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Abstract. We suggest an advanced algorithm for semi-analytical calculation of orbital perturba-
tions of Earth artificial satellites caused by the gravity attraction of the “3rd-bodies” (the Moon,
the Sun, major planets). A new accurate analytical series for the relevant perturbation function
is developed. It is obtained through a careful spectral analysis of the long-term DE406 plane-
tary/lunar ephemerides and valid over 2000 years, 1000-3000. The series is used in the author’s
semi-analytical model of satellite motion. The results of the motion prediction of several Earth
satellites obtained by means of the semi-analytical model and a numerical integration method
are compared.
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1. Introduction

When predicting the motion of planetary (both natural and artificial) satellites by an
analytical/semi-analytical integration method the first task is to represent all perturba-
tion functions by exact analytical expressions or accurate approximating series. In the
present study we deal with the perturbation function caused by the gravity attraction
of the “3rd-bodies” (the Moon, the Sun, major planets). In many practical analytical
models of satellite motion (e.g., Ivanov et al. 1988; Kolyuka et al. 1991) the relevant per-
turbation function is derived from some available analytical theories of the “3rd-bodies’
motion. However, presently the accuracy of such analytical theories does not match the
precision of the current numerical ephemerides of the Moon and major planets. Thus,
the development of new analytical series that accurately approximate the perturbation
function caused by the “3rd-bodies” is an actual task.
Here we present a new series for the “3rd-bodies” perturbation function for Earth

satellites and provide some examples of its use in the author’s semi-analytical model of
satellite motion.

2. The perturbation function caused by the “3rd-bodies”

Following (e.g., Giacagalia 1974; Emelyanov 1980) the perturbation function caused
by the gravity attraction of the “3rd-bodies”, R, can be expanded as follows

R=

∞∑
l=2

l∑
m=0

l∑
p=0

∞∑
q=−∞

(
a

Rs

)l

F̄lmp(i)X
l,l−2p
l−2p+q(e)

[
Ālm cosψlmpq + B̄lm sinψlmpq

]
,
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where a, e, i, Ω, π, λ are Keplerian elements of the satellite orbit, F̄lmp(i) is an inclination

function, X l,l−2p
l−2p+q(e) is a Hansen coefficient (a function of the eccentricity of a satellite

orbit), Rs is a scaling factor that is assumed to be 43,000 km in our study in order to
have the relation aRs

−1 < 1 true for the majority of Earth satellites,

ψlmpq = (l− 2p+ q)λ− qπ+ (m+ 2p− l)Ω ,

Ālm =

{
C̄lm , if l−m is even

−S̄lm , if l−m is odd ,
B̄lm =

{
S̄lm , if l−m is even
C̄lm , if l−m is odd ,

C̄lm(t) =
1

2l+ 1

∑
j

μj

Rs

(
Rs

rj(t)

)l+1

P̄lm (sin δj(t)) cosmαj(t) ,

S̄lm(t) =
1

2l+ 1

∑
j

μj

Rs

(
Rs

rj(t)

)l+1

P̄lm (sin δj(t)) sinmαj(t) ,

and μj , rj , αj , δj are the gravitational parameter, geocentric distance, right ascension and
declination of the jth perturbing body at epoch t, resp.; P̄lm is an associated Legendre
function.

3. Development of C̄lm, S̄lm to approximating series

Step 1: Numerical values for the C̄lm(t), S̄lm(t) coefficients were tabulated with a
one day’s step over the 2000 years’ time interval centered at epoch J2000. The Moon,
the Sun, Mercury, Venus, Mars, Jupiter and Saturn were taken as the attracting bodies.
The long-term numerical ephemerides DE406 (Standish 1998) were used as the source of
the planetary/lunar positions.
Step 2: The tabulated values for the coefficients have been developed to approximating

series by using a modified spectral analysis method (Kudryavtsev 2004, 2007). A feature
of this method is that amplitudes and frequencies of the series’ terms are obtained in
the form of time polynomials. It allows us to perform the spectral analysis over a long
interval of time, up to several thousand years. In this way the terms of close frequencies
are better separated and the series have a higher accuracy.
In the present study the form of series for every coefficient is

C̄lm(t)
[
or S̄lm(t)

]≈∑
k

{[
Ac

k0 +Ac
k1t+Ac

k2t
2
]
cos ωk(t)

+
[
As

k0 +As
k1t+As

k2t
2
]
sin ωk(t)

}
,

where ωk(t) = νk1t+ νk2t
2 + · · ·+ νk4t

4 are some linear combinations of integer mul-
tipliers of Delaunay arguments and expressions for the time polynomial part of the
planetary/lunar mean orbital longitudes (Simon et al. 1994); Ac

k0, A
c
k1, . . . , A

s
k2 and

νk1, . . . , νk4 are some constants derived in the course of the development. The mini-
mum amplitude of terms in the series for C̄lm(t), S̄lm(t) was chosen to be equivalent
to 10−6 m2s−2 over the entire time interval (or ∼ 10−8 of the maximum values of the
coefficients). The maximum degree l of terms with an amplitude above that threshold
is eight. Table 1 gives the number of terms in the development of every C̄lm(t), S̄lm(t)
coefficient. The total number of terms in the final series is 38,585.
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Table 1. The number of terms in the development of C̄lm(t) / S̄lm(t) coefficients.

l \ m 0 1 2 3 4 5 6 7 8

2 2268 / - 2358 / 2644 2789 / 2652

3 1160 /- 1212 / 1200 1443 / 1370 1307 / 1354

4 694 /- 726 / 678 855 / 777 841 / 881 768 / 749

5 401 /- 427 / 435 489 / 450 494 / 525 510 / 492 397 / 402

6 195 /- 206 / 215 214 / 225 236 / 253 279 / 267 262 / 269 217 / 215

7 70 /- 73 / 70 69 / 85 95 / 101 104 / 98 104 / 105 104 / 103 80 / 80

8 19 /- 20 / 20 24 / 26 21 / 25 34 / 31 31 / 32 28 / 28 28 / 28 24 / 24

Table 2. Comparison of satellite orbital positions calculated by semi-analytical and numerical
methods. Motion model: gravity perturbations from the Moon, the Sun and major planets.

Satellite Semi-major The number of terms[1] Time interval[2] RMS deviation, m

axis, km

ETALON-1 25,500 22,216 1 year 8.8

LAGEOS-1 12,300 7,544 1 year 1.5

STARLETTE 7,330 3,040 1 month 0.2

Notes: [1] The number of the “3rd-bodies” terms in the semi-analytical model; [2] Time interval where the
comparison is done.

4. Semi-analytical calculation of the “3rd-bodies” effect on satellite
motion

To calculate the “3rd-bodies” effect on satellite positions, an algorithm of semi-
analytical integration of Lagrange motion equations (Kudryavtsev 1995, 1997, 2002) was
employed. It uses the above presented development of the “3rd-bodies” perturbation
function. However, the algorithm requests the right-hand parts of the motion equations
to be represented by a sum of pure trigonometric functions with numerical values for
amplitude, frequency and phase. Thus, the derived series for the “3rd-bodies” perturba-
tion function were further approximated by some trigonometric series. To do it we used
the fact of the relative smallness of the obtained values for high-order amplitudes Ac,s

k1 ,
Ac,s

k2 and frequencies νk2, νk3, νk4. So that one can write

Ac,s
k1 t≈ sinAc,s

k1 t, Ac,s
k2 t

2 ≈ 2

(
1− cos

√
Ac,s

k2 t

)
,

cos ωk(t)≈ cos νk1t− νk2t
2 sin νk1t, sin ωk(t)≈ sin νk1t+ νk2t

2 cos νk1t, etc.

Then the subsequent multiplications of two and more trigonometric functions produces
a new trigonometric series to be further used in the right-hand sides of Lagrange motion
equations. Our analyses proves that for all obtained values of Ac,s

k1 , A
c,s
k2 and νk2, νk3, νk4

the approximating trigonometric series keep the accuracy of the original development
(10−6 m2s−2) over a time interval of up to 50 years back and forward from any preset
initial epoch of the approximation.
The accuracy of the series and algorithm was estimated. First, positions of a low-

attitude STARLETTE, mid-attitude LAGEOS-1 and high-attitude ETALON-1 satellite
by the 14th-order Everhart numerical integration method were calculated. An exact
model of the lunar, solar and planetary perturbations based on the DE405 ephemeris
(Standish 1998) was used. Then the calculated satellites positions were assumed as ficti-
tious observations and processed by the semi-analytical integration method with the use
of the derived series. The algorithm takes into account the “3rd-bodies” perturbations
of up to the 2nd order inclusive. The results of the comparison of the satellites positions
calculated by both methods are given in Table 2.
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5. Conclusions

• We developed a new semi-analytical series that represents the “3rd-bodies” pertur-
bation function acting on Earth satellites. It is valid over 1000–3000 and has an accuracy
compatible with that provided by the current numerical ephemerides of the Moon and
planets.

• The series is included in our semi-analytical model of satellite motion. A comparison
of satellites coordinates, obtained by using the semi-analytical model and a numerical
integration method, show close results. Presently the semi-analytical model calculates the
perturbations from the “3rd-bodies” of up to the 2nd order. We plan to further improve
the model quality by developing and taking into account the relevant perturbations of
higher orders.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/
S1743921323003988

References

Emelyanov, N. V. 1980, Trudy GAISH, 49, 122 [in Russian]
Giacagalia, G. E. O. 1974, Celest. Mech., 9, 239
Ivanov, N. M., Kolyuka, Yu. F., Kudryavtsev, S. M., Tikhonov, V. F. 1988, Sov. Astron. Lett.,

14, 405
Kolyuka, Yu. F., Kudryavtsev, S. M., Tarasov, V. P., et al. 1991, Planet. Space Sci., 39, 349
Kudryavtsev, S. M. 1995, Celest. Mech. Dyn. Astron., 61, 207
Kudryavtsev, S. M. 1997, Celest. Mech. Dyn. Astron., 67, 131
Kudryavtsev, S. M. 2002, Celest. Mech. Dyn. Astron., 82, 301
Kudryavtsev, S. M. 2004, J. Geodesy, 77, 829
Kudryavtsev, S. M. 2007, A&A, 471, 1069
Simon, J.-L., Bretagnon, P., Chapront, J., et al. 1994, A&A, 282, 663
Standish, E. M. 1998, JPL Interoffice Memorandum, 312.F–98–048

https://doi.org/10.1017/S1743921323003988 Published online by Cambridge University Press

http://doi.org/10.1017/S1743921323003988
http://doi.org/10.1017/S1743921323003988
https://doi.org/10.1017/S1743921323003988



