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Abstract
Generative artificial intelligence (AI) systems, such as large language models, image synthesis tools, and
audio generation engines, present remarkable possibilities for creative expression and scientific discovery
but also pose pressing challenges for privacy governance. By identifying patterns in vast troves of digital
data, these systems can generate hyper-realistic yet fabricated content, surface sensitive inferences about
individuals and groups, and shape public discourse at an unprecedented scale. These innovations amplify
privacy concerns about nonconsensual data extraction, re-identification, inferential profiling, synthetic
media manipulation, algorithmic bias, and quantification. This article argues that the current U.S. legal
framework, rooted in a narrowly targeted sectoral approach and overreliance on individual notice and con-
sent, is fundamentally mismatched to address the emergent and systemic privacy harms of generative AI. It
examines how the unprecedented scale, speed, and sophistication of these systems strain core assumptions
of data protection law, highlighting the misalignment between AI’s societal impacts and individualistic,
reactive approaches to privacy governance.The article explores distinctive privacy challenges posed by gen-
erative AI, surveys gaps in existing U.S. regulations, and outlines key elements of a new paradigm to protect
individual and collective privacy rights that (1) shifts from individual to collective conceptions of privacy;
(2) moves from reactive to proactive governance; and (3) reorients the goals and values of AI governance.
Despite significant obstacles, it identifies potential policy levers, technical safeguards, and conceptual tools
to inform a more proactive and equitable approach to governing generative AI.
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1. Introduction
The emergence of generative artificial intelligence (AI), a suite of technologies capable of cre-
ating novel and realistic content, represents a transformative development in AI (Surden, 2024,
pp. 1944–1948). Generative AI refers to a class of machine learning models and techniques that can
create new content – such as text, images, audio, video, and code – based on patterns learned from
vast troves of training data (Surden, 2024). These systems, including natural language models like
ChatGPT, image generation tools like DALL-E and Stable Diffusion, and audio synthesis engines
like WaveNet, have already begun to revolutionize how we create, interact with, and perceive digital
content (Davenport & Mittal, 2022; Kreaic et al., 2024).
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While earlier AI excelled at tasks like image classification, speech recognition, and fraud detection,
these systems were primarily constrained to identifying and exploiting correlations within narrowly
defined problem domains (Surden, 2024). In contrast, generative AI systems produce output that is
often indistinguishable from human-created content (Cooper et al., 2023, p. 7; Heikkilä, 2024).While
these tools offer exciting newpossibilities for creative expression, scientific discovery, and social inno-
vation, they also raise profound privacy concerns (Bender et al., 2021; Cooper et al., 2023, p. 10;
Helmus & Chandra, 2024; King & Meinhardt, 2024; Luccioni & Viviano, 2021; Matsumi & Solove,
2024; Song & Shmatikov, 2019; Weidinger et al., 2021; Weidinger et al., 2022).

This article explores the privacy challenges posed by generative AI and argues for a fundamental
rethinking of privacy governance frameworks in response. Section 2 examines the technical charac-
teristics and capabilities of generative AI systems that amplify existing privacy risks and introduce
new challenges, including nonconsensual data extraction, data leakage and re-identification, infer-
ential profiling, synthetic media generation, algorithmic bias, and quantification. Section 3 surveys
the current landscape of U.S. privacy law and its shortcomings in addressing these emergent issues,
highlighting the limitations of the sectoral approach, the FTC’s constrained authority, the promise
and pitfalls of state laws, and the inadequacy of individualistic privacy paradigms. Section 4 outlines
critical elements of an alternative paradigm for generative AI privacy governance that: (1) shifts from
individual to collective conceptions of privacy; (2) moves from reactive to proactive governance; and
(3) reorients the goals and values of AI governance.The analysis concludes by discussing the political,
legal, and cultural obstacles to regulatory reform in the United States while emphasizing the urgent
need for action given the high stakes for individual autonomy and democratic values.

2. How generative AI challenges privacy
The rapid advancement of generative AI systems, with their enhanced ability to create highly realistic
and persuasive content, magnifies existing privacy risks while also introducing new challenges that
test the foundational assumptions of current privacy frameworks. The technical characteristics of
generative AI systems exacerbate existing privacy threats. These risks include large-scale extraction
of public data without individual consent and control; data leakage and re-identification; inferential
privacy harms; generation of fake but convincing synthetic media; exacerbation of algorithmic bias
and discrimination; and decontextualized quantification (Bommasani et al., 2022; Cooper et al., 2023,
p. 10; Helmus & Chandra, 2024; King & Meinhardt, 2024; Lee et al., 2024; Shelby et al., 2023; Solove,
2024, 2025; Song & Shmatikov, 2019; Weidinger et al., 2021, 2022; Zeide, 2017). While society has
long grappledwith privacy concerns around big data andmachine learning, the power, sophistication,
and inscrutability of generative AI exceed the scope of current data governance paradigms, revealing
weaknesses in established legal and ethical frameworks for protecting privacy and autonomy.

2.1 Nonconsensual data extraction and the failure of notice and consent
Generative AI systems are trained on vast amounts of data, often comprising billions of individ-
ual data points spanning a wide range of formats, domains, and sources (Baio, 2022; Schuhmann
et al., 2022). For example, OpenAI trained its GPT-4 language model on a corpus of over 45 ter-
abytes of text data, including books, articles, and websites (Achiam et al., 2024). While some of these
data are clearly public material like stock photos, much of it includes individuals’ names, addresses,
and images published online under varying expectations of privacy (Cooper et al., 2023; King &
Meinhardt, 2024).

This harvesting and processing of personal information and sensitive content occurs without
notice, consent, or constraint (King & Meinhardt, 2024, pp. 17–19; Leffer, n.d.; Morrison, 2023;
Solove, 2025, pp. 23–29). Current law explictly allows (HiQ Labs v. LinkedIn Corp., 2019) or implicitly
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sanctions the collection and use of publicly available information (California Consumer Privacy Act
(CCPA), 2023); Va. Code § 59.1-571, 2021; Utah Code Ann. § 13-61-101(29)(b), 2024). However, the
unprecedented scope and granularity of data extraction by generative AI systems erode the assump-
tions of individual autonomy that underlie existing privacy frameworks (King & Meinhardt, 2024,
pp. 17–19; Solove, 2025, pp. 23–29). In many cases, individuals are unaware that their data are being
used to train these systems and cannot manage the downstream uses of their data. For example,
Clearview AI, a facial recognition company, scraped billions of images from social media platforms
to train its algorithms without the knowledge or consent of the individuals depicted (Hill, 2020;
Tangalakis-Lippert, 2023).

2.2 Data leakage and re-identification
The training data used by generative AI systems can also be vulnerable to data leakage and re-
identification attacks (Carlini et al., 2019; King & Meinhardt, 2024; Leffer, n.d.; Morrison, 2023;
Solove, 2025; Staab et al., 2023; Weidinger et al., 2022; Winograd, 2023). Because these models cap-
ture patterns at a high level of granularity, they can inadvertently “memorize” and reproduce sensitive
snippets of input data in synthetic outputs (Carlini et al., 2019; King & Meinhardt, 2024; Leffer, n.d.;
Staab et al., 2023; Winograd, 2023). For example, a language model trained on a corpus of emails
might reveal real names, addresses, or phone numbers (Carlini et al., 2021). Image synthesis mod-
els trained on photos from social media can produce pictures that depict recognizable individuals or
locations (Fernandez et al., 2023).Moreover, malicious actors can craft adversarial prompts to extract
specific sensitive information (Edwards, 2022).

2.3 Inferential profiling and privacy harms
Generative AI systems exploit subtle patterns and correlations in large datasets to make probabilistic
inferences about a person’s demographics, preferences, behaviors, and beliefs, even when such infor-
mation is not explicitly disclosed (Cooper et al., 2023; Gillis, 2022; King & Meinhardt, 2024; Solove,
2025; Weidinger et al., 2022, p. 218). Language models trained on social media posts might learn to
associate certain linguistic styles, topics, or sentiments with particular demographic groups, allowing
them to make inferences about a user’s age, ethnicity, or socioeconomic status based on their writing
patterns (Solow-Niederman, 2022; Zeide, 2015, 2022). Similarly, a computer vision model trained
on user-uploaded images might be able – or at least claim to be able – to infer sensitive attributes
like health conditions, political affiliations, or sexual orientation based on visual cues and contextual
signals in the images (Wang & Kosinski, 2018).

2.4 Synthetic media, deepfakes, and disinformation
Generative AI’s ability to create highly realistic content opens the door to pervasive deception and
manipulation (King & Meinhardt, 2024; Solove, 2025; Weidinger et al., 2022). Malicious actors can
exploit readily available tools to produce “deepfakes” and other types of syntheticmedia that convinc-
ingly impersonate real people andmislead audiences on amassive scale (Salam, 2023). Deep learning
models, for instance, can clone an individual’s voice from just a few seconds of audio and generate
fake audio clips (Leffer, 2024). Natural language models can mass-produce fake news articles, prod-
uct reviews, and social media posts that are nearly impossible to distinguish from authentic content.
Image synthesis systems can create realistic faces of nonexistent individuals or seamlessly insert real
people’s faces into fabricated scenarios (Westerlund, 2019).

These technologies are now accessible even to those with limited technical expertise or resources,
who can leverage them for deceptive or harmful purposes (Heikkilä, 2024). Middle school children
across the country, for example, alter images of their classmates to create “deepfake porn” (Rubin,
2023; Verma, 2023). As synthetic media capabilities grow increasingly sophisticated and accessible,
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it is becoming increasingly difficult to distinguish between real and generated content, eroding the
epistemic foundations of trust and truth in online interactions (Baker & Chadwick, 2021; Chesney &
Citron, 2019; Kalpokas, 2019; MacKenzie & Bhatt, 2020; Shin, 2024; Tokaji, 2019; Whyte, 2020).

2.5 Algorithmic bias and discrimination
Generative AI systems also risk perpetuating and amplifying historical patterns of bias and discrimi-
nation reflected in their training data. For example, facial recognition algorithms exhibit higher error
rates for women and people of color (Buolamwini &Gebru, 2018; Grother, 2022; Grother et al., 2019).
Researchers have shown that language models like GPT-3 can exhibit gender and racial biases in
their generated text, such as associating men with career-oriented terms and women with family-
oriented terms or perpetuating harmful stereotypes about minority groups (Bolukbasi et al., 2016;
Caliskan-Islam et al., 2016).

These biases can translate to real-world harms when entities use generative systems to allocate
benefits and opportunities (Ajunwa, 2021, 2020, p. 1405; Geddes, 2023, p. 31; Kim, 2016; O’Neil,
2016; Solove, 2025, pp. 45–46; Solove & Matsumi, 2024; Zeide, 2022). A company that uses a biased
language model to screen resumes or generate job descriptions may end up excluding qualified can-
didates from underrepresented backgrounds. A government agency that employs a skewed facial
recognition tool to identify suspects or predict recidivism risk may disproportionately target and
surveil communities of color (Barrett, 2017; Meijer &Wessels, 2019). Over time, such discriminatory
outcomes can compound disadvantage and erode economic mobility for marginalized communities
(Zeide, 2022).

2.6 Quantification and decontextualization
Automated profiling and decision-making by generative AI systems can also lead to the decontex-
tualization and abstraction of individuals, reducing them to a set of quantifiable data points and
statistical inferences (Citron& Pasquale, 2014; Cohen, 2000, p. 1405; Zeide, 2017, p. 169).This reduc-
tive approach to human identity and agency fails to capture the complexity and nuance of individual
circumstances, leading to decisions that may be inaccurate, unfair, or devoid of situational under-
standing (Cohen, 2000, p. 1405;Geddes, 2023, p. 31;O’Neil, 2016; Solove&Matsumi, 2024, pp. 45–46;
Zeide, 2017). A generative AI system used to predict someone’s creditworthiness or risk of recidi-
vism may rely on aggregate patterns and correlations learned from historical data that do not reflect
the full context of that person’s circumstances and capacity for behavioral change (Eaglin, 2017).
This risks creating a system of self-fulfilling prophesies that undermine individuals’ autonomy and
agency (Cohen, 2013; Harcourt, 2008; Kerr & Earle, 2013; Lazaro, 2018; Solove, 2024; Véliz, 2021;
Zeide, 2017, 2022). Moreover, using generative AI systems to automate high-stakes decisions shifts
discretion away fromdomain experts to unaccountable actors (Engstrom&Haim, 2023, pp. 291–292;
Zeide, 2017, pp. 168–169). These systems optimize based on what they measure, thereby shaping not
only individual assessments but also determining the broader goals and values of a given context
(Engstrom & Haim, 2023, pp. 291–292; Zeide, 2017, pp. 168–169). By displacing situated judgment
with opaque and unaccountable systems, generative AI risks enabling private entities to shape public
values and societal norms without adequate transparency or oversight (Engstrom & Haim, 2023,
pp. 291–292; Zeide, 2017, pp. 168–169). In summary, the advanced capabilities of generative AI
systems pose significant threats to privacy at both the individual and societal levels.

3. The inadequacy of U.S. privacy law in addressing generative AI challenges
The formidable capabilities and evolving risks of generative AI systems present substantial challenges
to current privacy and data protection frameworks in the United States. This section highlights three
key limitations of the current legal framework: (1) the fragmented and incomplete patchwork of

https://doi.org/10.1017/cfl.2024.15 Published online by Cambridge University Press

https://doi.org/10.1017/cfl.2024.15


Cambridge Forum on AI: Law and Governance 5

federal and state laws; (2) the mismatch between generative AI’s collective harms and a framework
premised on notice and choice; and (3) the inadequacy of individualistic privacy models in cap-
turing AI’s systemic impacts. These shortcomings necessitate a fundamental rethinking of privacy
governance in the age of AI.

3.1. A fragmented and sectoral approach to privacy regulation
Unlike the European Union, which has comprehensive privacy and data protection regimes like the
General Data Protection Regulation (GDPR) (Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with regard to the pro-
cessing of personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation, 2016), Arts 12–22 (Rights of the data subject) and the Artificial
Intelligence Act (Proposal for a Regulation of the European Parliament and of the Council Laying
Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act)), the United States
employs a sectoral approach to privacy and data regulation. This fragmented approach protects
specific data categories rather than establishing a general right to privacy across all contexts.

The current framework comprises a patchwork of federal and state laws imposing different obli-
gations on collecting, using, and sharing personal data based on industry, data type, and jurisdiction.
Key examples include the Health Insurance Portability and Accountability Act (42 U.S.C. § 1420d
et seq.), the Gramm–Leach–Bliley Act (15 U.S.C. § 6821 et seq.), and the Children’s Online Privacy
Protection Act (15 U.S.C. 6501–6506), each imposing unique obligations on the handling of personal
healthcare, financial, and children’s data, respectively.The fragmentedU.S. framework, which focuses
narrowly on protecting specific categories of data based on context, struggles to regulate AI systems
that can repurpose and recombine information inways that transcend traditional sectoral boundaries
(King & Meinhardt, 2024; Solove, 2024; Weidinger et al., 2022).

3.2. FTC authority and limitations
In the absence of comprehensive federal AI legislation, the Federal Trade Commission (FTC) has
emerged as the de facto federal authority responsible for privacy protection in the context of AI sys-
tems, including generative models (DiResta & Sherman, 2023). The FTC’s authority stems from its
general mandate to protect consumers from unfair or deceptive practices under section 5 of the FTC
Act. This includes taking enforcement actions against companies that violate their own privacy poli-
cies or engage in “unfair” practices that cause or are likely to cause substantial injury to consumers,
that cannot be reasonably avoided by consumers, and that are not outweighed by countervailing
benefits to consumers or competition (Federal Trade Commission Act § 5, 15 U.S.C. § 45(a), 2018).

In recent years, the Commission has taken a number of actions to address the privacy and fairness
implications of AI systems, including issuing guidance (Federal Trade Commission, 2021, 2023a),
conducting workshops (Federal Trade Commission, 2023b), and penalizing companies deploying
AI without adequate safeguards against discriminatory impact on protected classes (Federal Trade
Commission v. Rite Aid Corp., 2024; Hanley &Goldfarb, 2021). For example, in 2016, the FTC reached
a settlement with InMobi over its deceptive use of location tracking in its mobile ad targeting system
(FTC v. InMobi, 2016). In 2019, the agency issued warnings to companies that purport to use AI
for automated hiring decisions about the risks of perpetuating or exacerbating discriminatory biases
(FTC, 2020). In 2021, the FTC issued guidance explicitly cautioning that bias in AI could lead to
enforcement actions under laws prohibiting unfair or deceptive practices (FTC, 2021).That same year,
the FTC required Everalbum to delete biometric and facial recognition data that had been collected
without adequate notice and consent (FTC v. EverAlbum, 2021).

However, several factors limit the FTC’s ability to effectively oversee generative AI systems under
its current section 5 authority. First, the Commission lacks the substantive rulemaking power to
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issue binding regulations interpreting what constitutes an unfair or deceptive AI practice (Hartzog
& Solove, 2014), unlike the supervisory powers of the European Data Protection Board or the UK
Information Commissioner’s Office. There is also no statutory authority to conduct general audits or
inspections of AI developers’ practices (Hartzog & Solove, 2014). This results in largely reactive, fact-
specific enforcement actions focused on cases of procedural violations, such as deceptive marketing
or inadequate disclosures, rather than addressing the broader societal risks and harms posed by AI
systems (Hartzog & Solove, 2014; Hirsch, 2020; Waldman, 2019).

Second, the FTC’s jurisdiction only extends to commercial practices that cause or are likely to cause
substantial injury to consumers, which may not cover some of the more intangible and externalized
impacts of generative AI, such as the erosion of public trust or the amplification of disinformation
(Calo, 2021; Lamo & Calo, 2019).

Third, recent judicial decisions have further curtailed the FTC’s enforcement tools. In AMG
Capital Management v. FTC (2021), the Supreme Court held that section 13(b) of the FTC Act does
not authorize the agency to seek monetary relief like restitution or disgorgement, removing a key
deterrent against privacy abuses (pp. 1344–1347). This significantly narrow the agency’s enforcement
powers Slaught (Federal Trade Commission, 2021).

3.3. The promise and pitfalls of state privacy laws
Given these limitations at the federal level, a growing number of states have taken up the mantle of
regulating AI systems (2024 AI State Law Tracker, 2024). As of January 2025, 20 states have enacted
comprehensive consumer data protection laws that impose heightened requirements for processing
sensitive personal information and establish rights of access, correction, and deletion (2024 AI State
Law Tracker, 2024). These state privacy laws often incorporate data protection mechanisms from
the GDPR (Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance, 2016, Arts 12–22; Chander et al., 2020).

In addition to these comprehensive privacy laws, states have also enacted or proposed more tar-
geted laws governing specificAI applications. For example,Maryland’s AlgorithmicDecision Systems
Risk Assessment Act mandates bias and privacy impact assessments for government contractors
using AI tools, while California’s proposed Automated Decision Systems Accountability Act would
require businesses to evaluate high-risk AI systems and report on their data practices. Some states
have specifically targeted generative AI and deepfakes, with California’s A.B. 1280 (2023) prohibiting
the dissemination of synthetic media in political campaigns with the intent to deceive voters, and
Texas’ S.B. 2382 (2023) creating a civil cause of action for individuals whose likeness is used in sex-
ually explicit deepfakes without their consent. Other states, such as Tennessee and Utah, have gone
further by enacting laws that prohibit or criminalize the production of deepfakesmore broadly (Tenn.
Code Ann. § 47-25-1101 et seq., 2023); Utah Code Ann. § 76-5b-206 et seq., 2024).

While these state efforts represent an important source of policy innovation and experimen-
tation in AI governance, they also suffer from several key limitations in addressing the unique
challenges posed by generative AI. They remain fragmented and reactive, often addressing nar-
row harms rather than the underlying structural conditions that enable them (King & Meinhardt,
2024; Solove, 2024). Most still rely heavily on a notice-and-choice model of privacy protection that
is ill-equipped to govern the complex data ecosystems of machine learning pipelines (Hartzog &
Richards, 2020, p. 1704; King & Meinhardt, 2024; Solove, 2022, pp. 983–984, 2024). Moreover,
their enforcement mechanisms are often limited to attorney general actions or narrow private
rights of action, rather than more comprehensive administrative oversight and auditing (Fitzgerald
et al., 2024). Ultimately, while state AI laws play a vital role in experimenting with different
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regulatory approaches and filling gaps in federal policy, they are not sufficient on their own to
govern the far-reaching impacts of generative AI, which demands a more comprehensive, proac-
tive, and cohesive governance framework that can address both individual and collective privacy
harms, align innovation with public values, and hold AI developers and deployers accountable across
contexts.

3.4. The limitations of individualistic privacy paradigms
The biggest conceptual limitation of U.S. privacy law in the context of generative AI is its over-
reliance on individual notice and consent as the primary mechanism for protecting personal
autonomy (King & Meinhardt, 2024; Solove, 2022, 2025). This approach is ill-suited to address
the scale, complexity, and opacity of data flows powering generative AI systems, which rely on
web crawling, data brokers, and other indirect sources of data collection that are not visible and
thus not amenable to granular individual control (Burrell, 2016; Hartzog & Richards, 2020; King
& Meinhardt, 2024; Pasquale, 2015; Solove, 2013, 2024, 2025; Veale & Zuiderveen Borgesius,
2021).

First, privacy and data protection laws, which rely heavily on individual rights and procedural
safeguards, struggle to contend with the scale, complexity, and opacity of data flows in generative
AI systems (Edwards & Veale, 2017; Hartzog & Richards, 2020, p. 1704; Kaminski, 2023; Solove,
2022, p. 993). These characteristics render many core provisions, such as access rights, correction
mechanisms, and deletion requirements, technically and practically unfeasible (Carlini et al., 2021;
Katell et al., 2020; Shokri, Stronati, Song & Shmatikov, 2017; Villaronga et al., 2018; Waldman, 2019).
Evenwhen individuals can exercise their rights, doing somay not be technically feasible, as generative
AI models involve a compressed representation of their training data, making it difficult to erase or
remove personal information (Carlini et al., 2021). Similarly, if a generative model is used to create
and disseminate harmful synthetic media, it will be difficult to contain or reverse the viral spread
of this content (Bloch-Wehba, 2020; Chesney & Citron, 2019; Lamo & Calo, 2019; Van der Sloot &
Wagensveld, 2022).

Furthermore, the individualistic focus of U.S. privacy law extends beyond notice and choice to
its emphasis on procedural rights and ex post remedies through private lawsuits (Edwards & Veale,
2017; Hartzog & Richards, 2020, p. 1704; Hirsch, 2020, p. 462; Solove, 2022, p. 993; 2025). However,
thesemechanisms are often inadequate or ineffective in the face of generative AI’s structural risks and
harms, as the opacity and inscrutability of these systems pose significant challenges for existing legal
frameworks designed to ensure transparency and accountability (Cohen, 2019b; Selbst & Barocas,
2018; Wachter & Mittelstadt, 2019).

Finally, intellectual property laws, particularly trade secret protections, enable companies to assert
proprietary control over training data and algorithms (Tschider, 2021, p. 711; Wexler, 2018, p. 1402),
limiting external visibility and oversight. This legal barrier compounds the technical inscrutability of
generative AI systems, further undermining accountability (Burrell, 2016; Citron, 2008; Kroll et al.,
2017; Selbst & Barocas, 2018). As a result, there is often little public disclosure of information about
data sources, model architectures, training procedures, and output generation processes, making it
difficult for individuals to understand how their data are being used and to identify potential harms
or abuses.

3.5. The collective harms and societal risks of generative AI
Beyond these individual challenges, generative AI systems pose a range of diffuse societal risks that
are mismatched with the individualistic, reactive focus of existing U.S. privacy laws (Bhargava &
Velasquez, 2020; Cinnamon, 2017; Cooper et al., 2023; Zeide, 2022). Anti-discrimination laws, which
target discrete instances of intentional or disparate impact discrimination, struggle to address the
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structural and emergent harms of generative AI, such as compounded disadvantage, intersectional
bias, and the preemptive shaping of opportunities (Kerr & Earle, 2013b; Solove, 2024; Zeide, 2022).
These laws fail to capture the systemic and diffuse impacts of generative AI on historically disadvan-
taged populations (Mayson, 2018). Many of the most troubling impacts of generative AI are invisible,
embedded in automated systems, and occurring before formal decision points (Zeide, 2022). Instead
of explicit rejection, biased or inaccurate assessments and predictions often preempt access to oppor-
tunity (Kerr&Earle, 2013b; Solove, 2024; Zeide, 2022). For example, as I have discussed in priorwork,
predictive hiring algorithms can filter out qualified job applicants based on biased assessments, creat-
ing a “silicon ceiling” that imperceptibly impedes economic mobility for marginalized communities
(Zeide, 2022).

In light of these limitations, reactive, individual-centric regulation is inadequate to mitigate the
structural risks of generative AI. Addressing these challenges requires a proactive, systemic, and
collaborative approach that moves beyond individual rights and remedies.

4. Towards a paradigm for generative AI governance
The limitations of existing regulatory frameworks in addressing the privacy risks posed by genera-
tive AI systems underscore the need for a new paradigm of privacy governance. This section argues
for a fundamental reorientation of privacy protection from a narrow focus on individual control
and procedural safeguards to a more systemic approach. It outlines three key elements of this new
paradigm: (1) shifting from individual to collective conceptions of privacy; (2) moving from reac-
tive to proactive governance; and (3) reorienting the goals and values of AI governance. The section
concludes by acknowledging the significant obstacles to implementing such a paradigm shift in the
United States, including the lack of a comprehensive federal privacy law, the limitations of sectoral
and state-level regulations, and the entrenched ideological resistance to precautionary governance of
emerging technologies.

4.1. Shifting from individual to collective conceptions of privacy
Given the limitations of individual control and the societal impact of generative AI, privacy gov-
ernance should shift toward a more holistic understanding of privacy as a social value and public
good. A robust approach to generative AI privacy governance will require reorienting the founda-
tions of privacy protection from individual control and procedural rights to recognizing privacy as a
social foundation and collective good (Cohen, 2019b; Tisné, 2020). As demonstrated by the limita-
tions of existing regulations, policymakers cannotmitigate the privacy risks of generative AI solely by
empowering individuals to control how their personal data are collected and used by particular enti-
ties. Instead, achieving meaningful privacy protection in the generative AI era requires recognizing
the collective and relational dimensions of privacy harms (Milner & Traub, 2021; Viljoen, 2021).

4.2. Moving from reactive to proactive governance
A second key element in a more robust privacy governance framework is a shift from reactive and
retroactive enforcement actions to proactive and preventative oversight regimes (Kaminski, 2023).
Rather than relying primarily on ex post remedies triggered by specific legal violations or con-
sumer complaints, policymakers should institutionalize continuousmonitoring, auditing, and impact
assessment requirements to surface and mitigate potential risks before companies and organiza-
tions deploy generative AI systems at scale (Kaminski, 2023; Katell et al., 2020; Metcalf et al., 2021).
This means prioritizing proactive, preventative, and participatory approaches to AI governance that
can anticipate and mitigate risks before they cause harm. It requires investing in new institutional
capacities and governance frameworks that can enable ongoing monitoring, assessment, and public
engagement throughout the AI lifecycle.
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The European Union’s AI Act offers a potential model for systematic AI governance (European
Commission, 2023). One key strength of the AI Act is its focus on the broader societal impacts
of AI systems, rather than just individual privacy harms (European Commission, 2023). The
Act creates a comprehensive regulatory framework for AI systems, imposing graduated require-
ments based on a technology’s level of risk (European Commission, 2023). Notably, the Act would
require “high-risk” AI systems to undergo mandatory conformity assessments to ensure compliance
with essential requirements related to data quality, transparency, human oversight, and robust-
ness before entering the EU market. It also creates ongoing monitoring obligations for high-risk
systems and establishes a centralized database for registering stand-alone AI systems. While the
Act has drawn criticism for the compliance burdens it would impose (Corbett, 2024), it repre-
sents a meaningful effort to extend regulatory scrutiny to the entire AI lifecycle and to create an
institutional infrastructure for proactive and adaptive governance (Veale & Zuiderveen Borgesius,
2021).

4.3. Reorienting the goals and values of AI governance
Ultimately, the limitations of the current U.S. privacy framework in addressing the challenges of
generative AI point to the need for a more fundamental reorientation of the goals and values
underlying AI governance. Addressing these challenges requires not just new regulatory tools and
oversight mechanisms, but a deeper shift in how we conceptualize the purposes and priorities
of AI governance itself (Milner & Traub, 2021; Powles & Nissenbaum, 2018; Viljoen, 2021). This
reorientation involves moving beyond a narrow focus on protecting individual privacy rights and
towards a broader vision of promoting collective well-being, social justice, and democratic values
in the development and deployment of AI systems (Crawford, 2021; West et al., 2019; Whittaker
et al., 2019). It means reconceptualizing privacy not just as a matter of individual control over
personal data, but as a collective good that is essential for human autonomy, dignity, and self-
determination in the face of increasingly powerful and pervasive AI systems (Cohen, 2019b; Tisné,
2020).

Finally, it means grappling with the inherently political and value-laden nature of AI develop-
ment and governance, and creating mechanisms for democratic deliberation and contestation over
the goals, values, and trade-offs embedded in these systems (Benthall & Haynes, 2019). This requires
moving beyond technocratic and instrumental approaches to AI ethics and governance, and towards
more inclusive and participatory processes that empower affected communities to shape the trajec-
tories of AI innovation in line with their values and interests (Crawford, 2021). While the specific
regulatory tools and accountability mechanisms needed to operationalize these principles will likely
vary across different contexts and jurisdictions, reorienting the underlying goals and values of AI
governance is an essential first step toward a more proactive, equitable, and democratically legiti-
mate approach to managing the risks and benefits of generative AI systems (Milner & Traub, 2021;
Viljoen, 2021).

4.4. Obstacles to comprehensive AI privacy governance in the USA
Implementing a new paradigm of AI privacy governance in the USA will not be easy, as it must
contend with the country’s deeply rooted legal traditions, political economy, and ideological com-
mitments. One major hurdle is the political challenge of passing a comprehensive federal privacy law
that could provide a coherent and consistent framework for governingAI systems across different sec-
tors and jurisdictions. While there have been several proposals for such a law in recent years, none
have yet been enacted, partly due to disagreements over preemption, private rights of action, and the
scope of covered data and entities (Kerry et al., 2020). The highly polarized and industry-captured
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policymaking process can block or dilute even incremental reforms, making it difficult to achieve the
kind of systemic change needed to address generative AI’s privacy risks (Kaminski, 2023).

Another significant obstacle is the strong protection afforded to freedom of expression under the
First Amendment, which courts interpret to cover a wide range of data-driven activities, from collect-
ing and disseminating publicly available information to creating and sharing syntheticmedia (Franks,
2019;Wu, 2012).These free speech protections, alongwith intellectual property rights, can hinder the
ability of regulators to impose substantive restrictions on AI-generated content or mandate disclo-
sure of proprietaryAI systems (Franks, 2019;Massaro et al., 2017, pp. 2481–2525).This constitutional
constraint, coupled with the U.S. policy landscape’s historical favor for a laissez-faire and innovation-
friendly approach to technological development, creates a challenging environment for proactive AI
governance (Cohen, 2019a; Thierer, 2016, pp. 33–38).

The permissive stance of U.S. law, favoring market-driven solutions and self-regulation over pre-
cautionary regulation, is exemplified by numerous safe harbors and immunities for online platforms
and technology providers, most notably section 230 of the Communications Decency Act, which
shields platforms from liability for user-generated content (Kaminski, 2023; Citron & Wittes, 2017;
Kosseff, 2019). This preference for innovation over precaution (Thierer, 2016, pp. 33–38), reflected
in permissive liability regimes and judicial doctrines, places the burden of proof on regulators to
demonstrate clear and concrete harm before intervening in the development and deployment of AI
systems (Calo & Citron, 2020; Thierer, 2016). As a result, proactive regulation and public participa-
tion in AI governance can be chilled, making it difficult to address generative AI’s privacy risks in a
comprehensive and timely manner (Buchanan et al., 2021)

Despite these obstacles, there is a growing recognition among policymakers, experts, and the
public of the need for a more proactive, equitable, and democratically accountable approach to AI
governance (Milner & Traub, 2021; Viljoen, 2021; Zhang & Dafoe, 2020). Overcoming the cur-
rent barriers will require a sustained effort to build political will, public awareness, and institutional
capacity for a new paradigm of AI privacy governance. This may involve innovative legal strategies,
multi-stakeholder partnerships, and public education campaigns to shift the discourse and create the
conditions for meaningful reform. While the path forward is challenging, the stakes are too high to
maintain the status quo in the face of generative AI’s transformative impact on privacy, autonomy,
and democracy.

5. Conclusion
The meteoric rise and widespread adoption of generative AI systems present significant threats to
privacy and the regimes that seek to protect it. The ability of these systems to generate novel and
realistic content based on patterns learned from vast troves of personal data raises profound risks,
from nonconsensual data extraction and inferential profiling to the spread of synthetic media and the
amplification of algorithmic biases. Existing regulatory approaches, which rely heavily on individual
notice and consent, ex post enforcement, and a narrow conception of privacy harms, are ill-equipped
to address generative AI’s systemic and diffuse impacts. Addressing these challenges will require a
fundamental reorientation of privacy governance from reliance on individual control and procedural
safeguards to a more collective, proactive, and precautionary approach that recognizes privacy as a
public good and collective responsibility.
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