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ABSTRACT

The paper examines a classical risk model where both insurance and reinsurance
policies are chosen by the insurer in order to minimize the expected maximal
loss. We show that the optimal control problem reduces to a static case.
We found that the optimal reinsurance is excess of loss reinsurance and describe
the set optimal insurance policies. Such a policy providing the minimal vari-
ance of the risk left with insured turns out to be a combination of stop loss
and deductible policies. The results are illustrated by two numerical examples.
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1. INTRODUCTION

The model we start from is a classical risk process 

Xt = x + ct –
t

,i
i

N

1=

Y!

where the claim number process {Nt} is a Poisson process with a rate l and {Yi}
are independent identically distributed claim sizes with probability distribution
function F(x) and a finite second moment EY 2 < 3; {Nt} and {Yi} are inde-
pendent. We denote by T # 3 the supremum of the support of F, i.e., the supre-
mum of the set of ‘‘all possible values’’ of the claim size Y. The premium is cal-
culated by the mean value principle so that the premium rate is c = (1 + a)lEY
with a given loading coefficient a > 0 and, thus, the safety loading condition
c > lEY is ensured.

If the insurer is allowed to reinsure the claims, the problems of optimiza-
tion over the classes of proportional and excess of loss reinsurance policies were
studied, correspondingly, in Schmidli (2001) and in Hipp and Vogt (2003).
If the surplus of wealth can be invested into a risky assert, the problem of
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minimizing the ruin probability over the set of investment and proportional
reinsurance policies was considered by Schmidli (2002). A model in which
investment and insurance policies are chosen by the insured who wishes
to maximize the expected utility of consumption was investigated by Gollier
(1994).

The principal difference between the presented paper and previous works
is that we consider the case where it is possible to choose both insurance and
reinsurance policies (investment is not allowed). Criterion to be minimized is
the expected maximal losses over the time period [0,3). While in the above-
mentioned problems the tool for deriving an optimal policy is the Hamilton-
Jacobi-Bellman equation that rarely assumes an explicit solution and usually
requires a numerical solving, a specific form of the criterion in our setting allows
for treatment of the dynamical model without analysis of the HJB equation,
by a reduction to a static case. A model close in some sense to ours is that
in Waters (1983) (see also Gerber (1980)), where an apriori static problem of
maximizing the adjustment coefficient in the Lundberg estimate for the ruin
probability was studied. Unlike the presented model, the insurer there chooses
only a reinsurance policy, a choice of an insurance policy is not allowed.
Note also that we confine ourselves to optimization from the view-point of
the insurer, so design of any Pareto-optimal solutions as that in Raviv (1979)
or in Golubin (2005) is left beyond the scope.

Now we give a formal description of the model. Suppose the insurer to
choose a per-claim insurance of It and per-claim reinsurance of At. That is, if
an insured’s claim size at time t is Y = y then he/she is paid It(y); if the insurer’s
indemnity payment is It(Y) = z then the insurer pays At(z) only, the rest z – At(z)
is covered by the reinsurer. According to the mean value principle, the pre-
mium rate left for the insurer is

ct = l{(1 + a) E It(Y ) – (1 + a1) E [It(Y ) – At(It(Y ))]} = 
(1)

l{EAt(It(Y )) + a1[E At(It(Y )) – dE It(Y )]},

in which a1 > 0 is a reinsurer’s loading, d =
def

(a1 – a) /a1 is a relative difference
between the reinsurance and insurance loading coefficients. Then the insurer’s
wealth follows 

Xt = x + s t ,c ds At
i

Nt
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I Y# ! ^_ hi (2)

with {ti} denoting the claim times. Allowable insurance and reinsurance poli-
cies, I = {It} and A = {At}, are those measurable and predictable with respect
to the information available by t, i.e. with respect to the natural filtration {Ft},
and such that 0 # It(y) # y and 0 # At(z) # z. To prevent arbitrage, we assume
a < a1 since otherwise the insurer can transfer his entire risk to the reinsurer
and thus receive a “free lunch” without any uncertainty.
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As a functional to be minimized by the insurer, we consider the expected
maximal loss (see for definition, e.g., Bowers et al. (Chap. 12, 1986))

EL = s .supE A x c ds
t

t t i

t

i

N

0 01
i i

t

- -
$ =

I Y #! ^_ hi* 4 (3)

In other words, this is the expectation of the maximum excess of summary loss
above summary premium incurred in addition to the initial wealth x. From (3),
as sup sup

t t0 0
$ $$

$ =

! !+ +, we have L $ –x with probability one, where x = X0 is the

initial wealth. The least value EL = –x can be achieved simply by putting
It(y) / 0, which means Xt / x – no insurance contract is made. To avoid this
degenerated case, we impose an additional constraint on admissible insurance
policies: for each (fixed) claim time t,

EIt(Y ) $ M,

where M is a given constant such that 0 < M < EY. In fact, the constraint
defines a lower limit (1 + a)lM for the premium rate the insurer obtains from
insureds.

The optimal control problem we will study is to minimize EL over allowable
policies I and A specified above. Since (2) is a controlled Markovian homoge-
neous process, we can confine consideration to Markov stationary strategies,
i.e, at each moment t = ti of making decision the chosen policies It and At

depend only on the current state x = Xt, not on the past of the process. More-
over, the value function of this problem is 

V(x) = inf
,I A

EL (4)

and, in view of (3), EL = E [L|X0 = 0] – x so that V (x) = V (0) – x. Hence,
the policies at which the infimum in the right-hand side of (4) is attained do
not depend on the current wealth x. Therefore, the class of constant policies
It(y) / I (y) and At(z) / A(z) suffices to solve the problem.

For the case of constant policies, we can use a result in Bowers et al. (1986)
derived for the classical process: EL = EY 2/ (2aEY ). In our model this gives
the following formula for the expected maximal loss 

EL = a EA I Y EI Y
EA I Y

x
d2 1

2

-
-]^ ]]^gh ggh6 @ (5)

where, recall, d = 1 – a/a1 ! (0,1). To ensure that E L is well-defined, in addi-
tion to the made supposition EY 2 < 3 implying EA2(I (Y )) < 3, we require
EA (I (Y )) > dEI (Y ). As is seen from (1), this inequality is just the safety load-
ing condition for the risk process (2) under the constant policies. Note also that
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the initial wealth x does not have an effect on optimal policies. For convenience,
we assume x = 0 throughout the sequel. Thus, the problem under consideration
is the following 

minimize J [I,A ] (6)

where an expression for J [I,A ] is given by (5) with x = 0, and minimization
is taken over the set of Borel-measurable functions I (·) and A(·) that satisfy:
0 # I (y) # y, 0 # A(z) # z, EI (Y ) $ M, and EA(I (Y )) > dEI (Y ).

Remark in conclusion that throughout the text a coincidence of policies
( I�, A�) = ( I �, A�) is understood with probability one, I�(Y ) = I�(Y ) and
A�(I�(Y )) = A�(I �(Y )) almost surely (a.s.).

Section 2 deals with two simplified variants of the general problem (6):
first, without the possibility of reinsurance and under a constrained premium
rate and, second, minimization of J over reinsurance policies only. For the
first case we show that the optimal insurance policy is a stop loss policy I*(y) =
y / k* having the minimal possible expectation EI*(Y ) = M (here y / x denotes
min{y, x}). In the second problem, the optimal share of risk retained by the
insurer, A*(Y ), is proved to be a stop loss policy1 A*(Y ) = Y / a*. An optimality
condition uniquely determining the retention level a* is derived. In section 3
we study the general case where both insurance and reinsurance are applied.
While a unique optimal reinsurance still remains a stop loss policy, the opti-
mal insurance policies constitute a whole class. The structure of this set is
described. An interesting point seems that there is a unique optimal insurance
policy I*(y) characterized by the least value of the insured’s coverage variance.
The policy turns out to be a “hybrid” of stop loss and deductible policies and
is defined by a pair of parameters. The results of sections 2 and 3 are illustrated
by numerical examples involving uniform and exponential distributions of the
claim size.

2. PRELIMINARY RESULTS

2.1. Optimization over insurance policies

Consider a particular case of the above-described model where reinsurance is
not allowed or, in our notation, the retention function of the insurer is set to
be A(z) / z. Then problem (6) takes the form 

minimize J [I ] / a EI Y
EI Y

2

2

]] gg subject to EI (Y ) $ M. (7)
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Examine first an auxiliary problem with a fixed mean of insurance coverage 

inf
:I EI Y m=] g J [I ], (8)

where parameter m ! [M, EY ]. Since the goal functional is increasing in EI2(Y )
under a fixed value of EI (Y ), minimization in (8) reduces to minimization of
EI 2(Y ) under the constraint EI (Y ) = m.

Solution to the latter problem is well known. It is a direct consequence of
a result in Ohlin (1969) (see also Kaluszka (2004)) that for a given M, the risk
sharing I*(Y ) = Y / k, where k is such that EI*(Y ) = m, is less risky than any
other risk sharing I (Y ) with EI (Y ) = m in the sense that E [I*(Y )2] # E [I (Y )2].

We present below another way of proving the optimality of the stop loss
policy that employs the Neyman-Pearson lemma. Methodologically, this is
justified by that we will further apply the Neyman-Pearson lemma to a more
complicated setting of the optimization problem, where both insurance and
reinsurance are allowable.

As the functional EI 2(Y ) is convex in I on the convex set of admissible
policies, a policy I*

m minimizes EI 2(Y ) if and only if the derivative 

d
d
r E{rI*

m(Y ) + (1 – r) I (Y )}2|r =1 = 2 m
*I

T

0
# (x) [I*

m(x) – I (x)]dF(x) # 0

for any admissible I. In other words, I*
m is a solution to a problem 

m
*min I

I

T

0
# (x)I (x) dF(x)  subject to I

T

0
# (x) dF(x) = m.

Optimal policies in this kind of optimization problems are characterized by the
generalized Neyman-Pearson lemma (see, e.g., Lehmann (1959)). The lemma states
that an admissible I*

m is optimal if and only if there exists a constant k such that

m
m

m

*
*

*

>

<
I y

I y k

y I y k

if

if

0 0

0
=

-

-
^ ^

^h h
h* up to a set of zero F-measure.

As is easily seen, the only function satisfying this condition is I*
m(y) = y / k

with k = km uniquely determined by E [Y / k] = m, that is, x dx mF
0

=
k# ] g where

F(x) =
def

1 – F (x).
Return to problem (7). Apparently,

.inf inf infJ I J I
: , :I EI Y M m M EY I EI Y m

=
$ ! =] ]g g6 5 6@ ? @

Since the inner minimum in the right-hand side is attained at I*
m(y) = y / km,

we can replace the infimum over m ! [M,EY ] by infimum of J [I ] over all
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I (y) = y / k, k ! [kM,T ] . Inserting the stop loss policy into expression (7) for
J [I ], we have J [I ] |I (y)=y / k = xk

0
# F(x)dx /{a Fk

0
# (x)dx}. Differentiating with

respect to k gives that this function is increasing in k, therefore the optimal
I*(y) = y / k* with k* = kM. Thus the following proposition has been proved.

Proposition 1. Problem (7) has a unique solution, a stop loss policy I*(y) =
y / k*, where the level k* is a unique root on (0,T ) of the equation 

.x dx MF
k

0
=# ] g

The stop loss form of optimal policy I* is not surprising in view of a result in
Bowers et al. (Chap. 13, 1986) where a similar fact was proved for a problem
under a constraint EI (Y ) = M and with another criterion, the adjustment
coefficient of the Lundberg inequality for the ruin probability. A more com-
mon insurance arrangement in practice is a deductible policy I (y) = (y – d )+.
Formally, the deductible policy appears as optimum in a static problem of
maximizing the insured’s expected utility when the premium is defined by
the mean value principle, while the stop loss policy maximizes the expected
utility of the insurer (see, e.g., Raviv (1979) or, for a case of a group of insureds,
Golubin (2006)). In section 3 we will show that if the insurer has a possibility
to use reinsurance also, then there exists an optimal insurance coverage,
called an SD-policy, of a more “habitual” form that resembles the deductible
policy.

Note also that EI*(Y ) takes the least possible value equal to M. As was
noted above, the optimal criterion value J [I*] increases as k* increases, hence,
J [I*] is increasing with M. The same is true for the premium rate (1 + a)lM.
So in a situation when the insurer may choose both M and I, the choice can
be regarded as a trade-off of the received premium rate against the expected
maximum loss under optimal I*(y) = y / k*, where k* = kM.

2.2. Optimization by reinsurance

In this subsection we suppose that risk exchange between the insurer and an
insured is not allowed so that the insurer chooses a reinsurance policy only.
Then the optimization problem is

minimize J [A ] / a EA Y EY
EA Y

d2 1

2

-] ]g g6 @ subject to EA (Y ) > dEY, (9)

where d = 1 – a /a1. Denote by a0 ! (0,T ) the root of the equation Fa

0
# (x)dx =

dEY, i.e., the retention level in a stop loss policy under which the denomina-
tor in (9) becomes zero.
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Proposition 2. Problem (9) has a unique solution, a stop loss policy 

A*(z) =
>

,

z a if T

z if T

c

c

� 0

0

/

#

]
]

g
g* (10)

where a� is a unique root on (a0,T ) of the equation c(a) = 0 with 

.a x dx Y a x x dxc dEF F
a a

0 0
= - -

def # #] ]c ]g g m g (11)

Proof. Similar to the proof of Proposition 1, first we consider a constrained
problem 

minimize J [A ] subject to EA(Y ) = m,

where parameter m ! (dEY, EY ]. From (9) it follows that the goal functional
is increasing in EA2(Y ) under a fixed value of EA(Y ). Therefore, by the same
reasonings as that in Proposition 1, we show that the only solution to the con-
strained problem is a stop loss policy. Inserting A(z) = z / a into (9), we obtain
the function x

a

0
# F(x) dx/{a1[ Fa

0
# (x) dx – dEY ]} on a ! (a0,T ]. Differentia-

ting with respect to a gives that the sign of the derivative coincides with the
sign of the above-defined c(a). Since c(a0) = – x

a0

0
# F(x)dx < 0 and c�(a) =

Fa

0
# (x)dx – dEY > 0, condition (10) is necessary and sufficient for optimality.

¡

The optimal reinsurance found in Proposition 2 is an excess of loss reinsurance.
This kind of reinsurance coincides with that in the static problem of maximizing
the adjustment coefficient (see Waters (1983)) and in the dynamical problem
of minimizing the ruin probability in Hipp and Vogt (2003). Of course, due to
the differences in the problem settings, the optimality equations determining
there a retention level a* differ from (10)-(11).

One can see that as the function in (11) is decreasing in d, the optimal reten-
tion level a� increases versus an increase in d = 1 – a /a1. When the boundary
value a� = T is achieved, it means that A(z) / z and the insurer retains the entire
risk. Hence, the inequality c(T ) # 0 in (10) is equivalent to insurer’s refusal to
use reinsurance. This inequality can also be rewritten as 

T /a1 # EY 2 / (2aEY ),

where the right-hand side is exactly the expected maximal loss without use of
reinsurance. In the case of unbounded support of claim size distribution (e.g.,
an exponential distribution with suppF = [0,3) so that T = 3), we have that
the level a� in the optimal stop loss policy A*(z) = z / a� is always finite, for
any shape of the support of F(x). Thus, in this case the insurer always applies
for the reinsurance.
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Example 1. Consider the case of exponential distribution F(x) = 1 – exp(–x/m),
x $ 0. Inserting the expression for F(x) into (11), we have c(a) = m(a(1 – d ) –
m(1 – exp[– a/m ] )) on (a0,3), where a0 = – m ln(1 – d ). Set a = 0.5, then solving
the optimality equation c(a) = 0 yields the results

390 A.Y. GOLUBIN

m = 1

a1 0.6 0.8 1 1.2 1.4 1.6
a* 0.376 1.027 1.594 2.109 2.588 3.048

m = 10

a1 0.6 0.8 1 1.2 1.4 1.6
a* 3.764 10.277 15.936 21.086 25.899 30.482

The table shows that an increase in the reinsurer’s loading a1 as well as an
increase in m leads to a greater value of the (finite) optimal retention level a*.

3. THE GENERAL CASE

In this section we study problem (6) at full extent, i.e., allowing both insurance
and reinsurance policies to be applied (see section 1):

minimize J [I,A ] / a EA I Y EI Y
EA I Y

d2 1

2

-]^ ]]^ gh ggh6 @ (12)

subject to 0 # I (y) # y, 0 # A(z) # z, EI (Y ) $ M, and EA(I (Y )) > dEI (Y ).
Further, similar to Proposition 2, we will need the notation a0 and a1 for

the roots of the equations Fa

0
# (x)dx = dM and Fa

0
# (x)dx = M correspondingly,

that can be regarded as retention levels of some stop loss policies of reinsurance.

Theorem 1. A unique optimal reinsurance policy in problem (12) is A*(z) = z/ a*,
where

a* =
> ,

a if a

a if a

f

f�

0

0

1 1

1

#`
`

j
j* (13)

a� is the only root on (a0, a1) of the equation f(a) = 0 with

.a x dx a x x dxf dMF F
a a

0 0
= - -# #] ]c ]g g m g
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The set of optimal insurance policies is constituted by the functions 

I*(y) =
*

* * *>

y if y a

a I y y if y a

#

# #^ h* satisfying EI*(Y ) = M. (14)

Proof.

Lemma 1. There exists a solution to problem (12).

The proof is given in Appendix.

Let (I*, A*) be a solution to (12), that does exist by Lemma 1. We will show
that this implies that the optimal policies take the forms specified in (13)-
(14). Then, as any such solution gives (see (12)) the same value of the goal
functional,

J [I*, A*] = E(Y / a*)2 / {2a1[E (Y / a*) – dM ]},

we will obtain the set of all optimal policies.
Policy A* solves the problem min

A
J [I*,A], therefore A*(z)=z/ a* for an appro-

priate a* as determined in Proposition 2. Consider now a problem min
I

J [I , A*]
with an additional constraint EI (Y ) = m*, where m* = EI*(Y ) (with m* $ M ).
Like in the Proposition 1’s proof, define Ir = rI* + (1 – r)I then 

d
d
r J [Ir, A*]|r =1 # 0

for any admissible I as I* is optimal in the problem above. After differentiating
(see (5)), we get the left-hand side of this inequality

* *

* * * *

r r
2

< ,

d
d E Y a d

d E Y a

I x a I x I x I x dF xI

b r g r

b g2
T

r r1 1

0

/ /+ =

+ -

= =

I I

#

] ]
] ] ] ]^ ]

g g
g g g gh g

8 8
6
B B

@" ,

where I{·} denotes the indicator function, b > 0 and g < 0 are the partial deriv-
atives of J with respect to E [Ir(Y ) / a*]2 and E [Ir(Y ) / a*] correspondingly.
Thus, I* is a solution to a problem

minimize q
T

0
# (x) I (x) dF(x) (15)

subject to 0 # I (x) # x, I
T

0
# (x) dF(x) = m*, (16)
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where q(x) = I{I*(x) < a*} [2bI*(x) + g ] . Applying the generalized Neyman-
Pearson lemma, we have that an admissible I* solves (15)-(16) if and only if
there exists a constant C such that 

I*(y) =
<

>

y y C

y C

if

if

q

q0

^
^
h
h* (17)

except, possibly, a set of zero F-measure.
In order to determine the value of C, suppose at first that C > 0. Then

q(y) / 0 on [a*,T ] so that I*(y) / y and m* = EY. One can choose another I
such that I (y) = y on [0, a*], I (y)$ a* on (a*,T ], and EI (Y ) < EY. From expres-
sion (5) for J [I ,A*], where A*(I (Y )) = Y / a*, it follows that J [I ,A*] < J [I*, A*],
which gives a contradiction.

Suppose C # q(0) (= g < 0). Then from (17) we have I*(y) / 0 (the identity
is understood as satisfied for y ! suppF ) that contradicts the inequality m* > 0.
If g < C < 0 then, by (17), I *(y) = y / a for some a such that 2ba + g = C.
The function 2ba + g = 0.5–1a1[E (Y / a) – dm*] –2 [2(E (Y / a) – dm*) – E (Y / a)2]
coincides up to a positive multiplier with c(a) defined in Proposition 2, where
EY is replaced by m*. Therefore a < a*. However, I*(Y ) # a a.s. and, accord-
ing to Proposition 2, the optimal a* cannot be greater than a. The only feasi-
ble case here is that a* coincides with the greatest possible value of I*(Y ), so
that I*(y) = y / a*.

If C = 0 then, by (17) and by that q(y) = C = 0 on [a*,T ], we finally obtain
I*(y) = y for y # a*, and I*(y) $ a* for y > a*.

Show now that the constant m*(=EI*(Y )) is equal to M, the left boundary
of admissible values of EI (Y ). As was noted above, A*(I*(Y )) =Y / a* and,
hence, J [I*, A*] is influenced by the form of I*(y) on (a*,T ] through the value
EI*(Y ) only. Therefore (see (5)), the optimal choice of I*(y) on (a*,T ] must
minimize EI*(Y ) subject to I*(y) $ a* and EI*(Y ) $ M. To prove that this
minimal value is M, suppose at first that a* > a1. Hence I*(y) / y / a* and
EI*(Y ) > M. On the other hand, since I*(y) / A*(I*(y)), the insurer can, by
Proposition 1, choose a better a : Fa

0
# (x)dx = M, therefore a* # a1. Then the

optimal choice of the function I*(y) on (a*,T ] must give EI*(Y ) = M. Note that
the degenerated case a* = a1 means I*(y) / y / a1.

Applying Proposition 2, we obtain that the optimal level a* # a1 is uniquely
determined by (13). Further, any function I*(y) from the set (14) coupled with
A*(z) = z / a* gives the same optimal value J [I*, A*]. Thus (13)-(14) determine
the set of all solutions to (12). ¡

Theorem 1 states, in particular, that after determining the retention level a*,
the insurer has typically an infinite set of optimal insurance policies defined
in (14). He is indifferent to a choice among them — each such a policy I* gives
the same optimal value J [I*, A*]. To proceed with analysis of problem (12), we
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FIGURE 1: An SD-policy of insurance.

introduce a kind of insurance policies that, as we will see, turns out to be the
“best” from a view-point of the insured among all the insurance policies I* opti-
mal in (12). A two-parameter policy 

I a,d(y) =
<

,

y a y d

y d a y d

if

if

/

$- -] g*

where 0# a# d, will be called an SD-policy. In other words, it is a combination
of a stop loss policy y / a and a deductible policy (y – d )+. Such a policy with
a = 1 and d = 3 is presented on Fig. 1. It is seen that an SD-policy may be
regarded as a generalization, in some sense, of a deductible policy in which,
however, insurance payment up to level d is not zero but a stop loss payment.
Under the introduced policy, the insurer takes the “tail” of claim size distribu-
tion and leaves a “medium” share of insured’s risk Y – I a,d(Y ) = (Y – a)+ / (d – a)
with the insured. From the view-point of a potential policyholder, this kind of
insurance seems more attractive than the stop loss insurance obtained in Propo-
sition 1, where the insurer pays all small claims and pays only a threshold k
for large claims.

Corollary 1. A unique insurance policy I*, which is optimal in (12) and provides

a minimal variance of the risk W =
def

Y – I*(Y ) covered by the insured himself, is
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an SD-policy Ia*,d*(y), where a* is given by (13) and d* is the only root of the
equation 

*
.x dx x dx MF F

a

d

T

0
+ =# #] ]g g (18)

Proof. Fix any optimal policy I*, then the corresponding insured’s coverage is

W(Y ) = Y – I*(Y ) =
*

* *>

Y a

Y I Y Y a

if

if

0 #

- ] g* as follows from (14). Minimization

of the variance VarW(Y ) = EW 2(Y ) – [EW (Y )]2 reduces to minimization of
the second moment EW 2(Y ) as the mean value is given, EW(Y ) = EY – M.
This leads to a problem 

*
min W x dF x

I a

T 2# ] ]g g subject to
*

.W x dF x EY M
a

T
= -# ] ]g g

Here, by the definition of W (y) and definition of the set of I*(y) in (14), min-
imization is taken over the functions W(·) that satisfy 0 # W(y) # y – a* on
y ! [a*, T ]. As before, applying the generalized Neyman-Pearson lemma, we
have that the only solution to the problem is W(y) = (y – a*) / (d* – a*), where
the level d*($ a*) is determined by EW(Y ) = EY – M. Recall that W(y) = y –
I*(y), then the solution found can be rewritten in terms of insurance policy as
I (y) = y – W(y) = (y – (d* – a*))+ on y ! [a*, T ]. Since any optimal insurance
policy equals y on [0, a*], we can extend I on the whole interval [0,T ] and
thus obtain the SD-policy Ia*,d*(y) indicated in the statement of Corollary 1.
The equation EW(Y ) = EY – M uniquely determining d* can clearly be put as
EI a*,d (Y ) = M which coincides with equation (18). ¡

When the pair of optimal policies (Ia*,d*, A*) are applied, the reinsurer’s indem-
nity Ia*,d*(Y ) – Ia*,d*(Y ) / a* = (Y – d*)+ is of the same form as his indemnity
(Y – a�)+ in the problem without insurance optimization in subsection 2.2.
As stated in Corollary 1, the particular choice by the insurer of Ia*,d* as an opti-
mal insurance policy makes the related insured’s risk W = Y – Ia*,d*(Y ) more
attractive for insured, since the variance Var W is the least among values VarW
when I* runs over the set of all optimal insurance policies. The inequality
f (a1) # 0 in (13) plays the same role as the inequality c(T ) # 0 in Propo-
sition 2: it means that the reinsurer’s loading a1 is large enough for the
insurer to refuse reinsurance and retain his entire risk, which is in this case
I*(Y ) =Y / a1 because d* = T by (18).

Remark also that, like in the choice of insurance policy only (Proposi-
tion 1), the expected insurer’s indemnity (without regard to reinsurance) takes
the minimum of possible values, EI*(Y ) = M.

Example 2. Here F(x) is the uniform distribution on [0,1], so that T = 1 and
EY = 0.5(>M ). To determine a solution to problem (12), first we find the
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retention level a*. The function f(a) takes the form a(a/2 – a2/6 – dM ) on a !
(a0, a1), where the boundary points a0 = 1 – Md1 2- and a1 = 1 – M1 2-
(recall that d = 1 – a /a1). Therefore from (13) we have 

a* =
/

. /

M M M M

M

if

otherwise

d

d

1 1 2 1 2 1 2 6

1 5 1 1 8 3

$- - + - -

- -

_ ]
_

i g
i*

Solving equation (18) with respect to d gives d* = 1 – * 2a M1 2 1- + -] g .
Thereby, the optimal stop loss policy A*(z) = z / a* and SD-policy I*(y) =
Ia*,d*(y) are completely defined. The table below presents numerical results for
a case of a fixed insurer’s loading a = 0.5.
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M = 0.25 M = 0.4

a1 0.6 0.8 1 1.2 0.6 0.8 1 1.2
a* .086 .201 .275 .293 .139 .338 .475 .553
d * .421 .628 .839 1 .264 .512 .725 1
EL .143 .251 .275 .276 .233 .423 .475 .482

The critical value d = (1 + 2M – M1 2- ) / (6M) in the case M = 0.25 corre-
sponds to reinsurer’s loading a�1 = 1.06 under which the function f(a) becomes
positive when a passes through a1 = 0.293 (see (13)). For any a1 $ 1.06 (see
the fifth column), a* and d* remains equal to a1 = 0.293 and 1. This situation
means rejection of reinsurance, the optimal insurance is then a stop loss policy
Ia*,d*(y) |d*=1 = y / 0.293. In the case M = 0.4, the related figures are a�1 =
1.145 and a1 = 0.553 so that a* = 0.553 and d* = 1 for any a1 $ 1.145. One can
also see that a growth of M, the low limit of values of EI(Y ), increases the
first retention level a* and has an opposite effect on d*. The reinsurer’s cover-
age of the claim Ia*,d*(Y ) – Ia*,d*(Y ) / a*) = (Y – d*)+ increases since the level d*

lessens.

Remark 1.
Concerning a direction for future research, it seems interesting to study similar
insurance and reinsurance optimization problems with other goal functionals.
Such a criterion may be the ruin probability as in Schmidli (2002), or the
expected discounted utility of consumption as in Gollier (1994), or the expected
utility of risk exchange in a static setting similar to Golubin (2002). It is believed
(but has not been proved yet) that optimal reinsurance and insurance policies
will be still of the forms A*(z) and I*(y) indicated above (i.e., a stop loss policy
and an SD-policy), provided that:

(i) the decision maker choosing insurance and reinsurance policies is the insurer,
a choice among the set of his optimal policies is made by the insured;
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(ii) insurance premium (possibly, under a constraint as in our setting) and
reinsurance premium are defined by the mean value principle.

Of course, the parameters a* and d* in the policies A* and I* may now depend
on the current wealth Xt and, in a non-stationary model, on the time t. Opti-
mality equations for the parameters may be quite different from those in The-
orem 1 and Corollary 1, but the very forms of optimal policies will perhaps
remain the same.

APPENDIX

Proof of Lemma 1.

Denote by P the set of admissible policies (I,A) in (12). Let {In,An} 1 P be

a sequence minimizing (12), that is, lim
n "3

J [In,An] = J* inf
,I A P!

=
def

] g J [I ,A]. For 

example, the sequence {In,An} can be chosen such that J [In,An] # J* + 1/n.
Show first that the denominator in (12) is bounded away from zero: there exists
e > 0 such that EAn(In(Y )) – dEIn(Y ) $ e for all n. Suppose the contrary then,
by the same reasonings as in the Proposition 1’s proof, we have EA2

n(In(Y )) $
E [In(Y ) / a�] for some a� > 0 and all n. The numerator in (12) is thus bounded
away from zero uniformly in n. Hence, the supposed convergence EAn(In(Y )) –
dEIn(Y ) . 0 contradicts the minimizing property of {In,An}.

By Helly’s theorem, there exists a subsequence {Ik(Y ), Ak(Ik(Y ))} weakly
converging to a pair (z,j). To prove that z and j are proper stochastic values,
note that Ik(Y ) #Y and Ak(Ik(Y )) #Y a.s. Hence, the corresponding distribu-
tion functions FI

k(x) $ F(x) and FA
k (x) $ F(x), therefore the limits z and j are

such that P{z < 3, j < 3} = 1. Since z is measurable with respect to a sigma-
algebra s(Y ) generated by Y and 0 # z #Y a.s., the limit z can be represented
as z = I*(Y ) for some admissible indemnity function I*(y). Analogously, the
other limit j can be represented as j = A*(I*(Y )) for some admissible reinsur-
ance policy A*(z). Finally, the fact that J* = J [I*, A*] follows from the proved
weak convergence and finiteness of the expectations EI*(Y ), EA*(I*(Y )), and
E [A*(I*(Y ))2]. ¡
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