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Hodge Theory of Cyclic Covers Branched
over a Union of Hyperplanes

Donu Arapura

Abstract. Suppose that Y is a cyclic cover of projective space branched over a hyperplane arrangement
D and that U is the complement of the ramification locus in Y. The first theorem in this paper im-
plies that the Beilinson—Hodge conjecture holds for U if certain multiplicities of D are coprime to the
degree of the cover. For instance, this applies when D is reduced with normal crossings. The second
theorem shows that when D has normal crossings and the degree of the cover is a prime number, the
generalized Hodge conjecture holds for any toroidal resolution of Y. The last section contains some
partial extensions to more general nonabelian covers.

The principal goal of this paper is to verify some standard conjectures in Hodge
theory for a natural class of examples. Fix integers d > 1, m,n > 1, and consider
the cyclic cover 7: Y — P! defined by the weighted homogeneous equation y¢ =
f(xo,...,%,), where f is a product of md distinct linear forms. Let D be the divisor
defined by f = 0 and let E = 7~ !'D. Our first theorem is that the Beilinson-Hodge
conjecture, as formulated in [AS], holds for U = Y — E if, for instance, D has normal
crossings. This means that all weight 2 j Hodge cycles in H/(U, Q) lie in the image of
the cycle map from motivic cohomology. The key point is to show that the weight 2 j
Hodge cycles on U come from P" — D. Then the theorem is almost immediate. We
note that the theorem is valid even in some cases when D fails to be reduced or have
normal crossings. The precise condition is that the multiplicities of the components
of D, and their sums at points where D fails to have normal crossings, should be
coprime to d.

For the second result, we assume that D is an arrangement of d hyperplanes with
normal crossings (so that m = 1). Then Y is a singular toroidal variety, so we may
choose a toroidal desingularization X — Y [M]. Our second theorem implies that
the generalized Hodge conjecture [G] holds for X when d is prime. Another notable
consequence of the theorem is that when # is odd and d prime, the maximal abelian
subvariety of the intermediate Jacobian J"(X) is zero. The verification of the Hodge
conjecture for X goes as follows. We check that all the Hodge cycles on X are either
algebraic or are pullbacks of Hodge cycles from Y. To analyze the cycles in the second
category, we employ a nice trick used by Shioda [S] in a similar context. By exploiting
the action of 7/dZ on cohomology, we obtain a very strong bound on the dimension
of the space of Hodge cycles on Y. When d is prime, it will imply that there are no
transcendental Hodge cycles.
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Let us now indicate the nature of the bounds used above. Given a smooth projec-
tive variety Y, or more generally an orbifold as above, the dimension of the space of
Hodge cycles of type (p, p) on it is, of course, bounded by the Hodge number h??.
This can be written as the 2p-th Betti number minus 2 dim T, where T C H?/(Y)
is the space of (a, b) classes with a < b. If a possibly nonabelian finite group G =
{1,41,... }actson Y, then 2dim T can be replaced by the dimension of the smallest
rationally defined G-module containing T + T. In some cases this yields a huge im-
provement. For example, if G acts irreducibly on T with a nonreal character x, then
the factor in front of dim T jumps from 2 to the product of the degree of the num-
ber field O (x(g1), - . .) times the Schur index of x. This follows from more general
results given in the final section of the paper. The main result in this section is that
under suitable conditions, there is an explicit bound for the dimension of the space
of Hodge cycles on a branched G-cover in terms of branching data.

1 Preliminaries on Cyclic Covers

We start with a slightly more general setup than given in the introduction. Let Z
be an n-dimensional smooth projective variety with a line bundle L. Let D C Z
be a not necessarily reduced effective divisor with simple normal crossings such that
Oz(D) = L. Then we form the normal d-fold cyclic cover

-1\
Y = Normalization of Spec( &b L*l> —Z
i=0

branched over D (cf. [EV2,§3]). Let V = Z — D, E=7n"'D,andU =Y — E. Tt is
convenient to set Qé(log D) = Qé(log Dieq) below. The following is probably known
to experts, but we do not know of a good reference.

Lemma 1.1 Y is local analytically isomorphic to a toric variety with finite quotient
singularities.

Proof Local analytically, Y looks like the normalization of an affine variety of the
form

(1.1) yh =B
Let R = Rg,....a,.4) be the quotient of C[x,, ..., x,, y] by the ideal generated by the
difference of the two sides of this equation, and let ﬁ(al ,,,,, a.,d) denote its normal-
ization. The most important case for us is when all the exponents a; = 1. In
this case, the lemma is easy to see directly. The ring R is the ring of invariants of
Cluy, ..., uy, vl under ((;) € (pq)" acting by

uj — Cjuj; v— HCj_lv

Therefore, in this case, R is already normal. The fact that it is also toric is immediate
from the shape of the equation (1.1), which is the equality of two monomials.
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For the general case, we will use toric methods more explicitly. But first, we make a
series of reductions. Let g = gcd(ay, ..., a,,d). If g > 1, then Spec R is reducible and
the components are isomorphic to SpecRq, /g.....a,/g.d/¢)- Therefore, we may reduce
the proof to the case that ¢ = 1.

If some a; = 0, then

R =R, ga.a ®Clx].

Thus we may assume that all 4; > 0. Let S C Z" be the subsemigroup generated by
vi = (d,0,...0),...,v, = (0,...,d), vys1 = (ay,...,a,), and let L O S denote
the sublattice generated by the same vectors. The semigroup ring C[S] can be iden-
tified with the subring of C[uy, ..., u,] generated by u, ..., u? and " - - - u®. The
homomorphism

Clx1, ..., x4, y] — C[S]

defined by )
xi—ul, yr—ul Uy

n

gives an isomorphism R = C[S]. The normalization R of R is given by the semi-
group ring C[S], where S C § C L is the saturation [CLS, Chap 1,§3], which is the
intersection of L with the real cone

{ZT’,’V,‘ EL@]R{‘T’,‘ 20}

Then S is simplicial, since it is generated by the real basis vectors vy, . . . , v,,. Therefore
Spec R has quotient singularities [CLS, Chap 3, §1]. ]

Thus Y is an orbifold, which for our purposes simply means that it has finite
quotient singularities. Note also that the singularities lie over the singular locus
Dging C D. Bailey [Ba], and later Steenbrink [St], observed that most of the stan-
dard Hodge theoretic statements generalize from smooth varieties to orbifolds. We
list the results that we need from the second reference.

(H1) The mixed Hodge structure on H'(Y) is pure of weight i. We can identify
GriH! (Y) with H'=*(Y, Q% ) where QF := (Q5)** = j,QF and j: W — Y is the
embedding of the smooth locus.

(H2) The hard Lefschetz theorem holds.

(H3) There is an (noncanonical) isomorphism

H'(Y - D,C) = @ H*(Y,Q}(logD)),

at+b=i

where ﬁ’{,(logD) = ., (logD N W). (Although this is not explicitly stated

there, it follows from the discussion in [St, 1.17-1.20] and the fact that the spectral

sequence associated with (ﬁ; (log D), ﬁ%k(log D)) degenerates at E;, because it is

part of a cohomological mixed Hodge complex [D2, 8.1.9].)

The group of d-th roots of unity pg = 7/d acts on Y, and we will need to analyze
the eigenspaces on cohomology. Let €: p1; — C* denote the standard character given

by €(¢) = (. Any C[ug]-module T can be decomposed as a sum T = @?;01 T,
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where T, is the maximal submodule where ¢ € j4 acts by multiplication by €/ (¢) =
¢'. Define the nontrivial part of T by T,,; = @212—11 T.. Let

H(Y) = HY Y, Q))a  and  HJJ(Y) = H'(Y, Q).

Lemma 1.2 (Esnault—Viehweg) Let D = Z a;Dj, where D; are the irreducible com-
ponents. Let [rD] = > [a;r]Dj, L0 = L7 ([4D)), and let DY be the sum of compo-
nents Dj such thatd [ ia;. Then

HI(Q%) ifi =0,

H.(Y,0k) = " . .
o v) {HJ(QE(logD(’))(XJL(_’)) otherwise,

HI(Q%(log D)) ifi =0,

= y(logE)) {H](Qg(logD) ® LYY otherwise.

Proof Since 7 is finite, we have H/(Y, fl’{,) = Hi(Zz, 71'*?2’{,) as C[ug]-modules. Let
W = Z — Dyjpg. Esnault and Viehweg [EV2, lemma 3.16] have shown that

{Q"‘N ifi =0,
=

L6 A ,
(mily) Q"‘A,(logD(‘)) ® LD otherwise.

Equality extends to Z, because these sheaves are reflexive.
The second part also follows from [loc. cit] by the same argument. ]

Corollary 1.3 The invariant part H,(Y) is isomorphic to H*(Z).

Remark 1.4 The above formulas simplify under the following assumptions

(i)  Ifthe coefficients a; are coprime to d, then DW = D4 foralll <i < d—1. This
coprimality condition is equivalent to the map Y — Z being totally ramified
along D.

(ii) If Dis reduced, then additionally L0 =

The following is a special case of much more general vanishing theorems due to
Esnault and Viehweg [EV1].

Lemma 1.5 Suppose that L is ample and that the coefficients of D are coprime to d. If
m+k#nandl <i<d-—1, then Hm(Qé(logD) ® LDy = 0.

Proof We have
H™(Q(logD) ® L") c H™ (Y — E,C)

by Lemma 1.2 and item (H3). Since Y — E is affine, the right side vanishes when
m+k > n[EVI, 1.5].

For the remaining case m + k < n, we use hard Lefschetz on Y with respect to the
pullback of L. This is compatible with the z4-action and therefore induces

Hm(Qé(logD) & L(_i)) >~ Hm+j(Q§+j(10gD) ® L(_i)) 7

where j = n — (m + k). [ |
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Corollary 1.6 If in addition to the above assumptions i # n, then H' (Y,Q) =
H(Z,Q).

2 Beilinson—-Hodge

We say that the Beilinson—Hodge conjecture holds for a smooth variety V (in de-
gree j) if the cycle map on the higher Chow group

CH!(V, j) ® Q. — Homys (Q(—j), H(V, Q)

is surjective (for the given j). See [AS, AK, B,]J] for more background.

For the next lemma, we use the same notation as in Section 1, that Z is smooth
projective and Y — Z is a d-sheeted normal cyclic cover branched over a normal
crossing divisor D.

Lemma 2.1 Suppose that the coefficients of D are coprime to d, that the Beilinson—
Hodge conjecture holds for V.= Z — D in degree j, and that W;H'(V,Q)) = 0. Then
the Beilinson—Hodge conjecture holds for U =Y — E in degree j.

Proof We can assume that j > 0, since otherwise the statement is vacuous. Since
HI(Y) is pure of weight j, Hom(Q.(—j), H/(Y)) = 0. Therefore we have an injection

Homyus (Q(—j), H/ (U, Q)) — Homyus(Q(—j), H/(U,Q)/im H (Y, Q)) .

By Lemma 1.2 and (H3), there is an isomorphism

HIU,C) = @ H(2(logD)) & @ B H~((logD) @ L),
k k

i=1
Hi(Y,C) = @Hf*k(gg) ® @ d@; HI7H(Q(logD) @ L) .
Therefore
(2.1) H/(U,Q)/imH/(Y,Q) = H/(V,Q)/im H(Z,Q) = H (V,Q),
where the last isomorphism follows from our assumption that
W,;H(Z) = imH/(Z) = 0.

Thus we have a commutative diagram

CHI(U,j)®Q CH/(V,j)®Q

| |

Hom(Q)(—j), HI(U)) Hom(Q(—j), H (V)

f /

Hom(Q.(—j), H/(U)/im H/(Y)),

which implies that the map r is necessarily surjective. ]
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We sketch an alternate proof of Lemma 2.1 that is a bit more conceptual.

Outline of second proof Consider the diagram

HI(Y) —= HI(U) — H™(Y) ——= H*\(Y)

T

Hi(Z) — HI(V) — H}/'(Z) —— H*'(2)

where the coefficients are Q). Since Y — Z is totally ramified at D, we can see that D
and E have homotopy equivalent tubular neighbourhoods. Therefore « is an isomor-
phism. If X — Y is a resolution of singularities, then the map H/*'(Z) — H/*(X)
is injective, because the normalized pushforward gives a left inverse. Since the map
factors through g, 8 must also be injective. This implies (2.1) by a diagram chase.
The rest of the proof is identical to the one above. ]

We can extend this lemma to more general branch divisors, but we have to worry
about the effect of the singularities. Given a divisor D C Z, a log resolution of (Z, D)
is a resolution of singularities p: Z’ — Z such that p*D has simple normal crossings.

Corollary 2.2  Assume all of the conditions of Lemma 2.1 with one exception, that D is
only effective. Then the Beilinson—Hodge conjecture holds in degree j for U if in addition
there exists a log resolution p: Z' — Z such that p*D has all coefficients prime to d.

We will say that D = > a;D; is of arrangement type if the components are all
smooth and D is local analytically isomorphic to a hyperplane arrangement in affine
space. This, of course, includes the case where D C IP" is itself a hyperplane arrange-
ment. If p € D, let us say that the incidence number at p is the sum of all coefficients
a; for components D; containing p. In particular, for a reduced divisor, this is pre-
cisely the number of components containing p. The set of essential incidence numbers
of D is the set of incidence numbers of those p € D at which D fails to have normal
crossing singularities.

Lemma 2.3 SupposethatY — Z is a d-sheeted cyclic cover branched over an effective
divisor D = > a;D; C Z of arrangement type. Suppose that the coefficients of D and
the essential incidence numbers are coprime to d, the Beilinson—Hodge conjecture holds
for Z—D in degree j, and that W ;H/(Z—D) = 0. Then the Beilinson—Hodge conjecture
holds for the preimage of Z — D in the same degree.

Proof The key point is that we can resolve the singularities of D in an explicit fashion
and keep track of the multiplicities. For hyperplane arrangements this resolution
goes back to De Concini and Procesi [DP], although we will follow the simplified
presentation of [BS, §2.1]. Since their procedure is canonical, it applies to our more
general case as well.

Let D" C D be the nonnormal crossing locus. This is the largest closed subset
for which D N (Z — D) has normal crossings. We form the set of centres

Si={D;=ND;|D;C D™, dimD, =i}
j€J
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for our subsequent blow ups. We define a sequence of smooth varieties as follows.
Take Zy = Z and let Z; — Z, be the blow up of Z; at the union of centres in Sy.
Let Z, be the blow up of Z; at the union (which is a disjoint union) of the strict
transforms varieties in S; and so on. Finally set Z/ = Z,_;. Then it follows from
[BS, §2.1] that the pullback D’ of D to Z’ is a divisor with normal crossings. We
claim moreover that the coefficients of D’ are coprime to d. This can be checked by
induction. Let D(;;+1) be the pullback of D = D(g) to Z;,. This is the sum of the strict
transform of D(;) with a sum of exceptional divisors ) m;;F;;. The coefficients m;;
are the multiplicities of D(;y along the centres of the blow ups, which are precisely the
essential incidence numbers.

The result now follows from Lemma 2.1 ]

Theorem 2.4 The Beilinson—Hodge conjecture holds for U in the following cases:

(i) U is the complement of f(xo,...,x,) = O in the variety defined by y* =
f(xo,...,xy), where f is a product of linear forms such that the divisor in P"
defined by f satisfies the conditions of Lemma 2.3.

(ii) U is the complement of f(xo,x1,%) = 0 in the variety defined by y? =
f(xo, X1, %2), such that f is divisible by a linear form and its divisor in P? satisfies
the conditions of Corollary 2.2.

Proof In case (i),let f = [] A} be the factorization as a product of linear forms. De-
fine V = P" — {f = 0} as usual. Then the classes 1/(27+/—1)d log h; lie in the image
of the cycle map from CH'(V, 1) essentially by definition. Since the cycle map is
multiplicative, the Beilinson—Hodge conjecture holds for V, because its cohomology
is generated as an algebra by the forms 1/(27y/—1)d log h; by Brieskorn [Br, lemma
5]. This also implies that H/(V') has weight 2, so that WjHj(V) =0.

For (ii), we use [C] and the fact that W, H?(V) C im H>(C?) =0 [}

Corollary 2.5 In case (1), it suffices that the branch divisor is reduced with normal
Crossings.

It is worth remarking that Beilinson [B] made a stronger conjecture that amounts
to the surjectivity of the cycle map

CH'(U, j) ® Q — Homyps (Q(—i), H/(U,Q))

for all 7, j. It is now known to be overly optimistic in general [J]. However, in the
main case of Theorem 2.4(i), it is vacuously true for 0 < j < i, because the above
arguments show that

H'(U)/im H'(Y) = H'(P" — (f))/ im H'(P")

is a sum of Tate structures Q)(—17). The case of j = 0 is more subtle. It is essentially
the ordinary Hodge conjecture for Y, and this will be studied in the next section.
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3 Cohomology of Toroidal Resolutions

Let Y be defined by y? = f, where f is a product of d distinct linear forms #; as
in the introduction. We now assume that the divisor D = > D; C IP" defined by
f = 0is a divisor with normal crossings. Let E = 7~ 'Dand U = Y — E. Then
(Y, U) is a toroidal embedding in the sense of [M]. This means that about each point
of y € Y, there is a neighbourhood Y, that is isomorphic to an étale open subset
of a toric variety in such a way that U MY, maps to the torus. To see this, we can
assume that after a linear change of coordinates, y lies over [1,0,...,0] € P". Write
f,x - x,) = x1 - - x,g(%x1, . . ., %), where g(0) # 0. Then

F,
Y DY, = SpecClxy,... ,xmy]/(yd — f(1,x1,...%,)) N My,
where the map F,, given by projection, is an open immersion into the toric variety
M = SpecClxy, ..., %, 1/ (y" — x1 - xp).

Later on, we will need to consider the more general case where D is a normal crossing
divisor in a smooth variety; then (Y, U) is still toroidal, but the local toric models
M, = Spec ﬁ(al,...,a,,,d) need to be chosen as in the proof of Lemma 1.1, and the
corresponding map F, is only étale. By [M, p. 94], there exists a toroidal resolution
of singularities p: X — Y. In other words, for each y, there is a commutative diagram

F}’ ~
X <— p'(Yy)) —= My

o

Y Y, M

where the map 7 is toric, F,, is étale and the right-hand square is cartesian.

Remark 3.1 . Whodarczyk pointed out to us that such resolutions are very natural
in the sense that any canonical resolution algorithm, such as Hironaka’s, will yield a
toroidal resolution of Y.

As a prelude to the next theorem, we recall that Grothendieck’s amended form of
the generalized Hodge conjecture [G] says that sub-Hodge structures of cohomology
are induced from subvarieties of expected codimension. More precisely, recall that
the level of a Hodge structure H ® C = @ H? is the maximum of |p — g| over the
nonzero HP1. The conjecture states that given an irreducible sub-Hodge structure
H C H'(X,Q) of level < i — 2k, there exists a subvariety + : T C X of codimension
at least k and a desingularization «: T — Tsuchthat H C (Lo /@)*Hi_Zk(f, Q). This
includes the usual Hodge conjecture, which corresponds to the case where i = 2k.
Our goal is to prove the following theorem.
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Theorem 3.2 When d is prime, any irreducible sub-Hodge structure of H' (X, Q)) of
level at most r — 2 is spanned by an algebraic cycle. In particular, the generalized Hodge
conjecture holds for X.

Remark 3.3 The level and weight have the same parity. So the statement can be
“strengthened” by replacing r — 2 with r — 1.

This will be deduced from another more general theorem. Before stating it, it
is convenient to recall the notion of motivic dimension introduced in [A]. Given a
smooth projective variety Z, (Z) € N roughly measures how much transcendental
cohomology Z has. So (Z) = 0 holds precisely when all the cohomology is gener-
ated by algebraic cycles. In general, 1(Z) is the smallest nonnegative integer such that
H*(Z) is generated by Gysin images of classes of degree at most 1(Z). The definition
can be extended to arbitrary varieties. The basic facts we need are these:
e wu(Z) < p(Z’), when Z' — Z is proper and surjective [A, prop 1.1];
o w(Z) <max(u(Z"),(Z —Z")),when Z' C Zis closed [A, prop 1.1];
o w(Z) < pu(Z)+p(S), when Z — Sis a topologically trivial smooth projective map
[A, cor 2.7].

Theorem 3.4 Suppose that Z is a smooth projective variety and that D C Z is an
effective divisor with simple normal crossings such that O (D) = L°. Let X be a toroidal
resolution of the cyclic d-fold cover Y determined by the data (D, L). We will assume
that
(i)  the motivic dimensions u(Z) = 0 and pu(D;, N ...D;) = 0 forall {i1,...,ik};
(ii) the inequality
rod—1 ) .
A (2, L) > dim H,, (V) = > Y W ¥ (0 (logD?) @ L)
k=0 i=1

holds, where ¢ is the Euler function.
Then any irreducible sub-Hodge structure of H' (X, Q)) of level at most r — 2 is spanned
by an algebraic cycle.

Remark 3.5 The proof will show that inequality (ii) is necessarily an equality.

For the ensuing discussion, let us assume that we are in the more general situation
of Theorem 3.4. Since Y is an orbifold, it is a rational homology manifold. Therefore
the natural map 7*: HZ'(Y7 Q) — H'(X , Q) is injective, since éﬂ'* gives a left inverse.
Also, by Poincaré duality we get a cycle map on the Chow group of codimension k
cycles CHX(Y) ® Q. — H?**(Y, Q).

Proposition 3.6 H'(X,Q) = H'(Y, Q) @A, where A’ is generated by algebraic cycles.

Proof It is more convenient to work in homology. Let F C X denote the reduced
preimage of E. We will show that ;1(F) = 0 (note that motivic dimension is defined
for singular varieties as well). We have a stratification of D by

(3.1) D]ZDilﬂ“-ﬂD,‘“ D[/:DI_ UD]‘,
j&l
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whereI = {iy,...,is}. Let F/ C Fbethe preimage of D} and leta(I) = (a;,, . .., a;,).
Over a neighbourhood of p € Dj, the map X — Y islocally isomorphic to the model
Yamy: Mgy X €8 = M,y x €. Consequently, F; — Dj is a Zariski locally
trivial fibration with fibres isomorphic to 1/1;(11)(0). Let ¥; be a toric resolution of
d’o}ll) (0). Then, using the previously stated inequalities, we obtain

p(F) < max u(Ff) < max( (D)) + p(¥1)) =0
Suppose that & € H;(X) lies in the kernel of 7. From the diagram

H;(F) —— H;(X) — H;(X,F)

N

H;(E) —— H;(Y) —— H;(Y,E)

we see that « is the image of a class in H;(F) that is algebraic because u(F) = 0.
Dualizing shows that H'(X) is generated by H'(Y) and algebraic cycles. [ |

Proof of Theorem 3.4 Let H C H'(X,(Q) be an irreducible sub-Hodge structure
of level at most r — 2. By Proposition 3.6 and Corollary 1.3, we can decompose
H'(X,Q) = H,(Y,Q) & A where A is spanned by algebraic cycles. So H is ei-
ther spanned by an algebraic cycle or it lies in Hj,(Y). Assuming the latter, we
will show that H = 0. Let H' = Y_('H, where ( € j, is a generator. This is
a pg-invariant Hodge structure containing H and with the same level as H. Thus
H ®Cc HY '(Y)® .- @ H "' (Y) so that H'(Y,0y) N H' @ C = 0. Let
H* =H!,(Y)/H'. Then H'(Y, Oy) injects into H* ® C. Let N = Q[¢t]/(P(t)), where

Pi)= ] (t—¢)

ged(i,d)=1
is the cyclotomic polynomial. This is the unique irreducible Q [zi7]-module for which
N ® C D Cu-1. It follows that H* must contain the m-fold sum N, where m =
dim(H* ® C).-1. Since
(H* ® Q) D Hyoi (Y, Oy) = H'(L™H),
we must have m > h'(L~4*1). Therefore

dim H* > ¢(d)h"(L~%") > dim H',(Y)

by condition (ii). Therefore H' = 0 as claimed, and the proof is complete. ]

We turn to the proof of Theorem 3.2. Our main task is to compute the Hodge
numbers.
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Lemma 3.7 (Hirzebruch)

- ' o 1+ yz)'~!
Z;X Qjm(l) 7(1—z)i+1 .

n
Proof This is a special case of the formula from [H, p. 160]. ]
Lemma 3.8 LetY be asin Theorem 3.2. Then for each k,

n— —1 d—1/d-2
R Y = ( >=< )
+1 n+1 n

In particular, this vanishes ford — 1 < n + 1.

Proof From the residue isomorphism [D2]
G’ Qg (log D) = @ O, .., -

Thus we deduce

4 rd
X (logD)(~)) = 3 (r) (k. (—i)).

r=0
Therefore
ZX Qf. (log D)(—1)) y*2" = (1 + yz)* Z Z Ok, (—i)) yh2".
n=0 k=0 n=0 k=0

Combining this with Lemma 3.7 yields

d—1 oo o d—1
ZZX(QW(IogD)( Ny =Y (-2 1+y) !
i=1 n=0 k i=1
4y (1 -2 (Q+y)T - (1—2)"!
N (1+yz) —(1—2) N z(1+y)

d—2
n+1 n+ly,n+1
( 1)] ;(n-i—l) — )T
d—2
z<m>w e

n=0

By Lemmas 1.2 and 1.5,

Iy HY) = (1) ‘ZX 0k, (log D)(—i))

This, together with the previous formula, implies the lemma. |
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Proof of Theorem 3.2 When r # n, by Proposition 3.6 and Corollary 1.6, H (X, Q)
is spanned by algebraic cycles. So we only need consider » = . In this case, we apply
Theorem 3.4. Condition (i) of this theorem is clear. For (ii), we observe that by the
previous lemma, we have

(d— D" (Opi(—=d+1)) = (d— 1) ( B > th” (x ]

We can handle some related examples in a similar way.

Corollary 3.9 Let d be prime. The generalized Hodge conjecture holds for a toroidal
resolution of the cyclic branched cover of (P1)" given by

n d
:UH 7[’11])

where a;1, aiz, . . ., a; p are distinct for each i.

Proof Let D C (P')" be the divisor given by the union of x; — a;;j = 0, and let
L =0(1)KX.--X O(1). We have only to check Theorem 3.4(ii) for r = n. We
can compute h(L~H) = (d — 2)" immediately. For the other side, we define the
generating function

Xni(y) = Zx oy (log D) @ L") y~.

Then by Kiinneth’s formula, we obtain

Xni(¥) = xi()" = (1—i+(d—i—1y)".
We have

d— d—1

ZZ W5 ogD) @ L) = ()" > xui(—1) = (d = 1)(d - 2)",
k

i=1 i=1

which implies (ii). [ |
Suppose that dim X = n = 2m — 1 is odd. Then we have the Abel-Jacobi map

H"(X,C)

a: CH™(X)hom — J"(X) = F+ H'(X, 7)

from the homologically trivial part of the Chow group to the intermediate Jacobian.
Nori [N] has constructed a filtration

ACH"(X) € -+ C Ay CH"(X) = CH" (X)nom

where Ay is the subgroup of cycles algebraically equivalent to 0. In general, a cycle
lies in A, if it is induced via a correspondence from a homologically trivial r-cycle on
another variety.
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Corollary 3.10 Suppose that X is either a variety of the type given in Theorem 3.2 or
Corollary 3.9 with n odd. Then a(A,—m—1CH™(X)) = 0. In particular, a(n) = 0 for
any cycle ) algebraically equivalent to 0.

Proof The image a/(A,_,,—1CH™ (X)) lies in the subtorus determined by the maxi-
mal integral Hodge structure contained in F'H"(X) [N]. The theorem implies that
this Hodge structure is zero. ]

This argument also shows that J*(X),, = 0, where J"(X)qe C J"(X) is the maxi-
mal abelian subvariety [V, §8.2.1].

4 Nonabelian Covers

Our goal is to extend the previous estimates to situations where a possibly nonabelian
finite group G acts on a variety. This will apply in particular to G-covers. Let G be the
set of characters of irreducible C[G]-modules, and 1 € G the character of the trivial
module. Given a character x of an irreducible C[G]-module, let

1
e = )T(Gf S Xl

¢€G

denote the corresponding central idempotent [CR, thm 33.8]. This determines the
X-isotypic submodule of a C[G]-module M by M, = e,M. Let M,, = Y M,, as x
ranges over the nontrivial characters.

We introduce an invariant that will measure the difference between the complex
and rational representation theory. Given a finite dimensional C[G]-module M, we
define the rational span as the minimal (with respect to dimension) Q) [G]-module
M’ such that M’ ® C 2 M. Of course, the span is only an isomorphism class, but its
character is well defined, as are the numbers

o(M)

M) = dimg M', M) = .
o(M) = dimg M",  ®(M) dime M

A character will be called rational if the associated C[G]-module is realizable over Q).
Given a character ) X, the character of its rational span can be characterized
as the rational character ) r, x with r, > n, such that ) r, is minimal. We let Q ()
denote the extension of () obtained by adjoining the values x(g). The Schur index
m(x) is the degree of the smallest extension of () over that M can be realized;
¢f. [CR, 41.4]. The Galois group Gal(Q/Q) acts on (A}; orb(a) will denote the set of
orbits. The orbit orb(x) of a given x is the set of Galois conjugates vy with v €
Gal(Q(x)/Q), and these are all distinct.

Lemma 4.1

(i) Ifx € G, then ®(x) is the product of m(x) and the degree of Q.(x) over Q. In
particular, it is an integer.
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(ii) For a non-irreducible character £ = eré %e

n
LHEEEY r;lgg[m();)w a(x),

T'€orb(G)

where | - | is the round up or ceiling function.

Proof (i) is an immediate consequence of [CR, thm 70.15], which implies that the
character of the span of x € G is D_ /o M(X)X’. This also implies (ii) by the
above remarks. ' [ |

Remark 4.2 When y € @, m(x) and o(x) are Galois invariant, so we can write
these as functions of the orbit. So the formula (ii) can be simplified ever so slightly

to
n
7@ = 3 oma i)

I'corb(G)

Armed with this formula, and standard facts from [CR, §28, §70] we can compute
a number of examples:
(a) If G = 7/dZ, then ®(¢') = ¢(d/ ged(i, d)).
(b) If G = Sy is the symmetric group, ®(x) = 1 for all .
(o) f G = {&1,+i,4j,+k} is the quaternion group, and x the character of the
unique 2 dimensional irreducible complex representation, then ®(x) = m(y) =
2.

We come to the key estimate. We first note that if M is Q[G]-module, then so is
M, = M/M,.

Proposition 4.3 Suppose that G is a finite group of automorphisms of a rational pure
effective Hodge structure H of weight i. The dimension of any sub-Hodge structure
H' C Hy, of level less than i — 2k is bounded above by the difference

Proof LetT = HY%@..-@H) *®HY% @ - - @ HY' *. Given a sub-Hodge structure

H' of level < i — 2k, by replacing it with > gH', we can assume without loss of
generality that it is G-invariant. By the level assumption, T N (H’ ® C) = 0. Thus
H,/H' is a Q[G]-module containing T after extending scalars. Therefore H/H'
contains the rational span of T. ]

Putting everything together yields the following corollary.

Corollary 4.4 If G is a finite group acting on a projective orbifold Y, the dimension
of a sub-Hodge structure of H,,(Y) of level less than i — 2k is bounded above by the
difference

(4.1) dimH,(Y)— Y > [[|m(I) max

ot . x€er
I'corb(G—1) P+q=t
p—a>k

m(Y)
[t |
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In particular when i is even, we get a bound on the dimension the space of Hodge cycles
by applying this withk = i/2 — 1.

The main remaining issue is whether we can actually compute this bound. We
will work this out for covers. We will fix the following notation for the remainder
of this section. Let Z be an n-dimensional smooth projective variety. Let D C Z
be a reduced effective divisor with simple normal crossings and let V.= Z — D.
Suppose that p: m; (V) — G is a surjective homomorphism onto a finite group. We
can construct the associated étale cover U — V. Let m: Y — Z be the normalization
of Z in the function field of C(U), and let E = 7~ 'D. We refer to the triple (Z, D, p)
as the branching data for Y.

We first analyze the local picture. We can cover Z by coordinate polydisks A; so
that D is given by x; - - - x;, = 0. Let us fix one of these, and suppress the subscript i
below. Then the fundamental group 7, (A — D) = 7¥ with generators corresponding
to loops around the coordinate hyperplanes. Thus the preimage of A — D in Y is
given by a disjoint union of connected abelian covers of A — D. We can describe
these components explicitly.

Lemma 4.5 A normal connected abelian cover A — A is an open set (in the clas-
sical topology) of a normal affine toric variety with finite quotient singularities. The
projection to A is flat.

Proof The cover A is determined by a subgroup I' C (A — D) = 7* of finite
index. By elementary divisor theory, a basis for I is given the columns of a diagonal
matrix with positive entries d;. Thus A is equivalent to a neighbourhood of the
normalization Spec R of the variety Spec R defined

di aij .
¥i —ij’, i=1...k
jEi

where the sets J; C {1,...,k} are disjoint. These are tensor products of the rings
considered earlier in the proof of Lemma 1.1. The results proved there show that this
is a toric variety with quotient singularities. Also the projection is flat, because R is a
free module over Clxy, . .., x,]; ¢f. [EV2, §3]. [ |

Corollary 4.6 Y is a toroidal orbifold. Moreover, the map Y — Z is flat.

It follows that we can construct a toroidal resolution X of Y as before. Fix one
such. We will say that the weak Lefschetz property holds for  if the map H'(Z, Q) —
H'(Y,Q) is an isomorphism for i # n. For example, we saw that cyclic covers totally
ramified along D have this property. We now come to the main result.

Theorem 4.7 With the above notations:

(i)  The dimension of any sub-Hodge structure of H.,(Y,Q)) of level at most i — 2k — 2
is bounded above by the expression given in (4.1) of Corollary 4.4.

(1)  If this bound is zero and if the assumptions of Theorem 3.4(i) hold, then the gen-
eralized Hodge conjecture is valid for X.
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(iii) If the weak Lefschetz property holds, then the bound (4.1) can be computed by an
explicit formula involving only the branching data.

Most of this follows from we have said previously. The only thing that we need to
explain is statement (iii). This will require a bit of preparation.

The sheaf V = 7,0y is a vector bundle with a G-action. Set V, = e,V as usual.
Then we can decompose

V=@V, =08V,
xe@

We see that _ _ _
H;((Y, Oy) =e H'(Z,V) = H'(Z,V,).

Now V carries an integrable logarithmic connection
V:V—V® QIZ(logD),

which is none other than the canonical extension of the Gauss—Manin connection
given by the direct image of d: Oy — Q) (log E) [D1]. The restriction of V to U can
also be characterized by the fact that the underlying local system ker V|y is given by
m+Cly. All of this is compatible with the G-action. The restriction of V to 'V, is just
e V.

The fact that V is a canonical extension, with finite monodromy, means that over
a polydisk, we can choose local coordinates and a local frame {e;} for V, so that

rm 0 -+ 0
dx: 0 rn - 0
V:d+ZRiﬁ withR; = | | l . >
Xi . . . .
0 0

where r;; € [0,1) N Q. The above matrices are determined from monodromy by
taking normalized logarithms [D1, p. 54]. More precisely, we can choose a matrix
representation T isomorphic to the regular representation C[G], such that

T(p('y,-)) = exp(—ZwJ?lRi).

We can compute the Hodge numbers in terms of logarithmic differentials. Fol-
lowing Timmerscheidt [T], we have a subbundle

Wo(Qé(log D) ® \7) - Qé(log D)®V
locally spanned by wedge products of

e ® dz; ifrij =0,
e ® ‘i—z otherwise,

for a frame chosen with diagonal connection matrix as above. The utility of this
construction for us stems from the following lemma.
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Lemma 4.8 We have

7.0k (log E) = Ok (logD) @ V,

.08 = Wo(Qk (log D) ® V).

Proof Since it suffices to check this locally away from the codimension two set Dyjng,
we can reduce almost immediately to a polydisk centered around a component of D,
whence to the cyclic case. In this case, the arguments can be found in [EV2, §3]. To
elaborate a bit more, the first equality follows from the projection formula and the
fact that F*Qé(log D) = ﬁ’{,(log E). For the second equality, we will be content to

work out the basic example of y¢ = x; with the local frame 1, y, ..., y*~!. We have
=1 .dx
dy' = —.
4 d 4 X1

Therefore, we see that both sides are spanned by products of

Cd—1dx

d
dxl,dxz,...;y%,ydxz,...; e 3y ydﬁldxz,.... [ |
1

)
X1

Corollary 4.9
HP(Y) = H1(Wo(Q2)(log D) ® Vy)) .

The forms lying in W, should be thought of as nonsingular, in analogy with the
usual case. The submodule W;(Q5(logD) ® V) C Qf(logD) ® V is defined by
locally allowing sums of wedge products of at most ¢ forms singular forms. There is
a Poincaré residue isomorphism [T],

(4.2) Gr) (Q5(logD) @ V) = @ W, (Qp, ‘(logD]") @ V),
[1|=¢

where Dy, Df are as in (3.1), D’ = D; — Dj, and V; C V|p, is the subbundle corre-
sponding to the local system j. (ker V|i;)|p,. In other words, the extension of V; to a
tubular neighbourhood corresponds to the maximal sublocal system of ker V |y with
trivial monodromy around components of D;, i € I.

Lemma 4.10 The class ofWO(Qé(log D) ® V) in the Grothendieck group Ko(Z) is

S (=g Mog D) @ V.
I

A similar formula holds for each V.

Proof By (4.2), we have

Qb (logD) @V =Y W, (2, (logD}') @ Vi) .
I
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Then the lemma follows by the Mobius inversion formula [R, Prop 2]. Or, more
directly, we can solve

Wo(Q(logD) @ V) = QlogD) @V — > Wo (2, " (log D) @ Vy).
140

We can assume that the lemma holds for each proper D by induction. Substituting
the resulting expressions into the one above and simplifying, yields the lemma. ®

We are now ready to finish the proof of the main theorem.

Proof of Theorem 4.7(iii) It will be convenient to fix a choice of loops v; € m(V)
around each component of D;. It will be clear that the formulas will ultimately
depend only on their conjugacy classes, which are completely determined by the
branching data. Since G acts on the sheaf 7,Cy, we can decompose it as C; &
(74Cy ). So we have dim H!,(Y) = dim H(Y) — dim H'(Z), which is zero unless
i = n. Thus we conclude that (4.1) is trivial for i # n and that

(—1)"dim H',(Y) = e(Y) — e(2),

where e denotes the topological Euler characteristic. The right-hand side is easily
computed as

Gl

A(e(Z = D)+ 37 drelD)) — e(2) = [Gl(e(Z = D))+ 3 (o imelD)) — e(2),
iz iz

where we write d; for the number of sheets over D}, and |G(])| for the order of the
stabilizer of a component of 77'D/. Then we see that |G(])| is the dimension of
the intersection of kernels of the action of p(7;), j € J on the regular representation
C[G]. Thus we have our desired formula for the first part dim H}},(Y) in terms of
branching data.

To finish the proof, it suffices to give formulas for the Hodge numbers 15"~ 7 (Y)
with x # 1. The group

HPI=P(Y) = H=P (Wo(Q(log D) @ V)

is a summand of H!,(Y), so it is zero when i # n. Therefore h{}"ifp (Y) is a holomor-
phic Euler characteristic up to sign. When combined with Hirzebruch—-Riemann—
Roch [H], we obtain

(=1 PRp" P = / ch(Wo(2(logD) © V) ) td(Z).
A

So the only thing remaining is to evaluate the Chern character in terms of the branch-
ing data.

https://doi.org/10.4153/CJM-2013-040-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2013-040-8

Hodge Theory of Cyclic Covers 523

By applying a result of Esnault and Verdier [EV1, appendix B], we obtain

(4.3)
ch(V,)
_ Z Z (—I)P p t ( R )ml( R )mz )[D ]ml [D ]mz
pl \my,my,. .. r((exR)™ (exRy)" - -)[Dy 2
p my+mye-
_ (_1)P P my piy my my
Z Z p! my, n tr(eXRl R, "')[Dl] (D, ]
b mitmy-- s S

Since this involves only the branching data, we have our desired formula for h)".
For the other p’s there is one extra step. By Lemma 4.10 and the fact that ch is ring
homomorphism, we have

(44)  ch(Wo(Q%ogD)@V,)) = (D" ch( " log D}")) ch(Vy).

We have a formula for ch(V;,) similar to (4.3) involving restrictions of the residues
to Dy do that (4.4) can be expanded to a formula of the desired type. ]
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