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Abstract

Biodiversity varies worldwide and is influenced by multiple factors, such as environmental
stability and past historical events (e.g. Panama Isthmus). At the same time, organisms
with unique life histories (e.g. parasites) are subject to unique selective pressures that structure
their diversity patterns. Parasites represent one of the most successful life strategies, impacting,
directly and indirectly, ecosystems by cascading effects on host fitness and survival. Here, I
focused on a highly diverse, prevalent and cosmopolitan group of parasites (avian haemospor-
idians) to investigate the main drivers (e.g. host and environmental features) of regional para-
site diversity on a global scale. To do so, I compiled data from 4 global datasets on (i) avian
haemosporidian (malaria and malaria-like) parasites, (ii) bird species diversity, (iii) avian
functional traits and (iv) climate data. Then, using generalized least square models, I evaluated
the effect of host and environmental features on haemosporidian diversity. I found that hae-
mosporidian diversity mirrors host regional diversity and that higher host body mass increases
haemosporidian diversity. On the other hand, climatic conditions had no effect on haemos-
poridian diversity in any model. When evaluating Leucocytozoon parasites separately, I found
parasite diversity was boosted by a higher proportion of migratory hosts. In conclusion, I
demonstrated that haemosporidian parasite diversity is intrinsically associated with their
hosts’ diversity and body mass.

Introduction

Variation in global biodiversity is ruled by several historical and ecological factors, such as
environmental stability and productivity and major geographical events (e.g. the formation
of the Panama Isthmus a few million years ago). For instance, regions thought to be more pro-
ductive and stable through evolutionary time harbour greater biodiversity (e.g. neotropics)
(Rull, 2011). Increases in environmental productivity and stability could promote greater
niche partitioning, thus enhancing species diversification, and as a result, expanding regional
biodiversity (Rull, 2011; Burin et al. 2021). However, the exact mechanisms that promote
increases in biodiversity are still not well understood. Nevertheless, the drivers of biodiversity
should be intrinsically associated with their life histories and strategies. For instance, since
parasites extract their resources from their hosts, these organisms require the presence of com-
petent hosts to colonize and/or thrive in certain regions (Mestre et al. 2020). At the same time,
internal parasites and other symbionts are only indirectly affected by climatic conditions since
they are often not directly exposed to the environment. Hence, parasite/symbiont diversity is
subject to specific evolutionary and ecological pressures that can differ from those affecting
free-living organisms.

Host biodiversity has been identified as one of the main predictors of parasite diversity
(Kamiya et al., 2014a, 2014b; Martins et al., 2020). Indeed, host biodiversity can enhance para-
site diversity by (i) increasing colonization options (more species available), (ii) segregating
parasite species populations and, (iii) supporting a greater variety of parasite life cycles
(Hechinger and Lafferty, 2005). In addition, since parasites can coevolve with their hosts
(Park et al., 2020; de Angeli Dutra et al., 2022a), host diversification events might promote
parasite speciation due to the niche partitioning process (i.e. parasite specialization into a sin-
gle new host species). Furthermore, host functional traits can directly affect parasite life cycles
and, consequently, promote or reduce diversification. For instance, heavy-bodied hosts har-
bour higher parasite diversity (Kamiya et al., 2014a). Migratory behaviour provides an oppor-
tunity for parasites to reach new regions of the globe, expanding their geographical and host
range (de Angeli Dutra et al., 2021; Poulin and de Angeli Dutra, 2021). On the other hand, the
resident host fauna can also enhance parasite diversity by providing a stable resource.
Meanwhile, territoriality may reduce interactions among species. As a result, resident and ter-
ritorial fauna could enable greater diversification via niche partitioning processes and
speciation.

Environmental features also shape species diversification by driving (i) regional productiv-
ity and ecosystem energy levels, (ii) biological tolerance levels (i.e. harsher environments tend
to present lower levels of biodiversity) and (iii) ecological stability over evolutionary time. The
latter (i.e. ecological stability) can enhance diversification because stable environments allow
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species to specialize in particular resources, increasing the
availability of vacant niches and, consequently, increasing
opportunities to diversify into new species. Naturally, certain
environmental conditions are more likely to result in species
diversification than others. For instance, diversity is concentrated
in the tropics (i.e. more productive and stable regions), a trend
known as the Latitudinal Diversity Gradient (Hillebrand, 2004;
Rull, 2011). Environmental features can directly or indirectly
affect parasite life cycles depending on their life strategy (de
Angeli Dutra et al., 2022b). Vector-borne parasite distribution is
often associated with climate conditions, due to, for example,
thermal constraints in parasite development (Lapointe et al.,
2010; Mordecai et al., 2013). Hence, environments that offer bet-
ter conditions for vector development (e.g. high temperature and
precipitation) are expected to harbour greater prevalence and
diversity of vector-borne parasites (McNew et al., 2021; Fecchio
et al., 2021b). Likewise, since vectors are ectothermic organisms,
the external temperature might directly shape parasite develop-
ment, transmission, and, as a result, diversity.

Avian malaria and malaria-like (haemosporidian) parasites are
cosmopolitan protozoan vector-borne parasites transmitted by
dipterans (Valkiūnas, 2005). They are mainly represented by 3
distinct genera: Plasmodium, Haemoproteus and Leucocytozoon.
Avian haemosporidians are among the most prevalent and diverse
avian parasites, comprising more than 300 distinct species and
4000 unique parasite lineages (Valkiūnas, 2005; Bensch et al.,
2009). Due to the relevance of vector-borne diseases to human
health, these parasites are frequently used as ecological models
of host–parasite interactions. Previous studies have culminated
in an online global database on avian malaria and malaria-like
parasites established in 2009 and updated ever since (MalAvi
http://130.235.244.92/Malavi/, Bensch et al., 2009). In addition,
information regarding their hosts’ (i.e. birds) distribution, bio-
diversity and functional traits is extensive and easily available
online. Hence, avian haemosporidians represent the ideal model
system to investigate the drivers of parasite diversity worldwide.

Previous research on haemosporidians has also accessed dri-
vers of haemosporidians on a global scale (Clark et al., 2014;
Clark, 2018), evaluating the role of host hot spots, latitude and cli-
mate. Here, I evaluated for the first time the effect of host phylo-
genetic diversity and functional traits (e.g. territoriality, migratory
status, range size and body mass) on haemosporidian phylogen-
etic diversity at a global scale. Like former research, I have also
included climatic conditions (i.e. temperature and precipitation
patterns) in my analyses. Here, I predicted that (i) bird phylogen-
etic diversity and functional traits drive parasite diversity and (ii)
haemosporidian diversity increases with higher temperature and
precipitation rates. My goal was to uncover the main drivers of
avian haemosporidian diversity.

Methods

Dataset

I obtained data from 4 open online datasets to conduct this
research. Firstly, the MalAvi (http://130.235.244.92/Malavi/)
(Bensch et al., 2009) database was used to extract data on haemos-
poridian (i.e. Plasmodium, Haemoproteus and Leucocytozoon)
using the function ‘extract_table’ from the ‘malaviR’ package in
R in November 2021 (R Core Team, 2017). MalAvi contains
records of haemosporidian parasites for each site sampled.
Here, however, I excluded from the analyses all sites with fewer
than 10 records (Fig. 1). Bird distribution polygon format files
were acquired from BirdLife International (https://www.birdlife.
org/) (BirdLife International and Handbook of the Birds of the
World (2020) Bird species distribution maps of the world.

Version 2020.1. Available at http://datazone.birdlife.org/species/
requestdis.).

Bird functional traits (i.e. body mass, range size and territori-
ality) data were extracted from Open Traits datasets (https://
opentraits.org/datasets.html) (Wilman et al., 2014). To classify
birds into migratory categories (e.g. resident and migratory), I
used data published by Dufour et al., 2020. Body mass and
range size represent quantitative variables, while migratory status
and territoriality are categorical variables. Lastly, climatic data (i.e.
temperature and precipitation conditions) was extracted from
Wordclim (https://worldclim.org/) using the function ‘getData’
from the ‘raster’ package in R and resolution equal to 10 km.
Climatic data here consisted of 19 distinct quantitative climatic
features relating to temperature and precipitation measures. Due
to the high correlation among several predictors (Supplementary
Figs 1 and 2), I only kept host body mass and migratory distance
as functional host trait variables and 4 climatic metrics (mean
annual value and seasonality in both temperature and precipitation)
in my analyses. Those metrics were chosen because they represent a
metric of annual mean values and their variation (i.e. seasonality).

Since I compared values among distinct areas of the globe, data
was clustered into regions based on their geographic coordinates
using geographic cell grids of 5 × 5 degrees to calculate both host
and parasite phylogenetic diversity. Those grids were treated as
distinct geographical units, each characterized by the occurrence
of particular haemosporidian lineages, bird species, and their
traits, and environmental conditions. Overall, the final dataset
consisted of geographical grid ID, the regional parasite and host
phylogenetic diversity, and the respective mean information on
regional climate conditions and mean host body mass. For migra-
tory behaviour, I created a dummy table separating each migra-
tory status in a different column and calculated the percentage
of migrants in each quadrant.

Calculating parasite diversity

Parasite diversity was calculated at the level of each geographical
coordinate grid. To estimate haemosporidian regional diversity
(alpha-diversity), I created a phylogenetic tree for haemospori-
dian parasites. Here, I included 2016 parasite lineages extracted
from the MalAvi dataset using the ‘long sequences’ data (i.e. com-
plete sequences only). JmodelTest (Posada and Crandall, 1998)
and Mr. Bayes (Ronquist and Huelsenbeck, 2003) were imple-
mented for model selection and Bayesian tree compilation,
respectively. The haemosporidian phylogeny was built following
inverse-gamma substitution rate distribution, 25% burn-in. A
total of 50 000 000 iterations, 4 chains, and 2 runs were performed
using CIPRES with printing and sampling frequencies set at 1000
(Miller et al., 2015). A decision criterion was included based on a
posterior probability greater than 0.01. Subsequently, ‘sump’ and
‘sumt’ commands were used to summarize parameter values and
to produce a consensus tree. Convergence was assessed every 5000
generations. The final haemosporidian phylogeny was used to cal-
culate parasite diversity considering phylogenetic differences
among parasites inhabiting a region. To do so, I calculated
Faith’s Phylogenetic Diversity, which calculates the sum of the
total phylogenetic branch length for one or multiple samples
(i.e. genetic distances) (Kembel et al., 2010). Analyses were
repeated for each genus using cropped phylogenetic trees contain-
ing branches for each genus individually.

Calculating host diversity

Since the phylogenetic relationships among hosts are a substantial
factor driving haemosporidian assemblages (Lutz et al., 2015;
Aguiar de Souza Penha et al., 2022; De La Torre et al., 2022),
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we calculated host diversity using a metric that considers the
phylogenetic distances among hosts. We can use Hill numbers
to normalize diversities and compare diversity among regions in
a more intuitive manner. Hill numbers represent the effective
number of species or phylogenetic entities in an assemblage.
For this reason, I used phylogenetic hill numbers to calculate
host diversity in this study. Using a full avian phylogeny file
from the AllBirdsHackett1.tre website (https://birdtree.org/) (Jetz
et al., 2012) and used the ‘treeman’ package (Bennett et al.,
2017) to create a file containing all trees from the original file.
Then, I randomly selected a phylogenetic tree as the creation of
a consensus tree branch lengths, which are used to calculate
phylogenetic diversity. Species not found in our data were
excluded from the host phylogenetic tree. An occurrence matrix
was then created to assign the presence of each bird species to
the geographic grids in which they were found. Finally, we calcu-
lated phylogenetic hill numbers to estimate host diversity using
the occurrence and phylogenetic data.

Statistical analyses

All analyses were run in R (R Core Team, 2017). Due to the high
spatial correlation of our data (Moran I value = 0.56), generalized
least square models (GLSMs) were run to evaluate the drivers of
haemosporidian diversity. I considered regional phylogenetic

parasite diversity as a response (i.e. phylogenetic diversity of para-
sites in each quadrant) and bird body mass and migratory status
(i.e. percentage of migrants in each quadrant), bird phylogenetic
diversity, climatic conditions (i.e. mean temperature and precipi-
tation and their seasonality), and sampling effort (i.e. the number
of times haemosporidians were recorded in a region) as explana-
tory variables. Due to spatial correlation (Moran I = 0.56), I set
both longitude and latitude as correlation variables in the models
to account for non-independence among coordinate grids. The
data was scaled (i.e. variable values represent standard deviations
from the mean) before running GLSMs to account for metric
variability in this study. I ran 4 models in total: one for all parasite
genera combined and one for each parasite genus separately (i.e.
Plasmodium lineages only, Haemoproteus lineages only and
Leucocytozoon lineages only). It is important to note that MalAvi
does not distinguish between Haemopeoteus and Parahaemoproteus
parasites, therefore, both taxa were analysed using a single model con-
taining all Haemoproteus lineages. Models’ residuals were posteriorly
checked to ensure model fitting.

Results

Haemosporidian taxonomic diversity ranged from 5 to 276 (in
South America) distinct lineages per geographic region (i.e.

Figure 1. Bird collection sites. The colour scale represents spatial variation in bird species richness worldwide. Collection sites comprise a total of 100 regions and
207 localities (including offshore islands) extracted from the MalAvi database.

Table 1. Estimates, standards error, confidence intervals and P values for host migratory status and body mass, climatic conditions, host diversity and sampling
effort effects on phylogenetic haemosporidian diversity

Parameters Estimates Stand. error Conf. int. (95%) P value

Intercept −0.04 0.04 −0.11 0.04 0.326

Migrants −0.01 0.03 −0.05 0.07 0.760

Body mass 0.06 0.02 0.03 0.10 <0.001

Mean temp. −0.02 0.03 −0.09 0.04 0.485

Temp. seasonality −0.02 0.04 −0.11 0.06 0.581

Mean prec. 0.01 0.02 −0.03 0.06 0.541

Prec. seasonality 0.04 0.02 −0.01 0.08 0.106

Bird diversity 0.09 0.05 0.00 0.19 0.05

Sampling effort 0.96 0.03 0.89 1.03 <0.001
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defined as a geographic cell grid of 5 × 5 degrees, n = 100) and the
highest number of parasite records in a region was 934. Overall, I
found a mean parasite lineage diversity of 36 per region and an
average of 71 records per region. The richness of bird species var-
ied between 4 and 349, with a mean of 97 bird species per geo-
graphical region. In my models, I observed that haemosporidian
phylogenetic diversity increased with host diversity and heavier-
bodied hosts (Table 1, Fig. 2). The percentage of migratory
hosts had no effect on overall diversity. Contrary to my hypoth-
esis, climatic conditions had no effect on parasite phylogenetic
diversity (Table 1).

When analysing each parasite genus separately, I observed
some differences among the different parasite genera. Host
body mass was associated with parasite phylogenetic diversity in
the models, except when evaluating Plasmodium parasites only.
Plasmodium phylogenetic diversity was mostly driven by avian
phylogenetic diversity, which boosts regional Plasmodium diver-
sity (Table 2). Further, no host functional traits were associated

with Plasmodium diversity. Both temperature and precipitation
had no effect on Plasmodium diversity. Haemoproteus phylogen-
etic diversity seems driven only by host body mass. Neither
migratory status nor climate variables had significant effects on
Haemoproteus diversity (Table 3). Surprisingly, host phylogenetic
diversity was not a predictor of Haemoproteus diversity. On the
other hand, Leucocytozoon phylogenetic diversity increases with
higher percentages of migratory hosts and heavy-bodied hosts in
a region (Table 4). Again, contrary to my expectations, host phylo-
genetic diversity and both temperature and precipitation metrics
were not associated with Leucocytozoon diversity. Sampling effort
had the strongest effect, positively driving parasite diversity in all
models.

Discussion

Parasites can have profound ecosystem effects due to direct and
indirect cascading effects on host population dynamics and

Figure 2. Relationship between phylogenetic haemosporidian diversity and A – host diversity, B – host body mass, C – the proportion of migratory hosts on
Leucocytzoon diversity and D – sampling effort.

Table 2. Estimates, standards error, confidence intervals and P values for host migratory status and body mass, climatic conditions, host diversity and sampling
effort effects on phylogenetic Plasmodium diversity.

Parameters Estimates Stand. error Conf. int. (95%) P value

Intercept 0.02 0.08 −0.14 0.18 0.812

Migrants 0.11 0.07 −0.03 0.25 0.133

Body mass 0.05 0.04 −0.03 0.13 0.227

Mean temp. 0.08 0.07 −0.06 0.22 0.281

Temp. seasonality −0.08 0.10 −0.27 0.12 0.423

Mean prec. −0.006 0.05 −0.11 0.10 0.903

Prec. seasonality 0.02 0.05 −0.08 0.11 0.683

Bird diversity 0.36 0.11 0.15 0.57 <0.001

Sampling effort 0.73 0.09 0.55 0.91 <0.001
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interspecies interactions (Poulin, 1999; Lafferty et al., 2008;
Dunne et al., 2013). Here, I demonstrated that haemosporidian
diversity is ruled by host phylogenetic diversity, host body mass,
and, for Leucocytozoon, host migratory status. More specifically,
parasite diversity increases with increasing host phylogenetic diver-
sity and heavier-bodied hosts. For Leucocytozoon, I also observed an
increase in regional parasite diversity with an increasing proportion
of migratory hosts. However, the influence of some of these vari-
ables varies according to the taxon of the parasite evaluated.
Furthermore, temperature, precipitation and seasonality were not
correlated with haemosporidian diversity in any model. In general,
I showed that haemosporidian diversity was intrinsically associated
with their host’s diversity and body mass.

Parasites depend on their hosts to complete their life cycle. As
a result, there is a strong relationship between host and parasite
diversity. Previous research has shown that host taxonomic diver-
sity is one of the main factors that drive parasite diversity
(Hechinger and Lafferty, 2005; Kamiya et al., 2014b; Martins
et al., 2020). However, host diversity alone might not paint the
whole picture. Here, I show that host body mass plays an import-
ant role in determining the regional diversity of haemosporidian
lineages. At the same time, since heavier-bodied avian hosts
release more carbon dioxide, host body mass drives parasite diver-
sity by representing a more attractive resource to vectors. Indeed,
Filion et al. (2020) have also pointed out that host body mass is
positively associated with regional Plasmodium prevalence. For
Leucocytozoon, I observed that host migratory status enhances
parasite diversity. It is possible that migrant hosts could contrib-
ute to parasite diversity by carrying their parasites through their
flyways, increasing the odds of new parasite lineages colonizing

that new region. Thus, the degree of connectivity among localities
could be a potential driver of parasite diversification but might
not play a role in all parasite-host systems.

Parasite diversity worldwide mirrors their host diversity
(Poulin, 2014), however, the diversity of parasites at the host
level is not constant. For example, host body mass is positively
related to parasite diversity among most hosts and parasite taxa
(Kamiya et al., 2014a). Indeed, I observed that, at a regional
level, host body mass was related to parasite diversity in most
models (except the Plasmodium-only model). Since larger hosts
usually serve as hosts for more parasite species, the local pool
of parasites inhabiting regions with large-sized hosts might be
wider. Parasite diversity is also influenced by regional anthropo-
genic impacts. Previous research reported variation in haemos-
poridian composition and diversity among urban, polluted and
deforested areas (Chasar et al., 2009; Ferreira et al., 2017;
Fecchio et al., 2021a). However, the impact of anthropogenic fac-
tors on parasite diversity has not been uniform. While previous
research has linked changes in parasite diversity with shifts in
host composition, contrasting effects (positive, neutral and/or
negative correlations) between urbanization/deforestation and
parasite diversity have also been observed (Sehgal, 2015;
Ferreira et al., 2017; Tchoumbou et al., 2020; Fecchio et al.,
2021a). Overall, variation in spatial parasite diversity seems sub-
ject to more pressures than simply regional diversity of host
species.

Furthermore, climatic conditions do not seem to influence
haemosporidian diversity. Nonetheless, climatic conditions and
seasonality can shape mosquito communities (Mayi et al., 2020)
and increase parasite specificity (Fecchio et al., 2019). Changes

Table 3. Estimates, standards error, confidence intervals and P values for host migratory status and body mass, climatic conditions, host diversity and sampling
effort effects on phylogenetic Haemoproteus diversity

Parameters Estimates Stand. error Conf. int. (95%) P value

Intercept −0.06 0.04 −0.14 0.03 0.214

Migrants 0.01 0.04 −0.07 0.10 0.725

Body mass 0.08 0.02 0.04 0.13 <0.001

Mean temp. 0.06 0.04 −0.03 0.14 0.185

Temp. seasonality −0.05 0.06 −0.16 0.06 0.393

Mean prec. −0.006 0.03 −0.06 0.05 0.822

Prec. seasonality 0.02 0.03 −0.04 0.07 0.566

Bird diversity 0.07 0.06 −0.04 0.19 0.206

Sampling effort 0.92 0.06 0.81 1.04 <0.001

Table 4. Estimates, standards error, confidence intervals and P values for host migratory status and body mass, climatic conditions, host diversity and sampling
effort effects on phylogenetic Leucocytozoon diversity

Parameters Estimates Stand. error Conf. int. (95%) P value

Intercept −0.15 0.12 −0.39 0.09 0.219

Migrants 0.25 0.04 0.17 0.32 <0.001

Body mass 0.14 0.02 0.10 0.18 <0.001

Mean temp. 0.007 0.04 −0.09 0.08 0.853

Temp. seasonality −0.05 0.07 −0.18 0.08 0.473

Mean prec. 0.01 0.05 −0.09 0.11 0.841

Prec. seasonality 0.02 0.03 −0.04 0.09 0.461

Bird diversity −0.05 0.10 −0.25 0.15 0.643

Sampling effort 0.87 0.05 0.78 0.96 <0.001
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in mosquito community composition and parasite specificity as a
result of distinct patterns of temperature and precipitation may
shape the composition of haemosporidians. For instance, de
Angeli Dutra et al. (2023) demonstrated temperature variations
were the main climatic driver of haemosporidian turnover.
Therefore, climate should affect haemosporidian composition
without enhancing parasite diversification. Nonetheless, due to
data limitations, vector information could not be incorporated
into the models. Moreover, Filion et al., 2020 have uncovered
temperature seasonality as a major driver of Plasmodium preva-
lence, which is also coupled with parasite diversity (Van
Hemert et al., 2019; Cuevas et al., 2020). Overall, climate might
not affect parasite diversity, but only assemblage.

It is important to note that this research has limitations that
must be acknowledged. Firstly, due to limitations on data, my ana-
lyses did not consider vector distribution, diversity or functional
traits. Therefore, I could not account for the effects of vector biology
on haemosporidian diversity. In addition, data on avian haemos-
poridians are very unevenly distributed worldwide, with the vast
majority of the data being concentrated in the Americas and
Europe. Indeed, most of Africa, Asia and Oceania continents have
no data points. Sampling effort was the most influential predictor
of haemosporidian diversity in all models. Even though sampling
effort was used as a factor in our models, this study’s results
could still display a potential bias to reflect the conditions of regions
with the greatest sampling effort.

In this study, I show that on a global spatial scale, host phylo-
genetic diversity and body mass were the main drivers of avian
haemosporidian parasite diversity. I also showed that haemospor-
idian diversity increased in regions harbouring heavied-bodied
host species. When haemosporidian genera were considered sep-
arately, I observed that Leucocytozoon diversity increased with
higher proportions of migratory hosts. Furthermore, I found
that climatic conditions had no effect on parasite diversity.
Finally, I confirmed parasite diversity is intrinsically associated
with their hosts’ diversity.
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