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Modelling ice-divide dynamics by perturbation methods
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ABSTRACT. Two-dimensional, isothermal, non-stationary, cold-glacier dynamics
are analysed by perturbation methods, when the ice creep is described by Glen’s flow
law. This approach allows us to model the ice-divide dynamics separately from that of
the glacier and (o pose a simplified problem for the ice divide, To order of the glacier-
aspect ratio, all unknown characteristics near the ice divide can be searched for in an
infinite layer with parallel boundaries, whose thickness coincides with that found by the
shallow-ice approximation, The problem for the ice divide is stationary and does not
depend on the ice and glacier characteristics, such as a flow-law constant, ice thickness
and accumulation rate. At the ice divide, the ice upper surface curvature is finite and the

shallow-ice approximation is inadequate.

1. INTRODUCTION

The ice divide of a glacier is characterized by the absence of

ice horizontal motion. This simplifies the ice-age dating nec-
essary for palacoclimatic reconstructions. At the same time,
an ice divide is a special region, where for Glen’s flow law, the
shallow-ice approximation ( Morland and Johnson, 1980; Hut-
ter, 1983) breaks down and the full system of Stokes’ equations
is to be solved (Dahl-Jensen, 1989; Fowler, 1992),

Whereas there are many works devoted to the numerical
solution of the problem (Raymond, 1983; Dahl-Jensen,1989;
Szidarovski and others, 1989), analytical treatment has brought
out difficulties associated with assuming simplifications, which
can he inadequate near an ice divide (Reeh, 1988). Morland
and Johnson (1980) have shown that the shallow-ice approxi-
mation gives an infinite upper-surface curvature for the power
flow-law exponent n > 1 when there is no slip at the bed.
Assuming sliding with the “Weertman-type” law gives finite
surface curvature forn =1, n =2, n > 3 and m < 1, where
m is the sliding-law exponent. Hindmarsh (personal commu-
nication) has found that the inclusion of longitudinal stresses
in the model gives finite curvature at the ice divide. Fowler
(1992) sketched an asymptotic analysis, which showed that
neither the vertical shear stress nor the longitudinal one can
be neglected at an ice divide in the isothermal case.

Some characteristics of ice flow near an ice divide have
been shown by a numerical solution of the problem. Ray-
mond (1983) has pointed out that derived velocitics are in-
sensitive to changes of the ice upper-surface profile. His
results for ice velocities also show that the shallow-ice ap-
proximation is valid in an ice divide for a Newtonian fluid
and is not when Glen’s flow law is used. Dahl-Jensen (1989)
has demonstrated numerically that the length of the ice-
divide (singular) zone is of an order of an ice thickness there.

Difficulties in modelling the ice-divide dynamics by
numerical techniques are caused by the small ratio of the
ice-divide length to that of the glacier (it is of order 0.01 or
less). Therefore, the ice motion at the ice divide is modelled
separately from the ice motion in the glacier (Raymond,
1983; Dahl-Jensen, 1989). Although efficient numerical tech-
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niques have been used and tested by many authors (Ray-
mond, 1983; Dahl-Jensen, 1989; Szidarovski and others,
1989), the question of posing the problem at the ice divide is
still open. What region should be considered in modelling
the ice-divide dynamics separately from the glacier motion?
What boundary conditions should be used? How should one
model the non-steady state? And what is the interaction
between the ice divide and the glacier?

Despite the fact that the temperature distribution exerts
a strong influence on the values of the ice velocities
(Morland and Smith, 1983; Raymond, 1983; Fowler, 1992), it
is also necessary to study the isothermal case. Such an
analysis can demonstrate the main structure, which will
persist in non-isothermal ice motion.

In this work, we study two-dimensional, non-steady, isothermal,
cold-glacier dynamics by perturbation methods, when the ice
creep is deseribed by Glen's flow law. The main purpose of this
study is to determine stimplifications admissible in the vicinity of a sym-
metric ice divide and lo address the quesiion: what problem should be
solved to model the ice-divide dynamics in the most simplified way?
The auxiliary assumptions are a no-slip condition at the bed
(Fowler, 1981). regularity of the bed profile at the divide (i.c.
zero first-longitudinal derivative) and absence of mass flux at
the bed. We also neglect the bed local fluctuations, whose
amplitude is assumed to be small in contrast with the ice thick-
ness. Existence of a weak boundary layer near the glacier sur-
face, which does not change the velocity distribution (Johnson
and MeMeeking, 1984), is not taken into account in this study.

Following the theory of perturbation methods (Cole,
1968), we model the ice-divide dynamics by the near-field
solution, whereas the shallow-ice approximation gives us
the far-field problem. A similar approach has been applied
by Johnson and McMecking (1984) in modelling the hound-
ary layer near the ice-free surface.

2. EQUATIONS
2.1. Setting the problem

Considering a two-dimensional glacier, let us place the
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origin of a rectangular righthanded coordinate system (z
axis is directed vertically upwards) at the bed at the ice
divide. Let square brackets on any quantity define its scale
magnitude in the glacier. Let g be the acceleration due to
gravity and p; be the ice density. Table | shows the notation
in the original coordinate system (zariable) and in that
scaled for the glacier (scaled) by scales (Salamatin and Mazo,
1984). This table also shows the notation of the variables in
the coordinate system [or the ice divide (divide) (see section
+: near-field solution for the ice divide). We shall also use the
notation for the partial derivative ¢ = 9¢/ 0.

Table 1. Notation

lariable Defintion Scale Scaled  Divide
& Horizontal coordinate [2] £
1/2(n+1)
[
2 Vertcal coordinate (%) Z y
()" [x]
P Pressure ylz]
P Excess pressure piglz]
p=p —pglf—z) 11 I
{ Upperssurlace elevation [2] L \
20 Bed prolile [:,] Zy 0]
t Time [=1/1f] T T
Ters Tozy Tee Deviatoric stresses = M y L.”{J_]l“'
(s ) \’(‘]u(‘ily veetor (% 3 [f]) (U, W)
i Accumulation rate /] F F
([ Margin clevation £z, ) 2] i
Blt) Glacier margin [] Xon 0
¢ Aspeet ratio [z]/[x] € ¢
L (el ] l/n=1
" Effective viscosity 1 (—I— : ) e fi
1 Flow-law constant | 1
n Flow-law exponent n n

Iee flow, assuming incompressibility of the ice, can be

described by the following Stokes equations:

(‘)I) a7—.f'.l' ‘DTJ‘ ‘. {;,f

=t = pigl’.
dr - Ox 9z 19
ap . Ot . O

e e 1
0z * dz di (1)

Tt Ty =

" " du 0" dw . Ou 2 dw
e = L ==y Ty = b T = L s )=
‘ - aage ; Jz ¢ dz Oz

9 B o 97 (1—=n)/2n

v pbin o du '+ & dw ”+ Adu N dw\’
L =] — Al — r— —_— A
/ ! ir dz dz Oz
D& <t s 29 < 2 2,

The above set of equations must be completed by the follow-
ing boundary conditions.

The glacier upper surface z = €(x) is stress-free and the
kinematic boundary condition is used to determine its
profile:

2 1—2 o ; ,
Taz = _Pm v Tor = _pl A = —ul' +w+ f.

(2)
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The no-slip condition at the bed 2z = z(x) may be assumed
for the cold Antarctic ice sheet, where sliding is negligible
(Fowler, 1981):
= = (3)
At the ice divide z = 0, the mass flux is zero and the (uid
low is symmetric:
dw
u=0,—=0. (1)
or
At the glacier terminus x,, it is sufficient to impose the value
of the glacier-surface clevation:

W) = L. (5)

lor example, £, can be zero [or a grounded glacier or can he
derived from the condition of hydrostatic equilibrium of the
ice in the water for a marine glacier (Chugunov and Wil-
chinsky, 1996).

2.2. Non-dimensionalization

Far from the ice divide, the ice flow is described by the shal-
low-ice approximation (Morland and Johnson, 1980; Hutter,
1983), where the shear stress is much larger than the longi-
tudinal stress. Let us non-dimensionalize the governing
cquations with the scales found by Salamatin and Mazo
(1984) (see also Fowler, 1992) on the basis of similarity
theory (Table 1). Then, dimensionless system of Equations
(1)=(5) can be converted to the following problem for the
stream function ¢ (U = d/0Z, W = —h/0X) and the
unknown upper-surface elevation L (capital letters denote
the dimensionless variables) (Chugunov and Wilchinsky,
in press; for the case of a Newtonian fluid see Chugunov
and Wilchinsky, 1996):

Stream function:

F (P g2 Py
L L _ sl
oz \oz2 ~ € ozox"ozox
2 & [Py LY\ ‘
ot (o~ 2 ) =© &
Py \' (9 T R
s e (axaz) = ('"JZ'-’ - fc)_x(’)

Q= .Y()(,,,, Z(] ok 7
Uppersurface Z = L{X,T):

Py, 0% (1-&L?) = 481 Py
a7z~ axz|v T F )T Y xaz
X .
dL
Y= F——|dX.
U /” ( BT)( (7)
Bl‘(l Z = Z”()() .
0,”',1
=0, 57 0 (8)
Ice divide X = 0:
ov &y
— =0. —=1)-: 9
VA 2 X2 L
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Equation for the surface profile L(X. T):

(L—20? Q[I- iy AIX. DN .,
5 C0=¢| (Moxazt —ax )V

()
+/ (L — Zy)ZydX
X

st A
+[\[ (K. B8 1 e 57 =

(10)
Excess pressure:
. Py 8J(X,Z)
Y = — | P —— fr———— ==
MESp= —¢ [‘"“a,'s)z“L X ]

Loy, 00
J(X.2) = [ e(ﬁ ) dz. 11
) 1, "oz IX° (11)

Margin:
L( Xm) = Lm . (12)

Equations (6) and (7) are derived from Fquannns (1) and (2)
via exclusion of lhc function p. Equation (10) is a result of
successive integration of the first Equation (1) from z to 2y
with respect to z and then from z to 0 with respect to .
The constant C'is to be determined from Equation (12).

Most cold glaciers are characterized by a value of the
parameter € < 1. This parameter is the typical ice-surface
slope and reflects conditions of the glacier existence, such
as the glacier lengths, the accumulation rate and the ice
ViSCOsILY.

3. FAR-FIELD SOLUTION FOR THE GLACIER

We seck an expansion for the stream function and the
glacier surface ¢#), L'®) in the far field as an asymptotic
series in €

9 =4 +0(),
L® = L + O(e).

Then, [rom Equations (6)-(10), we derive the solution des-
cribing Poiseuille flow (Salamatin and Mazo, 1984):

Stream function:

'Ui;[(;m = Q{(H- 1 2)(2 - Z“)(Llf';) — Z[|}“+]
_(L{()?-’J _Z“)n i 2+( (z) &,}u | ?} /(L[(').,) _Z“)u---‘l(“ +1) i

Surface clevation:

ALY [ (n +2)Q
8)( (Ll(;..} i Z“}u+2

L/n

L (Xm) = m-

X
G ] (f«u rf)L:,"‘}/(‘)T)(L\’. (13)
1]

‘onsidering the found solution as the distance [rom the ice
divide X — 0, we obtain:

Stream [unction:
o = (Fo,1) - 9L 0. T)/0T) X
: [(n +2)ZL® )" - L (o)™
H(LE(0) — 2)" ] /L0 (n 4+ 1) + O(X ).
(14)
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(X, Z(,)]dX.

Surface clevation:

L:J}-‘J - l:L(I-.)(U)'.’(l*l/n)

/ I/n ;o if2(n+1)
~2(n +2)""(F(0) — oL ©)/0T) " X1
+O(X2+U”).

Equations (13) allow us to determine the upper-surface
profile of the glacier far from the ice divide. It should be
noted that these equations describe the upper-surface
profile with infinite curvature at the ice divide (Morland
and Johnson, 1980; Hindmarsh, personal communication),
where the solution breaks down. However, it is not true for
the stream function itsell. Because v — 0 as X — O and all
the boundary conditions are satisfied, we have ¢ — 'rj'{(f’j =
O(e). VX The solution breaks down at least for the vertical
velocity —@/dX, which is finite at the ice divide. There-
fore, it is necessary to examine the problem for X —0

(Fowler, 1992) to find the solution at the ice divide.

4, NEAR-FIELD SOLUTION FOR THE ICE DIVIDE

4.1. Equations

It follows from Equations (6) and (14) that the shallow-ice
approximation (shear stresses dominate longitudinal stres-
ses) breaks down when X ~ ¢, because 9?1/ Z* ~ ein this

case (Fowler, 1992), i.e. the shear and longitudinal stresses
are equally significant at the ice divide. In order o analyse
the problem in the vicinity of the ice divide, we use local ex-
pansion of the solution,

Denoting the ice thickness at the ice divide in the scales
of the glacier by Lg. let us introduce the near-field coordin-
ates and variables:

X Z L = Zy
§41:‘1_,(1 'U_L.i' \_Ld' t Ly
Rewriting Equations (6)—(12) in the new variables and neg-
lecting local bed fluctuations, we derive (we
1(0) = 0 because ol symmetry) :

o (P P
o '\ og ~ oe

8 By & (621" 821;’;) ot

also assume

lTya—s’m ~oe"\op " oe

_ |y (L (P SR
e C)Eé)y (‘)yz €2

0<E < too, 0<% (15)

Surface y = x(€) :

P ) ey g PY
[@yﬂ _B—E’J (1 =x) = X5y
s 2E / “(F = OL/OT)d¢
J0
= eLy(F(0) — dLg/dT)E + O(e*).  (16)

Bed y = 9(§) = Z(,(U)&E it O(Fz) = O(Ez) :
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Divide £ =0

a &Y

Ay ag?
Equations (15) (18) define the stream function 2. For the
upper-surface profile y , it follows from Equations (10)-(12)
that we have the following equation:

9 9 *
(x=9)*/2—C) = fL‘l“*-f“’[[ Bdy
Ju

0 +()
+ / (1+ €2Z”]p ( D)dE + € H(U)Z{,(IE]
JE R4S
0
+f/ (x — ) Z,dE,
&= 0 2 =150, =otist. (19)
& ()"11
B, x,&y) = dy.
(. x: & w) ()g), 0& (dy ) dy

R 7
Hedp= *«36,._,, (5? 0£2>d"’]‘

It was used in deriving Equations (17) that near the ice
divide we have the bed profile Z,(X) = O(X?) = O(¢?).

From the boundary conditions for the stream function 1,

'L’
‘)I
{ dEDy

it can be seen that ¢ ~ e. Therefore, to analyse the problem,

let us introduce the normalized stream function

U =t/eLq(F(0) —dLy/dT) 1o have all the derivatives of

order L. Then, the set of Equations (15)-(19) takes the follow-
ing form:

) (02'11 02\1:) a0* PP

a2 oy 0¢ Ayadg # Ay
&> PV P
e ETE =1, 20
05—””(0;,2 ag'-’) (20)

(1—n)/2n

_ 4(02@)1(@_@)1
| \agay dy* o€

U e Sl -foa, st 5,
Surface y = x (&) :

Pw P B O
== I — ) = dx" , U= :
[r').'ﬂ 054 U =x%) =t ey ¥=5+00)
(21)
Bed y = O(€?) :
av
=0, —=0. 22
v By 0 (22)
Divide E=0 :
o 0w
— =) =L, 3
dy o> (23)

Upper-surface elevation y:

i X
> —Ch = 2;1"f”LJ"’1’”’(F(U)fflL‘,/(lT)””[/ Bdy
A
gt i 5
+ [ p==(&9)dE+ O((‘)] + O(€),
Je T Oy?

E=0: x=1; Cy=const; (24)

Fe 9 N (lelf ()‘IJ>
1—+a— Hl| — dy.

B(V. x.£.y) =4 AEDy T
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4.2. EXPANSION IN ¢

It should be noted that at the ice divide all the unknown
functions depend on € and ¢'*Y/", Therefore, we seck the
solution of Equations (20)-(24) as an asymptotic series in e
and et/

Stream function
W(e, e ") =Wy + Ofe).
Bed
?e) =0+ O(e?).
Surface
(e @) = gt o OISy

Unknown constant

Cole, e t17) = A+ H1m 4, 4 O,
For the leading-order terms and for the first-order correc-
tion x; we have the following set of equations, where the
stream_function Wy does not depend on the time and the glacier char-

acleristics ( glacier length, accumulation rate, flow-law constant, ice
thickness ):

K 62‘1';._02111(.) 1 A ) i)""lln
y? A Ny? ag? yoe 2 AMyoE
02 () tII“ ()!‘IJ“
=il 25
df’“( i ds-’) (25)

(L=n)/2n

N 1 (‘).‘Zq’n 2+(()'\I)||_U;)‘I’|| ’
M= DEDY My oe2

D<é <t Doy< .
Surfaceqy=1 ;
PWy Py

oy o8 0 =% (26)
bed 1 =3
v
Gy =0,—2=0. (27)
Ay
Divide £ = 0 :
oA\ 6)21[1”
= = 28
dy oe? (28)
Surface elevation
xo(§) = Ap =1, (29)

3
a(€) = LM (F(0) —d[,d/dT)””[/ Bydy

0
J () ()
= / Byle_gdy + / Ho—gs (E ())d{] (30)
Jo Je
By = B(¥,, L.E- y)-

Deriving Equations (29) and (30}, in order to determine A,
and Ay, we use the expanded initial condition for the surface
clevation x ¢ x4(0) = 1; x4(0) = 0.

The set of Equations (25)—(30) describes the ice flow in
the vicinity of the ice divide. The problem for the stream function
W does not depend on the glacier characteristics except for the flow-
lawe exponent n. For n = 1, formula (14), describing the shal-
low-ice approximation, satisfies Equations (25)-(28). 7o arder
O(e" V™), we can neglect the ice upper-surface stope. However,
because the leading-order term for the ice-surface elevation
is a constant, the solution for the glacier-surface elevation
matched to order O(e!' ™Y") coincides with the far-field one.
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Equation (13), and still has infinite curvature at the ice
divide. Therefore, it is necessary to find the upper-surface
clevation x to higher order of accuracy to ascertain that
the curvature is finite. The ice thickness Lq is to be deter-
mined by matching the far-field solution and the near-field
one.

After matching, the near- and the farficld solutions to
order of €271/", the solution x for the upper-surface cleva-
tion has finite curvature and can be written in the following
form (sce Appendix):

Surface
X = \_,(rll A L((f'](f T)/L:JL)(OT) - \{n).
X{t‘l] e Fl+l/nL;f]}!.](U)'—(1 +1/mn) (F(O)

3 ) . 1/n 1 1
_ OL((]-”(O. T)/()T) [ /l Bydy — / Bole—ody
Jo 0

0 ’,\Il 5
i / o a 2 (E f])dE 5
13

y? |
w8 = 1 4 HmE B g Ott/m) (F(n)

(n+ 2)”"71

1+1/n
A+l &

. L/n i
oL (0,7)/0T) " | Ch —

Ice thickness at the ice divide

Ly = LEO)(1 - €¥7) ;

Il

Al
0 02\1{, Olwx
Cy = [ [M)Wﬂ(f-o) - p (§~“)] dg

y?
1
“/ BUIE ody s
0

50 E / = oy n+2
v 7n+1[(r1+2)y 1+ (1—uy) }

It should be noted that, although the upper-surface ele-

. . g ? 1/n
LP(0) M (F(0) - E)Lf,’“'(U)/c‘)’I‘) Cy,

vation y has finite curvature, it has an infinite third derivat-
ive. Again, the matched to order O(e) stream function has
the first continuous derivatives (i.e. velocities), whereas the
second derivative with regard to X is infinite at the ice
divide due to infinite curvature of the outer upper surface.
This can be eliminated by finding the solution to higher
order of accuracy. To avoid this problem, near the ice divide,
only the near-field solution should be used for determina-
tion of all the characteristics, whereas in the glacier the shal-
low-ice approximation is adequate. It is also seen that to
order O(e' /") the ice thickness at the ice divide coincides
with that found by the shallow-ice approximation (far-field
solution).

Physically, the near-field problem for the stream func-
tion describing the ice-divide dynamics is equivalent to the
full system of Stokes’ equations in an infinite layer with par-
allel boundaries, when the vertical velocity at the ice surface
(f — 0L/dt) does not depend on the horizontal coordinate.
By scaling the spacial coordinates and the velocities on the
layer thickness and the value of vertical velocity at the sur-
face, respectively, which are found by the shallow-ice ap-
proximation, the Stokes’ problem is transformed to a steady
form. For the isothermal case considered here, the steady
Stokes” problem is to be solved only once. The non-steady
solution is derived only by inverse transformation of the
variables.
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Results for the radial case can be derived by the same
procedure as for the linear one (paper in preparation). In
so doing, one can find that all derived estimates as to the
upper surface slope and the ice thickness at the ice divide
do not change.

It is clear that, for the non-isothermal state, estimates as
to the upper surface slope and the ice thickness will not also
change. However, the problem for the ice divide will not be
steady due to the temperature distribution.

4.3. Numerical analysis

Problems (25)-(28) for the stream function ¥y was solved
numerically for the flow-law exponent 7 = 3 and with dis-
cretization length equal to 0.05. The results are similar to
those derived by Dahl-Jensen (1989) for non-isothermal ice
flow. Figure | presents profiles of the vertical velocity
(—0%/09€¢) and the normalized horizontal (OW,/dy) /<.
The results are shown for different £ (distance from the ice
divide). In the vicinity of the ice divide, the profile of the hor-
izontal velocity has an inflection. The far-field solution for
the vertical velocity is valid at a distance from the ice divide
of about one ice thickness, whereas for the horizontal
velocity this distance is about six ice thicknesses (with suffic-
ient accuracy it can be taken as three ice thicknesses).
Figures 2 and 3 present results of caleulations for the
normalized longitudinal deviatoric stress 2ud* W, /080y

32 1121/4

VERTICAL COORDINATE Y

-1 0 1
VERTICAL VELOCITY ~ HORIZONTAL VELOCITY

Fig. 1. Profiles of the dimensionless normalized horizontal

(0T, /dy) /€ and vertical (—OW | OE) velocities. Numbers

02 4 6 8

VERTICAL COORDINATE Y

T T T

1
LONGITUDINAL STRESS DEVIATOR

Fig. 2. Profiles of the dimensionless normalized longitudinal
deviatoric stress 210 0> W | OEDy for different distances from
the ice divide.
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Fig. 3. Profiles of the dimensionless normalized shear stress

p (P W /By — 020, | OE2).

and shear stress ,u“{()2\IJU/E),')B*(')")Q’“/('){: ), respectively. All
the sresses are normalized by their average values. The far-
field solution for the shear stress is valid at a distance from
the ice divide of about two ice thicknesses.

Figures 4-6 present distribution of the horizontal
(O0y/dy) (positive) and vertical (—a¥,/dE) (negative)
velocities as well as the deviatoric shear ;1“(02‘11“/(');.'/"’—
"W, /OE%) and  longitudinal 20 (W /IEDY)  stresses
against the horizontal distance £ Numbers at the lines show
distances [rom the hed in ice thickness.

1.0
0.8 —
>
g i
06—+ 12
2
o}
8 4
(5]
g e 1/4
> 17
0.2 -
- 3
0.0 T T T T T
0 1 3
SHEAR STRESS

Fig. 4. Dustribution of the dimensionless horizontal 9% /Oy
{ posttive) and vertical (=AW, /DE) (negative) velocities
against the horizontal distance from the ice divide. Numbers
at the lines show distances from the bed in ice thickness.

5. CONCLUSIONS

The study carried out in this paper shows that:

In the vicinity of the ice divide, to order of the glacier-
aspect ratio, all unknown characteristics can be searched
for in an infinite layer with parallel boundaries, whose
thickness coincides with that found by the shallow-ice ap-
proximation (far-field solution). Boundary conditions have
simplified forms, which are caused by neglecting the bed-
and ice-surface slopes as well as by independence of the ver-
tical velocity at the glacier surface on the horizontal coord-
inate.

The problem for the ice divide in the specially scaled
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Fig. 5. Distribution of the dimensionless longitudinal deviai-
orie stress 2000~ W 0Dy against the horizontal distance €.

SHEAR STRESS

0 T T T T T

1 2
HORIZONTAL COORDINATE &

Fig. 6. Distribution of the dimensionless shear stress
wo(*Wy [ Oy? — O* W, [OE?) against the horizontal dis-
tance £.

variables is stationary, does not depend on the elacier char-
acteristics  (glacier length, accumulation rate, flow-law
constant, ice thickness) and can be solved separately from
the problem for the glacier.

The steady solution found for the ice divide lets us deter-
mine non-steady characteristics only by stretching spacial
coordinates and the stream (unction,

The upper-surface curvature is finite at the ice divide.

The shallow-ice approximation is invalid at the ice
divide but can be used at a distance from it larger than one
ice thickness for determination of the vertical velocity, and
at distances larger than six and two ice thicknesses for find-
ing the horizontal velocity and the shear stress, respectively.

Results for the radial case can be derived by the same
procedure as for the lincar one. In that case, all derived
estimates as to the upper-surface slope and the ice thickness
at the ice divide do not change.

Perturbation analysis can also apply to the non-iso-
thermal case. The problem for the ice divide will be non-
steady due to the temperature distribution. The fact that
most glaciers are essentially non-isothermal changes values
of all characteristics (Morland and Smith, 1983; Raymond,
1983); however, the kinematic peculiarities of the ice divide
scen in the isothermal case will still be present in the non-
isothermal case (Dahl-Jensen, 1989),
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APPENDIX

In order to match the found solutions, it is necessary to find
U4, the asymptotic form of ¥y, as the horizontal distance
variable & — +00. We search for W* as an asymptotic series
Fil &
E 0
P =0 (y) + 90 (y) + O
Substituting ¥* into Equations (25)—(27), we derive:

= =g (y) =
g[(n L 01 A1 — y)”"ﬂ/(n +1), @Y
g =0.

Equation (30) can be rewritten in the form:

a(© =L (Fo)-

dLy/dT) o /'1 (B~ BOY™)|dy
0

Ll A o
00— (£,0) — 3 1
+ [ o 0 = (6 0)
1 'l
- / Byle—ody + / B(W™)dy
Jo Jo
atl 82.{,3:
+ l/& “.Y. 8'7 ((. U)(](S
It follows from Equation (31) that:
i
/ By — B(U™)]dy — 0,
Jo
/'B(\I'*)dy — 0 as £ — + o0,
J 0

(0 PP ) ””7? y
/ 4> —(£,0)dg = S T,
Je

dy* n+1
azq)‘(} (’)2‘1}.\( % 241 /n)
Moz (&0) = g (60) =00 Lk

Hence, integral
0T 82y o P
/£ [Huw— (£,0) — W(‘f- 0)} dg

converges as £ — +00.
Fventually we obtain:

X1 — L(T“ + I/M(F(O)

1/n {'ra—i-?)””'n 1
N T L +1/n
d “/dT) Ry ———
" ]
& — + o0, C5 = const = / [};,,——;)0 (£,0)
400 ay-
P ‘
gl = e 0)|dE — ody. (32
W o)]m { Bole_ydy.  (32)

Let us rewrite formula (14) for the far-field surface elevation
via the near-field coordinates:

n(n 4

(8) _ 3 _ y—(+2/n) 141/n U F(0
X0 A=k ‘ 7.1 ( (©)

o ; 1/“ i —{1rl/n -1/n 2 n

_aLEF)(U‘T)/UT‘) L((J”(U) (1+1/ J((’-l 1/ a O(E_’+1/ ) .

A= LE(0)/La = Xo + €N + O(EH).

Having matched the far-field surface profile and the near-
field one, we derive:
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