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DUALITY FOR COALGEBRAS FOR VIETORIS AND MONADICITY

MARCO ABBADINI AND IVAN DI LIBERTI

Abstract. We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the
category of compact Hausdorff spaces is monadic over Set. We deliver an analogous result for the upper,
lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide
axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski
duality for modal algebras beyond the zero-dimensional setting.

§1. Introduction. After the original contribution by Stone [60], duality theory
bloomed in several directions and with different motivations. A research line investi-
gates dualities between algebra and geometry, offering representation theorems for
geometric objects into (possibly infinitary) varieties. Among those, Duskin duality
[21] shows that the category of compact Hausdorff spaces is dually equivalent to
a(n infinitary) variety and has opened the door for several variations of Stone-
like duality. Duskin duality has provided a more algebraic interpretation for Tietze
extension theorem, Stone–Weierstrass theorem [57], and several other results of this
kind, leading to a duality theory based on the closed interval [0, 1] in place of the
more usual Sierpisńki space [36]. This research direction has been very active in
the past years, including some contributions of the first author who has recently
proved that the opposite of the category of Nachbin’s compact ordered spaces and
continuous order-preserving maps is a variety too [1, 3].

Another research direction was initiated by Jónsson and Tarski in 1951 [40, 41],
building on the logical interpretation of Stone duality and offering a topological
representation of modal logic. This approach was later perfected by Esakia [23] and
is nowadays a milestone of topological methods in modal logic [17]. In its present
state, this framework is packaged in the analysis of several variations of the Vietoris
functor and its coalgebras. A synthetic and modern way to state Esakia’s version
of Jónsson–Tarski duality is to say that the category of coalgebras for the Vietoris
endofunctor over Boolean spaces is dually equivalent to that of modal algebras [65].

In the past years there has been a growing interest in amalgamating these two
research lines [13, 14]. Indeed, the Vietoris functor admits very natural extensions
to several categories of compact spaces, and thus the study of Stone duality above
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2 MARCO ABBADINI AND IVAN DI LIBERTI

dimension zero [50] has attracted a lot of attention. In [34, 33] the authors show
quasivariety results for some of these categories.

This paper offers a more grounded counterpart of [45]: we study the category
of coalgebras for (several variations of) the Vietoris functor and deliver several
positive variety results. More specifically we study the categories CH of compact
Hausdorff spaces, CompOrd of Nachbin’s compact ordered spaces and StComp of
stably compact spaces. We obtain the following results.

3.9 The opposite CoAlg(V)op of the category of coalgebras for the Vietoris
functor V on compact Hausdorff spaces is monadic over Set.

4.29 The opposite CoAlg(Vc)op of the category of coalgebras for the convex
Vietoris functor Vc on compact ordered spaces is monadic over Set.

5.15 The opposites CoAlg(V↑)op and CoAlg(V↓)op of the categories of coalgebras
for the upper Vietoris V↑ and lower Vietoris functor V↓ on stably compact
spaces is monadic over Set.

Besides these very abstract results, we combine methods coming from categorical
logic and general topology to provide a complete axiomatization of these categories
of algebras as follows.

• The algebraic theory of CoAlg(V)op can be obtained by adding to the algebraic
theory of CHop the unary operator � (or, equivalently, �) and appropriate
axioms.

• The algebraic theory ofCoAlg(Vc)op can be obtained by adding to the algebraic
theory of CompOrdop the unary operators � and � and appropriate axioms.

• The algebraic theory ofCoAlg(V↑)op can be obtained by adding to the algebraic
theory of StCompop the unary operator � and appropriate axioms.

• The algebraic theory ofCoAlg(V↓)op can be obtained by adding to the algebraic
theory of StCompop the unary operator � and appropriate axioms.

1.1. Structure of the paper. In the first section, we briefly recall the categorical
technology that sits at the core of our proof strategy. In the second section, we
study the Vietoris functor on compact Hausdorff spaces and show the monadicity
of its opposite category of coalgebras. The third section is devoted to the convex
Vietoris functor, acting on compact ordered spaces, while the fourth section is
devoted to the upper and lower Vietoris functors. Finally, the last section discusses
the axiomatization of these opposite categories of coalgebras.

§2. Endofunctors, algebras, and monadicity. In this brief section, we recall the
most relevant results of the theory of variators. We will use this technology to
ground our main results in the next sections. Most of the content is expository, or
folklore, and is organised in the most convenient way for our purposes.

2.1. Algebras for an endofunctor and their monadicity. Recall that, given an
endofunctorF : C → C, we can define its category of algebras Alg(F ), whose objects
are pairs (X,f : FX → X ) and a morphism from (X,f) to (Y, g) is a map h : X → Y
in C that respect the structure of algebras, i.e., the diagram below is commutative.

https://doi.org/10.1017/jsl.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.14


DUALITY FOR COALGEBRAS FOR VIETORIS AND MONADICITY 3

FX FY

X Y
h

f g

Fh

Variants of this theory have been considered in the literature, for example when
the endofunctor is pointed � : 1 → F . In that case, the notion of algebra has to
change accordingly, but the general theory remains quite similar. We shall discuss
in the last section the logical implications of these technical differences. We refer to
[5, 10, 11, 64] for a general introduction to the topic.

Remark 2.1. It comes with no surprise that the theory contained in this section
admits a straightforward dualization to the case of coalgebras for an endofunctor
and comonadicity for a comonad.

Remark 2.2. Given an endofunctor F : C → C, we have a forgetful functor
U : Alg(F ) → C that maps an objectf : FX → X to X, and a morphism h : X → Y
(from f : FX → X to g : FY → Y ) to h itself.

One of the most compelling problems of this theory since its very start is to
decide whether the forgetful functor in the remark above is monadic. Notably, these
categories are monadic whenever they can, in the sense clarified by the theorem below.

Theorem 2.3 [10, Corollary 5.10]. The forgetful functor Alg(F ) → C is monadic
if and only if it is a right adjoint.

We recall from [8] that a functor F : C → C is called a varietor if the forgetful
functor Alg(F ) → C is right adjoint (and hence, by Theorem 2.3, monadic). In this
case, the corresponding monad—denoted by F ∗—is called the algebraically free
monad on F. Usually, the algebraically free monad is described via the following
construction (see [5, p. 592], [8, IV.3.2], or [7, Construction 3.10]).

Construction 2.4 (Adámek’s free-algebra construction). Let C be a cocomplete
category. For every endofunctor F on C and every object X in C, define a transfinite
chain of objects X�i (i any ordinal ) and connecting morphisms

x�i,j : X�i → X
�
j (i ≤ j)

by the following transfinite induction:

First step: X�0 = 0, X�1 = F 0 + X with x�0,1 the unique morphism 0 !−→ F 0 + X ,

Isolated step: X�i+1 = FX�i + X for all ordinals i, x�i+1,j+1 = Fx�i,j + X for all
i ≤ j.

Limit step:X�j = colimi<j X
�
i for all limit ordinals j with colimit cocone x�i,j , i < j.

The general intuition behind Adámek’s construction is that the chain above should
converge to the free algebra. As in any adjoint-functor-theorem-like situation, there
is no guarantee in full generality that this happens. One says that the free algebra
construction stops after k steps (k being an ordinal) provided that x�k,k+1 is an
isomorphism.
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4 MARCO ABBADINI AND IVAN DI LIBERTI

Theorem 2.5 [7, Proposition 3.14]. If the free-algebra construction stops after k
steps, then X�k is a free F-algebra on X. In more detail, denoting the components of
x–1
k,k+1 : FX �k + X → Xk� by

α : FX �k → X
�
k and �X : X → X�k,

respectively, these form a free F-algebra on X.

We recall from [8] that a functor F : C → C with C cocomplete is called a
constructive varietor provided that its free-algebra construction stops for each object
X in C.

Proposition 2.6. If F preserves colimits of k-chains (k an infinite limit ordinal ),
then the free-algebra construction stops after k steps.

Proof. See [7, Corollary 3.17 and Remark 3.16]. �
Proposition 2.7. If a varietor F : C → C preserves colimits of a certain type, so

does the algebraically free monad F ∗ on F.

Proof. By the same argument in [58, 5.6.5],1 the forgetful functorU : Alg(F )→C
creates the colimits of that type. This finishes the proof. Indeed, calling L the left
adjoint to U, we have F ∗ ∼= UL by definition, and both functors preserve those
colimits. �

2.2. Monadic functors compose? The last categorical prerequisite of the paper
concerns another classical problem, i.e., whether monadic functors compose. In
general, the answer to this question is fairly negative.

Example 2.8. Any locally presentable category K is reflective in (and thus
monadic over) a presheaf category K → Psh(C), which is monadic over SetOb(C).
But if the composition K → Psh(C) → SetOb(C) was monadic, then K would be
Barr-exact (because categories monadic over SetX for X a set are all exact), which
is in general not true. A great exemplification of this phenomenon is K = Cat, the
category of small categories.

Yet, under some assumptions on the monads, we can indeed infer that the
composite of monadic functors is monadic. This relies on a technical analysis
of how reflexive coequalizers are constructed in the category of algebras for a
monad. We recall that a coreflexive equalizer is an equalizer of a parallel pair
f, g : X → Y having a common retraction, i.e., a morphism h : B → A such that
h ◦ f = h ◦ g = 1X .

Finally, we can give the following proposition due to [22]. To avoid any confusion
with the previous subsection, we call C[S] the category of algebras for a monad S.

Proposition 2.9. Let S be a monad in a category C and let T be a monad in
the category C[S] of S-algebras. If T preserves reflexive coequalizers in C[S], then
the category C[S][T ] of T-algebras in C[S] is isomorphic to the category C[TS] of
algebras over the compound monad TS in C. Moreover, the unit of T defines a map
S → TS of monads in C. An analogous assertion holds for comonads.

1The proof is even simpler, because there are fewer conditions to check.
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DUALITY FOR COALGEBRAS FOR VIETORIS AND MONADICITY 5

Theorem 2.10. Let T : C → C be a varietor that preserves reflexive coequalizers.
For every monadic functor G : C → D, the composite Alg(T ) U−→ C

G−→ D is monadic.

Proof. By Proposition 2.7, the algebraically free functor F ∗ on F preserves

reflexive colimits. By Proposition 2.9, the composite Alg(T ) U−→ C
G−→ D is

monadic. �

As we previously said, this statement admits an expected dualization to the
comonad case.

§3. The Vietoris functor on compact Hausdorff spaces. Classical modal logic
extends classical propositional logic by adding unary operators �p (usually
interpreted as possibility) and �p (usually interpreted as necessity), together
with appropriate rules. Just like the algebras of classical propositional logic are
Boolean algebras, the algebras of classical modal logic are modal algebras; a
modal algebra is a Boolean algebra with a unary operation � satisfying �1 = 1
and �(x ∧ y) = �x ∧ �y. (One can then define �x := ¬�¬x.)

To represent modal algebras one builds on top of Stone duality [60], which states
that the category of Boolean algebras and homomorphisms is dually equivalent to
the category of Boolean spaces (also known as Stone spaces or profinite spaces)—
i.e., compact Hausdorff spaces with a basis of closed open sets—and continuous
functions. Building on Stone duality, Jónsson–Tarski duality states that the category
MA of modal algebras and homomorphisms is dually equivalent to the category of
descriptive frames, which are Boolean spaces equipped with a binary relation R
(known as “accessibility relation”) satisfying certain properties. In its present form
it was established by Esakia [23] and Goldblatt [27] (but see also [30]).

One of the properties satisfied by an accessibility relation R is that for each x ∈ X
the forward image R[{x}] of x is closed. So, the relation R can be alternatively
described as a function from X to the set VX of closed subsets of X. The functions
X → VX arising in this way are precisely those that are continuous with respect to
the so-called Vietoris topology on VX [66]. The Vietoris construction gives rise to an
endofunctor VBooSp on the category of Boolean spaces and continuous functions. It
turns out that the categoryMA of modal algebras is dually equivalent to the category
of coalgebras for VBooSp [4, 43, 44].

The axioms of modal algebras are equational, i.e., they have the form

∀x1 ...∀xn �(x1, ... , xn) = �(x1, ... , xn),

where � and � are terms. Thus, modal algebras form an equational class (also known
as a variety) of finitary algebras. Then, the opposite of the category of coalgebras for
VBooSp is a variety of finitary algebras. In this section, we prove that a similar result
holds when we replace Boolean spaces with compact Hausdorff spaces. We will first
recall the definition of the Vietoris functor V on compact Hausdorff spaces and
then we prove that the opposite of the category of coalgebras for V is monadic over
Set (Theorem 2.10), i.e., is equivalent to a variety of possibly infinitary algebras. In
this way, we obtain an analogue of Jónsson–Tarski duality in the larger setting of
compact Hausdorff spaces.
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6 MARCO ABBADINI AND IVAN DI LIBERTI

We build on the fact that, as for Boolean spaces, the opposite of the category of
compact Hausdorff spaces is monadic over Set, as witnessed by the representable
functor homCH(–, [0, 1]) : CHop → Set. This fact was observed by Duskin in [21,
5.15.3] (for a full proof see [12, Chapter 9, Theorem 1.11]).

Notation 3.1. We let CH denote the category of compact Hausdorff spaces and
continuous functions.

Definition 3.2 [66]. Given a compact Hausdorff space X, we topologize the set
VX of closed subsets of X with the Vietoris topology, generated by the sets

�U := {K ∈ VX | K ⊆ U} (U open of X ),

�U := {K ∈ VX | K ∩U �= ∅} (U open of X ).

The space VX is a compact Hausdorff space [66], called the Vietoris hyperspace
of X.

Definition 3.3. We let V : CH → CH denote the functor that maps

• a compact Hausdorff space X to its Vietoris hyperspace VX ,
• a morphism f : X → Y to the function Vf : VX → VY , K 
→ f[K ].

We call V the Vietoris functor (on compact Hausdorff spaces).

To prove that the opposite of the category of coalgebras for V is monadic over Set,
we first observe that it is monadic over CHop (which in turn is monadic over Set),
using the following fact.

Proposition 3.4 [34, Corollary 3.37]. The Vietoris functorV : CH → CH preserves
codirected limits.

Corollary 3.5. The Vietoris functor V : CH → CH is a covarietor.

Proof. By Proposition 3.4, V preserves�op-limits. Therefore, by Proposition 2.6
and Theorem 2.5, V is a covarietor. �

Let U : CoAlg(V) → CH be the forgetful functor that maps

(1) a coalgebra f : X → VX to the space X,
(2) a morphism h : X → Y (from f : X → VX to g : Y → VY ) to h itself.

Corollary 3.6. The forgetful functor U : CoAlg(V) → CH is comonadic.

As we had discussed before, we aim to show that CoAlg(V)op is monadic over
Set. We will do it by showing that the composite of the two monadic functors
U op : CoAlg(V)op → CHop and homCH(–, [0, 1]) : CHop → Set is monadic. In order
to do so we shall verify that the hypotheses of Theorem 2.10 from the previous
section are verified, i.e., that V : CH → CH preserves coreflexive equalizers. In
[63], Townsend and Vickers prove that the lower powerlocale functor, the upper
powerlocale functor, and the Vietoris powerlocale functor preserve coreflexive
equalizers (respectively, Propositions 66, 68, and 70 in [63]). We provide a point-
based proof in the case of compact Hausdorff spaces.

Proposition 3.7. The Vietoris functor V : CH → CH preserves coreflexive
equalizers.
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DUALITY FOR COALGEBRAS FOR VIETORIS AND MONADICITY 7

Proof. Let h : E → X be an equalizer of two morphisms f, g : X ⇒ Y in CH
with a common retraction, and let us prove that Vh is an equalizer of Vf and Vg.
Since the forgetful functorCH → Set preserves and reflects equalizers, it is enough to
prove that (the underlying function of) Vh is the equalizer in Set of (the underlying
functions of) Vf and Vg. By functoriality of V, we have Vf ◦ Vh = Vg ◦ Vh. The
function Vh is injective because h is injective. LetK ∈ VX be such that (Vf)(K) =
(Vg)(K), i.e., f[K ] = g[K ]. We should prove that K belongs to the image of Vh.
Since f[K ] = g[K ], for every x ∈ K there is x′ ∈ K such that f(x) = g(x′). Since
f and g have a common retraction k : Y → X , we have x = kf(x) = kg(x′) = x′,
and so f(x) = g(x′) = g(x). Therefore, for every x ∈ K we have f(x) = g(x).
Thus, K ⊆ im h, and hence K = h[h–1[K ]], i.e., (Vh)(h–1[K ]) = K . Therefore, K
belongs to the image of Vh. Thus, Vh is the equalizer of Vf and Vg in Set, and
hence also in CH. �

Theorem 3.8. Let G be a comonadic functor from CH to a category C. The
composite CoAlg(V) U−→ CH

G−→ C is comonadic.

Proof. By Corollary 3.5, V is a covarietor. By Proposition 3.7, V preserves

coreflexive equalizers. By Theorem 2.10, the composite CoAlg(V) U−→ CH
G−→ C is

comonadic. �
Theorem 3.9. CoAlg(V)op is monadic over Set.

Proof. By [21, 5.15.3], the representable functor

homCH(–, [0, 1]) : CHop → Set

is monadic. Then, by Theorem 3.8, the composite functor below is monadic:

CoAlg(V)op Uop

−−→ CHop G−→ Set . �

Remark 3.10. From the monadicity result in Theorem 3.9 one can deduce various
properties of CoAlg(V)op, such as its (co)completeness and Barr-exactness.

Remark 3.11. From the proof of Theorem 3.9 we can extract the description
of a monadic functor CoAlg(V)op → Set, as follows. To an object f : X → V(X )
of CoAlg(V) we associate the set homCH(X, [0, 1]). To a morphism g : X1 → X2 in
CoAlg(V) from f1 : X1 → V(X1) to f2 : X2 → V(X2) we associate the function

homCH(X2, [0, 1]) −→ homCH(X1, [0, 1])

h 
−→ h ◦ g.
The unit interval can be replaced by any regular injective regular cogenerator object
of CH.

§4. The convex Vietoris functor on compact ordered spaces. In the previous section
we proved that the opposite of the category of coalgebras for the Vietoris functor
V on compact Hausdorff spaces is monadic over Set. In this and the next section
we establish analogous results where we replace the Vietoris construction with some
of its variants. In this section, we consider the convex Vietoris hyperspace (which
corresponds to the Plotkin powerdomain in domain theory). This construction is
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8 MARCO ABBADINI AND IVAN DI LIBERTI

defined on Nachbin’s compact ordered spaces, which are an ordered version of
compact Hausdorff spaces, and restricts to the classical Vietoris construction on
those compact ordered spaces with a trivial order. In this section, we prove that the
opposite of the category of coalgebras for the convex Vietoris functor on compact
ordered spaces is monadic over Set.

This last result can be understood as an analogue of the Jónsson–Tarski duality
for positive modal algebras. Positive modal logic is, roughly speaking, modal logic
without negation. It was introduced by Dunn [20], and it is the restriction of the
modal local consequence relation defined by the class of all Kripke models to
the propositional modal language whose connectives are ∧, ∨, �, ⊥, �, and �.
The algebras of positive modal logic are called positive modal algebras [38], and are
bounded distributive lattices with � and � and some equational axioms.

To represent positive modal algebras one builds on Priestley duality, which
states that the category of bounded distributive lattices is dually equivalent to the
category of Priestley spaces, i.e., Boolean spaces with a partial order and appropriate
axioms [56]. Building on Priestley duality, the category of positive modal algebras
is dually equivalent to the category of coalgebras for the convex Vietoris functor on
Priestley spaces [16, 18, 54, 65]. We extend this equivalence from Priestley spaces to
compact ordered spaces maintaining the algebraicity of the algebraic side.

Definition 4.1 [52], [53, p. 44]. A compact ordered space is a compact Hausdorff
space X equipped with a partial order that is closed in the product topology of
X × X . We let CompOrd denote the category of compact ordered spaces and
continuous order-preserving maps.

The study of compact ordered spaces originated in Nachbin’s classic book [53];
see also [25, Section VI-6] and [62]. Other names for compact ordered spaces are
“ordered compact spaces,” “partially ordered compact spaces,” “separated ordered
compact spaces,” “compact pospaces,” and “Nachbin spaces.”

In the next section we will recall their close connection with stably compact
spaces, their topological alter ego. In this section, we turn our attention to the
convex Vietoris functor on compact ordered spaces. One appealing property of this
functor is that it restricts to the usual Vietoris functor on CH. We prove that also the
opposite of the category of coalgebras for this functor is monadic over Set.

Remark 4.2. Dualising the order of a compact ordered space defines a compact
ordered space, as well.

Notation 4.3. An upward (resp. downward) closed subset of a poset will also
be called an upset (resp. downset). A subset Y of a poset is said to be convex if
Y � x ≤ y ≤ z ∈ Y implies y ∈ Y . We let ↑Y and ↓Y denote respectively the up-
closure and down-closure of a subset Y of a poset X. We use ↑x and ↓x as shorthands
for ↑{x} and ↓{x}. We denote the smallest convex set containing a set Y by

�Y := {x ∈ X | ∃y, y′ ∈ Y s.t. y ≤ x ≤ y′} = ↑Y ∩ ↓Y.
In the following two lemmas we recall some basic properties of compact ordered

spaces.

Lemma 4.4 [53, Proposition 4, p. 44]. Let X be a compact ordered space. For every
closed subset K of X, the sets ↓K and ↑K are closed.
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DUALITY FOR COALGEBRAS FOR VIETORIS AND MONADICITY 9

Lemma 4.5 [53, Theorem 4, p. 48]. Let X be a compact ordered space, and let K
be a closed downset of X and L a closed upset of X such that K ∩ L = ∅. There are
an open downset U of X and an open upset V of X such that K ⊆ U , L ⊆ V , and
U ∩ V = ∅.

In the following, we will define the convex Vietoris functor on compact ordered
spaces. In the case of a Priestley space X, its convex Vietoris hyperspace was described
in [54, Sections 3.3 and 3.4] as a quotient of the classical Vietoris hyperspace VX .
In [16, 18, 65], an alternative equivalent description was given. In this description,
a Priestley space X is mapped to a Priestley space whose underlying set is the set of
compact convex subsets of X. The equivalence of these two definitions is proved in
[15, Theorem 4.8]. We refer to [46, Section 3.1] for a detailed proof of the fact that
this second construction is indeed a well-defined functor on the category of Priestley
spaces.

In the following, we define the convex Vietoris hyperspace construction and show
that this defines an endofunctor on the category of compact ordered spaces.2

Definition 4.6. We let VcX denote the set of closed convex subsets of a compact
ordered space X. We equip VcX with the topology generated by the sets

�U := {K ∈ VcX | K ∩U �= ∅} (U open upset or open downset of X ),

�U := {K ∈ VcX | K ⊆ U} (U open upset or open downset of X ).

We equip VcX with the Egli–Milner order, i.e., for K,L ∈ VcX , we set

K ≤EM L ⇐⇒ ↑L ⊆ ↑K and ↓K ⊆ ↓L.
Explicitly, this condition amounts to

∀y ∈ L ∃x ∈ K s.t. x ≤ y and ∀x ∈ K ∃y ∈ L s.t. x ≤ y.
We call VcX the convex Vietoris hyperspace of X.

Theorem 4.7. For every compact ordered space X, the convex Vietoris hyperspace
VcX of X is a compact ordered space.

Proof. To prove that VcX is Hausdorff, let K,L ∈ Vc be distinct. Without loss
of generality, we may suppose that there is x ∈ K \ L. Moreover, by convexity of L,
either L is disjoint from ↓x or from ↑x. Without loss of generality, we may suppose
that L is disjoint from ↑x (the other case being similar). By Lemmas 4.4 and 4.5, there
are an open upset U of X and an open downset V of X such that ↓x ⊆ U , L ⊆ V ,
andU ∩ V = ∅. ThenK ∈ �U because x ∈ K ∩U , L ∈ �V because L ⊆ V , and
�U and �V are disjoint because U and V are disjoint. This proves that VcX is
Hausdorff.

2This construction corresponds to a well-known construction in the equivalent context of stably
compact spaces, based on the notion of so-called lenses; see, e.g., [47, Section 6] (where, however, the
empty set is excluded from the hyperspace). To the best of our knowledge, the first account of this
construction is in [39] (see in particular Corollary 3.10 therein for the spatial setting).

https://doi.org/10.1017/jsl.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.14


10 MARCO ABBADINI AND IVAN DI LIBERTI

We prove compactness. By the Alexander subbase theorem, it is enough to prove
that every cover of VcX by subbasic open sets (i.e., by boxes and diamonds of open
upsets and open downsets) has a finite subcover. Suppose

VcX =
⋃
i∈I

�Ui ∪
⋃
j∈J

�U ′
j ∪

⋃
k∈K

�Vk ∪
⋃
l∈L

�V ′
l , (4.1)

where Ui and Uj are open upsets for all i ∈ I and j ∈ J , and Vk and Vl are open
downsets for all k ∈ K and l ∈ L. SetW :=

⋃
j∈J U

′
j ∪

⋃
l∈L V

′
l , and F := X \W .

Since W is a union of open sets, it is open, and its complement F is closed. Since
W is a union of an upset and a downset, its complement F is an intersection of a
downset and an upset; it follows that F is convex. Therefore, F ∈ VcX .

By (4.1), there is i ∈ I such thatF ∈ �Ui , there is j ∈ J such thatF ∈ �U ′
j , there

is k ∈ K such that F ∈ �Vk , or there is l ∈ L such that F ∈ �V ′
l . Without loss of

generality, we can assume that either there is i ∈ I such that F ∈ �Ui or there is
j ∈ J such thatF ∈ �U ′

j (the other cases being similar). We can exclude the case that
there is j ∈ J such that F ∈ �U ′

j because, since F = X \ (
⋃
j∈J U

′
j ∪

⋃
l∈L V

′
l ), F

is disjoint from U ′
j for every j ∈ J . Therefore, there is i0 ∈ I such that F ∈ �Ui0 ,

i.e., F ⊆ Ui0 .
We have

X = F ∪W ⊆ Ui0 ∪W = Ui0 ∪
⋃
j∈J
U ′
j ∪

⋃
l∈L
V ′
l ,

and therefore

X = Ui0 ∪
⋃
j∈J
U ′
j ∪

⋃
l∈L
V ′
l .

Since X is compact, there are a finite J ′ ⊆ J and a finite L′ ⊆ L such that

X = Ui0 ∪
⋃
j∈J ′
U ′
j ∪

⋃
l∈L′
V ′
l .

It follows that

VcX = �Ui0 ∪
⋃
j∈J ′

�U ′
j ∪

⋃
l∈L′

�V ′
l .

This proves compactness.
We prove that the Egli–Milner order is a closed subset of (VcX ) × (VcX ). To

do so, we prove that its complement is open. Let (K,L) ∈ ((VcX ) × (VcX )) \
(≤EM). Either ↑L � ↑K or ↓K � ↓L. Without loss of generality, we can suppose
↑L � ↑K , the other case being similar. Therefore, there is x ∈ L \ ↑K . From x /∈ ↑K
we deduce ↓x ∩ ↑K = ∅. By Lemmas 4.4 and 4.5, there are an open downset U of
X and an open upset V of X such that ↓x ⊆ U , K ⊆ V , and U ∩ V = ∅. The
set �U is an open neighbourhood of L in VcX (because x ∈ U ∩ L), �V is an
open neighbourhood of K in Vc (because K ⊆ U ). Moreover, for every L′ ∈ �U
and every K ′ ∈ �V , we have L′ � ↑K , which implies K ′ �EM L

′. Therefore,
(�V ) × (�U ) is an open neighbourhood of (K,L) disjoint from the Egli–Milner
order of VcX . �

https://doi.org/10.1017/jsl.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.14


DUALITY FOR COALGEBRAS FOR VIETORIS AND MONADICITY 11

Definition 4.8. We let Vc : CompOrd → CompOrd denote the functor that
maps

• a compact ordered space X to its convex Vietoris hyperspace Vc(X ),
• a morphism f : X → Y to the morphism Vcf : VcX → VcY that maps an

element K ∈ VcX to the convex closure �f[K ] of f[K ].

We call Vc the convex Vietoris functor.

Lemma 4.9. Vc is a well-defined functor.

Proof. Theorem 4.7 shows that Vc is well-defined on objects.
We prove that Vc is well-defined on morphisms. Letf : X → Y be a morphism of

compact ordered spaces. For every K ∈ VcX the set f[K ] is compact and thus its
convex closure �f[K ] is also compact (by Lemma 4.4, since �f[K ] = ↑K ∩ ↓K).
Therefore, Vcf : VcX → VcY is a well-defined function.

We prove that Vcf is continuous. Let U be an open upset of VcY . We have

(Vcf)–1[�U ] = {K ∈ VcX | (Vcf)(K) ∈ �U}
= {K ∈ VcX | �f[K ] ∈ �U}
= {K ∈ VcX | �f[K ] ∩U �= ∅}
= {K ∈ VcX | f[K ] ∩U �= ∅}
= {K ∈ VcX | K ∩ f–1[U ] �= ∅}
= �[f–1[U ]],

which is an open subset of VcX . Moreover,

(Vcf)–1[�U ] = {K ∈ VcX | (Vcf)(K) ∈ �U}
= {K ∈ VcX | �f[K ] ∈ �U}
= {K ∈ VcX | �f[K ] ⊆ U}
= {K ∈ VcX | f[K ] ⊆ U}
= {K ∈ VcX | K ⊆ f–1[U ]}
= �[f–1[U ]],

which is an open subset of VcX . Analogous facts are analogously proved for U an
open downset. Therefore, Vcf is continuous.

We prove that Vcf is order-preserving. Let K,L ∈ VcX be such that K ≤EM L,
i.e., ↑L ⊆ ↑K and ↓K ⊆ ↓L. Then,

↑ �f[L] = ↑f[L] = ↑f[↑L] ⊆ ↑f[↑K ] = ↑f[K ] = ↑ �f[K ].

This proves ↑((Vcf)(L)) ⊆ ↑((Vcf)(K)). Similarly, ↓((Vcf)(K)) ⊆ ↓((Vcf)(L)).
Thus, (Vcf)(K) ≤EM (Vcf)(L). Therefore, Vcf is order-preserving.

This proves that Vc is well-defined on morphisms.
We prove that Vc preserves composition. Let f : X → Y and g : Y → Z be two

morphisms. Then, for every K ∈ VcX , we have

(Vc(g ◦ f))(K) = �(g ◦ f)[K ]

= � g[f[K ]]
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12 MARCO ABBADINI AND IVAN DI LIBERTI

= � g[�f[K ]]

= Vc(g)(Vc(f)(K))

= (Vc(g) ◦ Vc(f))(K).

This proves that Vc preserves composition.
The proof that Vc preserves identities is straightforward. �

We will prove that CoAlg(Vc)op is monadic over Set; to this purpose, in view of
an application of Theorem 3.9, we show that Vc preserves codirected limits and
coreflexive equalizers.

To prove that Vc preserves codirected limits, we take inspiration from [34,
Section 3], which proves the same property for the lower Vietoris functor.

Remark 4.10. For details about limits in CompOrd we refer to [35, Section 3].
We will use the fact that a cone in CompOrd is a limit cone if and only if it is a limit
cone in Set (or, equivalently, in CH) and the order is initial.

By [36, Remark 4.3], CompOrd inherits a nice characterisation of codirected limits
from the category CH. A first hint of the characterisation of codirected limits in CH
is in [19]. The characterisation was proved in [31] (see also [34, Theorem 3.29]), and
it is called the Bourbaki-criterion. Here, we formulate it in the setting of compact
ordered spaces.

Theorem 4.11 (Bourbaki-criterion for compact ordered spaces [36, Remark 4.3]).
Let D : I → CompOrd be a codirected diagram. A cone (fi : X → D(i))i∈I for D is a
limit cone if and only if the following conditions hold.

(1) For all x, y ∈ X , x ≤ y if and only if for all i ∈ I we have fi(x) ≤ fi(y).
(2) For all i ∈ I, the image of fi coincides with the intersection of the images of all
D(j → i); in symbols,

⋂
j→i

imD(j → i) = imfi .

Lemma 4.12. Let D : I → CompOrd be a codirected diagram, let (fi : X →
D(i))i∈I be a limit for D, and let K and L be closed subsets of X.

(1) ↑K ⊆ ↑L if and only if for all i ∈ I we have ↑fi [K ] ⊆ ↑fi [L].
(2) ↓K ⊆ ↓L if and only if for all i ∈ I we have ↓fi [K ] ⊆ ↓fi [L].
(3) �K ≤EM �L if and only if for all i ∈ I we have �fi [K ] ≤EM �fi [L].

Proof. (1). The left-to-right inclusion holds because ↑K ⊆ ↑L implies ↑fi [K ] =
↑fi [↑K ] ⊆ ↑fi [↑L] = ↑fi [L].

For the right-to-left inclusion, suppose that for all i ∈ I we have ↑fi [K ] ⊆ ↑fi [L].
Let x ∈ ↑K . Then for all i ∈ I we have fi(x) ∈ ↑fi [K ] ⊆ ↑fi [L], and thus fi(x) ∈
↑fi [L], which means fi [L] ∩ ↓fi(x) �= ∅, which implies L ∩ f–1

i [↓fi(x)] �= ∅. By
compactness, it follows that L ∩

⋂
i∈I f

–1
i [↓fi(x)] �= ∅. By Theorem 4.11(1), we

have
⋂
i∈I f

–1
i [↓fi(x)] = ↓x, and thus L ∩ ↓x �= ∅, which implies x ∈ ↑L. Since

this holds for all x ∈ ↑K , we have ↑K ⊆ ↑L.
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(2). This is dual to (1), in the sense of Remark 4.2.
(3). We have

�K ≤EM �L
⇐⇒ ↑L ⊆ ↑K and ↓K ⊆ ↓L
⇐⇒ ∀i ∈ I ↑fi [L] ⊆ ↑fi [K ] and ↓fi [K ] ⊆ ↓fi [L] by (2) and (1)

⇐⇒ ∀i ∈ I ↑ �fi [L] ⊆ ↑fi [K ] and ↓ �fi [K ] ⊆ ↓fi [L]

⇐⇒ ∀i ∈ I �fi [K ] ≤EM �fi [L]. �

Lemma 4.13. Let F be a codirected set of closed subsets of a compact ordered
space.

(1) ↑
⋂
K∈F K =

⋂
K∈F ↑K .

(2) ↓
⋂
K∈F K =

⋂
K∈F ↓K .

(3) �
⋂
K∈F K =

⋂
K∈F �K .

Proof. (2) is [34, Proposition 3.31]. (1) is dual, in the sense of Remark 4.2. (3)
follows from (2) and (1). �

Lemma 4.14. Let D : I → CompOrd be a codirected diagram, let (fj : X →
D(j))j∈I be a limit for D, and let i ∈ I.

(1)
⋂
j→i ↑ imD(j → i) = ↑ imfi .

(2)
⋂
j→i ↓ imD(j → i) = ↓ imfi .

(3)
⋂
j→i � imD(j → i) = � imfi .

Proof. (2). We have
⋂
j→i

↑ imD(j → i) = ↑
⋂
j→i

imD(j → i) by Lemma 4.13(1)

= ↑ imfi by Theorem 4.11.

(1) and (3) are proved similarly. �

Proposition 4.15. The convex Vietoris functor Vc on compact ordered spaces
preserves codirected limits.

Proof. Let (fi : X → D(i))i∈I be a limit for a codirected diagram D : I →
CompOrd. We prove that (Vcfi : VcX → VcD(i))i∈I is a limit forVc ◦D by verifying
that it satisfies the two conditions in the Bourbaki-criterion (Theorem 4.11). Let dji
denote the morphism D(j → i).

For the first condition, let K,L ∈ VcX be such that, for all i ∈ I, we have
(Vcfi)(K) ≤EM (Vcfi)(L), i.e., �fi [K ] ≤EM �fi [L]. Then, by Lemma 4.12(3),
�K ≤EM �L. Therefore, the cone (Vcfi : VcX → VcD(i))i∈I satisfies condition (1)
in the Bourbaki-criterion.

For the second condition, let i ∈ I and let us prove that
⋂
j→i imVcdji =

imVcfi . The right-to-left inclusion is easy. For the left-to-right inclusion, let
K ∈

⋂
j→i imVcdji . Then, for each j → i there is a closed convex subset Sj of

D(j) such that � dji [Sj ] = K . From � dji [Sj ] = K and the convexity of K, we
deduce Sj ⊆ K . Since we also have dji [Sj ] ⊆ im dji , we have dji [Sj ] ⊆ K ∩ im dji .

https://doi.org/10.1017/jsl.2024.14 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.14


14 MARCO ABBADINI AND IVAN DI LIBERTI

Therefore, K = � dji [Sj ] ⊆ �(K ∩ im dji). Since this holds for all j → i , we have
K ⊆

⋂
j→i �(K ∩ im dji). Therefore,

K = K ∩
⋂
j→i

�(K ∩ im dji)

= K ∩ �
⋂
j→i

(K ∩ im dji) by Lemma 4.13(3)

= �

⎛
⎝K ∩

⋂
j→i

im dji

⎞
⎠ using the convexity of K

= �(K ∩ imfi) by Theorem 4.11

= �fi [f–1
i [K ]].

Thus, K = (Vcfi)(f–1
i [K ]), and therefore K ∈ im(Vcfi). �

Proposition 4.16. The convex Vietoris functor Vc : CompOrd → CompOrd is a
covarietor.

Proof. By Proposition 4.15, Vc preserves codirected limits: in particular,
it preserves �op-limits. Thus, by Proposition 2.6 and Theorem 2.5, Vc is a
covarietor. �

Corollary 4.17. The forgetful functor CoAlg(Vc) → CompOrd is comonadic.

In light of Theorem 2.10, the next step to prove that CoAlg(Vc)op is monadic over
Set is to prove that Vc preserves coreflexive equalizers.

Lemma 4.18 [33, Theorem 2.6]. The regular monomorphisms in CompOrd are
precisely the order-reflecting morphisms.

In the following, ≤EM denotes the Egli–Milner order, which can be defined on the
set of convex subsets of a poset in the same way:

K ≤EM L ⇐⇒ ↑L ⊆ ↑K and ↓K ⊆ ↓L.

Lemma 4.19. Let f : X → Y be an order-reflecting map between posets, and let K
and L be subsets of X.

(1) ↑K ⊆ ↑L if and only if ↑f[K ] ⊆ ↑f[L].
(2) ↓K ⊆ ↓L if and only if ↓f[K ] ⊆ ↓f[L].
(3) �K ≤EM �L if and only if �f[K ] ≤EM �f[L].

Proof. (1). The left-to-right implication holds because ↑K ⊆ ↑L implies
↑f[K ] = ↑f[↑K ] ⊆ ↑f[↑L] = ↑f[L]. We prove the opposite implication. Since f
is order-reflecting, for every upset Y of X we have f–1[↑f[Y ]] = Y . Therefore, if
↑f[K ] ⊆ ↑f[L], then ↑K = ↑f–1[↑f[K ]] ⊆ ↑f–1[↑f[L]] = ↑L.

(2). This is the dual of (1), in the sense of Remark 4.2.
(3). We have

K ≤EM L ⇐⇒ ↑L ⊆ ↑K and ↓K ⊆ ↓L
⇐⇒ ↑f[L] ⊆ ↑f[K ] and ↓f[K ] ⊆ ↓f[L] by (1) and (2)
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⇐⇒ ↑�f[L] ⊆ ↑�f[K ] and ↓ �f[K ] ⊆ ↓�f[L]

⇐⇒ �f[K ] ≤EM �f[L]. �

Lemma 4.20. The convex Vietoris functor Vc : CompOrd → CompOrd preserves
regular monomorphisms, i.e., if f is an order-reflecting morphism of compact ordered
spaces, then Vcf is order-reflecting.

Proof. We recall from Lemma 4.18 that regular monomorphisms in CompOrd
are precisely the order-reflecting morphisms. Letf : X → Y be a regular monomor-
phism in CompOrd. For K,L ∈ VcX we have

Vcf(K) ≤EM Vcf(L)

⇐⇒ �f[K ] ≤EM �f[L]

⇐⇒ K ≤EM L by Lemma 4.19(3).

This shows that Vcf is order-reflecting, and hence a regular monomorphism. �
Remark 4.21. By Remark 4.10 and Lemma 4.18, a morphism h : Z → X in

CompOrd is the equalizer of f, g : X ⇒ Y if and only if (i) an element x ∈ X
belongs to the image of h if and only if f(x) = g(x), and (ii) h is order-reflecting.

Lemma 4.22. Let X be a compact ordered space.

(1) Any directed subset Y of X has a supremum in X, which belongs to the topological
closure of Y.

(2) Any codirected subset Y of X has an infimum in X, which belongs to the
topological closure of Y.

Proof. (1) holds by [25, Proposition VI.1.3(ii)]. (2) is dual to (1), in the sense
of Remark 4.2. �

Lemma 4.23. Every continuous order-preserving map between compact ordered
spaces preserves directed suprema and codirected infima.

Proof. We prove the preservation of directed suprema. Let f : X → Y be a
continuous order-preserving map between compact ordered spaces, and let D
be a directed subset of X. We recall from Lemma 4.22 that X and Y admit
all directed suprema. Since f is continuous, f–1[↓ supf[D]] is a closed subset
of X. Since f–1[↓ supf[D]] contains D, it contains also the topological closure
of D. Since supD belongs to the topological closure of D by Lemma 4.22, we
have supD ∈ f–1[↓ supf[D]], i.e., f(supD) ≤ supf[D]. The converse inequality
supf[D] ≤ f(supD) holds by monotonicity of f. This proves the preservation of
directed suprema.

The preservation of codirected infima is dual, in the sense of Remark 4.2. �
Lemma 4.24. Let h : E → X be an equalizer of two morphisms f, g : X ⇒ Y in

CompOrd with a common retraction, and let K be a closed subset of X.

(1) If ↑f[K ] = ↑g[K ], then ↑K = ↑(K ∩ im h).
(2) If ↓f[K ] = ↓g[K ], then ↓K = ↓(K ∩ im h).
(3) If �f[K ] = � g[K ], then �K = �(K ∩ im h).

Proof. (1). Suppose ↑f[K ] = ↑g[K ].
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Claim 4.25. For all x ∈ K , there is y ∈ K such that y ≤ x and g(y) ≤ f(x).

Proof of Claim. Let x ∈ K . Since f(x) ∈ ↑f[K ] = ↑g[K ], there is y ∈ K such
that g(y) ≤ f(x). Since f and g have a common retraction k : Y → X , we have
y = k(g(y)) ≤ k(f(x)) = x. �

Similarly, one proves the following claim.

Claim 4.26. For all x ∈ K , there is y ∈ K such that y ≤ x and f(y) ≤ g(x).

Fix x ∈ K , and let us prove x ∈ ↑(K ∩ im h). By Claims 4.25 and Claim 4.26,
there is a chain C

··· ≤ d ′3 ≤ d3 ≤ d ′2 ≤ d2 ≤ d ′1 ≤ d1 ≤ x

of elements of K such that

··· ≤ f(d ′3) ≤ g(d3) ≤ f(d ′2) ≤ g(d2) ≤ f(d ′1) ≤ g(d1) ≤ f(x). (4.2)

By Lemma 4.22, and since K is closed, C has an infimum d belonging to K. Then

f(d ) = inf f[C ] by Lemma 4.23

= inf g[C ] by 4.2

= g(d ) by Lemma 4.23.

Since f(d ) = g(d ) and h is the equalizer of f and g, by Remark 4.21 we have
d ∈ im h. This shows K ⊆ ↑(K ∩ im h), which implies ↑K ⊆ ↑(K ∩ im h). The
converse inclusion is immediate.

(2). This is the dual of (1).
(3). Suppose �f[K ] = � g[K ]. Then ↑f[K ] = ↑ �f[K ] = ↑ � g[K ] = ↑g[K ].

Thus, by the part (1) of the present lemma, K ⊆ ↑(K ∩ im h). Analogously,
K ⊆ ↓(K ∩ im h). Therefore,

K ⊆ (↑(K ∩ im h)) ∩ (↓(K ∩ im h)) = �(K ∩ im h),

and this implies �K ⊆ �(K ∩ im h). The converse inclusion is immediate. �

Proposition 4.27. The functor Vc : CompOrd → CompOrd preserves coreflexive
equalizers.

Proof. Let h : E → X be an equalizer of two morphisms f, g : X ⇒ Y in
CompOrd with a common retraction, and let us prove that Vch is an equalizer
of Vcf and Vcg. By Lemma 4.20, Vch is a regular monomorphism. By functoriality
of Vc, we have Vcf ◦ Vch = Vc(f ◦ h) = Vc(g ◦ h) = Vcg ◦ Vch. Let K ∈ VcX be
such that (Vcf)(K) = (Vcg)(K). We have

K = �K since K is convex

= �(K ∩ im h) by Lemma 4.24(3)

= � h[h–1[K ]] since K ∩ im h = h[h–1[K ]]

= (Vch)(h–1[K ]).

Therefore, K belongs to the image of Vch. By Remark 4.21, Vch is the equalizer of
Vcf and Vcg. �
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Theorem 4.28. Let G be a comonadic functor from CompOrd to a category C. The
composite CoAlg(Vc) → CompOrd

G−→ C of the forgetful functor and G is comonadic.

Proof. The functor Vc is a covarietor by Proposition 4.16, and it preserves
coreflexive equalizers by Proposition 4.27. By Theorem 2.10, the composite

CoAlg(Vc) → CompOrd
G−→ C is comonadic. �

Theorem 4.29. The opposite CoAlg(Vc)op of the category of coalgebras for the
convex Vietoris functor on compact ordered spaces is monadic over Set.

Proof. By [1] (see [3] for a direct proof), the representable functor

homCompOrd(–, [0, 1]) : CompOrdop → Set

is monadic. Then, by Theorem 4.28, the composite

CoAlg(Vc)op Uop

−−→ CHop G−→ Set

is monadic. �

Remark 4.30. As for Remark 3.10, from the monadicity result in Theorem 4.29
it follows that CoAlg(Vc)op is (co)complete and Barr-exact.

Remark 4.31. From the proof of Theorem 4.29 we can extract the description of
a monadic functor CoAlg(Vc)op → Set, as follows. To an object f : X → Vc(X ) of
CoAlg(Vc) we associate the set homCompOrd(X, [0, 1]). To a morphism g : X1 → X2

in CoAlg(Vc) from f1 : X1 → Vc(X1) to f2 : X2 → Vc(X2) we associate the function

hom(X2, [0, 1]) −→ hom(X1, [0, 1])

h 
−→ h ◦ g.

§5. The upper and lower Vietoris functors on stably compact spaces. In this section,
we consider the upper and lower Vietoris constructions, which in domain theory
are also known respectively as the Smyth and Hoare powerdomain (both due to
Smyth). The upper and lower Vietoris hyperspaces of a compact Hausdorff space
in general are not compact Hausdorff and thus it is convenient to place ourselves in
the larger class of stably compact spaces, which is closed under these constructions.

In [33], using their result that the opposite of the category of stably compact spaces
and perfect maps is an ℵ1-ary quasivariety, the authors show that the opposite of the
category of coalgebras for the lower Vietoris functor on stably compact spaces and
perfect maps is also an ℵ1-ary quasivariety of (infinitary) algebras. In [1] (see [3] for
a shorter proof) the opposite of the category of stably compact spaces was proved
to be in fact an ℵ1-ary variety. In the first author’s PhD thesis [2, Conclusions], it
was observed that a combination of these results could be used to infer that also
the opposite of the category of coalgebras for the lower Vietoris functor on stably
compact spaces is a(n ℵ1-ary) variety. In this section, without committing to any
particular signature and axioms (but only to a choice of a dualizing object: [0, 1]),
we provide a self-contained proof (Theorem 5.15) of the latter fact.

We recall the notion of a stably compact space (see, e.g., [47]), which, following
[42], is the T0 analogue of the notion of a compact Hausdorff space. In fact, the
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theory of stably compact spaces is in many ways analogous to that of compact
Hausdorff spaces.

Definition 5.1. A stably compact space is a T0 topological space that is

(1) coherent (i.e., the intersection of two compact saturated sets is compact
saturated) and compact,

(2) locally compact (given an open U and an element x ∈ U , there are an open
V and a compact K such that x ∈ V ⊆ K ⊆ U ),

(3) well-filtered (i.e., if the intersection of a filtered family of compact saturated
sets is contained in an open U, then some member of the family is contained
in U).

A function f : X → Y between stably compact spaces is called perfect if it is
continuous and the preimage under f of each compact saturated set in Y is compact
saturated [29, Definition 9.4.1]. For stably compact spaces, perfect maps coincide
with proper maps defined as in [25, Definition VI-6.20] (see [25, Lemma VI-6.20]).
We let StComp denote the category of stably compact spaces and perfect maps.

There is a close connection between stably compact spaces and Nachbin’s compact
ordered spaces. In fact, the categories StComp and CompOrd are isomorphic
(concretely over Set), as first illustrated in [26]. The isomorphism CompOrd →
StComp sends a compact ordered space X to the stably compact space with the
same underlying set and the topology defined by the open upsets of X. Its inverse
functor StComp → CompOrd uses the specialisation order of a topological space,
defined by x ≤ y if and only if every open set containing x contains y. It maps
a stably compact space (X, �) to the space with the same set X as underlying set
and equipped with the patch topology (i.e., the topology generated by the open
subsets of X and by the complements of the compact saturated subsets of X) and
the specialisation order (with respect to the original topology �). For more details
we refer to [42, Proposition 2.14] and [25, Section VI-6].

Remark 5.2. When we consider a partial order on a stably compact space, we
assume it to be the specialisation order.

We recall the lower and upper Vietoris constructions. For more details, see [59].

Definition 5.3. Let X be a stably compact space.

(1) The upper Vietoris hyperspaceV↑X of X is the set of compact saturated subsets
of X equipped with the topology generated by the sets3

�U := {K ∈ V↑X | K ⊆ U} (U open subset of X ).

The specialization order is reverse inclusion.
(2) The lower Vietoris hyperspace V↓X of X is the set of closed subsets of X

equipped with the topology generated by the sets

�U := {K ∈ V↑X | K ∩U �= ∅} (U open subset of X ).

The specialization order is inclusion.

3This is in accordance with the notation used in [47, Definition 5.2] (with the only difference that we
include also the empty set), or in [24] for spectral spaces.
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Definition 5.4.

(1) The upper Vietoris functor is the functor V↑ : StComp → StComp that maps
each stably compact space to its upper Vietoris hyperspace, and each
morphism f : X → Y of stably compact spaces to the function

V↑f : V↑X −→ V↑Y

K 
−→ ↑f[K ],

where ↑f[K ] is the up-closure of f[K ] in the specialization order.
(2) The lower Vietoris functor is the functor V↓ : StComp → StComp that maps

each stably compact space to its lower Vietoris hyperspace, and each
morphism f : X → Y of stably compact spaces to the function

V↓f : V↓X −→ V↓Y

C 
−→ ↓f[C ],

where ↓f[C ] is the down-closure of f[C ] in the specialization order.

In [33, Theorem 4.2] it is shown that the opposite of the category CoAlg(V↓)
of coalgebras for the Vietoris functor is equivalent to a quasivariety of infinitary
algebras (in fact, an ℵ1-ary quasivariety). In Theorem 5.15 below we strengthen
this result and show that it is in fact an (infinitary) variety, i.e., CoAlg(V↓)op is
monadic over Set. The same result holds for V↑. To prove it, we first prove that the
forgetful functors CoAlg(V↑) → StComp and CoAlg(V↓) → StComp are comonadic
(Corollary 5.8).

Remark 5.5. Let ∂ : StComp → StComp denote the automorphism of StComp
given by taking the de Groot dual.4 Let X be a stably compact space. The following
diagram commutes up to natural isomorphisms (cf. [28, Theorem 3.1]).

StComp StComp

StComp StComp.

∂

V
↑

V
↓

∂

Proposition 5.6. Both the upper and the lower Vietoris functorV↑,V↓ : StComp →
StComp preserve codirected limits.

Proof. By [34, Corollary 3.33], V↓ preserves codirected limits. By Remark 5.5,
the same holds for V↑. �

Corollary 5.7. The upper and lower Vietoris functors V↑,V↓ : StComp →
StComp are covarietors.

Proof. By Proposition 5.6, the functors V↑ and V↓ preserve �op-limits. Thus,
by Proposition 2.6 and Theorem 2.5, they are covarietors. �

4Recall that, for compact ordered spaces, the de Groot dual coincides with taking the dual order.
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Corollary 5.8. The forgetful functors

CoAlg(V↑) → StComp and CoAlg(V↓) → StComp

are comonadic.

To prove that CoAlg(V↑)op (and similarly for V↓) is monadic over Set, we prove
that the composite of the two monadic functors

CoAlg(V↑)op → StCompop hom(–,[0,1])−−−−−−−→ Set

is monadic. To prove so, in light of Theorem 2.10, it is enough to prove that V↑

preserves coreflexive equalizers. We will achieve this result in Proposition 5.12, but
we will need some preliminary lemmas before.

Lemma 5.9 [33, Theorem 2.6]. The regular monomorphisms in StComp are
precisely the order-reflecting morphisms.

Proposition 5.10. The upper and lower Vietoris functors V↑,V↓ preserve regular
monomorphisms.

Proof. Let f : X → Y be a regular monomorphism in StComp, and let us
prove that V↑f is order-reflecting. Let K,L ∈ V↑X with (V↑f)(K) ≤ (V↑f)(L),
i.e., ↑f[K ] ⊇ ↑f[L]. By Lemma 5.9, f is order-reflecting. Then, by Lemma 4.19,
K ⊇ L, i.e., K ≤ L. Thus, V↑f is order-reflecting. By Lemma 5.9, V↑f is a regular
monomorphism. The proof for V↓ is analogous. �

Remark 5.11. By Remark 4.21, a morphism h : Z → X in StComp is the
equalizer of f, g : X ⇒ Y if and only if (i) an element x ∈ X belongs to the image
of h if and only if f(x) = g(x), and (ii) h is order-reflecting.

Proposition 5.12. The upper and lower Vietoris functors V↑,V↓ : StComp →
StComp preserve coreflexive equalizers.

Proof. By Remark 5.5, it is enough to prove it for the upper Vietoris functor.
Let h : E → X be an equalizer of two morphisms f, g : X ⇒ Y in StComp with a
common retraction, and let us prove that V↑h is an equalizer of V↑f and V↑g. By
Proposition 5.10, V↑h is a regular monomorphism. By functoriality of V↑, we have

V↑f ◦ V↑h = V↑(f ◦ h) = V↑(g ◦ h) = V↑g ◦ V↑h.

Let K ∈ V↑X be such that (V↑f)(K) = (V↑g)(K). We have

K = ↑K since A is upward-closed

= ↑(K ∩ im h) by Lemma 4.24(1)

= ↑(h[h–1[K ]]) since K ∩ im h = h[h–1[K ]]

= (V↑h)(h–1[K ]).

Therefore, K belongs to the image of V↑h. By Remark 5.11, V↑h is the equalizer of
V↑f and V↑g. �

Theorem 5.13. Let G be a comonadic functor from StComp to a category C. The
composites

CoAlg(V↑) U−→ StComp
G−→ C and CoAlg(V↓) U−→ StComp

G−→ C

are comonadic.
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Proof. By Remark 5.5, it is enough to prove the statement for V↑. By
Corollary 5.7, V↑ is a covarietor. By Proposition 5.12, V↑ preserves coreflexive
equalizers. Then, by Theorem 2.10, the composite below is comonadic:

CoAlg(V↑) U−→ StComp
G−→ C. �

Notation 5.14. We let [0, 1]↑ (resp. [0, 1]↓) denote the stably compact space
whose underlying set is the unit interval [0, 1] and whose topology is the set of
upsets (resp. downsets) of [0, 1] that are open in the Euclidean topology.

Theorem 5.15. The opposites CoAlg(V↑)op and CoAlg(V↓)op of the categories of
coalgebras for the upper and lower Vietoris functors are monadic over Set.

Proof. By [1] (see [3] for a shorter proof) the representable functor

homStComp(–, [0, 1]↑) : StCompop → Set

is monadic. Then, by Theorem 5.13, the composite below is monadic:

CoAlg(V↑)op Uop

−−→ CHop G−→ Set. �

Remark 5.16. Similarly to Remark 4.30 (and Remark 3.10), from the monadicity
result in Theorem 5.15 we obtain that the categories CoAlg(V↑)op and CoAlg(V↓)op,
are (co)complete and Barr-exact.

Remark 5.17. We strengthened the results in [33] stating that the opposite of
CoAlg(V↓) is equivalent to an ℵ1-ary quasivariety: this ℵ1-ary quasivariety is a
variety, and, in fact, an ℵ1-ary variety. Indeed, any quasivariety that is equivalent
to a variety is itself a variety (since the only missing property is the effectiveness of
equivalence relations, which is a categorical property that does not depend on the
axiomatization).

Remark 5.18. The proof of Theorem 5.15 provides an example of a monadic
functor from CoAlg(V↑)op to Set, as follows. To an object f : X → V↑X of
CoAlg(V↑) we associate the set homStComp(X, [0, 1]↑). To a morphism g : X1 → X2

in CoAlg(V↑) from f1 : X1 → V↑X1 to f2 : X2 → V↑X2 we associate the function

homStComp(X2, [0, 1]↑) −→ homStComp(X1, [0, 1]↑)

h 
−→ h ◦ g.

Analogous considerations hold for V↓.

§6. Generating the algebraic theories. The general theory initiated by Lawvere
and Linton offers a standard procedure to axiomatize monadic categories (see [49]
or [48, Section 3.6]). In this section,

• we obtain an equational axiomatization of CoAlg(V)op by adding to an
axiomatization of CHop the unary operator � (or, equivalently, �) and
appropriate axioms;

• we obtain an equational axiomatization of CoAlg(Vc)op by adding to an
axiomatization of CompOrdop the unary operators � and � and appropriate
axioms;
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• we obtain an equational axiomatization of CoAlg(V↑)op by adding to an
axiomatization of StCompop the unary operator � and appropriate axioms;

• we obtain an equational axiomatization of CoAlg(V↓)op by adding to an
axiomatization of StCompop the unary operator � and appropriate axioms.

The algebras in a variety W can be viewed as algebras for a monad F : Set → Set
that maps a set X to the underlying set of the free W-algebra over X. Then, an
algebra A in W is given by a function F (A) → A which satisfies certain properties
of compatibility with the monad identity and multiplication.

In special cases, this description gets simplified in the sense that the variety W
is isomorphic to the category of algebras for an endofunctor T : Set → Set (which
generally differs from the endofunctor on Set describing the monad); no monad
units and multiplications are needed in these cases.

Example 6.1 [8, Example, p. 114, Section III.3]. Consider the variety Z of
commutative magmas, whose language consists of a single binary operation + and
whose single axiom is commutativity. For every X, let TX be the set of subsets of X
of cardinality 1 or 2. Then, an algebra inZ can be identified with a function fromTX
to X, as follows. To an algebra A in Z one associates the functionTA→ A that maps
a set {x, y} (with x and y possibly coinciding) to x + y. Note that commutativity
ensures that this function is well-defined. The assignment T can be made into an
endofunctor on Set by mapping a function f : X → Y to the function that maps
a set {x, y} (with x and y possibly coinciding) to its image f[{x, y}] under f.
A homomorphism f : A→ B between algebras in Z corresponds to a function
g : A→ B making the following diagram commuting.

TA TB

A B

Tg

g

Notice that commutativity

x + y = y + x

is an equation of pure rank 1, i.e., every variable is under exactly one operation
symbol.

The set TX can then be identified with the (classes of equivalence of) terms of
rank 1 in variables from X (i.e., the terms of type x + y for x, y ∈ X ). Notice that T
is different from the functor T ∗ : Set → Set that is part of the monad describing the
variety Z. The functor T ∗ is the algebraically free monad, which maps a set X to
the set of equivalence classes of terms in variables from X ; T ∗X contains elements
of the form (x + y) + z (of rank 2) or variables x (of rank 0), which are not present
in TX .

In fact, if a variety Z is axiomatized by pure rank 1 axioms, then Z is isomorphic
to the category of algebras for an endofunctor on Set (namely, the functor that sends
X to the set of equivalence classes of terms in variables from X of pure rank 1), cf.
[8, Corollary, p. 141, Section III.4.9], [9, Section 5.A]. More generally, if a variety
Z is obtained from a variety W (in Example 6.1, W = Set) by adding operations
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axiomatized by pure rank 1 axioms, then we can view Z-algebras as algebras for an
endofunctor on W .

Example 6.2. The variety MA of modal algebras is obtained from the variety
BA of Boolean algebras by adding a unary function symbol � axiomatized by pure
rank 1 equations, namely

�(x ∧ y) = �x ∧ �y and �1 = 1.

The category MA is isomorphic to the category of algebras for an endofunctor on
BA that maps a Boolean algebra to the free Boolean algebra over its underlying
meet-semilattice [44, Proposition 3.12].

Example 6.3. The variety of positive modal algebras is obtained from the
variety of bounded distributive lattices by adding unary function symbols � and �

axiomatized by pure rank 1 equations, namely:

(1) �(x ∧ y) = �x ∧ �y,
(2) �1 = 1,
(3) �(x ∨ y) = �x ∨ �y,
(4) �0 = 0,
(5) �x ∧ �y = �x ∧ �(x ∧ y),
(6) �x ∨ �y = �x ∨ �(x ∨ y).

In fact, the variety of positive modal algebras can be seen as the category of
algebras for an endofunctor on the category of bounded distributive lattices and
homomorphisms.

Remark 6.4. Suppose G : W → Set is a monadic functor, with left adjoint F,
and (GF, �, 	) the corresponding monad. For a function f : X → GF (Y ), let
f : F (X ) → F (Y ) denote the unique morphism such that f ◦ �X = f (whose
existence is guaranteed by the fact that � is a unit); in other words,f = 	T ◦GF (f);
in more algebraic terms, f is the extension of f from the set X of free generators
to the free algebra F (X ). Suppose T : W → W is an endofunctor such that the
forgetful functor Alg(T ) → W is monadic. Then the algebraic theory of Alg(T ) is
determined by the following information.

Terms:

(1) The set of (equivalence classes of) terms of rank 0 of arity X is GF (X ).
(2) The set of (equivalence classes of) terms of rank 1 of arity X is GTF (X ).

Composition of terms (denoted with ∗ to distinguish it from the composition of
functions, denoted with ◦):

(1) The composite � ∗ 
 of a term � ∈ GF (X ) of rank 0 and arity X and an X -
tuple 
 : X → GF (Y ) of terms of rank 0 and arity Y is G(
)(�) ∈ GF (Y ).

(2) Composition of terms of rank 0 and rank 1 is as follows.
(a) The term-composition � ∗ 
 of a term � ∈ GF (X ) of rank 0 and arity

X and an X -tuple 
 : X → GTF (Y ) of terms of rank 1 and arity Y is
G(
)(�) ∈ GTF (Y ).

(b) The term-composition � ∗ 
 of a term � ∈ GTF (X ) of rank 1 and arity
X and an X -tuple 
 : X → GF (Y ) of terms of rank 0 and arity Y is
GT (
)(�) ∈ GTF (Y ).
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6.1. Vietoris on compact Hausdorff spaces. The monadic functor

CoAlg(V)op → Set

given by the proof of Theorem 5.15 maps an object f : X → V(X ) to the set
homCH(X, [0, 1]), and maps a morphism g : X1 → X2 from f1 : X1 → V(X1) to
f2 : X2 → V(X2) to the precomposition by g:

homCH(X2, [0, 1]) −→ homCH(X1, [0, 1])

h 
−→ h ◦ g.

In what follows, we give a (quite abstract) description of the algebraic theory of the
variety associated with this monadic functor.

Notation 6.5. Given a family (fi : X → Yi)i∈I of functions, we let 〈fi〉i∈I
denote the obvious function X →

∏
i∈I Yi .

Remark 6.6. The left adjoint to Duskin’s monadic functor hom(–, [0, 1]): CHop →
Set is the functor that maps a set X to the space [0, 1]X and a function f : X → Y
to the precomposition map – ◦ f : [0, 1]Y → [0, 1]X . Then, by Remark 6.4, the
algebraic theory of CoAlg(V)op is determined by the following information.

Terms:

(1) The (equivalence classes of) terms of rank 0 and arity X are the continuous
maps from [0, 1]X to [0, 1]. (Since every continuous map from a power of [0, 1]
to [0, 1] depends on at most countably many coordinates [51, Theorem 1], it
is enough to take X countable.)

(2) The (equivalence classes of) terms of rank 1 and arity X are the continuous
maps from V([0, 1]X ) to [0, 1].

Composition of terms:

(1) Composition of terms of rank 0 is composition of functions.
(2) Composition of terms of rank 0 and rank 1 is as follows.

(a) The term-composition t ∗ (�i)i∈I of a continuous map t : [0, 1]I → [0, 1]
(so, a term of rank 0 and arity I) and a family (�i : V([0, 1]X ) → [0, 1])i∈I
of continuous maps (i.e., of terms of rank 1 and arity X) is the composite

V([0, 1]X )
〈�i 〉i∈I−−−−→ [0, 1]I t−→ [0, 1].

(b) The term-composition � ∗ (tx)x∈X of a continuous map � : V([0, 1]X ) →
[0, 1] (i.e., a term of rank 1 and arity X) and a family t = (tx : [0, 1]I →
[0, 1])x∈X of continuous maps (i.e., of terms of rank 0 and arity I) is the
composite

V([0, 1]I )
V(〈tx〉x∈X )−−−−−−−→ V([0, 1]X )

�−→ [0, 1].

Remark 6.7. In view of Remark 6.6, CoAlg(V)op has the following equational
axiomatization.
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Language:

(1) For every (at most countable) set X, we take each continuous map from [0, 1]X

to [0, 1] as a function symbol of arity X.
(2) For every set X, we take each continuous map from V([0, 1]X ) to [0, 1] as a

function symbol of arity X.

Axioms:

(1) For every continuous map t : [0, 1]I → [0, 1] and family (�i : V([0, 1]X ) →
[0, 1])i∈I of continuous maps, we take the axiom

t ∗ (�i)i∈I = t ◦ 〈�i〉i∈I .

(2) For every continuous map t : [0, 1]I → [0, 1] and family (�i : V([0, 1]X ) →
[0, 1])i∈I of continuous maps we take the axiom

t ∗ (�i)i∈I = t ◦ 〈�i〉i∈I .

(3) For every continuous map � : V([0, 1]X ) → [0, 1] and family (tx : [0, 1]I →
[0, 1])x∈X of continuous maps, we take the axiom

� ∗ (tx)x∈X = � ◦ V(〈tx〉x∈X ).

In this subsection we show that, instead of taking all terms of pure rank 1, it is
sufficient to take a single unary term � of rank 1 (together with all the terms of
rank 0) to generate all terms. (Since the terms of rank 0 are generated by finitely
many terms [37], it follows that the theory of CoAlg(V) is generated by finitely many
terms.)

Notation 6.8. In this subsection, � denotes the function

V([0, 1]) −→ [0, 1]

K 
−→ inf K,

while � denotes the function

V([0, 1]) −→ [0, 1]

K 
−→ supK.

(Infima and suprema are computed in [0, 1], so �∅ = 1 and �∅ = 0.) (In the next
subsections the functions � and � will be defined in the same way but with a different
domain.)

Lemma 6.9. The functions �,� : V([0, 1]) → [0, 1] are continuous.

Proof. For every � ∈ [0, 1] we have

�–1[(�, 1]] = {K ∈ V([0, 1]) | inf K ∈ (�, 1]} = {K ∈ V([0, 1]) | K ⊆ (�, 1]},
�–1[[0, �)] = {K ∈ V([0, 1]) | inf K ∈ [0, �)} = {K ∈ V([0, 1]) | K ∩ (0, �] �= ∅},
�–1[(�, 1]] = {K ∈ V([0, 1]) | supK ∈ (�, 1]} = {K ∈ V([0, 1]) | K ∩ (�, 1] �= ∅},
�–1[[0, �)] = {K ∈ V([0, 1]) | supK ∈ [0, �)} = {K ∈ V([0, 1]) | K ⊆ [0, �)}.

All these sets are open in the Vietoris topology. Thus, � and � are continuous. �
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In classical modal logic, � and � are interdefinable: �x = ¬�¬x and �x =
¬�¬x. The next lemma shows that the same is true in the context of compact
Hausdorff spaces. Set

¬ : [0, 1] −→ [0, 1]

x 
−→ 1 – x.

Lemma 6.10. (1) � = ¬ ◦ � ◦ V(¬), i.e., � = ¬ ∗ � ∗ ¬.
(2) � = ¬ ◦ � ◦ V(¬), i.e., � = ¬ ∗ � ∗ ¬.

Proof. (1). Let K ∈ V([0, 1]). Then

(¬ ◦ � ◦ V(¬))(K) = ¬(�(V(¬)(X )))

= ¬(�(¬[K ]))

= ¬(�{1 – x | x ∈ K})

= 1 – inf{1 – x | x ∈ K}
= sup{x | x ∈ K}
= �K.

(2) is analogous. �
In Lemma 6.10, the function ¬ : [0, 1] → [0, 1] could be replaced by any order-

reversing homomorphism from [0, 1] to [0, 1].
In the next proposition we recall a fact that combines a categorical characteriza-

tion of quasi-varieties (see [6, Theorem 3.6]) and the theory of natural dualities, for
an overview of which we refer to [55]. We will apply it with C = CH, X = [0, 1], and
U the underlying set functor.

Proposition 6.11 (See, e.g., [2, Proposition 2.8]). Let X be a regular injective
regular cogenerator of a complete category C and let U : C → Set be a faithful
representable functor. Let Σ be the signature whose elements of arity κ (for each set κ)
are the morphisms from Xκ to X, and let X be the Σ-algebra whose underlying set
is U (X ) and on which the interpretation of any operation symbol f : Xκ → X is
U (f) : U (X )κ → U (X ). Then, C is dually equivalent to SP(X ).

Remark 6.12. The contravariant functor from C to SP(X ) in the duality
in Proposition 6.11 maps an object Y to the Σ-algebra homCH(Y,X ) equipped
with pointwise defined operations, and maps a morphism f : Y1 → Y2 to the
precomposition by f.

The following can be thought of as a version of the Stone–Weierstrass theorem
[67, 61]. The theorem is a special case of [32, Proposition 3.6], but we provide a
proof to keep the paper self-contained.

Proposition 6.13. Let C be a set of continuous maps from a compact Hausdorff
space X to [0, 1]. Suppose that C is point-separating and closed under pointwise
application of any continuous map from a power of [0, 1] to [0, 1]. Then C is the
set of continuous maps from X to [0, 1].

Proof. We let � : C → homCH(X, [0, 1]) denote the inclusion function. By hypoth-
esis, C ∈ SP([0, 1]). By Proposition 6.11 and Remark 6.12, there is Y ∈ CH and an
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isomorphism � : homCH(Y, [0, 1]) → C in SP([0, 1]). Moreover, there is a continuous
mapf : X → Y such that the map � ◦ � : homCH(Y, [0, 1]) → homCH(X, [0, 1]) is the
precomposition – ◦ f by f. The function � ◦ � is injective and thus a monomorphism
in SP([0, 1]); therefore, f is an epimorphism inCH and hence surjective. To prove that
f is injective, let x, y ∈ X with f(x) = f(y). Then, for every g ∈ homCH(Y, [0, 1])
we have

(� ◦ �)(g)(x) = (g ◦ f)(x) = g(f(x)) = g(f(y)) = (g ◦ f)(y) = (� ◦ �)(g)(y).

Since the image of � ◦ � is separating, it follows that x = y. Hence, f is a continuous
bijection, i.e., an isomorphism. Thus, – ◦ f = � ◦ � is an isomorphism, and thus � is
surjective. �

In view of Remark 6.6, the following says that the terms of CoAlg(V)op are
generated by the terms of CHop and �.

Theorem 6.14. Let X be a set. For every continuous map f : V([0, 1]X ) → [0, 1]
there are a(n at most countable) set Y, a continuous map s : [0, 1]Y → [0, 1], and a
family (hy : [0, 1]X → [0, 1])y∈Y of continuous maps such that

f = s ◦ 〈� ◦ Vhy〉y∈Y .

Proof. Let C be the set of functions f : V([0, 1]X ) → [0, 1] for which there are a
set Y, a continuous map s : [0, 1]Y → [0, 1], and a family (hy : [0, 1]X → [0, 1])y∈Y
of continuous maps such that f = s ◦ 〈� ◦ Vhy〉y∈Y . We prove that C is the set of
continuous maps from V([0, 1]X ) to [0, 1]. By Lemma 6.9, � is continuous; hence,
every function in C is continuous. Since C is closed under every continuous map
from some power of [0, 1] to [0, 1], by Proposition 6.13 it is enough to prove that
C is point-separating, i.e., that for all distinct K,L ∈ V([0, 1]X ) there is f ∈ C such
that f(K) �= f(L). Let K,L ∈ V([0, 1]X ) be distinct. Without loss of generality,
we may suppose K � L. Then, there is y ∈ K \ L. By Urysohn’s lemma, there is
a continuous map h : [0, 1]X → [0, 1] such that h(y) = 0 and h[L] ⊆ {1}. Then,
� ◦ Vh ∈ C and

(� ◦ Vh)(K) = �(Vh(K)) = �(h[K ]) = inf h[K ] = 0,

(� ◦ Vh)(L) = �(Vh(L)) = �(h[L]) = inf h[L] = 1.

Thus, C separates the points.
One can take Y to be at most countable because every continuous map from

a power of [0, 1] to [0, 1] depends on at most countably many coordinates [51,
Theorem 1]. �

Remark 6.15. In light of Theorem 6.14, an axiomatization of CoAlg(V)op

improving the one in Remark 6.7 is as follows.
Language: For each κ ∈ � ∪ {�}, we take each continuous function from [0, 1]κ

to [0, 1] as a function symbol of arity κ. Moreover, we take � as a unary function
symbol.

Axioms:
(1) For all κ, � ∈ � ∪ {�}, each continuous map t : [0, 1]κ → [0, 1] and each

family (�i : [0, 1]� → [0, 1])i∈κ of continuous maps, we take the axiom

t ∗ (�i)i∈κ = t ◦ 〈�i〉i∈κ.
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Here, the left-hand side is a formal composition of function symbols, while
the right-hand side is just one function symbol (of arity �).

(2) For all κ, �, κ′, �′ ∈ � ∪ {�}, all continuous maps t : [0, 1]κ → [0, 1]
and t′ : [0, 1]κ

′ → [0, 1], and all families (si : [0, 1]� → [0, 1])i∈I and
(s ′i : [0, 1]�

′ → [0, 1])i∈I ′ of continuous maps such that t ◦ 〈� ◦ Vsi〉i∈κ =
t′ ◦ 〈� ◦ V(s ′i )〉i∈κ′ , we take the axiom

t ∗ (� ∗ si)i∈κ = t′ ∗ (� ∗ s ′i )i∈κ′

Remark 6.16. Since the terms of rank 0 are generated by finitely many terms [37],
it follows from the results above that the theory ofCoAlg(V)op is generated by finitely
many terms. (We simply add � to the finitely many terms of CHop.) Moreover, we
note that each term depends on countably many coordinates only.

Remark 6.17. The full, faithful, and essentially surjective contravariant functor
from CoAlg(V) to the variety described in Remark 6.15 is as follows. To a coalgebra
f : X → V(X ) we associate the algebra with homCH(X, [0, 1]) as the underlying set
and with the interpretation of the operations as follows:

(1) Every continuous function [0, 1]I → [0, 1] is interpreted pointwise.
(2) The symbol � is interpreted as follows: for g ∈ homCH(X, [0, 1]),

�g : X −→ [0, 1]

x −→ inf g[f(x)].

To a morphism g : X1 → X2 fromf1 : X1 → V(X1) tof2 : X2 → V(X2) we associate
the precomposition by g.

6.2. Convex Vietoris on compact ordered spaces. We now do a similar study for
the convex Vietoris functors on compact ordered spaces.

Notation 6.18. In this subsection, � and � denote the functions from Vc([0, 1])
to [0, 1] that map A to inf A and supA, respectively.

Lemma 6.19. The functions �,� : Vc([0, 1]) → [0, 1] are continuous and order-
preserving.

Proof. The proof of continuity is similar to the proof of Lemma 6.9.
We prove that � : Vc([0, 1]) → [0, 1] is order-preserving. LetK,L ∈ Vc([0, 1]) with

K ≤EM L. Then ↑L ⊆ ↑K , and thus �K = �↑K = inf ↑K ≤ inf ↑L = �↑L = �L.
Analogously, � : Vc([0, 1]) → [0, 1] is order-preserving. �

A family of order-preserving functions (fi : X → Yi)i∈I between posets is said
to be order-separating if x1 � x2 implies that there is i ∈ I such thatf(x1) � f(x2).

Similarly to Proposition 6.13, the proposition below is a special case of [32,
Proposition 3.6].

Proposition 6.20. Let C be a set of continuous order-preserving maps from a
compact ordered space X to [0, 1]. Suppose that C is order-separating and closed under
pointwise application of any continuous order-preserving map from a power of [0, 1] to
[0, 1]. Then C is the set of continuous order-preserving maps from X to [0, 1].
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Proof. We let � : C → homCompOrd(X, [0, 1]) denote the inclusion function. By
hypothesis, C ∈ SP([0, 1]). By Proposition 6.11 and Remark 6.12, there is a
compact ordered space Y and an isomorphism � : homCompOrd(Y, [0, 1]) → C.
Moreover, there is a continuous order-preserving mapf : X → Y such that the map
� ◦ � : homCompOrd(Y, [0, 1]) → homCompOrd(X, [0, 1]) is the precomposition – ◦ f by
f. The function � ◦ � is injective and thus a monomorphism in SP([0, 1]); therefore, f is
an epimorphism inCompOrd and hence surjective. We prove that f is order-reflecting.
Let x, y ∈ X and suppose f(x) ≤ f(y). Then, for every g ∈ homCompOrd(Y, [0, 1]),

(� ◦ �)(g)(x) = (g ◦ f)(x) = g(f(x)) ≤ g(f(y)) = (g ◦ f)(y) = (� ◦ �)(g)(y).

Since the image of � ◦ � is order-separating, x ≤ y. Hence, f is a continuous order-
reflecting bijection, i.e., an isomorphism. Thus, – ◦ f = � ◦ � is an isomorphism,
whence � is surjective. �

The following says that the terms of CoAlg(Vc)op are generated by the terms of
CompOrdop, � and �.

Theorem 6.21. Let X be a set. For every continuous order-preserving map
f : Vc([0, 1]X ) → [0, 1] there is a(n at most countable) set Y, a continuous order-
preserving map s : [0, 1]Y → [0, 1], a family (hy : [0, 1]X → [0, 1])y∈Y of continuous
order-preserving maps, and a family (⊗y)y∈Y of elements of {�,�} such that

f = s ◦ 〈⊗y ◦ Vchy〉y∈Y .

Proof. Let C be the set of ordered-preserving continuous mapsf : Vc([0, 1]X ) →
[0, 1] for which there are a set Y, a continuous order-preserving map s : [0, 1]Y →
[0, 1], a family (hy : [0, 1]X → [0, 1])y∈Y of continuous order-preserving maps and a
family (⊗y)y∈Y of elements of {�,�} such that f = s ◦ 〈⊗y ◦ Vchy〉y∈Y . We shall
prove that C is the set of continuous order-preserving maps from Vc([0, 1]X ) to
[0, 1]. By Lemma 6.19, � and � are order-preserving and continuous, and thus
every function in C is order-preserving and continuous. Since C is closed under every
continuous map from some power of [0, 1] to [0, 1], by Proposition 6.20 it is enough
to prove that C is order-separating, i.e., that for allK,L ∈ Vc([0, 1]X ) withK �≤EM L
there isf ∈ C such thatf(K) �≤ f(L). LetK,L ∈ Vc([0, 1]X ) withK �≤EM L. Then,
either ↑L � ↑K or ↓K � ↓L.

Case ↑L � ↑K . Then there is y ∈ ↑L \ ↑K . By the ordered Urysohn’s lemma [53,
Theorem 1, p. 30] (which applies to compact ordered spaces in light of [53, Corollary
of Theorem 4, p. 48]), there is a continuous order-preserving map h : [0, 1]X → [0, 1]
such that h(y) = 0 and h[K ] ⊆ {1}. Then,

(� ◦ Vch)(K) = �(Vch(K)) = �(� h[K ]) = inf � h[K ] = inf h[K ] = 1,

(� ◦ Vch)(L) = �(Vch(L)) = � � h[L] = inf � � h[L] = inf h[L] = 0.

Then, � ◦ Vc(h) ∈ C and (� ◦ Vc)(K) �≤ (� ◦ Vc)(L).
Case ↓K � ↓L. Then there is y ∈ ↓K \ ↓L. By the ordered Urysohn’s lemma,

there is a continuous order-preserving map h : [0, 1]X → [0, 1] such that h(y) = 1
and h[L] ⊆ {0}. Then,
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(� ◦ Vch)(K) = �(Vch(K)) = �(� h[K ]) = sup �h[K ] = sup h[K ] = 1,

(� ◦ Vch)(L) = �(Vch(L)) = �(� h[L]) = sup �h[L] = sup h[L] = 0.

Then, � ◦ Vch ∈ C and (� ◦ Vch)(K) �≤ (� ◦ Vch)(L).
Since every continuous map f : [0, 1]Y → [0, 1] depends on at most countably

many coordinates, we can take Y to be countable. �

Remark 6.22. Since the terms of rank 0 are generated by finitely many terms [2,
Chapter 7], it follows from the results above that the theory of CoAlg(V) is generated
by finitely many terms. (We simply add � and � to the theory of CompOrdop.)

6.3. Upper and lower Vietoris on stably compact spaces. We now do a similar
study for the upper and lower Vietoris functors.

We recall from Notation 5.14 that [0, 1]↑ (resp. [0, 1]↓) denotes the space whose
underlying set is the unit interval [0, 1] and whose topology is the set of upsets (resp.
downsets) of [0, 1] that are open in the Euclidean topology.

Notation 6.23. In this subsection, � denotes the function from V↑([0, 1]↑) to
[0, 1]↑ that maps A to inf A, while � denotes the function from V↓([0, 1]↓) to [0, 1]↓

that maps A to supA.

Lemma 6.24. The functions � : V↑([0, 1]↑) → [0, 1]↑ and � : V↓([0, 1]↓) → [0, 1]↓

are perfect.

Proof. The proof is similar to the proof of Lemma 6.19. �

Proposition 6.25. Let C be a set of perfect maps from a stably compact space X
to [0, 1]↑. Suppose that C is order-separating and closed under pointwise application
of any perfect map from a power of [0, 1]↑ to [0, 1]↑. Then C is the set of perfect maps
from X to [0, 1]↑.

Proof. Up to the isomorphism between CompOrd and StComp, this is Proposi-
tion 6.20. �

The following says that the terms of CoAlg(V↑)op are generated by the terms of
StCompop and �.

Theorem 6.26. Let X be a set. For every perfect map f : V↑(([0, 1]↑)X ) → [0, 1]↑

there are a(n at most countable) set Y, a perfect map s : ([0, 1]↑)Y → [0, 1]↑, and a
family (hy : ([0, 1]↑)X → [0, 1]↑)y∈Y of perfect maps such that

f = s ◦ 〈� ◦ V↑hy〉y∈Y .

Proof. Let C be the set of perfect maps f : V↑(([0, 1]↑)X ) → [0, 1]↑ for which
there are a set Y, a perfect map s : ([0, 1]↑)Y → [0, 1]↑, and a family (hy : ([0, 1]↑)X →
[0, 1]↑)y∈Y of perfect maps such that f = s ◦ 〈� ◦ V↑hy〉y∈Y . We shall prove that
C is the set of perfect maps from V↑(([0, 1]↑)X ) to [0, 1]↑. As a consequence of
Lemma 6.24, every function in C is perfect. Since C is closed under every perfect
map from some power of [0, 1]↑ to [0, 1]↑, by Proposition 6.25 it is enough to prove
that C is order-separating, i.e., for all distinct K,L ∈ V↑(([0, 1]↑)X ) with K �≤ L
(i.e., L � K) there is a function f ∈ C such that f(K) �≤ f(L). Suppose L � K .
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Then there is y ∈ L \K . By the ordered Urysohn’s lemma, there is a perfect map
h : ([0, 1]↑)X → [0, 1]↑ such that h(y) = 0 and h[K ] ⊆ {1}. Then,

(� ◦ V↑h)(K) = �(V↑h(K)) = �(↑h[K ]) = inf ↑h[K ] = inf h[K ] = 1,

(� ◦ V↑h)(L) = �(V↑h(L)) = �(↑h[L]) = inf ↑h[L] = inf h[L] = 0.

Thus, we have found a function f = � ◦ V↑h ∈ C such that f(K) � f(L). Hence,
C is order-reflecting.

“At most countability” follows from the fact that every perfect map ([0, 1]↑)Y →
[0, 1]↑ depends on at most countably many coordinates. �

The following says that the terms of CoAlg(V↓)op are generated by the terms of
StCompop and �.

Theorem 6.27. Let X be a set. For every perfect map f : V↓(([0, 1]↓)X ) → [0, 1]↓

there exist an (at most countable) set Y, a perfect map s : ([0, 1]↓)Y → [0, 1], and a
family (hy : ([0, 1]↓)X → [0, 1]↓)y∈Y of perfect maps such that

f = s ◦ 〈� ◦ V↑hy〉y∈Y .

Proof. The proof is analogous to the proof of Theorem 6.26. �
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[31] D. Hofmann, Natürliche Dualitäten und das verallgemeinerte Stone-Weierstraß-Theorem, Ph.D.
thesis, University of Bremen, 1999.

[32] ———, On a generalization of the Stone–Weierstrass theorem. Applied Categorical Structures,
vol. 10 (2002), pp. 569–592.

[33] D. Hofmann, R. Neves, and P. Nora, Generating the algebraic theory of C (X ): The case of
partially ordered compact spaces. Theory and Applications of Categories, vol. 33 (2018), pp. 276–295.

[34] ———, Limits in categories of Vietoris coalgebras. Mathematical Structures in Computer Science,
vol. 29 (2019), no. 4, pp. 552–587.

https://doi.org/10.1017/jsl.2024.14 Published online by Cambridge University Press

http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html
https://doi.org/10.1017/jsl.2024.14


DUALITY FOR COALGEBRAS FOR VIETORIS AND MONADICITY 33

[35] D. Hofmann and P. Nora. Dualities for modal algebras from the point of view of triples.
Algebra universalis, 73(3-4): 297–320, 2015.

[36] ———, Duality theory for enriched Priestley spaces. Journal of Pure and Applied Algebra, vol. 227
(2023), no. 3, Article no. 107231, 32 pp.

[37] J. Isbell, Generating the algebraic theory of C (X ). Algebra Universalis, vol. 15 (1982), no. 2,
pp. 153–155.

[38] R. Jansana, Full models for positive modal logic. Mathematical Logic Quarterly, vol. 48 (2002),
no. 3, pp. 427–445.

[39] P. T. Johnstone, Vietoris locales and localic semilattices, Continuous Lattices and Their
Applications (Bremen, 1982), Lecture Notes in Pure and Applied Mathematics, vol. 101, Dekker, New
York, 1985, pp. 155–180.

[40] B. Jónsson and A. Tarski, Boolean algebras with operators. I. American Journal of Mathematics,
vol. 73, 1951, pp. 891–939.

[41] ———, Boolean algebras with operators. II. American Journal of Mathematics, vol. 74 (1952),
pp. 127–162.

[42] A. Jung, Stably compact spaces and the probabilistic powerspace construction, Proceedings of
the Workshop on Domain Theoretic Methods for Probabilistic Processes, McGill University, Montreal,
Canada, April 21–25, 2003, Elsevier, Amsterdam, 2004, pp. 5–20.

[43] C. Kupke, A. Kurz, and D. Pattinson, Ultrafilter extensions for coalgebras, Algebra and
Coalgebra in Computer Science, Lecture Notes in Computer Science, vol. 3629, Springer, Berlin, 2005,
pp. 263–277.

[44] C. Kupke, A. Kurz, and Y. Venema, Stone coalgebras. Theoretical Computer Science, vol. 327,
nos. 1–2 (2004), pp. 109–134.
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