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Anisotropic Sobolev Capacity with
Fractional Order

Jie Xiao and Deping Ye

Abstract. In this paper, we introduce the anisotropic Sobolev capacity with fractional order and de-
velop some basic properties for this new object. Applications to the theory of anisotropic fractional
Sobolev spaces are provided. In particular, we give geometric characterizations for a nonnegative
Radon measure y that naturally induces an embedding of the anisotropic fractional Sobolev class
AL’IK into the p-based-Lebesgue-space LZ/ B with 0 < B < n. Also, we investigate the anisotropic
fractional a-perimeter. Such a geometric quantity can be used to approximate the anisotropic Sobo-
lev capacity with fractional order. Estimation on the constant in the related Minkowski inequality,
which is asymptotically optimal as & — 0%, will be provided.

1 Anisotropic Fractional Sobolev Capacity

A subset K c R” is said to be a convex body if K is a convex compact subset of R”
with nonempty interior. Related to each convex body K with the origin in its interior,
one can uniquely define the support function hg(-):S" ! - R as

hi(u) = max{(y,u), y e K}, VYueS",

where (-, -) denotes the usual inner product on R” and induces the usual Euclidean
norm | - |. The unit Euclidean ball of R” is B} = {x € R" : ||x|| < 1}. For a subset L c
R" with the origin in L, its polar L* is defined by L* = {y e R" : (x,y) <1,Vx € L}.
Note that L* is always convex no matter the convexity of L. The volume of K is denoted
by V(K), and more generally, V(M) denotes the appropriate dimensional Hausdorff
content of M. For a subset E c R", E denotes the closure of E.

The Minkowski functional of K is denoted by | - | x and is defined as

|x|x =inf{A >0:x € AK},

where AK = {1y : y € K} for A € R. In particular, if K = —-K, then K is said to
be origin-symmetric. It is easy to check that for any origin-symmetric convex body
K c R”, |||k defines a norm on R”. The usual Euclidean norm || - | is related to
K =B,

Throughout this paper, a € (0,1) is a constant and K c R” is always assumed to
be an origin-symmetric convex body. A function f is said to be of C;°, denoted by
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f € Cg°, if f is smooth and has compact support in R”. Consider the following norm

for f € Cg°:
Hf”“ :f |f(x)_f(y)|dxdy
Aix Jrn Jre x- ylRr '

The completion of the set of all functions f € C3° with the above norm is denoted by
AL’}K. Such a function space will be called the anisotropic fractional Sobolev space
with respect to K (or the homogeneous («,1,1, K)-Besov space). Theorems 1and 2 in
[11] imply that

Jim el fliy, =20V () fll

lim (1= @)l i, = [ 19z,

where Z; K is the polar body of Z; K (the moment body of K) and the support function
of Z,K is determined by

(1.1)

n

1
;/K|<x,y)|dy, Vx e R".

The case K being the unit Euclidean ball B} has been considered in [3,4,11,14,15].
For any given compact subset L of R”, one can define cap(L; AL’}K), the anisotropic
fractional Sobolev capacity of L with respect to K, by

(12) cap(L; ALIK) = inf{ HfHA:le (feCy, f21}.

Hereafter, 1z denotes the indicator function of E ¢ R”. For any compact L c R",
formula (1.1) implies, (see also [12]),

lim a cap(L; ALY ) = 2nV (L) V(K),

hzic(x) =[xz x =

(1.3) . - _
11r111 (1-a)cap(L; A k) = cap(L; W),
a—1" >

where

cap(L; Wg') = inf{ /11-3" IVf(x)|zzxdx: feCy, f2 1.}

For general subset E c R", the anisotropic fractional Sobolev capacity (or the ho-
mogeneous end-point Besov capacity) of E with respect to K denoted by cap(E; A(IX’,IK),
can be defined by

ALL Y CALL Y s AL
(14) cap(E;A; ) = opelr?(f;QE cap(O; A, ) = inf ( sup cap(L; A ) .

open O2E* compact LcO

Similarly, for general subset E c R”,

Ly CTULLY - 1L
cap(E; W) = opelr?ggE cap(O; W) = opelr?(ggE( mmps;g)Lgo cap(L; W')).
See also [1,2,16,18,22] for special case K = Bj.

As a natural outcome of exploring some essential links between [18,22] and [11,12],
this paper will focus on the above-newly-introduced anisotropic fractional Sobolev
capacity, in particular, its immediate applications to the embedding/trace theory of
the anisotropic Sobolev space with fractional order. Section 2 is dedicated to some
intrinsic properties of the anisotropic Sobolev capacity with fractional order. Section
3 is for the extrinsic nature of the anisotropic Sobolev capacity with fractional order
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via the so-called anisotropic fractional perimeter. Moreover, estimation on the con-
stant in the related Minkowski inequality, which is asymptotically optimal as « — 07,
will be provided. The anisotropic fractional Sobolev inequalities and their geometric
counterparts for anisotropic fractional capacity will be discussed in Section 4.

2 Intrinsic Properties

We begin with exploring some intrinsic properties of the anisotropic Sobolev capacity
with fractional order.

Theorem 2.1 The set-function E — cap(E; ALIK) is nonnegative and has the following
properties.

(i) Homogeneity: let r > 0 be a real constant. Then
cap(rE; AL’}K = "% cap(E; ALIK) and cap(E; Aa ) =" cap(E;A}x”lK).
Moreover, for all r,s > 0, cap(sE; A} ) = s"~%r"*% cap(E; Ay'y).
(ii) Monotonicity: for all subsets E, € E, € R", one has
cap(El;Afx”lK) < cap(Ez;I.\}x’,lK)-
(iii) Subadditivity: for all compact sets L, L, € R”, one has
cap(L;u LZ;AL’}K) < cap(Ly; Afle) + cap(Ly; ALIK)

(iv) Upper-semi-continuity: for all decreasing sequence {L;}3*, of compact subsets of
R” with Ly 2 L, 2 L3 2 --+, one has
lim cap(Lj;AL”lK) = cap(n;ZILj;A‘l);’lK).

J—)OO

Proof (i) Let r > 0. First, the desired equality cap(E; Al’HK) =t cap(E;Afx”lK)
follows immediately from ||x — y|,x = 7 1Hx y|x forall x, y e R".

To prove cap(rE; A" o L) =r""%cap(E; AL K) it is enough to prove the equality for
compact sets due to equation (1.4). Cons1der lgl Al with g(x) = f(rx) as follows:

lelas, = [, [ﬂlg&x)yﬁ{ | ixdy
- [ f IO ey ey

lrx —ryl
1f ) = FD)] amn
A e L
= fl i -

Hence, for every compact set L c R”, one has
cap(rL, AY) = nf{ |y, 5/ € G 2 1)
= inf{ e HgHALIK 1 feCyg> IL}
=r""%cap(L, ALIK
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Finally, for all r, s > 0, one has
cap(sE; Ay ) = " “cap(E; Ay ) = " 4r" ¥ cap(E; Ayy).

NG o, rK

(ii) It is enough to prove the monotonicity for compact sets, again due to equation
(1.4). For two compact sets L; and L, with L; c Ly, it is easily checked that

{(feCr:f21,}2{feCq: f21,}.
Hence,
cap(Li, Agy) = inf{ | fll s : f € G f 211,
<inf{ | flju : f€C3 f 211, }
= cap(Lz,AL’)lK).

(iii) Without loss of generality, we may assume cap(L;; ALIK) < oo with j=1,2,as
otherwise the consequence holds true trivially. For any € > 0, there are f;, f, € Cg°
such that

fiz1,, Hf:IHA:le < cap(Lj;Afx’,lK) +e, Vj=12.
Let f = max{fi, 2} € C¢° and clearly the function f satisfies
f2lon, fG) = fOI<IAG) - AO)+1A(x) - (D) Vx,y e R
This further implies
cap(Ly U Lo Agi) < I flan
< [Alau, + 1504
< cap(Ly; Ay ) + cap(Ly; ALY ) + 2e.

The desired consequence follows by letting € — 0.
(iv) Suppose that {L;} 3, is a decreasing sequence of compact subsets of R". Then
L =32 Ljis compact. For any € € (0,1), there is a function f € C5® such that

21, HfHAL'K < cap(L;A}x”lK) +e.

Let Ly, = {x € R": f(x) >1- e} which is compact. Due to L; decreasing to L, one
can find an integer j > 0 large enough such that L; c Ly .. By (ii) and formula (1.2),
one has,

lim cap(Ljs Agl) < cap(Ly.ei Agx)
<@=e) " Iflam,
. cap(L; ALlK) +e
1-¢
Letting € — 0 and again by (ii), we get
cap(L; Ay < ]lin; cap(Lj; Ay'y) < cap(L; Ay'y),

and hence equality holds. ]
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Remark 2.2 Along similar lines, one can prove analogous intrinsic results for the
anisotropic Sobolev capacity cap(-; Wy'), with A(lx’)lK and n + « in Theorem 2.1 re-
placed by W' and n + 1, respectively.

3 Extrinsic Properties

In this section, we will reveal an extrinsic nature of the anisotropic Sobolev capacity
with fractional order via the so-called anisotropic fractional perimeter.

For a set E € R”, let E€ = R" \ E be the complement of E c R”. Define P, (E, K),
the anisotropic fractional «-perimeter of E with respect to K [12], as

| 1] 50
P.(E,K) :f —_dxdy= ——=
5 Joe = y] 2

Theorems 4 and 6 in [12] assert that if E ¢ R" is abounded Borel set of finite perimeter,
then

(B lim aPy(E,K) =nV(E)V(K), lim (1-a)Pu(E,K) = P(E, ZIK).

Here and henceforth, P(E, F) stands for the anisotropic perimeter of a Borel set E ¢
R" with respect to an origin-symmetric convex body F, which has the following form:

PEF)= [ ve(x)]r dI0 (),

with "~ the (n - 1) dimensional Hausdorff measure, vg(x) the measure theoretic
outer unit normal of E at point x in 0*E, the reduced boundary of E. In particular,
P(E) = P(E, By) is called the perimeter of E. When 0E, the boundary of E, is smooth,
P(E) is equal to the usual surface area of dE. On the other hand, P(E, F) equals
the classical mixed volume of E and F, if E is also a convex body. The special case
P,(E) = P,(E, B}), named as the fractional a-perimeter of E (cf. [8]), is a classical
object and receives a lot of attention. In particular, by formula (3.1), one has,

lin01+ aP,(E) =nV(B;)V(E), linli_(l —a)P,(E) =27"7,P(E),

where 7, = [, |cos(0)|do with 6 being the angle deviation from the vertical di-
rection and do being the standard area measure on the unit sphere S"™! of R"; see

[14,15].
We can claim that P, (E, K) is translation invariant: for all xy € R”, one has
(3.2) P,(x0 + E,K) = P,(E,K),

where xg + E = {xog + y: y € E}. In fact, (xo + E)° = xo + E and

1
P,(xo + E,K) = / _
«(%0 ) xo+E( xo+Ee | x — y| ¥

1 1
_/xoﬂg([[Wdz)d}’—fxO+E(fEchz)dy

K
1
:f( —————dz)dw = Py(E, K),
E JEe |z - w|E

dx) dy

where we have let x = z + x¢ and y = w + xo.
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The following cyclic inequality for the anisotropic fractional perimeters holds.

Proposition 3.1 Let0<a < f <y<L Forall EcR", one has

[Ps(E,K)]" <[ Pu(E, )] " [P,(E, k)]

Proof Let0 < a < f3 <y <1which implies 0 < ‘;%z < 1. By Holder’s inequality, one
has
Py(E,K) = /f - n+/3 dxdy
[ / %( ! ) = dxdy
- y”"”‘ =yl

B

-

H 1 prre
e ) U g )

-«

= (P« (E, K))V '”(P (E,K)) ™.
The desired inequality follows by taking power y — « from both sides. ]

m

For a bounded open set E ¢ R” with V(9E) = V(E \ E) = 0, one has
(3.3) P, (E,K) = P,(E,K).

In fact, for every (fixed) y € EUE, there is r > 0, such that |y — x|[x > r for all
xeE~EasEUE is open. Hence, forall y € E UEC,

1 1 V(ENE
) / i < ﬁ gpo VENE)
ENE ||x — y||&+® ENE rta rnta

This further implies that

1 1
Je (fE\EWd")dy:fE(fE\EWdX)dFO»

and thus, the desired formula (3.3) holdS'
Po(E, K) = P (E, K) = f,c — yff e
lx - yH 3 < Jx - yH 4

1 1
WAV NS L LR A N o d")dy -0

Similar to the proof of Theorem 2.1, P, (E, K) has the following homogeneity: for
allr,s >0,

(3.4) P.(sE,rK) = s" % "“"Pa(E, K).

It is known that P (E,K) > y,(K)V(E)”
E c R" with y,(K) > 0 a constant defined by cf. [12]

(3.5) Yo (K) = inf{Py(E,K)V(E)™"" : Ec Q,V(E) >0},

where Q is a given and fixed open bounded subset of R”. As claimed in [12], the
constant y,(K) defined in formula (3.5) only depends on K and is independent of
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the choice of Q. Heuristically, formula (3.4) indicates that y, (K)V(K)~ " may be
even independent of K.

Following the idea of verifying [5, Lemma 6.1], we establish the following aniso-
tropic isoperimetric inequality for P, (E, K), which provides an estimate for the con-
stant y4 (K).

Theorem 3.2  Let E be a bounded Borel subset of R". The following anisotropic isoperi-
metric inequality with fractional order « € (0,1) holds:

(3.6) aPy(E,K) > nV(K)"* V(E)".

Moreover, this inequality is asymptotically optimal in the sense of
lim aPy(E,K) = lim nV (K)** V(E)%" = nV(K)V(E).
a—0+ a—0+

Proof Let E be a bounded Borel subset of R”. The desired inequality holds trivially

if V(E) = 0. Now let us consider 0 < V(E) < oo, and let r = (%)1/" > 0. For any

fixed x € E, let B,(x) = {z € R" : |z — x| x < r}. In fact, the volume of K is equal to
V({z: |z|k £1}) and hence the volume of B,(x) equals V' (E). This further implies

V(E‘nB,(x)) = V(B,(x)\E) = V(B,(x)) - V(EnB,(x))
=V(E)- V(EnB,(x))
=V(E\B,(x)) = V(B,(x)nE).

Note that ||y — x||x < r for y € E°n B,(x) and ||y — x||x > r for y € B,(x)° n E. Thus,

f dy >f dy _ V(E‘nB/(x))
E ;l(-HX - E rﬂ+lx

nB,(x) |x — | B, (x) 1T

VBLen o b

ri’H—(X ,(x)“mE ri’l+0¢

> f 4y
~ JB, () [x - y|Ere

This in turn implies

/ dy  _ / _dy / _dy
Ee |x -yl ~ JEenB(x) [x =y EnB,(x)° [lx — y|&T*

N / oy / _dy
C IRk [x =R JEnB e [x - R

_ f dy
B,(x)e [x -yt
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where the last integral can be calculated by Fubini’s theorem as follows:

f _dy f _dy
B.(x)¢ [|x = y|%  Jiply-xle>r) [x - y|&He

K K

= - n+a)t ") d

/{y=\|y—x|\l<>'}( f\ly—xHK( ) ) 4

= n+a)t e f dy) dt
f, (n+a) ( {yrely-slxsy )

= V(K) frw(n o)t — ) dt

_a n V(K)1+a/n
- r V(K) = ; . W.

n
(24

Hence, one gets

d d
Pa(E K) = /E( B W) ez [E(fwx)c W) o

K

n+a n—a
n

= V(E)

2§~V(K)

The asymptotic optimality is a direct consequence of formula (3.1), i.e.,

n+a n+a

nV(E)V(K) = lim aPy(E,K) > lim nV(K)*"V(E)"" = nV(E)V(K). m

The definition for y, (K) and Theorem 3.2 imply that
V(K)"" <inf{ P.(E,K)V(E)™"* : Ec Q,V(E) >0} = y(K).

nta

That is, we have a lower bound for y, (K), ya (K) > 2 V(K) “+* . However, 2V(K) ™
cannot be the optimal lower bound for y, (K) because the inequality (3.6) is not sharp
in general even for convex bodies E. More precisely, it has been proved in [9] that if
E is a convex body, the function [, |x - yH;((M") dx is continuous on the interior

of E, and approaches to co when y is approaching to the boundary of E. Hence,
for a € (0,1),

d , d
res= [ i) 2 St ) @

atn atn

> gv(E)-v(E)’T“V(K) = EV(E)"% V(K)S,

where the second inequality follows from [9, Theorem 7].

Remark 3.3 We now provide an example to support the argument above. Note
that [9, Theorem 7] and its immediate remark imply that equality holds in inequality
(3.6) only if convex bodies E are homothetic to K. So without loss of generality (due
to the translation invariance, see formula (3.2)), one can calculate that with n = 1,
K =[-1,1],and « € (0,1),

22—a

P[] = Lo

> = Sy V(L)
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Consequently, an interesting and important future project is to find the sharp con-
stant C (depending on «) such that
P,(E,K)
VETVERT W
holds for all (even convex) E, with equality for certain E (depending on K, such as E
is homothetic to K or even E = K).
It is well known that the anisotropic isoperimetric inequality, cf. [7, (1.4)],

(3.7) P(E,K) > nV(K)# V(E)"

can be obtained by the classical Brunn-Minkowski inequality [6]. However, such an
inequality cannot be obtained from Theorem 3.2 by letting @ — 17, if one notices
the second limit of (3.1). On the other hand, inequalities in Theorem 3.2 and the
anisotropic isoperimetric inequality have two common features: the dimension # ap-
pears in front of the products of the powered volumes, and the sums of the powers of
V(K) and V (E) are constants:

n+a n-o 1 n-1

+ =2, —+

n n n n

As in [7], it may be interesting to study the deficit
aP, (E, K)

nV(K)=*V(E)S

See [8] for a PDE-based treatment of such a question with K = B. We leave this for
future investigation.

=1L

The relation between the anisotropic fractional Sobolev capacity and the aniso-
tropic fractional perimeter is stated in the following theorem, which is an extension
of [22, Theorem 2] for K = Bj. Together with formula (3.2), one can easily see that
cap(L; Afle) is also translation invariant, that is, for all x, € R"

cap(xo + L; A‘IXIK) = cap(L; AL’}K .
Theorem 3.4 Let L be a compact subset of R". Then
L;AY ) =2 inf P,(0,K),
cap(LiAll) =2, inf | Pu(0.K)
where O (L) denotes the class of all open sets with C* boundary that contain L.

Proof LetL c R" be compact. For f € Cg° with f > 1;, one has
Lc{xeR": f(x)>t}, Vte(0,1).

The generalized co-area formula in [17] (see also [12]) implies
(3.8) £l :2f0 P ({x eR": f(x) > t},K) dt
1
zz/ Po({xeR": f(x)>1},K) dt

0

>2 inf P,(O,K),
0e0>(L)
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where the last inequality follows from {x € R" : f(x) > ¢} € O (L). Hence, formula
(1.2) implies cap(L; ALIK) > 2infpeo= (1) Pu(O, K). On the other hand, similar to
the proof of [10, Theorem 3.1] (or the proof of Theorem 4.3 (ii) in this paper), one can
prove that

cap(L; Ay'y) < cap(O;Ay'y) <2P,(0,K), VO e0=(L),

where the first inequality is by Theorem 2.1 (ii). This further implies that
L;AY ) <2 inf P,(O,K),
cp(LiAli) <2 inf | Pa(0.K)

and the desired formula for cap(L; A}XIK) follows. [ |

Remark 3.5 Combining formula (1.1) and the first limit of [12, p.90, line 5], we can
prove the following co-area formula

[Rn [VF()| 2ok dx = 2/0 P({x eR": f(x) > t}, Z1K) dt.
Moreover, Theorem 3.4 together with formulas (1.1), (1.3), and (3.1) imply that
3.9 Liwi) =2 inf P(0,ZK),
(3.9) cap(L; Wy') U (0, ZiK)

which extends [13, Lemma 2.2.5] for K = B} to the anisotropic case.

We now establish the anisotropic isocapacitary inequality with fractional order « €

(0,1).

Corollary 3.6  Let L be a compact subset of R". Then the following anisotropic isoca-
pacitary inequality with fractional order a € (0,1) holds:

n+a n—

occap(L;AL’)lK) >2nV(K) 5 V(L) .

Moreover, this inequality is asymptotically optimal in the sense of

lir{)l+ acap(L; ALIK) = lir{]l+ 20V (K) 5" V(L) = 2nV(K)V(L).

Proof Combining Theorems 3.2 and 3.4, one has

LAY ) =2 inf P,(O,K)> inf (2y.(K)V(0)+
cap(LiAgx) =2  inf = Pu )_Oeg;(w( ya(K)V(0)™")

n—a 2 n+a n—a
> 29 (K) V(L) > 22 v(K) 5 V(L)
a
Together with formula (1.3), one has
2nV(L)V(K) = algg a cap(L; ALIK)

nta

> lim 2nV/(K) " V(L)% =2nV(L)V(K). |

Remark 3.7  Similarly, inequality (3.7) and formula (3.9) imply the following aniso-
tropic isocapacitary inequality: cap(L; Wr') > 2nV (Z,K)» V(L)% .
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4 Anisotropic Fractional Sobolev Embeddings

This section is dedicated to establishing the anisotropic fractional Sobolev inequali-
ties (generated by the Radon-measure-based-Lebesgue-space L;',/ # on R") and their
geometric counterparts for anisotropic fractional capacity.

First, we have the anisotropic extension of [22, Theorem 3 (i)].

Theorem 4.1 Let y be a nonnegative Radon measure on R" and 0 < f < oo be a
constant. The following two inequalities are equivalent.

(i)  The analytic inequality: there is a constant «,, 4 g > 0 such that
(4.1)

I£1

L

oo . n £
SK,,,O,,;;(/; (cap({xeR”:|f(x)|2t};AL’}K))”d ) VfeCy.

Tmir

(ii) The geometric inequality: there is a constant k,, o g > 0 such that

(4.2) (y(O))" <Knal;cap(O A )
for all bounded domain O c R" with C* boundary 00.

Proof By Fubini’s theorem, one has, for all f € Cg°,

/]

[l dut)*

(

(LLL " ) o)
(/ [./o ) npe d”(x)] dt) '
(4.3) :(fowy(ot(f)) dt%)g,

where, for all t > 0, O,(f) and dt# are defined as

3
Ly

O:(f) ={xeR": |f(x)| > t}, dth = nﬁ—ltﬁﬂdt.

(ii) = (i) Suppose that inequality (4.2) holds. Note that for f € Cg°, the set O;(f)
is a bounded open domain with C* boundary. Together with inequality (4.2) and
formula (4.3), one gets the desired inequality (4.1) as follows:

3 =(fom‘u(Ot(f))‘7”;)ﬁ
([~ uom) art)’
< [ (cap(O(7)sAt) P

If

=R
m\:
~—
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(i) = (ii) Suppose that inequality (4.1) holds. For any bounded domain O c R”
with C* boundary 0O and 0 <€ <1, let

1-¢eldist(x,0) ifdist(x,0) <e,
f6(x)={ (x,0) (x,0)

0 if dist(x, 0) > ¢,

where dist(x, E) denotes the Euclidean distance of a point x to a set E. One can check
that f, € Cy° and hence inequality (4.1) holds for f.. Moreover,

_ B
(4.4) (#(0)) " = lim | fe] 5.

Let O, = {x € R" : dist(x, O) < €}. Inequality (4.1) implies that forall 0 < e <1,
g

el g < Rnap( [ (cap(OeCiNsAL)) P ark )
u

L

1 _— n n é
~knap( [ (cap(O(fNi AL e )
< Ky, €aP(Oes Afx’,lK),

where the last inequality is due to Theorem 2.1 (ii) and O,(f;) c O,. Taking ¢ —» 0%,
one gets inequality (4.2) by Theorem 2.1 (iv) and formula (4.4). ]

As a matter of fact, both inequalities (4.1) and (4.2) hold true for y being the
Lebesgue measure on R” with f = n—a and x4, n—o = ( 294 (K)) 71. Moreover, if the
nonnegative Radon measure y is absolutely continuous with respect to the Lebesgue
measure on R” and f(x) = % is bounded on R”, then inequalities (4.1) and (4.2)
hold true for = n — a and some constant x, 4,,—. To this end, it can be seen from
the proof of Corollary 3.6 that for all bounded domain O c R" with C* boundary
00,

(V(0)) ™ =(V(0)) ™ <(27a(K)) " cap(0; ALL).
That is, inequality (4.2) holds true with 8 = n—a and constant «, 4 n—a = (2y4(K))7%,

and so does inequality (4.1) by Theorem 4.1. Moreover, let 4 be such that f(x) = % is
bounded on R”, say by M < oo. For all bounded domain O c R” with C* boundary

00, one has 4(0) < MV (O). Hence,
—\\ 5° n-a —\\ 5% n-a -1 — .
(4(0) ™ <M (V(0)) ™ < M (20a(K)) " cap(: A1),
That is, inequality (4.2) holds true for g with § = n — « and constant «, 44— =
M+ (2y4(K))™!, and so does inequality (4.1) by Theorem 4.1.

Remark 4.2  Similar to Theorem 4.1 and comments after, one can get analogous
results for the anisotropic fractional Sobolev capacity cap( -, Wg'). More precisely,
with ¢ and 8 as in Theorem 4.1 and «,,, 3 a constant, the following two inequalities are
equivalent.

(i) Forall feCy,

SKn,ﬁ(fooo(Cap({xe]R”;|f(x)|2t};Wll<,1))%dt%)

B

n

I£1

L

N
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(ii) For all bounded domain O c R” with C*° boundary 00,

__ B .
(/4(0)) " < Ky,pcap(0; W11<’1).

Moreover, the above inequalities hold for y being the Lebesgue measure on R”
with $ = n - 1and constant x,, ,_; = (ZnV(ZlK)%) -

Second, we have the anisotropic version of [22, Theorem 3 (ii)].

Theorem 4.3 Let 0 < 8 < co. The following inequalities hold and are equivalent.
(i)  The analytic inequality

(4.5) ([0 (cap({x eR": [f(x)| > t};AL’}K )B %) " HfHAn , VfeCss
(ii) The geometric inequality
(4.6) cap(0; Ay'y) < 2P, (0, K),

for all bounded domain O c R" with C* boundary 00.

Proof We first prove that inequality (4.6) holds and is equivalent to inequality (4.5).
Hence inequality (4.5) holds automatically.

The proof of inequality (4.6) is similar to that of [10, Theorem 3.1]. For complete-
ness, we include a brief proof here. Let O c R” be a bounded domain with C*
boundary 00. Recall that | - | is equivalent to | - | x for any given origin-symmetric
convex body K. By [10, Lemma 3.2], for all € > 0, one can find a function g € C3° such
that 0 < g <1, g(x) = 1for x € O (which implies g > 15) and

f lg(x) - gyl
< Oc

dx d .
[x—ylpra FE

Hence, formulas (1.2) and (3.3), together with g € Cg° and g > 15, imply

cap(E;A}x”lK) </ 7|g(x) ()| dxdy

zx -yl
Zf lg(x) - gn(+ya)|dxd *f g(x) - gn(+ya)|d dy
o [x-ylk “Joe |x—ylk

<2P,(0,K) +¢€=2P,(0,K) +e.

The desired inequality (4.6) follows by taking ¢ - 0.

Now we prove the equivalence between inequalities (4.5) and (4.6). First, we as-
sume that inequality (4.5) holds true. Lete € (0,1) and O c R" be a bounded domain
with C* boundary 00. Let O, and f; be as in the proof of Theorem 4.1. Also note
that f.(x) = 1forall x € O, and hence O c O,(f,) forall e € (0,1) and t € (0,1). By
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of Theorem 2.1 (ii) and inequality (4.5), one has

==

cap(0:8%2) < ([ (cap(0u()s A1) F deh)
< ([ (cap(0u(is A1) ae?)
< [ fellan, -

As fe(x) — 1, the dominated convergent theorem implies the desired inequality
(4.6):

B

cap(0; Agx) < lim | fell g = 15 st = 2Pu(O, K).

Second, we assume that inequality (4.6) holds. Note that O;(f) c O,(f) holds for
any function f € Cg° and 0 < s < t. Theorem 2.1 (ii) implies that cap(O;( f); ALIK) is
decreasing on t € [0, 00). Hence,

1 (cap(Ou7)s A0)) P = (¢ cap(Ou(7)s A1) P cap (07 Al
< (fotcap(Wf); A(lx’,lK)dS) . cap(0:(f)s Agl)
L[ w0

Integrating the above inequality over ¢ € (0, o), one has

S (cap @ i) ded = - [ cap@ )

sfow%(fotcap(mﬂ‘ )ds)%
= (/000 cap(m; AL’,IK) ds) E

Hence, inequality (4.6) and the co-area formula (3.8) imply the desired inequality
(4.5):

B

(/) (cap (@07 & IK»% art)" < [ cap(0.(i AL a
<2 [T P01 K) de=2 [ Pu(0i(f)K) de=f | W

Remark 4.4 A similar result for anisotropic Sobolev capacity cap( -, W}gl) also
holds and is an extension of [19, Theorem L.1]. More precisely, with 0 < 8 < n, the
following inequalities hold and are equivalent.

(i) Forall feCg,
(/ (cap({x eR™:[f(x)| 2t} Wy 1)) 5 dtﬁ
0
(ii) For all bounded domain O c R"” with C* boundary BO,
cap(0; Wg') < 2P(0, Z,K).
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Finally, as a more general formulation of [22, Theorem 4] and [12, Theorem 9], we
have the following equivalence.

Theorem 4.5 Let y be a nonnegative Radon measure on R" and 0 < f < n be a
constant. The following three inequalities are equivalent.

(i)  The anisotropic fractional Sobolev inequality: there is a constant «,, 4,5 > 0 such
that

115 < ®naplflan. forall feCg.
u

(i)  The anisotropic fractional isocapacitary inequality: there is a constant K, o, > 0,
such that for any bounded domain O c R" with C* boundary 00,

(y(O)) "< Knaﬂcap(O Aa K)

(ili) The anisotropic fractional isoperimetric inequality: there is a constant K, . > 0,
such that for any bounded domain O c R" with C* boundary 00,

(y(O)) " < 2Ky,0,5Pu (0, K).

Proof (i) = (ii) Suppose that the anisotropic fractional Sobolev inequality in (i)
holds true. Then for all f € C3° with f > 15, one has

(100)F = ( [ 19du0))" < ([ A due)) " = 1F1 g < ksl

Taking the infimum over f € Cg° with f > 15 and by formula (1.2), one gets the
desired anisotropic fractional isocapacitary inequality

_ B — .
(y(O)) " < Kpya,p cap(O,AL”lK).

(ii) = (iii) Assume that the anisotropic fractional isocapacitary inequality holds.
Then for any bounded domain O c R” with C* boundary 90, one gets the desired
anisotropic fractional isoperimetric inequality

( (O)) <K,,a/5cap(OA )SZK,,,a,/;Pa(a,K)

where the last inequality follows from inequality (4.6).

(iii) = (i) Assume that the anisotropic fractional isoperimetric inequality holds.
Let f € C5° and O;(f) = {x e R" : |f(x)| > ¢t} for all ¢ > 0. Obviously, u(O:(f)) is
a decreasing function on t € [0, 00), and hence for 0 < f < n,

([ u(0un) ast)™ w(oun)ef <( [ u(oin) dst)" u(0i())
- (W(0()) *t
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Together with equality (4.3), one has

Lﬂ¢%ﬁmﬂag»wﬂﬁ
:fow%(fotﬂ(os(f)) ds%)édt

B

:‘/Ooo(fot.u(os(f)) ds%) 71/"(Ot(f))t%_ldt
< [T (o) " at

Employing the anisotropic fractional isoperimetric inequality to O;( f), together with
formulas (3.3) and (3.8), one gets for all f € Cg°,

oo B i
171y < [ (w(01)) " dt <2000 [ Pu(0:(1).K) dt = gl iz
u
the desired anisotropic fractional Sobolev inequality. ]

Remark 4.6  Similarly, for a nonnegative Radon measure y, constants 0 < 3 < n
and x,,5 > 0, the following three inequalities are equivalent, whence extending [21,
Proposition 3.1].

(i) Forall feCg, ||fHL% Sknp Jon V()] 27k dx.
(ii) For any bounded domain O c R” with C*® boundary 00,

— .\ E — .
(u(0)) " <Ky pcap(O, Weh).
(iii) For any bounded domain O c R” with C* boundary 00,

(#(0)) P 2%,,3P(0, Z,K).
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