously prove existence and uniqueness of solutions, including box constraints corresponding
to size exclusion effects due to the finite volume of vesicles.

• We provide a finite volume discretisation that preserves the box constraints.
• We perform a scaling of the model to biological reasonable regimes and then give some numerical

experiments illustrating different behaviours of the model, in particular cycles of expansion and
retraction as observed in experiments.

The paper is organised as follows. In Section 2, we present our model in detail. Section 3 contains
some preliminaries and is then devoted to weak solutions, while Section 4 contains a brief discussion
on (constant) stationary solutions. Section 5 provides a finite volume scheme, a non-dimensionalisation
together with the introduction of biologically relevant scales. Section 6 is devoted to the numerical
studies. Finally, Section 7 provides a brief conclusion and outlook.

2. Mathematical model

In this section, we present a mathematical model for the growth process based on the principles stated
in the introduction. For the reader’s convenience, we will focus on the case of a two neurites connected
to the soma, pointing out that the generalisation to multiple neurites is straightforward. For j= 1, 2, the
unknowns of our model read as follows:

• Lj(t) denotes the length of the respective neurite at time t;
• f+,j(t, x) and f−,j(t, x) denote the density of motor protein complexes in the neurite j that move towards

the growth cone (anterograde direction) and towards the soma (retrograde direction), respectively;
• �som(t) is the amount of vesicles present in the soma at time t;
• �j(t) is the amount of vesicles present in the tip of each neurite at time t.

The complete model consists of equations governing the dynamics inside each neurite, coupled with
ODEs at the soma and growth cones, respectively, as well as with equations accounting for the change
of the neurites lengths, see Figure 2 for an illustration of the couplings. We will discuss each component
separately.

1. Dynamics within the neurites. Let v0 > 0 be the velocity of vesicles as they move along neurites and
let ρj = ρj(t, x) := f+,j + f−,j be the total vesicle density, j= 1, 2. We define the fluxes of antero- and
retrogradely moving vesicle–motor complexes as:

J+,j := v0 f+,j (1− ρj)−DT ∂xf+,j, J−,j := −v0 f−,j (1− ρj)−DT ∂xf−,j, (2.1)

respectively, where DT > 0 is a positive diffusion constant. Let us emphasise again that compared to ear-
lier models [5, 15, 16, 24, 29], we include a non-linear transport term to account for finite size effects.
We assume additionally that the complexes can (randomly, possibly via dissociation) change their direc-
tion with a given rate λ≥ 0. We obtain the following drift-diffusion-reaction equations, a copy of which
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Figure 2. Sketch of the model neuron: it consists of two neurites modelled by two intervals (0, L1(t)) and
(0, L2(t)). The squares correspond to pools where vesicles can be stored. More precisely, the pool in the
middle corresponds to the soma, while the others stand for the corresponding growth cones. The inter-
action between neurites and pools is realised via boundary fluxes, and the parameters governing their
respective strength are displayed along with arrows of the transport direction. For an easy visualisation,
(0, L1(t)) is illustrated as a mirrored copy of (0, L2(t)).

holds true in each neurite separately,

∂tf+,j =−∂xJ+,j + λ (f−,j − f+,j),

∂tf−,j =−∂xJ−,j + λ (f+,j − f−,j),
in (0, T)× (0, Lj(t)). (2.2)

Here, Lj(t) is the current length of the domain and T > 0 is a fixed final time. Note that the constants v0,
DT and λ do not depent on j as they are related to the characteristics of the transport of vesicle–motor
protein complexes which are the same in every neurite.

2. Coupling to soma and pools. We assume that all neurites are connected to the soma at the point x= 0.
There, we have the following effects:

• Retrograde vesicles leave the neurite and enter the soma with rate β−,j(�som) f−,j. Here, the function
β−,j allows for a control of incoming vesicles in terms of the available quantity in the soma. The
intuition is that the soma is less likely to allow for incoming vesicles when it already contains a
larger number of them.

• Anterograde vesicles can leave the soma and enter the lattice with a given rate α+,j(�som) g+,j(f+,j, f−,j)
if there is enough space, that is, if ρj < 1. This is ensured by assuming that the non-negative function
g+,j satisfies g+,j(f+,j, f−,j)= 0 whenever ρj = f+,j + f−,j = 1. The additional factor α+,j(�som) reflects
that the number of vesicles entering the neurite depends on the amount which is available within the
soma. In particular, we ask for α+,j(0)= 0.

At the point x= Lj(t), the neurite is connected to its respective pool and we have

• Anterograde vesicles leave the lattice and enter the pool with rate β+,j(�j) f+,j.
• Retrograde particles move from the pool into the neurite, once again only if space in the domain

is available, with rate α−,j(�j) g−,j(f+,j, f−,j). Here, the functions β+,j and α−,j serve the same purpose
as β−,j and α+,j previously, yet with pool instead of soma. Figure 2 provides a sketch of this situa-
tion. This behaviour is implemented by imposing the following flux boundary conditions (for each
neurite):

J+,j(t, 0)= α+,j(�som(t)) g+,j(f j(t, 0)),

−J−,j(t, 0)= β−,j(�som(t)) f−,j(t, 0),

J+,j(t, Lj(t))− L′ j(t) f+,j(t, Lj(t))= β+,j(�j(t)) f+,j(t, Lj(t)),

−J−,j(t, Lj(t))+ Lj
′(t) f−,j(t, Lj(t))= α−,j(�j(t)) g−,j(f j(t, L(t))), (2.3)
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j= 1, 2, for suitable functions αi,j, βi,j, and gi,j, i=+,−, j= 1, 2, whose properties will be specified
later, and with the shortened notation f j(· , ·) := (f+,j(· , ·), f−,j(· , ·)), j= 1, 2. The additional terms on
the left-hand side of the boundary conditions at Lj(t) in (2.3) account for the mass flux of vesicles
that occurs when the length of the neurite changes. They are especially important in order to keep
track of the total mass in the system, see also [2, 28] for similar constructions.

3. Dynamics of the free boundary. We assume that the length of each neurite Lj satisfies the following
ordinary differential equation:

L′ j(t)= hj(�j(t), Lj(t)), (2.4)

where hj, j= 1, 2, are smooth functions to be specified. We think of hj as functions that change sign at a
critical concentration of �j (i.e., switch between growth or shrinkage), which may depend on the current
length of the neurite itself (e.g., in order to stop shrinkage at a minimal length).

4. Dynamics in soma and growth cones. Finally, we describe the change of number of vesicles in the
soma and the respective neurite growth cones, due to vesicles entering and leaving the pools. In addi-
tion, a production term is added at the soma, while for the growth cones we add terms that model
the consumption or production of vesicles due to growth or shrinkage of the neurite, respectively. We
obtain

�′som(t)=
∑
j=1,2

(
β−,j(�som(t)) f−,j(t, 0)− α+,j(�som(t)) g+,j(f j(t, 0))

)+ γprod(t),

�′1(t)= β+,1(�1(t)) f+,1(t, L1(t))− α−,1(�1(t)) g−,1(f 1(t, L1(t)))

− χ h1(�1(t), L1(t)),

�′2(t)= β+,2(�2(t)) f+,2(t, L2(t))− α−,2(�2(t)) g−,2(f 2(t, L2(t)))

− χ h2(�2(t), L2(t)),

(2.5)

where χ > 0 is a given parameter that has the units vesicles/length and describes the amount of vesicles
needed for one unit of neurite length, while γprod accounts for the amount of vesicles that are produced
in the soma.

Remark 2.1. Note that, except for the influence of the growth term γprod(t), the total mass is preserved.
It is defined by the following quantity:

m(t)=
∑
j=1,2

(∫ Lj(t)

0

ρj(t, x) dx+�j(t)+ χ Lj(t)

)
+�som(t),

where we emphasise that also the material of which the neurites are made of need to be taken into
account which is done via the terms χ Lj(t). Then, a formal calculation yields the following equation of
the evolution of the total mass:

m(t)=m(0)+
∫ t

0

γprod(s) ds.

3. Existence of weak solutions

The aim of this section is to provide existence of a unique weak solution to the model (2.1)–(2.5). Let
us first give some preliminaries.
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3.1. Preliminaries

Let L > 0 and let 1≤ p <∞. We denote by Lp(0, L) and W1,p(0, L) the usual Lebesgue and Sobolev
spaces. For p= 2, we write H1(0, L) instead of W1,2(0, L). Furthermore, H1(0, L)′ is the dual space of
H1(0, L).

It is well known (see e.g., [1]) that there exists a unique linear, continuous map 
 : W1,p(0, L)→R

known as the trace map such that 
(u)= u(0) for all u ∈W1,p(0, L)∩C([0, L]). In addition, let us recall
the following trace estimate [3, Theorem 1.6.6]:

|u(0)| ≤Ce ‖u‖1/2
L2(0,L) ‖u‖1/2

H1(0,L). (3.1)

Let T > 0 and let (B, ‖ · ‖B) be a Banach space. For every 1≤ r <∞, we denote by Lr(0, T;B) the Bochner
space of all measurable functions u : [0, T]→ B such that ‖u‖r

Lr (0,T;B) := ∫ T

0
‖u(t)‖r

B dt <∞. For r=∞,
the norm of the corresponding space L∞(0, T;B) is given by ‖u‖L∞(0,T;B) := ess sup0≤t≤T‖u(t)‖B. Finally,
C([0, T];B) contains all continuous functions u : [0, T]→ B such that

‖u‖C([0,T];B) := max
0≤t≤T
‖u(t)‖B <∞.

We refer to [14] as a reference for Bochner spaces. For every a ∈R, we set a± := max{±a, 0} and for
u ∈W1,p(0, L) we define u±( · ) := u( · )± and will use the fact that u± ∈W1,p(0, L).

3.2. Transformation for a fixed reference domain

Before we give our definition of weak solutions, state the necessary assumptions and our main theorem,
we transform (3.6) into an equivalent system set on a fixed reference domain. This facilitates the proofs
and also the spaces that we need to work in. To this end, we make the following change of variables:

y= y(t, x)= :
x

L(t)
←→ x= L(t)y.

Then we define the functions f̄i(t, y)= fi(t, x)= fi(t, L(t)y) and observe that

∂xfi = 1

L(t)
∂yf̄i, ∂tfi = ∂t f̄i − L′(t) y ∂xfi = ∂t f̄i − L′(t)

L(t)
y ∂yf̄i, dx= L(t) dy. (3.2)

Using (3.2), taking into account that, by the product rule, y ∂yf̄+ = ∂y(y f̄+)− f̄+ and rearranging, the first
equation of (2.2) reads as:

∂t f̄+ =− 1

L2(t)
∂y

(
L(t) v0 f̄+ (1− ρ̄)−DT ∂yf̄+ − L′(t) L(t) y f̄+

)− L′(t)

L(t)
f̄+ + λ (f̄− − f̄+)

=− 1

L2(t)
∂yJ̄+ − L′(t)

L(t)
f̄+ + λ (f̄− − f̄+), (3.3)

and with similar arguments:

∂t f̄− =− 1

L2(t)
∂yJ̄− − L′(t)

L(t)
f̄− + λ (f̄+ − f̄−),

where the fluxes are defined by:

J̄+(t, y)= L(t) v0 f̄+(t, y) (1− ρ̄(t, y))−DT ∂yf̄+(t, y)− L′(t) L(t) y f̄+(t, y),

J̄−(t, y)=−L(t) v0 f̄−(t, y) (1− ρ̄(t, y))−DT ∂yf̄−(t, y)− L′(t) L(t) y f̄−(t, y).
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Note that the fluxes J+ and J̄+ are related to each other via

J+(t, y L(t))− L′(t) y f+(t, y L(t))

= v0 f+(t, y L(t)) (1− ρ(t, y L(t)))−DT ∂xf+(t, y L(t))− L′(t) y f+(t, y L(t))

= v0 f̄+(t, y) (1− ρ̄(t, y))− DT

L(t)
∂yf̄+(t, y)− L′(t) y f̄+(t, y)

= 1

L(t)

(
L(t) v0 f̄+(t, y) (1− ρ̄(t, y))−DT ∂yf̄+(t, y)− L′(t) y f̄+(t, y)

)

= 1

L(t)
J̄+(t, y),

and a similar relation can be deduced for J− and J̄−. The boundary conditions (2.3) in the reference
configuration then read

J̄+(t, 0)= L(t) α+(�som(t)) g+(f̄ (t, 0)),

J̄+(t, 1)= L(t) β+(�(t)) f̄+(t, 1),

−J̄−(t, 0)= L(t) α−(�som(t)) g−(f̄ (t, 0)),

−J̄−(t, 1)= L(t) β−(�(t)) f̄+(t, 1).

(3.4)

The ODE (2.4) remains unchanged, while for (2.5) quantities are evaluated at y= 1 instead of x=
Lj(t), which results in

�′som(t)=
∑
j=1,2

(
β−,j(�som(t)) f̄−,j(t, 0)− α+,j(�som(t)) g+,j(f̄ j(t, 0))

)+ γprod(t),

�′1(t)= β+,1(�1(t)) f̄+,1(t, 1)− α−,1(�1(t)) g−,1(f̄ 1(t, 1))− χ h1(�1(t), L1(t)),

�′2(t)= β+,2(�2(t)) f̄+,2(t, 1)− α−,2(�2(t)) g−,2(f̄ 2(t, 1))− χ h2(�2(t), L2(t)),

(3.5)

for t ∈ (0, T).

3.3. Notion of weak solution and existence result

We now define the notion of weak solution to our problem. Whenever not differently specified, we
assume i ∈ {+,−} as well as j ∈ {1, 2}, k ∈ {1, 2, som}, while C > 0 denotes a constant that may change
from line to line but always depends only on the data. From now on, we always write fi,j instead of f̄i,j as
we always work with the equations on the reference interval.

Definition 3.1. We say that (f1, f2, �som, �1, �2, L1, L2) is a weak solution to (3.3)–(3.5), (2.4) if

(a) 0≤ fi,j ≤ 1 as well as ρj := f+,j + f−,j ≤ 1 a.e. in (0, T)× (0, 1);
(b) fi,j ∈ L2(0, T;H1(0, 1)) with ∂tfi,j ∈ L2(0, T;H1(0, 1)′);
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(c) fj solves (3.3)–(3.4) in the following weak sense∫ 1

0

∂tf+ ϕ+ dy=
∫ 1

0

1

L2(t)

[
L(t) v0 f+ (1− ρ)−DT ∂yf+ − L′(t) L(t) y f+

]
∂yϕ+

+
(
λ(f− − f+)− L′(t)

L(t)
f+

)
ϕ+ dy

+ 1

L(t)
α+(�som(t)) g+(f(t, 0))− 1

L(t)
β+(�(t)) f+(t, 1) ϕ+(1),

∫ 1

0

∂tf− ϕ− dy=
∫ 1

0

1

L2(t)

[
− L(t) v0 f− (1− ρ)−DT ∂yf− − L′(t) L(t) y f−

]
∂yϕ−

+
(
λ(f+ − f−)− L′(t)

L(t)
f−

)
ϕ− dy

− 1

L(t)
β−(�som(t)) f−(t, 0) ϕ−(0)+ 1

L(t)
α−(�(t)) g−(f(t, 1)) ϕ−(1),

(3.6)

for every ϕ+, ϕ− ∈H1(0, 1) and almost all t ∈ (0, T).
(d) Lj(0)= L0

j , �k(0)=�0
k , and fj(0, y)= f0

j (y) for almost all y ∈ (0, 1), for suitable L0
j , �0

k and f 0
i,j;

(e) �k ∈C1([0, T]) solves (3.5);
(f) Lj ∈C1([0, T]) solves (2.4).

We next state the assumptions on the data and non-linearities which read as follows:

(H0) �0
k > 0 and L0

j ≥ Lmin,j, where Lmin,j > 0 is given.
(H1) For f 0

+,j, f 0
−,j ∈ L2(0, 1) it holds f 0

+,j, f 0
−,j ≥ 0 and 0≤ ρ0

j ≤ 1 a.e. in (0, 1), where ρ0
j := f 0

+,j + f 0
−,j.

(H2) The non-linearities gi,j : R2→R+, are Lipschitz continuous and such that gi,j(s, t)= 0 whenever
s+ t= 1 as well as g−,j(s, 0)= g+,j(0, s)= 0 for all 0≤ s≤ 1.

(H3) The functions hj : R+ × [Lmin,j,+∞)→R are such that
(i) there exist non-negative functions Khj ∈ L∞((0,∞)) such that

|hj(t, a)− hj(t, b)| ≤Khj (t)|a− b|,
for all a, b ∈ [Lmin,j,+∞);

(ii) hj(s, Lmin,j)≥ 0 for every s≥ 0.
(H4) The functions αi,j : R+ →R+ are increasing and Lipschitz continuous. Moreover, α−,j(t)≥ 0 for

all t > 0 and α−,j(0)= 0.
(H5) The functions βi,j : R+ →R+ are nonnegative and Lipschitz continuous. Moreover, there exists

�j,max > 0 such that β+,j(�j,max)= 0.
(H6) The parameters satisfy v0, DT , χ > 0 and λ≥ 0.
(H7) The function γprod : R+ →R+ is such that limt→∞ γprod(t)= 0.

Remark 3.2 (Interpretation of the assumptions). Let us briefly discuss the meaning of the assumptions
in terms of our application. Assumption (H0) states that we start with a predefined number of neurites
with length above a fixed minimal length and that all pools as well as the soma are non-empty. (H1) is
necessary as f 0

+,j, f 0
−,j model densities and must therefore be non-negative and as we assume that there is

a maximal density (due to the limited space in the neurites) normalised to 1. In (H2), the regularity is
needed for the analysis and only a mild restriction. The remaining requirements are necessary to ensure
that all densities remain between 0 and 1. (H3) ensures that there is a lower bound for the length of the
neurites meaning that neurites cannot vanish as it is observed in practice. (H4) ensures that vesicles can
only enter neurites if there are some available in growth cone or soma, respectively, while (H5) allows the
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pools to decrease the rate of entering vesicles when they become too crowded. Finally, (H6) states that
diffusion, transport and reaction effects are all present at all times (yet with possible different strengths)
and (H7) finally postulates the production of vesicles within the soma. We point out that assumption
(H7) is only needed to guarantee existence of stationary solutions.

Then we can state our existence result.

Theorem 3.3. Let the assumptions (H0)–(H6) hold. Then, for every T > 0, there exists a unique weak
solution (f1, f2, �som, �1, �2, L1, L2) to (3.3)–(3.5), (2.4) in the sense of Definition 3.1.

3.4. Proof of Theorem 3.3

The proof of Theorem 3.3 is based on a fixed point argument applied to an operator obtained by concate-
nating linearised versions of (3.6), (2.4) and (3.5). Let us briefly sketch our strategy before we provide
the corresponding rigorous results. We work in the Banach space

X =
∏
j=1,2

L2(0, T;H1(0, 1))2

endowed with the norm

‖(f 1, f 2)‖2
X =

∑
j=1,2

∑
i=+,−
‖fi,j‖2

L2(0,T;H1(0,1)).

Given (̂f 1, f̂ 2) ∈ X, let � := (�som, �1, �2) ∈C1([0, T])3 be the unique solution to the ODE system

�som
′(t)=

∑
j=1,2

(
β−,j(�som(t))̂f−,j(t, 0)− α+,j(�som(t)) g+,j (̂f j(t, 0))

)+ γprod(t),

�1
′(t)= β+,1(�1(t)) f̂+,1(t, 1)− α−,1(�1(t)) g−,1(̂f 1(t, 1))− χ h1(�1(t), L1(t)),

�2
′(t)= β+,2(�2(t)) f̂+,2(t, 1)− α−,2(�2(t)) g−,2(̂f 2(t, 1))− χ h2(�2(t), L2(t)).

(3.7)

We denote the mapping (̂f 1, f̂ 2) �→� by B1. This � is now substituted into (2.4), that is, we are looking
for the unique solution L= (L1, L2) ∈C1([0, T])2 to the ODE problems

Lj
′(t)= hj(�j(t), Lj(t)), (3.8)

and the corresponding solution operator is denoted byB2. Finally, these solutions � and L are substituted
into (3.6), and we look for the unique solution f j ∈ L2(0, T;H1(0, 1))2, with ∂tf j ∈ L2(0, T;H1(0, 1)′)2, to
the (still non-linear) PDE problem∫ 1

0

∂tf+,j ϕ+ dy=
∫ 1

0

1

L(t)2

[
L(t) v0 f+,j (1− ρj)−DT ∂yf+,j − L′(t) L(t) y f+

]
∂yϕ+ (3.9)

+
(

λ (f−,j − f+,j)− L′(t)

L(t)
f+,k

)
ϕ+ dy

+ 1

L(t)

[
α+,j(�som) g+,j(f j(t, 0)) ϕ+(0)− β+,j(�j) f+,j(t, 1) ϕ+(1)

]
,∫ 1

0

∂tf−,j ϕ− dy=
∫ 1

0

− 1

L(t)2

[
L(t) v0 f−,j(1− ρj)+DT ∂yf−,j − L′(t) L(t) y f−

]
∂yϕ− (3.10)

+
(

λ (f+,j − f−,j)− L′(t)

L(t)
f−,k

)
ϕ− dy

− 1

L(t)

[
β−,j(�som(t)) f−,j(t, 0) ϕ−(0)− α−,j(�j) g−,j(f j(t, 1)) ϕ−(1)

]
,

https://doi.org/10.1017/S0956792524000718 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000718


10 G. Marino et al.

for every ϕ+, ϕ− ∈H1(0, 1). We call the resulting solution operator (�, L) �→ (f 1, f 2) B3. Then, given an
appropriate subset K⊂ X, we define the (fixed point) operator B : K→ X as

B(̂f 1, f̂ 2)=B3

(B1(̂f 1, f̂ 2), B2(B1(̂f 1, f̂ 2)
)= (f 1, f 2).

We show that B is self-mapping and contractive, so that existence is a consequence of the Banach’s fixed
point theorem.

Let us begin with system (3.7).

Lemma 3.4. Let (̂f1, f̂2) ∈ X, then, there exists a unique �= (�som, �1, �2) ∈C1([0, T])3 that solves (3.7)
with initial conditions

�k(0)=�0
k , k= som, 1, 2. (3.11)

Proof. This result is an application of the Cauchy-Lipschitz theorem, since the right-hand sides of (3.7)
are Lipschitz continuous with respect to �k thanks to hypotheses (H4) and (H5).

Lemma 3.5. Let B1 : X→C([0, T])3 be the operator that maps (̂f1, f̂2) ∈ X to the solution � to (3.7).
Then, B1 is Lipschitz continuous.

Proof. From Lemma 3.4,B1 is well defined. Let now (̂f
(1)

1 , f̂
(1)

2 ), (̂f
(2)

1 , f̂
(2)

2 ) ∈ X and let �(1) = :B1(̂f
(1)

1 , f̂
(1)

2 )

and �(2) = :B1(̂f
(2)

1 , f̂
(2)

2 ) be solutions to (3.7) satisfying the same initial condition (3.11). We fix t ∈ [0, T]
and consider

(�(a)
j )′(t)= β+,j(�

(a)
j (t)) f̂ (a)

+,j (t, 1)− α−,j(�
(a)
j (t)) g−,j(̂f

(a)

j (t, 1))

− χ hj(�
(a)
j (t), 1),

a= 1, 2. Taking the difference of the two equations, setting δ�j := �
(1)
j −�

(2)
j , exploiting hypotheses

(H2)–(H5) and summarising the constants give

|(δ�j)′(t)| ≤C|δ�j(t)| +C
(|(̂f (1)
+,j − f̂ (2)

+,j )(t, 1)| + |(̂f (1)
−,j − f̂ (2)

−,j )(t, 1)|) ,

while the trace inequality (3.1) and a Gronwall argument imply

|�(1)
j (t)−�(2)

j (t)| ≤C ‖̂f (1)

j − f̂
(2)

j ‖L2(0,T;H1(0,1))2 .

A similar argument holds for the equation for �som, and we eventually have

‖�(1) −�(2)‖C([0,T])3 ≤C ‖(̂f (1)

1 , f̂
(1)

2 )− (̂f
(2)

1 , f̂
(2)

2 )‖X . (3.12)

We next show the following existence result for equation (3.8).

Lemma 3.6. Let � ∈C1([0, T])3 be the unique solution to (3.7). Then, there exists a unique L=
(L1, L2) ∈C1([0, T])2 that solves (3.8) with initial condition Lj(0)= L(0)

j . Furthermore, for all t ∈ (0, T) it
holds

Lmin,j ≤ Lj(t)≤ L(0)
j + T ‖hj‖L∞(R2), (3.13)

|Lj
′(t)|

Lj(t)
≤ ‖hj‖L∞(R2)

Lmin,j

. (3.14)

Proof. The existence and uniqueness follow as before. The lower bound in (3.13) can be deduced by
applying Theorem A.1 ( [10, Theorem 5.1]) in the appendix with X =R, = [Lmin,j,∞) and f = hj.
Assumption (A1) in the theorem is satisfied as, due to (H3), the choice ω=Khj fulfils the requirements.
For (A2), we note that the unit outward normal of the set [Lmin,j,∞) at Lmin,j is−1 and that hj(s, Lmin,j)≥ 0
for every s≥ 0 (again by (H3)). This yields (hj(s, Lmin,j),−1)=−hj(s, Lmin,j)≤ 0 as needed. In order to
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prove the upper bound in (3.13), we fix t ∈ (0, T), integrate (3.8) and use (H3)-(i) to have

Lj(t)= L(0)
j +

∫ t

0

hj(�j(s), Lj(s)) ds≤ L(0)
j + T ‖hj‖L∞(R2).

In addition, we observe that (3.8) gives |Lj
′(t)| ≤ ‖hj‖L∞(R2). Then, the fact that Lj(t)≥ Lmin,j allows us to

conclude (3.14).

Lemma 3.7. The operatorB2 : C([0, T])3→C([0, T])2 that maps � to the solution L to (3.8) is Lipschitz
continuous in the sense of

‖L(1) − L(2)‖C([0,T])2 ≤ T max
j=1,2

{
Lhj e2 T Lhj

}‖�(1) −�(2)‖C([0,T])3 , (3.15)

where Lhj is the Lipschitz constant of hj. If T maxj=1,2

{
Lhj e2 T Lhj

}
< 1, then B2 is contractive.

Proof. The proof works as for Lemma 3.5 so we omit it.

We next investigate the existence of solutions to system (3.9)–(3.10).

Theorem 3.8. Let � and L be the unique solution to (3.7) and (3.8), respectively. Then, there exists a
unique solution (f1, f2) ∈ X to (3.9)–(3.10) such that fi,j(t, y) ∈ [0, 1] for a.e. y ∈ (0, 1) and t ∈ [0, T].

Proof. To simplify the notation, in this proof we will drop the use of the j-index and, for the reader’s
convenience, we split the proof in several steps.

Step 1: Approximation by truncation. Given a generic function a we introduce the truncation

atr =
⎧⎨
⎩

a if 0≤ a≤ 1,

0 otherwise.
(3.16)

We apply this to the non-linear transport terms f± (1− ρ) in (3.6) which yields (after summing up)

∑
i=+,−

∫ 1

0

∂tfi ϕi dy+ DT

L2(t)

∑
i=+,−

∫ 1

0

∂yfi ∂yϕi dy

=
∫ 1

0

v0

L(t)
(f+ (1− ρ))tr ∂yϕ+ − v0

L(t)
(f− (1− ρ))tr ∂yϕ− dy

− L′(t)

L(t)

∑
i=+,−

∫ 1

0

(
y fi ∂yϕi + fi ϕi

)
dy+

∫ 1

0

λ [(f− − f+) ϕ+ + (f+ − f−) ϕ−] dy

+ 1

L(t)

(
−β+(�(t)) f+(t, 1) ϕ+(1)+ α+(�som(t)) g+(f (t, 0)) ϕ+(0)

+ α−(�(t)) g−(f (t, 1)) ϕ−(1)− β−(�som(t)) f−(t, 0) ϕ−(0)
)

. (3.17)

We solve (3.17) by means of the Banach fixed point theorem. We follow [12], pointing out that a similar
approach has been used also in [22], yet in a different context.

Let us set Y := (L∞((0, T);L2(0, 1)))2 and introduce the following nonempty, closed set

M= {f = (f+, f−) ∈ Y: ‖f‖Y ≤CM} ,
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with T , CM > 0 to be specified. Then we define the mapping � : M→ Y such that �(̃f )= f where, for
fixed f̃ ∈M, f solves the following linearised equation (cf. [21, Chapter III])

∑
i=+,−

∫ 1

0

∂tfi ϕi dy+ DT

L2(t)

∑
i=+,−

∫ 1

0

∂yfi ∂yϕi dy

=
∫ 1

0

v0

L(t)
(̃f+ (1− ρ̃))tr ∂yϕ+ − v0

L(t)
(̃f− (1− ρ̃))tr ∂yϕ− dy

− L′(t)

L(t)

∑
i=+,−

∫ 1

0

y fi ∂yϕi + fi ϕi dy+
∫ 1

0

λ [(f− − f+) ϕ+ + (f+ − f−) ϕ−] dy

+ 1

L(t)

(
−β+(�(t)) f+(t, 1) ϕ+(1)+ α+(�som(t)) g+(f (t, 0)) ϕ+(0)

+ α−(�(t)) g−(f (t, 1)) ϕ−(1)− β−(�som(t)) f−(t, 0) ϕ−(0)
)

. (3.18)

Step 2: � is self-mapping. We show that

‖f‖Y ≤CM. (3.19)

We choose ϕi = fi in (3.18) and estimate the several terms appearing in the resulting equation separately.
From (3.13), on the left-hand side we have

1

2

d
dt

∑
i=+,−

∫ 1

0

|fi|2 dy+ DT

L2(t)

∑
i=+,−

∫ 1

0

|∂yfi|2 dy

≥ 1

2

d
dt

∑
i=+,−

∫ 1

0

|fi|2 dy+ DT

(L(0) + T ‖h‖L∞(R))2

∑
i=+,−

∫ 1

0

|∂yfi|2 dy.

On the right-hand side we first use equation (3.14) along with Young’s inequality for some ε1 > 0 and
the fact that y ∈ (0, 1) to achieve

∑
i=+,−

∫ 1

0

L′(t)

L(t)
y fi ∂yfi dy≤

∑
i=+,−

(
ε1 ‖∂yfi‖2

L2(0,1) +
‖h‖2

L∞(R)

2 ε1 L2
min
‖fi‖2

L2(0,1)

)
,

while (3.14) once again gives

−L′(t)

L(t)

∑
i=+,−

∫ 1

0

f 2
i dy≤ ‖h‖L∞(R2)

Lmin

∑
i=+,−
‖fi‖2

L2(0,1).

On the other hand, (3.13), Young’s inequality for some ε2 > 0 and (3.16) give

±
∫ 1

0

v0

L(t)

(̃
fi (1− ρ̃)

)
tr ∂yfi dy≤C+ ε2‖∂yfi‖2

L2(0,1).

We further observe that

λ

∫ 1

0

(f− − f+) f+ + (f+ − f−) f− dy=−λ

∫ 1

0

(f+ + f−)2 dy≤ 0.
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Finally we estimate the boundary terms. We use hypotheses (H2), (H4), (H5) and equation (3.13) together
with Young’s inequality with some ε3, . . . , ε6 > 0 and the trace inequality (3.1) to achieve

1

L(t)
β+(�(t)) f 2

+(t, 1)≤C ‖f+‖2
L2(0,1) + ε3 ‖∂yf+‖2

L2(0,1),

1

L(t)
α+(�som(t)) g+ (̃f +(t, 0)) f+(t, 0)≤C ‖f+‖2

L2(0,1) + ε4 ‖∂f+‖2
L2(0,1),

1

L(t)
α−(�(t)) g− (̃f +(t, 1)) f−(t, 1)≤C ‖f−‖2

L2(0,1) + ε5 ‖∂yf−‖2
L2(0,1),

1

L(t)
β−(�som(t)) f 2

−(t, 0)≤C ‖f−‖2
L2(0,1) + ε6 ‖∂yf−‖2

L2(0,1).

We choose εκ , κ = 1, . . . , 6, in such a way that all the terms of the form ‖∂yfi‖L2(0,1) can be absorbed on
the left-hand side of (3.18), which simplifies to

d
dt

∑
i=+,−

∫ 1

0

|fi|2 dy≤C
∑

i=+,−
‖fi‖2

L2(0,1) +C.

We then use a Gronwall argument to infer

sup
t∈(0,T)
‖fi(t, ·)‖2

L2(0,1) ≤C= :C2
M.

This implies that (3.19) is satisfied and therefore � is self-mapping.

Step 3: �is a contraction. Let f̃ 1, f̃ 2 ∈M and let f 1 = :�(̃f 1) and f 2 = :�(̃f 2) be two solutions to
(3.18) with the same initial datum f 0. We then consider the difference of the corresponding equations
and choose ϕi = fi,1 − fi,2.

Reasoning as in Step 2 and exploiting the Lipschitz continuity of the functions

R
2 � (a, b) �→ (a (1− a− b))tr and R

2 � (a, b) �→ (b (1− a− b))tr (3.20)

we get
d
dt

∑
i=+,−
‖fi,1 − fi,2‖2

L2(0,1) ≤C
∑

i=+,−

(
‖fi,1 − fi,2‖2

L2(0,1) + ‖̃fi,1 − f̃i,2‖2
L2(0,1)

)
.

Again by means of a Gronwall argument we have∑
i=+,−
‖(fi,1 − fi,2)(t, ·)‖2

L2(0,1) ≤C T eCT
∑

i=+,−
‖̃fi,1 − f̃i,2‖2

L∞(0,T;L2(0,1)),

and then � is a contraction if T > 0 is small enough so that C T eC T < 1. Then Banach’s fixed point
theorem applies and we obtain a solution f ∈ (L∞(0, T;L2(0, 1)))2 to (3.17). A standard regularity theory
then gives f ∈ (L2(0, T;H1(0, 1)))2, with ∂tf ∈ (L2(0, T;H1(0, 1)′)2.

Step 4: Box constraints. We show that such f obtained in Step 4 is actually a solution to (3.6), because
it satisfies the box constraint f+, f− ≥ 0 and ρ ≤ 1.

We start by showing that f+ ≥ 0, and to this end we consider only the terms involving the ϕ+-functions
in (3.17), that is,∫ 1

0

∂tf+ ϕ+ dy+ DT

L2(t)

∫ 1

0

∂yf+ ∂yϕ+ dy

=
∫ 1

0

( v0

L(t)

(
f+ (1− ρ)

)
tr −

L′(t)

L(t)
y f+

)
∂yϕ+ +

(
λ (f− − f+)− L′(t)

L(t)
f+

)
ϕ+ dy

+ 1

L(t)

(
−β+(�(t)) f+(t, 1) ϕ+(1)+ α+(�som(t)) g+(f (t, 0)) ϕ+(0)

)
. (3.21)
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For every ε > 0 we consider the function ηε ∈W2,∞(R) given by

ηε(u)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if u≤ 0,

u2

4ε
if 0 < u≤ 2ε,

u− ε if u > 2ε,

with η′ ′ε(u)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if u≤ 0,

1

2ε
if 0 < u≤ 2ε,

0 if u > 2ε.

(3.22)

Next we choose ϕ+ =−ηε
′(−f+) and observe that by the chain rule we have ∂yϕ+ = ηε

′ ′(−f+) ∂yf+.
Using such ϕ+ in (3.21) gives

−
∫ 1

0

∂tf+ ηε
′(−f+) dy+ DT

L(t)2

∫ 1

0

ηε
′ ′(−f+) |∂yf+|2 dy

=
∫ 1

0

( v0

L(t)

(
f+ (1− ρ)

)
tr −

L′(t)

L(t)
y f+

)
η′ ′ε(−f+) ∂yf+ −

(
λ (f− − f+)− L′(t)

L(t)
f+

)
η′ε(−f+) dy

+ 1

L(t)

(
β+(�(t)) f+(t, 1) ηε

′(−f+(t, 1))− α+(�som(t)) g+(f (t, 0)) ηε
′(−f+(t, 0))

)
.

Thanks to Young’s inequality with a suitable κ > 0 and to (3.16) we have∫ 1

0

v0

L(t)

(
f+ (1− ρ)

)
tr ηε

′ ′(−f+) ∂yf+ dy

≤ κ

∫ 1

0

ηε
′ ′(−f+) |∂yf+|2 dy+ 1

4 κ

∫ 1

0

ηε
′ ′(−f+)

( v0

L(t)

)2 (
f+ (1− ρ)

)2

tr dy,

as well as

−
∫ 1

0

L′(t)

L(t)
y f+ηε

′ ′(−f+) ∂yf+ dy

≤ κ

∫ 1

0

ηε
′ ′(−f+) |∂yf+|2 dy+ 1

κ

(L′(t)

L(t)

)2
∫ 1

0

ηε
′ ′(−f+) f 2

+ dy,

where κ depends on the lower and upper bounds on L(t), see Lemma 3.6. Choosing κ sufficiently small
and taking into account that the term involving α+ is non-negative we obtain

d
dt

∫ 1

0

ηε(−f+) dy=−
∫ 1

0

∂tf+ ηε
′(−f+) dy

≤C
∫ 1

0

ηε
′ ′(−f+)

[( v0

L(t)

)2 (
f+ (1− ρ)

)2

tr +
(L′(t)

L(t)

)2

f 2
+
]
−

(
λ (f− − f+)− L′(t)

L(t)
f+

)
η′ε(−f+) dy

+ 1

L(t)
β+(�(t)) f+(t, 1) ηε

′(−f+(t, 1)).

(3.23)

To gain some sign information on the right-hand side of (3.23), we introduce the set

ε := {y ∈ (0, 1): 0 < f+(t, y), f−(t, y)≤ 2ε}. (3.24)

We first use (3.13), (3.22), and the Lipschitz continuity of (3.20) to have∫
ε

ηε
′ ′(−f+)

( v0

L(t)

)2 (
f+ (1− ρ)

)2

tr dy

=
∫

ε

ηε
′ ′(−f+)

( v0

L(t)

)2 (
f+ (1− ρ)

)
tr − (0 · (1− ρ)

)
tr

)2 dy≤ v2
0

L2
min

2ε |ε| = :c̃1 ε,
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as well as ∫
ε

ηε
′ ′(−f+)

(L′(t)

L(t)

)2

f 2
+ dy≤ ‖h‖

2
L∞(R2)

L2
min

|ε| 2ε := c̃2 ε,

and
L′(t)

L(t)

∫
ε

f+ ηε
′(f+) dy≤ ‖h‖

2
L∞(R2)

L2
min

|ε| 2ε= c̃2 ε.

On the other hand, from (3.24) it follows that −2ε < f+ − f− ≤ 2ε, which implies

−
∫

ε

λ (f− − f+) dy≤ 2ε λ |ε| = :c̃3 ε.

Concerning the boundary term, we note that by definition the function ηε
′ is nonzero only if its argument

is nonnegative, which in any case gives
1

L(t)
β+(�) f+(t, 1) ηε

′(−f+(t, 1))≤ 0.

Summarising, from (3.23) we have

d
dt

∫ 1

0

(f+)− dy= lim
ε→0

d
dt

∫
ε

ηε(−f+) dy≤ 0,

which implies ∫ 1

0

(f+)− dy≤
∫ 1

0

(f 0
+)− dy= 0,

where the last equality holds thanks to assumption (H1). It follows that f+ ≥ 0. The proof that f− ≥ 0 works
in a similar way, starting again from equation (3.17) and taking into account only the terms involving
the ϕ−-functions.

We now show that ρ ≤ 1 and to this aim start from (3.17) with ϕi := ϕ, for i=+,−. This gives∫ 1

0

∂tρ ϕ dy+ DT

L2(t)

∫ 1

0

∂yρ ∂yϕ dy

=−L′(t)

L(t)

∫ 1

0

y ρ ∂yϕ + ρ ϕ dy+ v0

L(t)

∫ 1

0

((
f+ (1− ρ)

)
tr −

(
f− (1− ρ)

)
tr

)
∂yϕ dy

− 1

L(t)

[(
β+(�(t)) f+(t, 1)− α−(�(t)) g−(f (t, 1))

)
ϕ(1)

+ (
β−(�som(t)) f−(t, 0)− α+(�som(t)) g+(f (t, 0))

)
ϕ(0)

]
.

We choose ϕ = ηε
′(ρ − 1), ̃ε = {y ∈ (0, 1): 1≤ ρ(t, y)≤ 1+ 2ε}, and reason as before exploiting

hypothesis (H2). Then the limit as ε→ 0 entails

0≤
∫ 1

0

(ρ − 1)+ dy≤
∫ 1

0

(ρ0 − 1)+ dy= 0,

thanks again to (H1). It follows that ρ ≤ 1, then the claim is proved.
Step 5: Conclusion. Using the original notation, we have shown the existence of a solution f̄ to

(3.6) such that f̄+, f̄− ≥ 0 and ρ̄ ≤ 1 for a.e. y ∈ (0, 1), t ∈ [0, T]. This implies that f is a weak solution
to (3.9)–(3.10) such that f+, f− ≥ 0 and ρ ≤ 1 for a.e. x ∈ (0, L(t)), t ∈ [0, T]. The system is completely
solved.

Lemma 3.9. The operator B3 : C([0, T])3 ×C([0, T])2→ X, which maps a pair (�, L) to the unique
solution (f1, f2) of (3.9)–(3.10), is Lipschitz continuous.
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Proof. Thanks to Theorem 3.8, B3 is well defined. We choose �(a) ∈C([0, T])3 and L(a) ∈C([0, T])2

and set (f (a)
1 , f (a)

2 ) := B3(�(a), L(a)), a= 1, 2. Then we start from equations (3.9), (3.10) for the respective
copies, take the corresponding differences and use a Gronwall inequality to achieve

‖(f (1)
1 , f (1)

2 )− (f (2)
1 , f (2)

2 )‖∏
j=1,2 (L2(0,T;H1(0,1)))2

≤C eCT
(
‖�(1) −�(2)‖2

C([0,T])3 + ‖L(1) − L(2)‖2
C([0,T])2

)
, (3.25)

where the constant C is shown to be uniform.

Proof of Theorem 3.3. We use the Banach fixed point theorem to show the existence of a unique
solution (f 1, f 2, �, L) to (2.1)–(2.5). We consider the set

K= {(f 1, f 2) ∈ X: 0≤ fi,j(t, x)≤ 1 for a.e. x ∈ (0, 1) and t ∈ [0, T]}.
Let B : K→ X be given by B(f 1, f 2)=B3(B1(f 1, f 2), B2(B1(f 1, f 2))), where B1, B2, B3 are defined in
Lemmas 3.5, 3.7, and 3.9, respectively. Thus, B is well defined, while Theorem 3.8 implies that B is
self-mapping, that is, B : K→K.

We next show that B is a contraction. Let (̂f
(1)

1 , f̂
(1)

2 ), (̂f
(2)

1 , f̂
(2)

2 ) ∈K and set (f (1)
1 , f (1)

2 ) := B(̂f
(1)

1 , f̂
(1)

2 )

as well as (f (2)
1 , f (2)

2 ) := B(̂f
(2)

1 , f̂
(2)

2 ). Using (3.25), (3.15) and (3.12) and summarising the not essential
constants gives

‖(f (1)
1 , f (1)

2 )− (f (2)
1 , f (2)

2 )‖X

≤CTeCT
(
T max

j=1,2

{
Lhj e

2TLhj
}+ 1

)‖(̂f (1)

1 , f̂
(1)

2 )− (̂f
(2)

1 , f̂
(2)

2 )‖X ,

from which the contractivity follows if T > 0 is small enough that CTeCT < 1. Thanks to the Banach’s
fixed point theorem, we then infer the existence of a unique (f 1, f 2) ∈K such that (f 1, f 2)=B(f 1, f 2).
From (3.12), this implies the uniqueness of �, too. Due to the uniform L∞-bounds on f j, a concatenation
argument yields existence on the complete interval [0, T]. The proof is thus complete.

4. Stationary solutions

This section is dedicated to a brief investigation of stationary solutions (f∞1 , f∞2 , �∞, L∞) to (2.1)–(2.5).
That is, they satisfy

0=− 1

(L∞j )2
∂x

[
L∞j v0 f∞+,j (1− ρ∞j )−DT ∂xf

∞
+,j

]+ λ (f∞−,j − f∞+,j),

0=− 1

(L∞j )2
∂x

[−L∞j v0 f∞−,j (1− ρ∞j )−DT ∂xf
∞
−,j

]+ λ (f∞+,j − f∞−,j),

in (0, 1), (4.1)

with boundary conditions

J∞+,j(0)= L∞j α+,j(�
∞
som) g+,j(f∞j (0)), −J∞−,j(0)= L∞j β−,j(�

∞
som) f∞−,j(0),

J∞+,j(1)= L∞j β+,j(�
∞
j ) f∞+,j(1), −J∞−,j(1)= L∞j α−,j(�

∞
j ) g−,j(f∞j (1)),

(4.2)

while �∞ and L∞ solve

0=
∑
j=1,2

(
β−,j(�

∞
som) f∞−,j(0)− α+,j(�

∞
som) g+,j(f∞j (0))

)
,

0= β+,j(�
∞
j ) f∞+,j(L

∞
j )− α−,j(�

∞
j ) g−,j(f∞j (L∞j ))− χ hj(�

∞
j , L∞j ),

0= hj(�
∞
j , L∞j ),

(4.3)
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respectively. Notice that we assumed γprod(t)→ 0 as t→∞, cf. hypothesis (H7), in order to guarantee a
finite total mass of the stationary state (which, in turn, results in finite values of L∞j ). From the modelling
point of view, this means that at the end of the growth phase, when the neuron is fully developed, there
is no more production of vesicles in the soma. In addition to equations (4.1)–(4.3), stationary solutions
are parametrised by their total mass:

m∞ :=
∑
j=1,2

(
L∞j

∫ 1

0

ρ∞j (y) dy+�∞j +χ L∞j

)
+�∞som.

For fixed 0 < m∞ <+∞, we expect three possible types of stationary solutions (where the upper bound
on m∞ excludes neurites of infinite length):

• No mass inside the neurites, that is, ρ∞j = 0, and m∞ =�∞1 +�∞2 + χ L∞1 + χ L∞2 +�∞som. This solu-
tion is always possible as it automatically satisfies (4.2). The length depends on the fraction of mass
stored in each �j, which yields a family of infinite solutions.

• Constant solutions with mass inside the neurites, that is, f∞j �= (0, 0). In this case, for λ > 0, the
reaction term enforces f∞−,j = f∞+,j = :f∞j . However, such solutions only exist if the non-linearities at
the boundary satisfy conditions so that (4.2) holds. In this case, compatibility with a given total
mass m∞ can be obtained by adjusting the concentration �∞som, which decouples from the remaining
equations.

• Non-constant solutions, featuring boundary layers at the end of the neurites.

A natural question is the existence of non-constant stationary solutions as well as their uniqueness and
stability properties which we postpone to future work. Instead, we focus on conditions for the existence of
non-trivial constant solutions. Let us note, however, that even if the biological system reaches a stationary
state in terms of the length of the neurites, we would still expect a flux of vesicles through the system
(i.e., the system will still be out of thermodynamic equilibrium). Thus, the fluxes at the boundary would
be non-zero and one would expect non-constant stationary solutions even in this case.

4.1. Constant stationary solutions

We assume a strictly positive reaction rate λ > 0 which requires f+,j = f−,j = :f∞j ∈ [0, 1]. Assuming in
addition f∞j = const., (4.1) is automatically satisfied (note that (L∞j )′ = 0). Thus, the actual constants are
determined via the total mass, the stationary solutions to the ODEs and the boundary couplings, only,
where the fluxes take the form:

J∞+,j =−J∞−,j = v0 f∞j (1− ρ∞j )= v0 f∞j (1− 2f∞j ). (4.4)

Making the choice

g+,j(f+,j, f−,j)= f+,j (1− ρj) as well as g−,j(f+,j, f−,j)= f−,j (1− ρj), (4.5)

the boundary conditions (4.2) become
J∞+,j = L∞j α+,j(�

∞
som) f∞j (1− ρ∞j )= L∞j β+,j(�

∞
j ) f∞j ,

−J∞−,j = L∞j α−,j(�
∞
j ) f∞j (1− ρ∞j )= L∞j β−,j(�

∞
som) f∞j , (4.6)

which together with (4.4) yield

α+,j(�
∞
som)= α−,j(�

∞
j )= v0

L∞j
as well as β−,j(�

∞
som)= β+,j(�

∞
j )= v0(1− ρ∞j )

L∞j
.

Thus, fixing the values of f∞j , we obtain �∞j , �∞som by inverting α+,j, α−,j, β+,j, and β−,j, respectively,
together with the compatibility conditions:

α−,j(�
∞
j )(1− ρ∞j )= β+,j(�

∞
j ) as well as α+,j(�

∞
som)(1− ρ∞j )= β−,j(�

∞
som).
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We further observe that the equations in (4.3) are the differences of in- and outflow at the respective
boundaries, which in the case of constant f∞j -s read as:

0=
∑
j=1,2

(
β−,j(�

∞
som) f∞j − α+,j(�

∞
som) f∞j (1− ρ∞j )

)
,

0= β+,j(�
∞
j ) f∞j − α−,j(�

∞
j ) f∞j (1− ρ∞j )− χ hj(�

∞
j , L∞j ). (4.7)

It turns out that (4.7) will be automatically satisfied as soon as (4.6) and (4.3) hold. In particular, the last
equation in (4.3) will determine the values of L∞j . We make the choices

β+,j(s)= cβ+,j

(
1− s

�j,max

)
, β−,j(s)= cβ−,j

(
1− s

�som,max

)
, (4.8)

α+,j(s)= cα+,j

s

�som,max
, α−,j(s)= cα−,j

s

�j,max
, (4.9)

for some cβi,j , cαi,j ≥ 0, with �som,max and �j,max being the maximal capacity of soma and growth cones.
Then, for given f∞j ∈ (0, 1

2
] to be a stationary solution, we need

cα+,j =
v0

L∞j

�som,max

�∞som
, cβ−,j =

v0

L∞j
(1− ρ∞j )

�som,max

�som,max −�∞som
,

cα−,j =
v0

L∞j

�j,max

�∞j
, cβ+,j =

v0

L∞j
(1− ρ∞j )

�j,max

�j,max −�∞j
.

The interesting question of stability of these states will be treated in future work.

5. Finite volume scheme and scaling
5.1. Finite volume scheme

We now present a computational scheme for the numerical solution of model (2.1)–(2.5). The scheme
relies on a spatial finite volume discretisation of the conservation law (2.2) and adapted implicit–explicit
time-stepping schemes. Starting point for the construction of a discretisation is the transformed equation
(3.3). First, we introduce an equidistant grid:

0= y−1/2 < y1/2 < . . . < yne−1/2 < yne+1/2 = 1

of the interval (0, 1) and define control volumes Ik := (yk−1/2, yk+1/2), k= 0, . . . , ne. The mesh parame-
ter is h= yk+1/2 − yk−1/2 = (ne + 1)−1. The cell averages of the approximate (transformed) solution are
denoted by:

f̄ k
i,j(t) := 1

h

∫
Ik

fi,j(t, y) dy, k= 0, . . . , ne,

i ∈ {+,−}, j ∈ {1, 2}. To shorten the notation, we omit the vesicle index j ∈ {1, 2} in the following.
Integrating (3.3) over an arbitrary control volume Ik, k= 0, . . . , ne, yields
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0=
∫

Ik

[
∂tf+ + 1

L(t)2
∂y

[−DT ∂yf+ + L(t) ((v0 (1− ρ)− L′(t) L(t) y) f+)
]

+L′(t)

L(t)
f+ − λ (f− − f+)

]
dy

= h ∂t f̄
k
+ +

[
− DT

L(t)2
∂yf+ + 1

L(t)
((v0 (1− ρ)− L′(t) y) f+)

]yk+1/2

yk−1/2

+h
L′(t)

L(t)
f̄ k
+ − h λ (f̄ k

− − f̄ k
+).

We denote the convective flux by v+(t, y) := v0 (1− ρ)− L′(t) y and use a Lax-Friedrichs approximation
at the end points of the control volume:

Fk+1/2
+ (t) := {{(v+ f̄+)(t, yk+1/2)}} − 1

2
{{f̄+(t, yk+1/2)}} ≈ (v+ f+)(t, yk+1/2),

with {{·}} and [[·]] denoting the usual average and jump operators. For the diffusive fluxes, we use an
approximation by central differences:

∂yf+(t, yk+1/2)≈ f̄ k+1
+ (t)− f̄ k

+(t)

h
.

For the inner intervals Ik with k ∈ {1, . . . , ne − 1}, this gives the equations:

∂t f̄
k
+ +

DT

(h L)2

(−f̄ k−1
+ + 2f̄ k

+ − f̄ k+1
+

)= 1

h L

(
Fk−1/2
+ − Fk+1/2

+
)

+ λ (f̄ k
− − f̄ k

+)− L′

L
f̄ k
+, (5.1a)

while for k= 0 and k= ne, we insert the boundary conditions (3.4) to obtain

∂t f̄
0
+ +

DT

(h L)2
(f̄ 0
+ − f̄ 1

+)= 1

h L

(
α+(�som) g+(f̄ 0

+, f̄ 0
−)− F1/2

+
)

+ λ (f̄ 0
− − f̄ 0

+)− L′

L
f̄ 0
+, (5.1b)

∂t f̄
ne
+ +

DT

(h L)2
(f̄ ne
+ − f̄ ne−1

+ )= 1

h L

(
Fne−1/2
+ − β+(�) f̄ ne

+
)

+ λ (f̄ ne
− − f̄ ne

+ )− L′

L
f̄ ne
+ , (5.1c)

almost everywhere in (0, T). In the same way, we deduce a semi-discrete system for f̄ k
−, k= 0, . . . , ne,

taking into account the corresponding boundary conditions from (3.4).
To treat the time dependency, we use an implicit–explicit time-stepping scheme. We introduce a

time grid tn = τ n, for n= 0, . . . , nt, and for some time-dependent function g : [0, T]→ X we use the
notation g(tn)= :g(n). To deduce a fully discrete scheme, we replace the time derivatives in (5.1) by a
difference quotient ∂t f̄+(tn+1)≈ τ−1(f̄ (n+1)

+ − f̄ (n)
+ ) and evaluate the remaining terms related to diffusion in

the successive time point tn+1 and all convection and reaction related terms in the current time point tn.
This yields a system of linear equations of the form:(

M + τ
DT

(L(n))2
A

)
�f (n+1)
± =M �f (n)

± + τ �b(n)
± + τ �c(n)

± , (5.2)

with vector of unknowns �f (n)
± = (f 0,(n)

± , . . . , f ne ,(n)
± )�, mass matrix M, diffusion matrix A, and a vector �b(n)

±
summarising the convection related terms and another vector for the reaction related terms �c(n)

± . In the
same way, we deduce equations for the discretised ordinary differential equations (2.5) and (2.4) which
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correspond to a standard backward Euler discretisation:

�(n+1)
som =�(n)

som + τ
∑
j=1,2

(
β−,j f̄ 0,(n+1)

j,− − α+,j(�
(n+1)
som ) g+(f̄ 0,(n+1)

+,j , f̄ 0,(n+1)
−,j )

)+ τ γ
(n)
prod, (5.3)

�(n+1)
j =�(n)

j + τ β+,j(�
(n+1)
j ) f̄ ne ,(n+1)

+,j (5.4)
− τ α−,j(�

(n+1)
j ) g−,j(f̄

ne ,(n+1)
+,j , f̄ ne ,(n+1)

−,j )− τ χ hj(�
(n)
j , L(n)

j ),

L(n+1)
j = L(n)

j + τ hj(�
(n+1)
j , L(n+1)

j ), j= 1, 2. (5.5)

Equations (5.2)–(5.5) even decouple. One after the other, we can compute

f 0, L0
j , �0

k → �f (1)
±,j → �

(1)
k → L(1)

j → �f (2)
±,j → �

(2)
k → L(2)

j → . . .

for k ∈ {1, 2, som} and j ∈ {1, 2}.

5.2. Non-dimensionalisation of the model

To transform the model to a dimensionless form, we introduce a typical time scale t̃, a typical length L̃,
etc., and dimensionless quantities t̄, L̄ such that t= t̃t̄, L= L̃L̄. This is performed on the original system
from Section 2, not on the one transformed to the unit interval, as we want to work with appropriate
physical units for all quantities, including the length of the neurites. Realistic typical values are taken
from [19] (see also [27, 32, 34]) which yield the following choices: the typical length is L̃= 25 μm, the
typical time is t̃= 7200 s, the diffusion constant is DT = 0.5 μm2

s , and the velocity is ṽ0 = 50 μm
min = 5

6
μm
s .

For the reaction rate, we assume λ̃= 1
s
. The typical influx and outflow velocity is α̃ = β̃ = 0.4 μm

s . Finally,
we choose a typical production of γ̃ = 10 vesicles/sec.

The remaining quantities to be determined are the maximal density of vesicles inside the neurites,
the factor which translates a given number of vesicles with length change of the neurite and the maximal
capacity of soma and growth cones.

Maximal density
We assume the neurite to be tube-shaped, pick a circular cross section at an arbitrary point and calculate
the maximal number of circles having the diameter of the vesicles that fit the circle whose diameter is
that of the neurite. In this situation, hexagonal packing of the smaller circles is optimal, which allows
to cover about 90 % of the area (neglecting boundary effects). As the typical diameter of one vesicle is
130 nm and the neurite diameter is 1 μm, we obtain the condition:

0.9 · nmaxπ

(
130 nm

2

)2

︸ ︷︷ ︸
area covered by nmax circles of vesicle diameter

≤ π

(
1000 nm

2

)2

︸ ︷︷ ︸
area of neurite cross-section

,

which implies nmax ≤ 65. Now for a tube segment of length 1 μm, one can stack 7 fully packed cross-
sectional slices, each of which has the diameter of the vesicles, that is, 130 nm. This results in a maximal
density of 455 vesicles

μm
. As the neurite also contains microtubules and as an optimal packing is biologically

unrealistic, we take one-third of this value as maximal density, which yields ρmax = 155 vesicles
μm

. The typi-
cal density of anterograde and retrograde particles is fixed to f̃ := f̃+ = f̃− = 39 vesicles

μm so that their sum
corresponds to a half-filled neurite. Thus, for the scaled variables f̄+, f̄−, their sum being ρ̄ = f̄+ + f̄− = 2
corresponds to a completely filled neuron. This implies that the term 1− ρ has to be replaced by 1− ρ̄

2
.

Vesicles and growth
We again consider the neurite as a cylinder with a diameter of 1 μm. Thus, the surface area of a segment
of length 1 μm is Asurf = 2π 1 μm

2
1 μm≈ 3.14 (μm)2. We consider vesicles of 130 nm diameter, which
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thus possess a surface area of 0.053 (μm)2. Thus, the number of vesicles needed for an extension of
1 μm is

3.14 μm2

0.053 μm2
≈ 59, i.e., we fix c1 = c2 = ch := 58.4 vesicles

μm
.

Maximal capacities and minimal values
Finally, we fix the maximal amount of vesicles in the pools and soma to �som,max = 6000 vesicles and
�j,max = 400 vesicles and choose the typical values �̃som and �̃cone as half of the maximum, respectively.
It remains to fix the minimal length of each neurite as well as the number of vesicles in the growth
cone which defines the switching point between growth and shrinkage. We choose a minimal length
of 5 μm, while the sign of hj changes when the number of vesicles in the growth cone reaches a value
of 100 vesicles. This yields the dimensionless quantities �̄growth = 1, L̄min = 0.1. Applying the scaling,
model (2.1)–(2.5) transforms to

∂t f̄+,j + ∂x

(
κv f̄+,j

(
1− ρ̄j

2

)
− κD ∂xf̄+,j

)
= κλλ̄(f̄−,j − f̄+,j),

∂t f̄−,j − ∂x

(
κv f̄−,j

(
1− ρ̄j

2

)
− κD ∂xf̄−,j

)
= κλλ̄(f̄+,j − f̄−,j),

in (0, T)× (0, L̄j(t)), with dimensionless parameters κv = v0 t̃
L̃

, κD =DT
t̃

L̃2 , κλ = t̃λ̃, and with boundary
conditions (keeping the choices (4.5), (4.8), (4.9)):

J̄+,j(t, 0)= κα+,j

�̄som(t)

2
f̄+,j(t̄, 0)

(
1− ρ̄j(t, 0)

2

)
,

−J̄−,j(t, 0)= κβ−,j

(
1− �̄som(t)

2

)
f̄−,j(t, 0),

J̄+,j(t, Lj(t))− L̄′ j(t)f̄+,j(t, L̄j(t))= κβ+,j

(
1− �̄j(t)

2

)
f̄+,j(t̄, L̄j(t̄)),

−J̄−,j(t, Lj(t))+ L̄′ j(t)f̄−,j(t, L̄j(t))= κα−,j

�̄j(t)

2
f̄−,j(t̄, 0)

(
1− ρ̄j(t, 0)

2

)
,

with κα+,j = t̃
L̃
cα+,j , κα−,j = t̃

L̃
cα−,j , κβ+,j = t̃

L̃
cβ+,j , κβ−,j = t̃

L̃
cβ−,j . It remains to fix the values of the constants

appearing in the functions α±,j, β±,j. As they correspond to velocities, we fix them to the typical in-
/outflux velocity:

c̃ := cα+,j = cα−,j = cβ+,j = cβ−,j = 0.4
μm
s

.

For the soma and the growth cones, we choose half of the maximal amount of vesicles as typical values,
that is, �̃som = 3000 vesicles, �̃j = 200 vesicles, j= 1, 2. We obtain

�̄′som(t)= κsom

∑
j=1,2

[(
1− �̄som(t)

2

)
f̄−,j(t, 0)− �̄som(t)

2
f̄+,j(t̄, 0)

(
1− ρ̄j(t, 0)

2

)]

+ κγ γ̄prod(t),

�̄′ j(t)= κcone

[(
1− �̄j(t)

2

)
f̄+,j(t̄, L̄j(t̄))− �̄j(t)

2
f̄−,j(t̄, L̄j(t))

(
1− ρ̄j(t̄, L̄j(t))

2

)]

− κhh̄j(�̄j(t), L̄j(t)),
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Figure 3. The vesicle densities f±,j, j= 1, 2, and pool capacities �k, k ∈ {som, 1, 2}, for the example
from Section 6.1 plotted at different time points.

with κsom = t̃
�̃som

c̃f̃ , κγ = γ̃ t̃
�̃som

, κcone = t̃
�̃cone

c̃f̃ , κh = t̃
�̃cone

h̃χ . Finally, for the scaled production function h̄

in (2.4), we make the choice h̄j(�̄, L̄)= atan (�̄− �̄growth)H(L̄− L̄min), j= 1, 2, where H is a smoothed
Heaviside function. We have

L̄j
′(t)= κL h̄j(�̄j(t), L̄j(t)), with κL = t̃

L̃
h̃.

6. Numerical studies

We present two examples that demonstrate the capability of our model to reproduce observations in
biological systems. Both start with an initial length difference of the two neurites. The first example
shows that the shorter neurite can become the longer one due to a local advantage of the number of
vesicles present in the growth cone, while the second showcases oscillatory behaviour in neurite lengths
that is observed experimentally. Both simulations are performed in Matlab, using the finite volume
scheme introduced in Section 5.1, using the parameters η= 10, ne = 100 and τ = 1e−4. We chose T = 9
(corresponding to 18 hours) as a maximal time of the simulation, yet when a stationary state is reached
before (measured by the criterium ‖f (n+1)

±,j − f (n)
±,j‖2 ≤ 1e−9), the simulation is terminated. We also set

λ= 0 in all simulations.

6.1. Fast growth by local effects

The first example shows that an initial length deficiency of a neurite can be overcome by a local advantage
of vesicles on the growth cone. In this set-up, we fixed (all scaled quantities) the following initial data:
L0

1 = 1.1, L0
2 = 0.9, �0

soma = 1, �0
1 = 0.65, �0

2 = 1.15, f 0
1 = f 0

2 = (0.2, 0.2). Furthermore, the functions

g±(f+, f−)= 1− 1

2
(f+ + f−) , α+(�)= 0.05

�

2
, α−(�)= 0.1

�

2
,

β±(�)= 0.7

(
1− �

2

)
, h(�, L)= tan−1 (�−�growth)

1+ exp (− 4 (L− Lmin − 0.2))
, v0 = 0.1
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Figure 4. The neurite lengths Lj, j= 1, 2, and pool capacities �k, k ∈ {som, 1, 2}, for the example from
Section 6.1 plotted over time.

were chosen in this example. The choices of α+ and α− are motivated as follows: both are proportional
to �/2 as the typical values within the soma and growth cones, respectively, are chosen to be half the
maximum which means that �/2= 1 if this value is reached. Thus, relative to their capacity, the outflow
rates from soma and growth cone behave similarly. Now, since we are interested in the effect of vesicle
concentration in the respective growth cones, we chose a small constant in α+ in order to limit the influ-
ence of new vesicles entering from the soma, relative to α−. This is a purely heuristic choice to examine
if such a local effect can be observed in our model at all. Figure 3 shows snapshots of the simulation at
different times, while Figure 4a shows the evolution of neurite lengths and vesicle concentrations over
time. The results demonstrate that the local advantage of a higher vesicle concentration in the growth
cone of the shorter neurite is sufficient to outgrow the competing neurite. Yet, this requires a weak cou-
pling in the sense that the outflow rate at the soma is small, see the constant 0.05 in α+. Increasing this
value, the local effect does not prevail and indeed, the longer neurite will always stay longer while both
neurites grow at a similar rate as shown in Figure 4b. Thus, we consider this result as biologically not
very realistic, in particular as it cannot reproduce cycles of extension and retraction that are observed in
experiments.
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Figure 5. The vesicle densities f±,j, j= 1, 2, and pool capacities �k, k ∈ {som, 1, 2}, for the example
from Section 6.2 plotted at different time points.
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Figure 6. The neurite lengths Lj, j= 1, 2, and pool capacities �k, k ∈ {soma, 1, 2}, for the example from
Section 6.2 plotted over time.

6.2. Oscillatory behaviour due to coupling of soma outflow rates to density of retrograde vesicles

In order to overcome the purely local nature of the effect in the previous example, it seems reasonable to
include effects that couple the behaviour at the growth cones to that of the soma via the concentrations
of vesicles in the neurites. We propose the following two mechanisms: first, we assume that a strongly
growing neurite is less likely to emit a large number of retrograde vesicles as it wants to use all vesicles
for the growth process. In addition, we assume that the soma aims to reinforce strong growth and is doing
so by measuring the density of arriving retrograde vesicles. The lower it becomes, the more anterograde
vesicles are released. Such behaviour can easily be incorporated in our model by choosing
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g+(f+, f−)=
(√

max (0, 1− 3 f−)2 + 0.1+ 0.5
) (

1− 1

2
(f+ + f−)

)
,

α+(�)= 0.6
�

2
, α−(�)= (1− �

2
)
�

2
, v0 = 0.04.

The remaining functions are defined as in Section 6.1. The initial data in this example are L0
1 = 1.1,

L0
2 = 1, �0

som = 1, �0
1 =�0

2 = 0.9 and f 0
±,1 = f 0

±,2 = 0.
The results are presented in Figures 5 (snapshots) and 6 and are rather interesting: first, it is again

demonstrated that the shorter neurite may outgrow the larger one. Furthermore, as a consequence of the
non-local coupling mechanism, the model is able to reproduce the oscillatory cycles of retraction and
growth that are sometimes observed, see for example, [9, 35]. Also the typical oscillation period of 2–4
hours observed in [35, Figure 1] can be confirmed in our computation. Finally, the model predicts one
neurite being substantially longer than the other which one might interpret as axon and dendrite.

7. Conclusion & outlook

We have introduced a free boundary model for the dynamics of developing neurons based on a coupled
system of partial and ordinary differential equations. We provided an existence and uniqueness result
for weak solutions and also presented a finite volume scheme in order to simulate the model. Our results
show that the model is able to reproduce behaviour such as retraction–elongation cycles on scales com-
parable to those observed in experimental measurements as shown in Section 6.2. On the other hand,
the numerical results show that the density of vesicles within the neurites is, for most of the time, rather
small. Thus, the effect of the non-linear transport term that we added may be questioned and indeed,
rerunning the simulations with linear transport yields rather similar results. It remains to be analysed
if such low vesicle densities are biologically reasonable and thus offer the opportunity to simplify the
model.

A further natural question that arises at this point is what can be learned form these results. We
think that while the transport mechanisms within the neurites as well as the growth and shrinkage are
reasonable and fixed (up to the discussion about linear vs. non-linear transport above), most of the
behaviour of the model is encoded in the coupling via the boundary conditions. These, on the other hand,
allow for a large variety of choice out of which it will be difficult to decide which is the one actually
implemented in a real cell. Thus, as a next step for future work, we propose to consider these couplings
as unknown parameters that need to be learned using experimental data that come from experiments.
We are confident that this will allow to identify possible interactions between soma and growth cones
and will give new insight into the actual mechanisms at work.

Finally, we remark that as our model only focuses on the role of vesicle transport, many other effects
are neglected and clearly our approach is nowhere near a complete description of the process of neurite
outgrowth. To this end, we plan to extend our model further in the future, adding effects such as the role
of microtubule assembly as well as chemical signals, which are neglected so far.
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Appendix A

For convenience of the reader, we state [10, Theorem 5.3] about invariant regions of solutions of ODEs.

Theorem A.1. Let X be a real normed linear space, ⊂ X an open set and D⊂ X a distance set with
D∩ �= ∅. Let f : (0, a)×→ X be such that

(A1)

(f (t, x)− f (t, y), x− y)+ ≤ω(t, |x− y|)|x− y|
for x ∈\D, y ∈∩ ∂D, t ∈ (0, a),

where ω:(0, a)×R
+ →R is such that p(t)≤ 0 in (0, τ )⊂ (0, a) whenever ρ:[0, τ )→R

+is con-
tinuous, ρ(0)= 0 and D+ρ(t)≤ω(t, ρ(t)) for every t ∈ (0, τ ) with ρ(t) > 0 (where D+ denotes the
one-sided derivative with respect to t).

(A2) If x ∈∩ ∂D is such that the set of outward normal vectors N(x) is non-empty and

(f (t, x), ν)+ ≤ 0

for all ν ∈N(x) and t ∈ (0, a).

Then D∩ is forward invariant with respect to f , that is, any continuous x:[0, b)→ 0, Lega, such that
x(0) ∈D and x′ = f (t, x) in (0, b), satisfies x(t) ∈D in [0, b).
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