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Abstract. We consider orthogonally invariant probability measures on GLn(R) and com-
pare the mean of the logs of the moduli of eigenvalues of the matrices with the Lyapunov
exponents of random matrix products independently drawn with respect to the measure.
We give a lower bound for the former in terms of the latter. The results are motivated
by Dedieu and Shub [On random and mean exponents for unitarily invariant probability
measures on GLn(C). Astérisque 287 (2003), xvii, 1–18]. A novel feature of our treatment
is the use of the theory of spherical polynomials in the proof of our main result.
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1. Introduction and main result
In this paper, we investigate bounds for the mean Lyapunov exponents for a measure on
GLn(R) in terms of random Lyapunov exponents. To explain this further, fix a probability
measure μ on G = GLn(R) or GLn(C). If μ satisfies a mild integrability condition,
Oseledets theorem guarantees the existence of n real numbers,
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2 D. Armentano et al

r1 ≥ r2 ≥ · · · ≥ rn,

such that for almost every sequence A1, A2, . . . of independent and identically distributed
(i.i.d.) matrices drawn from the measure μ, the limit

lim
m

1
m

log ‖Am · · · A1v‖ (1.1)

exists for every non-zero vector v and is equal to one of the ri . We call these ri the random
Lyapunov exponents associated to the measure μ. If the measure μ is concentrated on a
single matrix A ∈ G, the ri are simply

log |λ1(A)| ≥ log |λ2(A)| ≥ · · · ≥ log |λn(A)|
for λi(A), the eigenvalues of A written according to their algebraic multiplicity.

For a measure μ on GLn(R) (or GLn(C)), we say that μ is orthogonally (or unitarily)
invariant if for any measurable set V in GLn(R) (or GLn(C)) and orthogonal (or unitary)
linear map U, we have μ(U(V )) = μ(V ), where U(V ) = {Uv : v ∈ V }.

In the complex case, the main theorem of Dedieu and Shub [DS03] is as follows.

THEOREM. [DS03, Theorem 1] If μ is a unitarily invariant probability measure on
GLn(C) satisfying the integrability condition

A ∈ GLn(C) �→ log+(‖A‖) and log+(‖A−1‖) are μ-integrable,

then ∫
A∈GLn(C)

k∑
i=1

log |λi(A)| dμ(A) ≥
k∑
i=1

ri .

We note that we use the same symbol ‖ · ‖ for both the operator norm ‖A‖ of a matrix
and for the euclidean norm of a vector, as in equation (1.1). We hope no confusion will
arise. In Theorem 1, we have also introduced the notation f+(x) = max{f (x), 0} for a
real-valued function f.

In [BPSW01, DS03], it is asked if a similar theorem holds for GLn(R) and On(R)
perhaps with a constant cn depending on n. Here we prove that it does. Our main theorem
is the following.

THEOREM 1. For any n ≥ 0, if μ is an orthogonally probability invariant measure
on GLn(R) satisfying the integrability condition A ∈ GLn(R) �→ log+(‖A‖) and
log+(‖A−1‖) ∈ L1(GLn(R), μ), then

∫
A∈GLn(R)

( k∑
i=1

log |λi(A)|
)+

dμ(A) ≥ 1(
n
k

)( k∑
i=1

ri

)+

for any k, 1 ≤ k ≤ n.

Let SLn(R) be the special linear group of n× n matrices with determinant 1. Then we
have the following result.
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Random and mean exponents for GLn(R) 3

COROLLARY 1. For any n ≥ 0, if μ is an orthogonally invariant probability mea-
sure on SLn(R) satisfying the integrability condition A ∈ SLn(R) �→ log+(‖A‖) and
log+(‖A−1‖) ∈ L1(SLn(R), μ), then

∫
A∈SLn(R)

k∑
i=1

log |λi(A)| dμ(A) ≥ 1(
n
k

)
(

k∑
i=1

ri

)+
,

for any k, 1 ≤ k ≤ n.

The proof of the corollary follows immediately since for all A ∈ SL(n, R),∏k
j=1 |λj (A)| ≥ 1(k = 1, . . . , n).
Some special cases of our main result in Theorem 1 have been previously established.

For n = 2, the result is proved in [DS03] and by Avila and Bochi [AB02]. Rivin [Riv05]
proves the case n > 2, k = 1. (Both [AB02, Riv05] prove more general results in these
restricted settings, from which the stated results can be derived.)

1.1. Motivation. We place our results in a more general setting to provide motivation,
which originates with the study of the entropy of diffeomorphisms of closed manifolds.
Let π : V → X be a finite dimensional vector bundle. The basic object of interest is the
iteration of fiberwise linear maps A of π which cover a map f : X → X of the base.
The cocycle is described in the following diagram by the bundle map A : V → V which
satisfies π ◦ A = f ◦ π :

V V

X X

A

π π

f

(1.2)

See Ruelle [Rue79], Mañe [Mn87], and Viana [Via14] for extensions. We give four basic
examples of this setup.

Example 1.1. The base X is one point. (This is the object of our paper.)

Example 1.2. X is a closed manifold M, V is the tangent bundle TM of M, f is a smooth (at
least C1+α) endomorphism of M, and A = Tf is the derivative of f. This is the derivative
cocycle. Note that the kth iterate of Tf is given by

(Tf )k(x, v) = (f k(x), Tf (f k−1(x)) · · · Tf (x)v), (x, v) ∈ TM .

Example 1.3. Let V π−→ X be a fixed vector bundle and F a family of bundle maps (A, f )
as in equation (1.2), with A : V → V fiberwise linear and f : X → X a base map. Assume
given a finite measure μ on F .

Then random products of independent elements of F , drawn with respect to the
measure μ, are described by the following cocycle. Let G = FN with the product measure
μN. Writing elements of G as

(Ai , fi)i = (. . . , (An, fn), . . . , (A0, f0)),
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4 D. Armentano et al

we define σ : G → G by σ((Ai , fi)i) = (Ai+1, fi+1)i , that is, shift to the right and delete
the first term. Then, the map H : G × V → G × V , given by

H((Ai , fi)i , v) = (σ ((Ai , fi)i), A0(v)), ((Ai , fi)i , v) ∈ G × V
defines the cocycle

G × V G × V

G ×X G ×X

H

IdG×π IdG×π
h

where the base map h : G ×X → G ×X is given by h((Ai , fi)i , x) = (σ ((Ai , fi)i),
f0(x)), where π(v) = x.

The kth iterate of the cocycle H is given by

Hk((Ai , fi)i , v) = (σ k((Ai , fi)i), Ak−1 · · · A0(v)), ((Ai , fi)i , v) ∈ G × V ,

which yields the products of random i.i.d. elements of the measure space (F , μ).

Example 1.4. Let f : X → X and φ : X → GLn(R). Let

X × R
n X × R

n

X X

A

π π

f

(1.3)

be defined by A(x, v) = (f (x), φ(x)v). The functions f and φ are frequently called linear
cocyles in the literature, and A the associated linear extension. Here we use linear cocycle
(or just cocycle) for both. In this case, the kth iterate of A is given by

Ak(x, v) = (f k(x), φ(f k−1(x)) · · · φ(f (x))φ(x)v), (x, v) ∈ X × R
n.

We now return to the general setting of a finite dimensional vector bundle V π−→ X and
cocycle as in equation (1.2). Assume that π has a Finsler structure, that is, a norm on each
fiber of V . Consider the limit

lim
n

1
n

log
‖An(v)‖

‖v‖ (1.4)

for a given non-zero vector v ∈ V . If the limit in equation (1.4) exists, we call it a Lyapunov
exponent of A. We refer the reader to the expository article of Wilkinson [Wil17] for an
introduction to Lyapunov exponents.

When X is a finite measure space, subject to various measurability and integrability
conditions, the Oseledets theorem [Ose68] says that for all v ∈ V , the limit in equation
(1.4) exists almost surely and coincides with one of the real numbers

λ1 ≥ λ2 ≥ · · · ≥ λn.

(See also Gol’dsheid and Margulis [GdM89], Guivarc’h and Raugi [GR89], Ruelle
[Rue79], and Viana [Via14].)

Recall that we have set ψ+(x) = max(0, ψ(x)) for a real-valued function ψ . Then the
theorem of Pesin [Pes77] and Ruelle [Rue78] implies that in the setting of Example 1.2, if
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Random and mean exponents for GLn(R) 5

f : M → M preserves a measure μ, absolutely continuous with respect to Lebesgue, and
A is the derivative cocycle, we have∫

M

∑
i

λ+
i (x) dμ(x) = hμ(f ), (1.5)

where hμ(f ) is the entropy of f with respect to μ. From a dynamical systems perspective,
knowing when hμ(f ) is positive and how large it may be is of great interest. However, the
Lyapunov exponents of the derivative cocycle are generally difficult to compute, even to
show positivity of the integral in equation (1.5). Nevertheless, the Lyapunov exponents of
a random product are frequently easy to be shown as positive.

One attempt to approach the problem is to consider diffeomorphisms or, more generally,
cocycles that belong to rich families F , and to prove that

∫
M

∑
i λ

+(x, f ) dμ(x) is
positive for at least some elements of the family by comparing with Lyapunov exponents of
random products. It is not clear what the notion of rich should be to carry out this program
of bounding the average Lyapunov exponents by those of random products.

There is some success reported by Pujals, Robert, and Shub [PRS06], Pujals and Shub
[PS08], de la Llave, Shub, and Simó [dlLSS08], and Dedieu and Shub [DS03], and an
extensive discussion by Burns et al [BPSW01] for derivative cocycles. A notion of rich
which comes close for the circle and two spheres is On(R) invariance. The theorem of
[DS03] for unitarily invariant measures on GLn(C) was important in this direction.

1.2. Outline of paper. We conclude this introduction with an outline of the remainder of
the paper and a sketch of the ideas used in the proof of Theorem 1. The sums

∑
i≤k ri of

the random Lyapunov exponents appearing in Theorem 1 admit a geometric interpretation
relating them to an integral over the Grassmannian manifold Gn,k of k-dimensional
subspaces of R

n. We use this relation in §2 to reduce the proof of Theorem 1 to a
comparison of an integral on the the orthogonal group to an integral on the Grassmannian.
This comparison is effected by applying the coarea formula to the two projections �1, �2

of the manifold VA of fixed k-dimensional subspaces

VA = {(U , g) ∈ On(R)× Gn,k : (UA)#g = g} for fixed A ∈ GLn(R).

This use of the coarea formula, presented in §§3 and 4, is similar to the approach of
[DS03]. Our main point of departure from the earlier paper comes in §5 in our treatment
of bounding an integral of the normal Jacobian of the projection �1. We use the theory of
spherical polynomials for the symmetric space G/K for G = GLn(R) and K = ON(R).
Our Theorem 4 is a consequence of a positivity result for Jack polynomials due to Knop
and Sahi [KS97]. This approach highlights a difficulty in extending the results of [DS03] to
our setting. In the case ofG = GLn(C), K = Un(C), the associated spherical polynomials
are simply Schur polynomials, thus permitting a more direct treatment in the earlier work
using the Vandermonde determinant, see [DS03, §4.5].

We hope that the results and techniques of this paper stimulate further interactions
between the ergodic theory of cocycles and harmonic analyses on symmetric spaces. One
appealing direction is the investigations of families of cocycles which have elements with∫
x∈X

∑
i λ

+
i (x) dμ(x) positive. Especially interesting would be more rich families of
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6 D. Armentano et al

dynamical systems which must have some elements of positive entropy. One approach
for measure-preserving families of dynamical systems would be to compare the Lyapunov
exponents of the derivative cocycles of the family to the Lyapunov exponents of the random
products of the cocycles of the family.

For these reasons, our main interest in establishing Theorem 1 is to bound from below
the mean Lyapunov exponents of an orthogonally invariant measure by random Lyapunov
exponents. One of the reviewers sees interest in the other direction: the mean Lyapunov
exponents provide an upper bound for the random exponents. The reviewer points to the
recent paper of Hanin and Nica [HN20] and suggests the possible application of exponents
of orthogonally invariant measures to stochastic gradient descent. We thank the reviewer
for bringing this work to our attention.

2. Proof of Theorem 1
Let Gn,k be the Grassmannian of k-dimensional subspaces of Rn. Given g ∈ Gn,k , let O(g)
be the subgroup of On(R) that fixes g. For A ∈ GLn(R), we denote by A# the mapping
corresponding to the natural induced action on Gn,k and by A|g the restriction of A to the
subspace g. Choose orthonormal bases for g and the image of g under A and let det A|g
denote the determinant of the matrix representing A with respect to these bases. It is easy
to see that the absolute value |det A|g| is independent of the choice of bases.

Consider the Riemannian metric on On(R) coming from its embedding in the space
of n× n matrices with the natural inner product 〈A, B〉 = tr(A tB). As a Lie group, this
Riemannian structure on On(R) is left and right invariant and it induces a Riemannian
structure on Gn,k as an homogeneous space of On(R). We denote by vol On(R) and
vol Gn,k the Riemannian volumes of the orthogonal group and Grassmannian, respectively,
and note the relation

vol Gn,k = vol On(R)
vol Ok(R) · vol On−k(R)

. (2.1)

Define the constant

cn,k = vol Ok(R) · vol On−k(R)(
n
k

) . (2.2)

THEOREM 2. For any A ∈ GLn(R), we have∫
U∈On(R)

[
sup

g∈Gn,k :
(UA)#g=g

(log+ |det UA|g|)
]
dOn(R) ≥ cn,k

∫
g∈Gn,k

log+ |det A|g| dGn,k .

If we integrate instead with respect to the Haar measure dU on On(R) and the invariant
probability measure dg on Gn,k , which is just dGn,k normalized to have volume one, we
get ∫

U∈On(R)

[
sup

g∈Gn,k :
(UA)#g=g

(log+ |det UA|g|)
]
dU ≥ 1(

n
k

) ∫
g∈Gn,k

log+ |det A|g| dg. (2.3)
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Random and mean exponents for GLn(R) 7

This follows immediately from Theorem 2 and equation (2.1). The proof of Theorem 2 is
given in §§2 and 5.

Note that Theorem 2 implies a slightly more general result.

THEOREM 3. If μ is an orthogonally invariant probability measure on GLn(R), then∫
A∈GLn(R)

[
sup

g∈Gn,k :
A#g=g

log+ |det A|g|
]
dμ ≥ 1(

n
k

) ∫
A∈GLn(R)

∫
g∈Gn,k

log+ |det A|g| dg dμ.

Proof. Since μ is an orthogonally invariant probability measure on GLn(R), for every
integrable function η : GLn(R) → R, we have∫

A∈GLn(R)
η(UA) dμ =

∫
A∈GLn(R)

η(A) dμ. (2.4)

(This is just the change of variable formula of measure theory for the transformation TU :
GLn(R) → GLn(R) given by TU(A) = UA. Then, by the On(R)-invariance of μ, we have
that the pushforward measure (TU )∗μ coincides with μ.)

For short, let us define ϕ : GLn(R) → R by

ϕ(B) = sup
g∈Gn,k :
(B)#g=g

(log+ |det B|g|).

Then integrating over GLn(R), with respect to μ, on both sides of the inequality of
Theorem 2, we obtain∫

A∈GLn(R)

{∫
U∈On(R)

ϕ(UA)dOn(R)
}
dμ

≥ cn,k

∫
A∈GLn(R)

∫
g∈Gn,k

log+ |det A|g| dGn,k dμ.

Applying Fubini on the left-hand side,∫
A∈GLn(R)

{∫
U∈On(R)

ϕ(UA)dOn(R)
}
dμ =

∫
U∈On(R)

{∫
A∈GLn(R)

ϕ(UA)dμ

}
dOn(R)

= vol On(R)
∫
A∈GLn(R)

ϕ(A) dμ,

where the last equality follows from the On(R)-invariance of μ as in equation (2.4). Using
the facts that

cn,k

vol On(R)
= 1(

n
k

)
vol Gn,k

and dGn,k = vol Gn,k · dg

completes the proof.

Proof of Theorem 1. Pointwise, we have( k∑
i=1

log |λi(A)|
)+

≥ sup
g∈Gn,k :
A#g=g

log+ |det A|g| (A ∈ GLn(R)),
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8 D. Armentano et al

where the supremum on the right-hand side is defined to be 0 if the set of g ∈ Gn,k such
that A#g = g is empty.

Then, for finishing the proof of Theorem 1, it suffices to identify the right-hand side of
the expression in Theorem 3 in terms of (

∑k
i=1 ri)

+. As in the proof of [DS03, Theorem 3],

k∑
i=1

ri =
∫
A∈GLn(R)

∫
g∈Gn,k

log |det A|g| dg dμ,

so ( k∑
i=1

ri

)+
=
(∫

A∈GLn(R)

∫
g∈Gn,k

log |det A|g| dg dμ
)+

≤
∫
A∈GLn(R)

∫
g∈Gn,k

log+ |det A|g| dg dμ.

We will give the proof of Theorem 2 in §§2 and 5 after some preparations in the next
section.

3. Manifold of fixed subspaces
Let A ∈ GLn(R), and define the manifold of fixed k-dimensional subspaces

VA := {(U , g) ∈ On(R)× Gn,k : (UA)#g = g}.
Let �1 : VA → On(R) and �2 : VA → Gn,k be the associated projections.

Given g ∈ Gn,k , one has

�−1
2 (g) = {(U , g) : U ∈ On(R), A#g = (U−1)#g}.

By abusing notation, we identify �−1
2 (g) with �1�

−1
2 (g), which we in turn identify with

O(k)× O(n− k). Similarly, given U ∈ On(R), we identify �−1
1 (U) with

{g ∈ Gn,k : fixed by (UA)#}.

Remark 2. Note that on a set of full measure in On(R), the fiber �−1
1 (U) is finite and

#�−1
1 (U) is bounded above by

(
n
k

)
. This follows from the fact that the set of U ∈ On(R),

such that UA has repeated eigenvalues, is a proper subvariety of On(R) defined by the
discriminant of the characteristic polynomial of UA. Therefore, a k-dimensional invariant
subspace for UA, where U lies in the complement of the algebraic subvariety described
above, corresponds to a choice of k-eigenvalues for UA, and corresponding eigenspaces.
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Random and mean exponents for GLn(R) 9

The tangent space to the Grassmannian Gn,k at g can be identified in a natural way
with the set of linear maps Hom(g, g⊥), that is, any subspace g′ ∈ Gn,k in a neighborhood
of g can be represented as the graph of a unique map in Hom(g, g⊥). More precisely,
if we denote by πg and πg⊥ the orthogonal projections of Rn = g ⊕ g⊥ into g and g⊥,
respectively, then g′ ∈ Gn,k such that g′ ∩ g⊥ = {0} is the graph of the linear map πg⊥ ◦
((πg)|g′)−1.

LEMMA 3. Let B ∈ GLn(R) and g ∈ Gn,k such that B#g = g. Then, the induced map
LB : Hom(g, g⊥) → Hom(g, g⊥), on local charts, is given by

LB(ϕ) = [πg⊥(B|g⊥)] ◦ ϕ ◦ ([πg(B|g)] + [πg(B|g⊥)] ◦ ϕ))−1.

Furthermore, its derivative at g, represented by 0 ∈ Hom(g, g⊥), is given by

DLB(0)ϕ̇ = [πg⊥(B|g⊥)] ◦ ϕ̇ ◦ [πg(B|g)]−1.

Let us denote by NJ�1 and NJ�2 the normal Jacobians of the maps �1 and �2,
respectively, where the normal Jacobian of a surjective linear map L : V1 → V2 of finite
dimensional real vector spaces with inner product is the absolute value of the determinant
of the linear map L restricted to the orthogonal complement of the kernel of L in V1. (See
[DS03, §3.1].)

LEMMA 4. [DS03, §3.2] Given (U , g) ∈ VA, one has:
• NJ�1(U , g) = |det Id −DLUA(g)|;
• NJ�2(U , g) = 1.

In §5, we will need the normal Jacobian written more explicitly. To this end, choose
bases v1, . . . , vk for g and vk+1, . . . , vn for its orthogonal complement g⊥. In terms of the
basis v1, . . . , vn of Rn, a linear map B : Rn → R

n which satisfies Bg = g is represented
by a matrix of the form (

B1 ∗
0 B2

)
.

By Lemma 3, if X is the matrix representing ϕ̇ in this basis, then DLB(0)ϕ̇ is represented
by the matrix B2XB

−1
1 .

LEMMA 5. Let (U , g) ∈ VA and let (
B1 ∗
0 B2

)

represent the map UA in the basis v1, . . . , vn defined above. Then,

det(Id −DLUA(g)) = det(Id − B2 ⊗ tB−1
1 ).

4. Proof of Theorem 2
Let φ : Gn,k → R be an integrable function, and let φ̂ : VA → R be its lift to VA, that is,
φ̂ is given by φ̂ := φ ◦�2. (Note that given g ∈ Gn,k , φ̂ is constant in the fiber �−1

2 (g),
and its value coincides with the value of φ at g.)
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10 D. Armentano et al

For a set of full measure of U ∈ On(R) (cf. Remark 2), we have(
n

k

)
sup

g∈�−1
1 (U)

(φ(g)) ≥ #�−1
1 (U) sup

g∈�−1
1 (U)

(φ(g)) ≥
∑

g∈�−1
1 (U)

φ(g). (4.1)

By the coarea formula applied to �1, we get∫
U∈On(R)

( ∑
g∈�−1

1 (U)

φ(g)

)
dOn(R) =

∫
VA

φ̂(U , g) NJ�1(U , g) dVA. (4.2)

However, applying the coarea formula to the projection �2,∫
VA

φ̂(U , g) NJ�1(U , g) dVA (4.3)

=
∫
g∈Gn,k

(∫
U∈�−1

2 (g)

φ(g) NJ�1(U , g) d�−1
2 (g)

)
dGn,k ,

where we have used the fact that NJ�2 = 1, and d�−1
2 (g) is the volume form on �−1

2 (g)

induced by the restriction of the Riemannian metric on VA to �−1
2 (g).

Then from equations (4.1), (4.2), (4.3), and Lemma 4, we have∫
U∈On(R)

(
sup

g∈�−1
1 (U)

(φ(g))
)
dOn(R)

≥
(
n

k

)−1 ∫
g∈Gn,k

φ(g)

[∫
U∈�−1

2 (g)

NJ�1(U , g) d�−1
2 (g)

]
dGn,k

=
(
n

k

)−1 ∫
g∈Gn,k

φ(g)

[∫
U∈�−1

2 (g)

|det Id −DLUA(g)| d�−1
2 (g)

]
dGn,k . (4.4)

Specialize now to φ : Gn,k → R given by

φ(g) := log+ |det A|g|, g ∈ Gn,k .

In particular,

sup
g∈�−1

1 (U)

φ(g) = sup
g∈Gn,k :
(UA)#g=g

log+ |det (UA)|g|.

Now, the proof of Theorem 2 follows from Theorem 4 below which is used to bound the
bracketed inner integral in equation (4.4); this together with the non-negativity of φ proves
Theorem 2.

THEOREM 4. Given g ∈ Gn,k , one has∫
U∈�−1

2 (g)

(det Id −DLUA(g)) d�−1
2 (g)(U) ≥ vol Ok(R) · vol On−k(R).

The proof is given in the following section.
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5. Proof of Theorem 4
For fixed g ∈ Gn,k , choose U0 ∈ On(R) such that U0Ag = g. Then,

�−1
2 (g) = {VU0 : V ∈ Ok(R)× On−k(R)},

where we continue to identify Ok(R)× On−k(R) with O(g)× O(g⊥). We have∫
U∈�−1

2 (g)

det(Id −DLUA(g)) d�−1
2 (g)(U)

=
∫
V∈Ok(R)×On−k(R)

det(Id −DLVU0A(g)) d�
−1
2 (g)(V U0)

= vol Ok(R) · vol On−k(R)

×
∫
ψ1∈Ok(R)

∫
ψ2∈On−k(R)

det(Id − (ψ2B2)⊗ t(ψ1B1)
−1) dψ2 dψ1,

where dψ1, dψ2 are the Haar measures on Ok(R) and On−k(R). The last equality follows
from Lemma 5, with

B1 = πg((U0A)|g) and B2 = πg⊥((U0A)|g⊥).

More generally, for B1 ∈ GLk(R), B2 ∈ GLn−k(R), we consider the integral of the
characteristic polynomial expressed in the real variable u:

J (B1, B2; u) =
∫
ψ1∈Ok(R)

∫
ψ2∈On−k(R)

det(Id − u(ψ2B2)⊗ t
(ψ1B1)

−1) dψ2 dψ1.

(5.1)

Therefore, Theorem 4 is equivalent to

J (B1, B2; 1) ≥ 1. (5.2)

In fact, we will prove an explicit formula for the integral, expressing the coefficients of
the characteristic polynomial J (B1, B2; u) as polynomials in the squares of the singular
values of B1 and B−1

2 with positive integer coefficients.
We complete the proof of Theorem 4 and the inequality in equation (5.2) in several

steps. First, we use the representation theory of the general linear group to decompose the
double integral into a linear combination of a product of two integrals over On(R) and
On−k(R), respectively. Next, each orthogonal group integral is identified with a spherical
polynomial. Finally, the theorem follows from an identity between spherical polynomials
and Jack polynomials, and a positivity result for the latter due to Knop and Sahi [KS97].
We first review some notation and terminology from combinatorics and representation
theory.

5.1. Preliminaries. Let λ = (λ1, λ2, . . . , λk) be an integer partition of n with k parts:

|λ| := λ1 + · · · + λk = n, λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1. (5.3)

Associated with the partition λ is a Young diagram which is a left justified arrangement of
n boxes into k rows, with λi boxes in the ith row. For example, for the partition λ = (5, 3, 1)
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of 9 into three parts, the associated Young diagram is

The conjugate partition to λ, denoted λ′, is obtained by interchanging the rows and
columns of the Young diagram of λ. For the partition λ = (5, 3, 1) depicted above, we
have λ′ = (3, 2, 2, 1, 1).

Partitions λ with at most n-parts—or equivalently, Young diagrams with at most n
rows—parameterize irreducible polynomial representations ofG = GLn(R). For example,
letting V0 be the standard n-dimensional representation of G, the partition (r) corresponds
to symr (V0) and (1, 1, . . . , 1) (with r ones) corresponds to�r(V0). More generally, letting
ai be the number of columns of length i in the Young diagram of λ, the irreducible
representation corresponding to λ can be identified with a subspace of

syman �n(V0)⊗ syman−1 �n−1(V0)⊗ · · · ⊗ syma1 V0. (5.4)

The precise definition of this irreducible representation is not relevant for our present
concerns. However, we note that the representation corresponding to λ has a vector fixed
by the orthogonal group On(R) if and only if every part of λ is even. (See §5.5.2 for an
example.) This observation, presented in Theorem 6 below, and the more explicit positivity
statement of Theorem 5 are the key ideas in our proof of Theorem 4.

5.2. Orthogonal group integrals. We begin by expanding the characteristic polynomial
in the integrand as a sum of traces:

det(Id − u(ψ2B2)⊗ t
(ψ1B1)

−1) =
k(n−k)∑
j=0

(−u)j tr
∧j

(ψ2B2 ⊗ t(ψ1B1)
−1).

Next, decompose the exterior powers of the tensor product as∧j
(ψ2B2 ⊗ t(ψ1B1)

−1) =
∑
λ:|λ|=j

ρλ′(ψ2B2)⊗ ρλ(
t(ψ1B1)

−1), (5.5)

where:
• the sum is over all partitions λ of j with at most k rows and n− k columns;
• λ′ is the partition conjugate to λ; and
• ρλ, ρλ′ are the irreducible representations of GLk(R) and GLn−k(R) associated to the

partitions λ, λ′, respectively.
See, for example, [FH91, Exercise 6.11]. Since the trace of a tensor product of two matrices
is the product of the two traces, we may write

det(Id − u(ψ2B2)⊗ t
(ψ1B1)

−1) =
k(n−k)∑
j=0

(−u)j
∑
|λ|=j

tr ρλ′(ψ2B2) · tr ρλ(ψ1B1).
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Integrating over Ok(R)× On−k(R), we find that J (B1, B2; u) is equal to

k(n−k)∑
j=0

(−u)j
∑
|λ|=j

(∫
ψ2∈On−k(R)

tr ρλ′(ψ2B2) dψ2

)
·
(∫

ψ1∈Ok(R)
tr ρλ(ψ1B1) dψ1

)

= 1 +
∑

1≤j≤k(n−k)
|λ|=j

(−u)jFλ′(B2)Fλ(B1), (5.6)

where for M ∈ GLN(R) and μ a partition of j with at most N parts, we define

Fμ(M) =
∫
ψ∈ON(R)

tr ρμ(ψM) dψ . (5.7)

Theorem 4 follows from the following more explicit result.

THEOREM 5. Let M ∈ GLN(R) and μ = (μ1, . . . , μr) with μ1 ≥ μ2 ≥ · · · ≥ μr > 0
be a partition of k of at most N parts.
(1) If any of the parts μi is odd, then Fμ(M) = 0.
(2) If all the parts μi are even, then Fμ(M) is an even polynomial in the singular values

of M with positive coefficients.

5.3. Spherical polynomials. The proof of Theorem 5 involves the theory of spherical
polynomials for the symmetric space G/K , where G = GLN(R) and K = ON(R), and
Jack polynomials. We recall these briefly.

Let PN be the set of partitions with at most N parts, thus

PN = {μ ∈ Z
N | μ1 ≥ μ2 ≥ · · · ≥ μN ≥ 0}.

For μ ∈ PN , let (ρμ, Vμ) be the corresponding representation of G, and let (ρ ′
μ, V ∗

μ) be
the contragredient representation. That is, G acts on the dual vector space V ∗

μ by

〈ρ′(g)u, v〉 = 〈u, ρ(g)−1v〉,
where 〈u, v〉 is the evaluation pairing between u ∈ V ∗

μ and u ∈ Vμ. A matrix coefficient of
Vμ is a function on G of the form

φu,v(M) = 〈u, ρμ(M)v〉,
where u ∈ V ∗

μ and v ∈ Vμ. We write Fμ for the span of matrix coefficients of Vμ. Then
Fμ is stable under left and right multiplication by G, and one has a G×G-module
isomorphism

V ∗
μ ⊗ Vμ ≈ Fμ, u⊗ v �→ φu,v .

THEOREM 6. Let μ be a partition in PN . Then the following are equivalent:
(1) μ is even, that is, μi ∈ 2Z for all i;
(2) Vμ has a spherical vector, that is, a vector fixed by K;
(3) V ∗

μ has a spherical vector;
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(4) Fμ contains a spherical polynomial φμ, that is, a function satisfying

φμ(kgk
′) = φμ(g), g ∈ G, k, k′ ∈ K .

The spherical vector vμ and spherical polynomial φμ are unique up to scalar multiple, and
the latter is usually normalized by the requirement φμ(e) = 1, which fixes it uniquely.

Proof. This follows from the Cartan–Helgason theory of spherical representations [Hel84,
Theorem V.4.1].

We now connect the polynomial Fμ to φμ.

THEOREM 7. Let Fμ(M) be as in equation (5.7). If μ is even, then Fμ = φμ, otherwise
Fμ = 0.

Proof. If {vi}, {ui} are dual bases for Vλ, V ∗
λ , then tr ρμ(M) = ∑

i φui ,vi (M), thus the
character χμ(M) = tr ρμ(M) is an element of Fμ. Since Fμ is stable under the left action
of K, it follows that Fμ(M) = ∫

K
χμ(kM) dk is in Fμ as well.

We next argue that Fμ is K ×K invariant. For this, we compute as follows:

Fμ(k1Mk2) =
∫
K

χμ(kk1Mk2) dk =
∫
K

χμ(k2kk1M) dk = Fμ(M).

Here, the first equality holds by definition, the second is a consequence the invariance of
the trace character, χμ(AB) = χμ(BA), and the final equality follows from the K ×K

invariance of the Haar measure dk.
By Theorem 6, this proves that Fμ is a multiple of φμ ifμ is even, and Fμ = 0 otherwise.

To determine the precise multiple, we need to compute the following integral for even μ:

Fμ(e) =
∫
K

χμ(k) dk.

By Schur orthogonality, this integral is the multiplicity of the trivial representation in the
restriction of Vμ to K, which is 1 if μ is even. Thus, we get Fμ = φμ, as desired.

5.4. Jack polynomials. Jack polynomials J (α)λ (x1, . . . , xN) are a family of symmetric
polynomials in N variables whose coefficients depend on a parameter α. The main result
of [KS97] is that these coefficients are themselves positive integral polynomials in the
parameter α.

Spherical functions correspond to Jack polynomials with α = 2. More precisely, we
have

φμ(g) = J
(2)
λ (a1, . . . , aN)

J
(2)
λ (1, . . . , 1)

, μ = 2λ, (5.8)

where a1, . . . , aN are the eigenvalues of the symmetric matrix tgg; in other words, the ai
are the squares of the singular values of g.

We can now finish the proof of Theorem 5.
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Proof of Theorem 5. Part (1) follows from Theorem 7. Part (2) follows from equation (5.8)
and the positivity of Jack polynomials as proved in [KS97].

5.5. Examples. We conclude this section with two low rank examples of the character-
istic polynomials J (A, B; u) for A ∈ GLk(R), B ∈ GLn−k(R). As we may assume A and
B are diagonal, let us write

A = diag(a1, . . . , ak) and B = diag(b1, . . . , bn−k).

5.5.1. The case n = 4, k = 2. Here we consider the integral

J (A, B; u) =
∫
ψ1∈O2(R)

∫
ψ2∈O2(R)

det(Id − u(ψ2B)⊗ t
(ψ1A)

−1) dψ2 dψ1. (5.9)

As we are essentially integrating over the circle, it is easy to compute this directly and see
that

J (A, B; u) = 1 + det(B)2

det(A)2
u4 = 1 + b2

1b
2
2

a2
1a

2
2
u4. (5.10)

5.5.2. The case n = 6, k = 2. In this case, we use equation (5.6) to compute

J (A, B; u) =
∫
ψ1∈O2(R)

∫
ψ2∈O4(R)

det(Id − u(ψ2B)⊗ t
(ψ1A)

−1) dψ2 dψ1

for A ∈ GL2(R), B ∈ GL4(R). Write

J (A, B; u) = 1 + c2u
2 + c4u

4 + c6u
6 + c8u

8.

By part (1) of Theorem 5, we immediately see that c2 = c6 = 0 because there are no
partitions λ of 2 or 6 for which both λ and its conjugate λ′ have only even parts. The
only even partition of k = 8 with at most two parts and with even conjugate is λ = (4, 4).
For V, the standard two-dimensional representation of GL2(R), we have that ρλ(V ) =
sym4(�2V ) is the fourth power of the determinant representation. Hence,

Fλ(A
−1) = det A−4.

Similarly for W, the standard four-dimensional representation of GL4(R), the conjugate
λ′ = (2, 2, 2, 2) and ρλ′(W) = sym2(�4(W)) is the square of the determinant. Hence,
Fλ′(B) = det B2 and

c8 = det(B)2

det(A)4
.

The only even partition of k = 4 with even conjugate is λ = λ′ = (2, 2). In this case,
ρλ(V ) is the square of the determinant representation. The dimension 20 representation
ρλ(W) is a quotient of sym2(�2(W)) with a unique O4(R)-fixed vector, namely, the image
of

v = (e1 ∧ e2)
2 + (e1 ∧ e3)

2 + (e1 ∧ e4)
2 + (e2 ∧ e3)

2 + (e2 ∧ e4)
2 + (e3 ∧ e4)

2.
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It is readily seen that the trace ρλ(B) restricted to the span of v is∑
1≤i<j≤4

b2
i b

2
j .

Then, including the normalizing factor of 1/J (2)(1,1)(1, 1, 1, 1) = 1/6, we conclude that

c4 = 1/6(b2
1b

2
2 + b2

1b
2
3 + b2

1b
2
4 + b2

2b
2
3 + b2

2b
2
4 + b2

3b
2
4)

a2
1a

2
2

.
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