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Abstract. We give three formulae for meromorphic eigenfunctions (scattering states) of Sutherland’'s
integrable V-body Schrodinger operators and their generalizations. Thefirst is an explicit computa-
tion of the Etingof—Kirillov traces of intertwining operators, the second an integral representation of
hypergeometric type, and thethird isaformulaof Bethe ansatz type. Thelast two formul as are degen-
erations of eliptic formulas obtained previously in connection with the Knizhnik—Zamol odchikov—
Bernard equation. The Bethe ansatz formulas in the elliptic case are reviewed and discussed in more
detail here: Eigenfunctions are parametrized by a ‘Hermite-Bethe' variety, a generalization of the
spectra variety of the Lamé operator. We also give the ¢-deformed version of our first formula. In
the scalar dy case, this gives common eigenfunctions of the commuting Macdonal d—Ruijsenaars
difference operators.
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1. Introduction

Let g beasimple complex Lie agebra, with a non-degenerate ad-invariant bilinear
form (,), and afixed Cartan subalgebrah. Let A C h* be the set of roots of g.
For each « € A let e, € g be a corresponding root vector, normalized so that
(eay€—a) =1

Supposethat U is a highest weight representation of g with finite dimensional
zero-weight space (the space of vectorsin U annihilated by ) U[0]. We consider
in this paper the differential operator

2

H=-A+ Z W%e—a, 1)

a€cA

acting on functions on h with values in U[Q]. The Laplacian A is the opera-
tor 3°,0%/0A2 in terms of coordinates A, = (b,, \) for any orthonormal basis
b1,...,b. Of h. Asremarked in [3], if g = S, and U is the symmetric power
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SPNCN of the defining representation CVV, then U[0] is one-dimensional and this
differential operator reducesto Sutherland’s integrable NV -body Schrodinger oper-
ator [16] in one dimension with coupling constant p(p + 1). In suitable variables,
H isinthis case proportional to

N 92
Hs ==Y 0 plp+ )Y Vi — ), @
j=19%; j#l
with V (z) = 1/ sin(z) (trigonometric model) or V() = 1/ sinh?(z) (hyperbolic
model). We refer to these special cases as the scalar cases.

We consider in this paper eigenfunctions (functions ¢ with Hy = ey for
some e € C) of the form (&N £()), where f is meromorphic and regular as
a(A\) — 100, Va € A (amore precise definition is given below). In the language
of N-body Schrodinger operators these are scattering states for the hyperbolic
models. It turns out that for generic ¢ the space E(¢) of such eigenfunctions is
finite dimensional and isomorphic to U|0].

We give three formulae for these eigenfunctions. Thefirst one (Theorem 3.1) is
an explicit computation of an expression of Etingof and Kirillov in terms of traces
of certain intertwining operators. The reason that these combinations of traces can
be computed explicitly isthat they turn out to be the same as for the corresponding
Lie algebrawithout Serre relations (Proposition 9.2). This observation reducesthe
computation of traces to a tractable combinatorial problem. We aso give the ¢-
deformed version of this formula (Theorem 8.1). The second formula, an integral
representation (Theorem 4.1), follows from the fact that eigenfunctions can be
obtained as suitable limits of solutions of the Knizhnik—Zamolodchikov—Bernard
equation of conformal field theory, for which we gave explicit solutionsin[7]. The
third formula (Theorem 5.1) is of the Bethe ansatz (or Hermite) type: one has an
explicit expression of afunction depending on parameters 7' € C™*. This function
is an eigenfunction if the parameter lie on an algebraic variety which we call
Hermite-Bethe variety. We have aregular map p from the Hermite-Bethe variety
to h, sending 7' to the corresponding value of £. Conjecturaly, p is a covering
map and a basis of E(¢) for generic ¢ is obtained by taking the eigenfunctions
corresponding to the points in the fiber p=1(¢). This conjecture is proved in some
cases including the scalar case (Theorem 5.3).

The three formulae hold for generic values of the spectral parameter £. In
Section 6 we study trigonometric polynomial solutions of the igenvalue problem
H1p = eyp. These (Weyl antiinvariant) eigenfunctions are related to multivariable
Jacobi polynomials (or Jack polynomials). Formulae for these polynomials are
obtained as the spectral parameters tends to an antidominant integral weight. The
construction involves the construction of the scattering matrices for the problem,
which give a solution of the Yang-Baxter equation. It would be interesting to
generalize this construction to the g-deformed case, which would give formulae
for Macdonald polynomials. We give such formulae in Section 8 as a conjecture.
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This conjecture can be proved by the same method as in the classical case for sl
and sl3, but the regularity property of Weyl antiinvariant eigenfunction appears to
be more difficult to prove in the general case.

Thefact that we havethree different formulaefor the samething can be explained
in informal terms as follows. Our second formula is an integral depending on a
complex parameter k # 0. Itsform is

Y =@ [ o)t ),

Thefunction ®¢ isamany-valued holomorphic functionon D,, = (C— {0, 1})" —
Uici{T | T; = T;} and w(T, X) is arational U[0]-valued differential n-form on
D,,. Thecycley(r) has coefficientsin thelocal system determined by ®o(T)/%. It
turnsout that, for al «, (), ¥ isan eigenfunction of H with the same eigenvalue
472 (¢, ¢), and that (if ¢ is generic) for any fixed generic » all eigenfunctions can
be obtained by suitable y(x). One can thus consider suitable families of cycles
parametrized by « inthelimits x — 0, kK — oo. In the former case the homology
reduces to ordinary homology, and the answer is given in terms of residues of w
(our first formula). In the latter limit, the integral can be evaluated by the saddle
point method and the eigenfunctions are given by evaluating w at the critical points
of ®q (our third formula).

This reasoning turns out to be useful to write down the formulas, (and to
‘understand’ them) but it is then easier to prove them by other methods.

In Section 7, we generalize our results on Bethe ansatz eigenfunctions (the
third formula) to the elliptic case. The Schrodinger operator in this case has the
Weierstrass g-function as a potential :

He=-04 )" p(a(N))eqe o + const. 3

In the scalar case g = sy, U = SPVCY, we obtain (2) with V' = . Bethe
ansatz eigenfunctions of H, were given in [7]. After reviewing this construction,
we give a result on completeness of Bethe states (Theorem 7.3) parallel to the
trigonometric case, in the scalar case and the case of the adjoint representation of
sy for generic values of the spectral parameter ¢ there exist dim(U[0]) solutions
of the Bethe ansatz equations corresponding to linearly independent quasi-periodic
eigenfunctions with multiplier given by &.

The formulae discussed here in the trigonometric case were obtained by con-
sidering the trigonometric limit of solutions of the KZB equations for an elliptic
curve with one marked point. The same construction could be done in the case of
N marked points. It turns out that in the trigonometric limit one of the equations
aways reduces to an eigenvalue equation for H. The new feature isthat U is the
tensor product of N representations. The remaining commuting operators define
differential equationsin the space of eigenfunctions of H with afixed eigenvalue.
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In the ¢g-deformed case, we could only generalize the first formula. It would be
interesting to find the second and third formulain the ¢-deformed case.

The organization of the paper isasfollows: in Section 2 we define and describe
the space of eigenfunctions we consider in the trigonometric case. Three formulae
for these eigenfunctions are given in Section 3 in terms of coordinates of singular
vectors, in Section 4 asintegrals, and in Section 5 by a Bethe ansatz. In Section 6,
the action of the Weyl group is discussed along with the relation to multivariable
Jacobi polynomials at specia values of the spectral parameter. In Section 7 we
discussthe Bethe ansatz in the elliptic case. Section 8 gives a generalization of the
first formula to the g-deformed case. The proof of thefirst formulais contained in
Section 9.

We conclude this introduction by fixing some notations and conventions. The
Cartan subalgebrah will be often identified with its dual via (,). We fix a set of
simpleroots g, ..., € A, and write () for the root lattice @;Z«;. Its positive
part &; Noy;, withN = {0, 1,.. ., }, will bedenoted by @) ;.. We denote by p half the
sum of the positive roots. We will use the partial ordering 5 > 5’ iff 6 — ' € Q+
onh andwriteg >3 if > butg#p6 . Weset AL, =ANQ.. If € Q,we
write |32 = (B, 3). We will also use the notation | A| to denote the cardinality of
aset A. The group of permutations of n lettersis denoted by S,,.

2. The functions

We introduce a space of meromorphic functions on f that is preserved by the
differential operator H. For 3 € h*, let

XB(A) — a—2miB(N\) (4)

andwrite X3 = X; if 8 = «;. Let A bethealgebraof functionson h which can be
represented as meromorphic functionsof (X3, ..., X,) € C" with polesbelonging
to set Uaen{Xo = 1}. Forinstance, if « isapositive root, the functions

1 4X, A4+ X,

SP(ray)) ~ (Ao xgr MmN =i/

®)

belong to A. The algebra A is asubalgebraof A = Cl[X1,...,Xr]]

If ¢ € h*, weintroducethe A-module A(¢) and the A-module A(¢) of functions
of the form exp(27i&) f where f € A, resp. f € A. These modules are preserved
by derivatives with respect to A. Therefore H preserves the spaces A(¢) ® U|0],

A©oUlo.
Thusany ¢ € A(¢) ® U[0] has the form

(V) =Y Xp-e(Ns,
BeQ

with 4z € U[Q] vanishingif 3 ¢ Q..
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THEOREM 2.1. For generic ¢ € h*, and any non-zero u € U|[0], there exists a
unique = X Xg_¢1hg € A(€) @ U[0], suchthat Hy = 1, for somee € C, and
such that o = u. Moreover, e = (2r)?(¢,€), and ¢ € A(¢) ® U[Q].

The existence and uniqueness of v as a formal power series was proved in
the scalar case by Heckman and Opdam (see Section 3 of [8]), who generalized
aclassical construction of Harish-Chandra (see [9], IV.5). The fact that the series
converges to a meromorphic function seems to be new.

We next provethistheorem except for the statement that the formal power series
y actually belongsto A(¢) ® U[0], which will follow from the explicit formulas
for ¢ given below.

Proof. Theideaisthat the eigenvalue equation Hv) = ey isarecursionrelation
for the coefficients 1)3. We use the fact that « and —« give the same contribution
to thesumin H, to apply (5). With the formula AXg_¢()\) = (2mi)%(B — &, —
§)Xp—¢(N), weseethat Hy = e is equivalent to the recursion relation

[(B—&,8—8&) —@2n) %els=>_2] Y ea-atPpja; (6)

7>0 aEA 4

for the coefficients 43 € U[Q]. The sum on the right-hand side has only finitely
many nonzero terms. The initial condition for this recursion is o = u # 0. For
8 = 0, the equation readsthen (¢, ¢) — (2r)~2¢ = 0. Thusthereis a solution only
if e = (27)2(¢, €). For generic &, the coefficient of 1 doesnot vanishif 3 # 0, so
(6) gives ¢z interms of 45 with 5" < 3. We conclude that, for generic &, (6) has
asolutionif and only if ¢ = (27)?(¢, ¢), and this solution is unique. O

DEFINITION. We denote by E(¢) the vector space of functions € A(¢) ® U[Q]
suchthat Hep = (2m)2(€, €)p.

Remark 1. It looks as if the definition of E(£) should depend on the choice
of simple roots, but this is not so. From the explicit expressions given below it
followsthat, for any set R of simpleroots, thefunctionsin E(¢) can beanalytically
continued to functionsin Ax(¢) ® U0], where A (¢) is the space A(¢) defined
using R (see Section 6).

Remark 2. H is part of a commutative r-dimensional algebra D of Weyl-
invariant differential operators whose symbols are (Weyl-invariant) polynomials
on h*. These operators have coefficients which are polynomials in cot(mwa(\)),
a € Ay . Itfollowsthat A(¢) ispreserved by D, see (5), and that the functions ¢
of the theorem are common eigenfunctions of all operatorsin D. Indeed if L € D
with symbol P, then L preserves E(¢) since it commutes with H. If ¢ € E(§)
hasleading term 27Ny, 4 € U[0], then L+ has leading term P (27ié )& My,
Thus Ly = P(2mi&).
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Remark 3. If g isageneral Kac-Moody Lie algebraand U is a g -module with
finite dimensional zero-weight space U [0], H is still awell-defined endomorphism
of A(¢) ® UJ0]: the (possibly infinite) sum over A gives only finitely many
contributions in each fixed degree, assin—?(ra()\)) = O(X,), see (5). The above
theorem holds (except for the statement that 1» € A(¢) ® U[0]) with the same proof.

Etingof and Kirillov [3] gave a representation theoretic construction of
eigenfunctions: given ¢ generic and v € U[Q], let M,_, be the Verma module
with highest weight ¢ — p. Then there exists a unique homomorphism ¢, €
Hom, (M¢_,, M¢_, ® U), such that the generating vector v, € M;_, is
mapped to ve_, ® u + ---, up to terms whose first factor is of lower weight.
Then v € A(¢) ® U[0] isthe ratio of formal power series

_trag_, @y exp(2mi)
Pu(A) = tra_, exp(2mi\)

()

The traces are formal power series whose coefficients are traces over the finite
dimensional weight spaces of the Vermamodules. By definition, the trace of amap
M — M ® U isthe canonical map (for finite dimensiona M)

trysHome (M, M @U) >~ M*" @M U — U.

The numerator in (7) belongsto A(¢ — p) ® U[0], and the denominator to A(—p)
with leading coefficient 1, so the ratio is a well-defined element of A(¢) ® U[0].
Combining this result with Theorem 2.1, we get

PROPOSITION 2.2. For any generic ¢ € bh*, the map u — 1, defined by (7) is
an isomorphismfrom U[Q] to E(¢).

Remark. Etingof and Styrkas [6] showed that (7) viewed as a function of ¢,
coincides the Chalykh—Veselov v-function (see [2], and [6] for the matrix case
considered in this paper), which is defined in terms of its behavior as a function
of £

3. Thefirst formula

Our first formula is an explicit calculation of the trace of the homomorphism
®: M¢_, — M¢_,®U of the previous section. Theimage of the generating vector
isasingular vector of weight £ — p (avector of weight ¢ — p killedby e, a € A)
and all singular vectors of weight £ — p correspond to some homomorphism. Let
fi=e_qni=1,...,randset f; = f;, ... f;, foramultiindex I = (i1....,%p).
Let ve_, ® u + >°f frve—, ® uy be asingular vector in M¢_, ® U of weight
& — p. Our formula gives an eigenfunction in terms of the coefficients ;. Let us
remark that, for generic ¢, such asingular vector is uniquely determined by itsfirst
coefficient u € U|0]: the coefficients u; can be given rather explicitly in terms of
u and the inverse Shapoval ov matrix (see[6]).
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THEOREM 3.1. Let¢ € h*andletve ,®@u+3L frLve ,®uy beasingular vector
of weight ¢ — pin M, ®U. Thenthefunction(\) = €™M (u+ S A (A)uy),
with

p Xlaj+l
_ o)
A(llr“alP)()\) - Z (H 1 _ Xl W ] . Xl ()) fla(l) T fla(}’)’ (8)
o (g

o€Sy \J=1

where a; isthe cardinality of theset of m € {j,...,p — 1} suchthat o(m + 1) <
o(m), belongsto E (&), and for generic ¢ all functionsin E(¢) are of this form.

EXAMPLE Let g = dl,. If U isirreducible, U[0] is one-dimensional if U has
odd dimension and is zero otherwise. Let U be a 2s + 1-dimensional irreducible
representation. Our formula reduces to

S l
A) = g (u—i— X u), X =X;).
¥ > (iox) w) x=x

The components u; of the singular vector are easily computed, and we get the
formula

_ o 2miE(N) s B l(3+l)|I‘((§7a)_l) X lu
p() = & l:zo( ) D) (1_X> . ©

We will prove the more general quantum version of Theorem 3.1 in Section 8.
Note that Theorem 3.1 completesthe proof of Theorem 2.1: the coefficients are

meromorphic functions. They seemto have poleson { X3 = 1} for general 3 € Q;

however, these poles cancel, since the differential equation is regular there:

LEMMA 3.2. Let ¢ € C and suppose that ) is a meromorphic solution of the
differential equation H+ = &1 on b, whose poles belong to the union of the
hyperplanes Hg ,,, = {\ | B(A) = m}, B € Q, m € Z. Then ¢ isregular except
possibly on the hyperplanes H,, ,,, Witho € A, m € Z.

Proof. Let 8 € Q — A, m € Z, and choose a system of affine coordinates
Z1,...,2r Onh sothat z, = B(A) — m. If ¢» hasapole of order p > 0on Hg,,,
then, in the vicinity of a generic point of Hg,,,, ¥ = 2, Pf(21,...,2p-1) + -+~
with nonvanishing regular f. The leading term of Hy as z, — 0 comes from
the Laplacian, as the potential term is regular on Hj,, and is equa to p(p +
1) (e, @)z, P~ f which is nonzero for p > 0. If Hy = e, then it follows that
1) has a pole of order p + 2, a contradiction. We have shown that v is regular on
generic pointsof Hy ,,,. Therefore, on any bounded opensubset V' of iy , the product
of 1 by a suitable finite product of factors «(\) — I, « € A, [ € Z is holomorphic
on the complement of a set of codimension 2, and therefore everywhere on V' by
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Hartogs' theorem. O
This concludes the proof of Theorem 2.1.

4, Thesecond formula

Our second formulaisanintegral representation. It is obtained asthe trigonometric
limit of the integral representation of solutions of the Knizhnik—Zamolodchikov—
Bernard (KZB) equations on elliptic curves with one marked point.

Oneingredientintheintegrandistherational function of 2n variablesTy, . .., T,
Y1,...,Y,

- 1 ..., 1
W(Tay) = ( - J —>, T, 41 = 1
S\l —Tjn V1.V 17T "

Now suppose that U is an irreducible highest weight representation with non-
trivial zero-weight space. The highest weight of U isthenin @, i.e., of the form
A = ¥jn;aj, for some non-negativeintegersn;. Setn = 3;n;. Itisconvenient to
introduce the associated ‘color’ function ¢: {1,...,n} — {1,...,r}, the unique
non-decreasing functionwith |c=({;})| = nj,j = 1,. .., n. For each permutation
o € Sy, let W, . betherational function of nn 4 r variablesTt, ..., T, X1, ..., X,

WU,C(T, X) = W(Ta(l), R aTa(n)aXc(a(l))a R aXc(a(n)))- (10)

The other ingredient is the many-valued function of T4, ..., T),

PENT) = H(TJ _ Tl)(ac@,ac(z))/n H Tyf(ﬁ—p,ac(j))/n(ﬂ B 1)7(/\,%(]-))/;«”_
A j=1

Wewill consider integralsof ©f , (1) W.o(T, X)dT1 .. . dT;, over connected com-
ponents y of {t € (0,1)" | t; # t;,(¢ # j)}. These “hypergeometric integrals
are defined as (meromorphic) analytic continuation in the exponents of T; — T3,
T;, T; —1in A from aregion in which the integral converges absolutely. We
say that a hypergeometric integral existsif this analytic continuation isfinite at the
given value of the exponents.

THEOREM 4.1. Suppose that U is an irreducible highest weight module with
highest weight A = X;n;a; and highest weight vector vy. Set n = Yn; and let
c{1,...,n} — {1,...,r} betheuniquenondecreasing function such that ¢ 1{;}
hasn; elements, for all j = 1,...,r. Fix a generic complex number x and £ € h
also generic. Then, for each connected component -y of {¢ € (0,1)" | t; # t;, (1 #
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7)}, theintegral
¥y () = & [ ag ()
v

X Y WoelT,X(N)dT1...dTy foo) -- - feompva,  (11)
oESY

exists and defines a function in E(£). Moreover, for each generic x and ¢, all
functionsin E(&) can be represented in this way.

Intherest of thissectionwe provethistheorem. The existence of theintegral follows
from[17], Theorem 10.7.12. Indeed, the coefficientsin (11) arelinear combinations
of integrals considered in [17] in the context of the Knizhnik—Zamolodchikov
equation with two points.

Clearly 4., is of the form e7¢(\) times ameromorphic function of X3, ..., X,
with poles on the divisors X3 = 1, 3 € (. To provethat 1), belongsto £(¢) itis
therefore sufficient, thanks to Lemma 3.2, to show that +, is an eigenfunction of
H.

Thisfollows from the results of [7], which we now recall.

Let usdefine, for ¢ = exp(2riT) inthe open unit disk, §(x) = 7~ sin(rz)II5°
(1 — 2¢7 cos(mx) + ¢%) (in the notation of [7], 8(x) = 01(x)/07(0)) and v(z) =
—d?/dz?In 6(z). Thefunction v is doubly periodic with periods 1 and 7. Then for
any k € C — {0}, theKZB equationisapartial differential equation for afunction
u(A,7)onh x {r € C|Im7 > 0}, with valuesin U[0]:

. Ou
47””5 = Au — O%:Av(a()\))eae,au. (12)

Asq — 0, v(z) — m?sin~2(nz), and the differential operator on the right-hand
side convergesto —H.

PROPOSITION 4.2. Supposethat « is a meromor phic solution of the KZB equa-
tion (12) such that ¢—%/%v is a meromor phic function of X and ¢, |¢| < 1, and, as
qg— 0,

u(A,7) = g2 ((N) + O(q)).
Then ¢ obeys Hyp = e4p, with e = (2r)%a.

The proof consists of comparing the leading coefficients in the expansion of both
sides of the KZB equationin powersof ¢ at ¢ = 0.

A source of solutions of (12) with the property described in the Proposition is
[7]. In that paper, we gaveintegral formulas for solutions.
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A class of solutionswith asymptotic behavior as aboveis constructed asfollows
(see[7] for moredetails). Let U beanirreducible highest weight module with high-
estweight A € @, andletasabovec: {1,...,n} — {1,...,r} thenondecreasing
function associated to A.

Solutions are labeled by an element ¢ of h and a connected component ~ of
{t € (O,1)" | t; # t;,(i # J)}. Let ¢¢, be achoice of branch over v of the
many-valued function

eﬂi(5,5)7/5+27fi(5:/\+ﬁ_121‘tjac(j)) H 0(t; — tj)(ac(i>,ac(j>)/ﬁ
1<j

< [1 O(t;) (e A/~ (13)

i=1

and let w be the meromorphic function of ¢1, ..., t,, y1,---,Yn

cr Oyt Yy =ttt
w(t,y) = H HEyl Yj J J+1)

o1 Oyt -+ y)0(t; — tj1)

and for each permutation o € S,,, let w, . be the meromorphic function of n + r
variablesty, ..., ty, T1,..., Ty

Wo e (t, ) = W(tg(1)s - -+ s to(n)s Te(o(1)s - - - s Te(o(n)))- (14
Consider the differential n-form with valuesin U[0] dependingon A € b,
WA, T) = Xoes, Woc(t, aa(A), .. o (N) dta. .. dtn feo) - - - Fe(o(n)VA-
Then the integral
[ #Ea®w7)
Y

exists (as analytic continuation in the exponents from aregion of absolute conver-
gence) and is a solution of the KZB equation. As T — ico,

0(z) = sin(nz)/m + O(q),
and the function (13) behaves as
g SO/Z@mEN (B (T) + O(g)],

intermsof theexponential variablesT; = exp(—2wit;). Let X; = exp(—2mic;(N)).
The components of the differential form w behave as

Wee(t, ) Aty ... Oty = Woo(T, X) dT1 ... dT, + O(q).
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Therefore, the solutions corresponding to cyclesin H,,(CO(7), L(¢)) havethe prop-
ertiesof the Proposition, witha = (¢, €), and ¢ isasstated in the claim of Theorem
4.1. We obtain in the limit an integral representation for eigenfunctions as in the
Theorem but with an integration domain 7, of the form 0 < arg(7, (1)) < --- <
aY(To(n)) < 2m for someo € S,,. Thisintegration domain may be deformed, so
that the corresponding integral can be written as linear combination of integrals
over the domains v, defined by 1 > T,/(1y > -+ > T,y > 0. If we choose
¢ = iao, for some &g suchthat (o, ;) > Ofor all j, andlet a tend to infinity, then
the integral over 5,; is equal to the integral over -, (for suitable choice of branch
and orientation) plus terms that tend to zero. It follows that, for generic ¢ and all
o € S, theintegral over -y, can be expressed as alinear combination of integrals
over 7, and is therefore also an eigenfunction.

This completes the proof of the first part of Theorem 4.1.

We must still prove that, in the generic case, all eigenfunctionsin E(¢) admit
such an integral representation. In view of Theorem 2.1, it is sufficient to show that
for every u € U[0], there exists a cycle y such that e 27¢MNe), — was X; — 0
j =1,...,r.Inother words, one must show that all vectorsin U[Q] are of the form

n—1
1 1
PEA(T)
/v fall) 2 (]Hl Tog) - Ta(j+1)) Tom)—1

UESTL

XfC(U(l)) s fc((r(n))UA d7i...d7,

for some cycle . But this follows from the resultsin [17], Theorem 12.5.5.

5. Thethird formula
Thisisaformula of the Bethe ansatz type.

THEOREM 5.1. Suppose U is an irreducible highest weight module with high-
est weight A = X;n;a; and highest weight vector vy. Set n = ¥n; and let
c{1,...,n} — {1,...,r} betheunique nondecreasing function suchthat ¢ ={;}
hasn; elements, for all j = 1,..., r. Then the function parametrized by " € C*

(T, ) = TN S W o(T, X (V) fe(o(1)) - - - Fe(o(n) VA (15)
O'ESn

(see (10) for the definition of W, ;) belongsto E(¢) if the parametersTy, ..., T;,
are a solution of the set of . algebraic equations (‘ Bethe ansatz equations’)

Qie(1) A E—p .
— — ,aun | =0, j=1...,n.
(Z%Tj—n T,—1 1 "V

https://doi.org/10.1023/A:1000138423050 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000138423050

154 GIOVANNI FELDER AND ALEXANDER VARCHENKO

Remark. These Bethe ansatz equations are the same as the Bethe ansatz equations
of aspecial caseof the Gaudin model (cf. [14]). The solutionsarethe critical points
of the function

n
[I (@ - 1)) H ~(Epa C(” (T; — 1)~ M),
1<i<j<n j=1

Theorem 5.1 can be understood intuitively as a consequence of Theorem 4.1: one
calculates the integrals, which up to normalization are independent of &, in the
limit x — O, using the saddle point method.

The proof of this theorem can be taken directly from [7] in the case of a
degenerate elliptic curve.

The above result motivates the notion of Hermite-Bethe variety. Let A =
Y;nja;. Without loss of generality, we may taken; > O, forall j = 1,...,r (if
this condition is not fulfilled, we may pass to a subalgebra). If ¢:{1,...,n} —
{1,...,r} isthe associated nondecreasing function, we let S. be the product of
symmetric groups Sy, x - - - x S, . Itactson C* by permutation of the variablesT’;
with same ¢(j) and is a symmetry group of the system of Bethe ansatz equations.
Moreover, we have, for all o € S.,

PY(oT,A\) = (T, N).

L et us write the Bethe ansatz equations as B;(1") = 0, with

OéclT‘ AT
B](T): (ZT()ZJ} _Jl_f Py Ce(j ))
LI

Subtracting pairs of equationswe may eliminate &:

DEFINITION. Let £}, = (C —{0,1})" — Uicji(auny 0020l T | Ti = Tj}. The
Hermite-Bethe variety HB(c) is

HB(c) = {T € F, | B;(T)

= Bj(T),5€{L,...,n} —{ny,n1+no,...,n}}/S..

The remaining equations define a regular map p: HB(¢) — h, T — &. The
completeness hypothesis of Bethe statesis in this case:

CONJECTURE 5.2. (cf. [18], [13] and conjecturesin [14]). The map p has dense

image, and the generic fiber consists of (at least) dim(U[0]) points. The eigenfunc-
tions corresponding to pointsin p~1(¢) span E(&).
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In the case of gl the conjecture holds and goes back to Hermite, see [19].
We prove this conjecture in two specia situations, including the scalar case
relevant for many-body systems.

THEOREM 5.3. Conjecture 5.2 holds in the following cases: (a) g = Iy, U =
SPNCN p=1,2,..., (see(2)) (b) g = dn, U = adjoint representation.

Proof. The proof is by induction in N, viewing sl as a Lie subalgebra of
Sl n+1. Wechoosesimplerootsa, . . ., ay Of ly insuchaway that acg, ..., an—1
aresimple roots of gl ;3. Also, it is convenient to replace £ by ( = & — p.

In case (), the highest weight of Uy = SPVCY is A = p= tjay, and Un[0]
isone-dimensional. Thefiber over ¢ = ( + p of the Hermite-Bethe variety consists
of the critical points of

@x (¢, 1) = [[(15 — ) o) L2700 (@ )=o)
i<l J

viewedasafunctionof T' = (11, ..., T,n(n+1)/2)- Wehavec(j) = m if pm(m —

1)/2 < c¢(j) <pm(m+1)/2,1 < m < N.Weproveinductively that, for generic
¢, &y hasanondegeneratecritical point, and that the corresponding eigenfunction
spans E(¢ + p). Let usconsider critical pointsof ® . 1(¢, T') when (ay, () = 1
tends to infinity, and (c;,¢), 7 < N are kept fixed. Let £ denote the orthogonal
projection of ¢ onto the Cartan subalgebraof sl . Let usreplacethe coordinates 77
indexed by j such that ¢(j) = N by new coordinates a; defined by 7; = 1 — ca;
(c(j) = N),andlet T' = (14, ...,T,n(n+1)/2) denote the remaining coordinates.
Then

DN (6T) = Bu(CT) [ (- Ty

e()=N-1
X H (Tj — 1+€al)_1
c(j)=N-1,c(l)=N
> H - {-Zal 1/6a;P(N+1)
c(l)=N
< [[(ar — a))* (16)
J<i

Thisfunction convergesas ¢ — 0 to a constant times

) He‘” PN T (g — ay)2

i<l
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Thefactor depending onthe a;’shasanondegeneratecritical point a.. inthedomain
a; # ap # 0, (j # k). Thisfollows from the fact that this factor is obtained as a
limit M — oo of

[1(2 - aj/m) ;"™ [T (a5 — ar)?.

j j<l
The critical points of the latter function are known explicitly (see (1.3.1) and
(1.4.2) in [18]), and it can be easily checked that they have alimit as M — oo in
thedomaina; # a; # O, whichisthereforeacritical point of thelimiting function.
In fact a isthe set of zerosof the polynomial solutions of the differential equation
zy" + (# —m)y' — Ny = 0, wherem = p(N + 1). By theinduction hypothesis,
@y (¢, T) has a nondegenerate critical point 7. Moreover, in a neighborhood of
(as, Tx, e = 0), the right-hand side of (16) is holomorphic, which implies that the
nondegenerate critical point at ¢ = 0 deforms to a nondegenerate critical point for
generice.

It remains to show that the corresponding eigenfunction generically spans the
one-dimensional vector space E (¢ + p), i.e., that it does not vanish. Assuming this
inductively to holdfor sl 7, weseethat ase — 0, theleading contribution in the sum
(15) is given by permutations such that ¢(o (j )) N, whenever ¢(j) = N. These
permutations give terms proportional to f.(.( Se(rpn(v1)/2)) In)PNoy, for
some T € Spn(n+1)/2- It followsthat When 5 —> Oand T'(¢) isthe above family of

critical points, e 27(ENyg . (T'(€), \) convergesto C (a,) e 2 iENqpy (T, N),
where the representation Uy = SPNCV of 9y is viewed as the sl -submodule of
Un 1 generated by the singular vector (fy)Pv,. Using the identity

1 1

> o _ = aL. ’

veg (a0() = g(2) -+ (Go(v-1) = Go () )do() ..ay

weseethat C'(a.) is, up to atrivial nonzero factor, theinverse of the product of the
components a; of a,, and therefore nonzero. This completes the proof of part (a)
of the theorem.

The case (b) is treated in a similar way. The highest weight of the adjoint
representation Uy of oy isA = Ya; and ¢ = Id. Thefunction ® for dly is

N-2 N-1 ~ N
7) = [[ @ -2y * T 79 @ - 1) ML= Ty
j=1 j=1

As before we let e 71 = (¢, ) go to infinity. If weset Ty = 1 —¢ea, T =
(Th,...,Tn—1), ¢ = projection of ¢ onto the Cartan subalgebraof gy, then

sy 1-—Tn 1

e®n+1(¢,T) = 2n(¢,T) (1—ea) a?
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Proceeding as before, we see that nondegenerate critical points 7, a, = 1 of the
limiting function deform to nondegenerate critical points for any generic ¢. the
corresponding eigenfunctions deform to eigenfunctions of d 5 taking values in
Un|[0], viewed as a subspace of Uy 11[0] viatheinclusion of sl in sl 1. Inthis
way weget N — 1 linearly independent eigenfunctionsin the V-dimensional space
E(¢ + p) associated to the adjoint representation of sl 1. To find the remaining
eigenfunction, welet T; = 1 — ea; for al 5. Thenase — 0, €™ ® 1 for suitable
m converges to

v N-1 )
— II (aj+1 —ay)
1aN-1 55

Thecritical point of this function can be computed explicitly: a; = j(14 1/N). It
deforms to a nondegenerate critical point for ¢ generic. The corresponding eigen-
function converges, ase — 0, to a constant function. From its explicit expression
it is clear that its value is not in Uy = U(dy)fyva and is therefore linearly
independent from the V — 1 constructed before. O

Remark. The proof of the preceding theorem indicates, at least in the examples
considered, that the construction which to a pair (g,U) consisting of a semi-
simple Lie algebra g and a finite dimensional g-module associates the closure
of the algebraic Bethe-Hermite variety X is functorial: to each homomorphism
(¢,U) — (g',U") preserving the Lie algebra and module structures there corre-
sponds functorially a morphism of algebraic varieties X — X'. This functor is
compatible with the construction of eigenfunctionsin a sensethat should be made
more precise.

6. Weyl group action, Jacobi polynomials, scattering matrices

In this section we study the Weyl group action on eigenfunctions, and discuss the
relation with multivariable Jacobi polynomials [8]. The Weyl groups W acts on
U[0] (The normalizer N of the Cartan torus 7' = exph of the simply connected
group with Lie algebrag actson U, so W = N/T acts on U[0]). Therefore we
have a natural action of W on U[0]-valued functions: w € W acts as (wy)(\) =
w - 1 (w~tA). The Schrodinger operator H commutes with this action.

Let S be the set of ¢ € h* such that (¢,5) = (3,8) for some 5 € Q. If
¢ eh*—S, E(¢) isisomorphic to U[0] and we have the explicit expression of the
isomorphismin Theorem 3.1.

LEMMA 6.1. Leté € h*— S.1f¢p € E(¢) andw € W, then e 2ri€(w ™ Ny jsa
rational function of X, ..., X, which is holomorphic on the complement in C" of
theroot hypersurfaces X, = 1, a € A.

Proof. Supposefirst that w = 1. From the explicit expression (8) it is clear that
it is arationa function. By Lemma 3.2, the poles lie on the root hypersurfaces.
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Let usassumethat w = s isasimple reflection corresponding to the simple root
ay. As root hypersurfaces are permuted under the action of the Weyl group, it
sufficesto show that e~2i¢(w "Ny isregular at X; = Ofor all 5. Thisisobvious
if 7 # k since replacing A by s; A amounts to replacing X; by XjX,;“j’“, with
ajr, < 0if 5 #k.If j =k, X, isreplaced by X,C‘l and we have to check that the
expression in parenthesisin (8) is regular when X;, — oo, but this follows easily
by counting powers of X in the numerator and denominator, exploiting the fact
that a; + 1 < p — 7 + 1. The case of general w is reduced to this case by writing
w as aproduct of simple reflections. O

LEMMA 6.2. Let{ € h* begeneric. For all w € W, ¢ — w1 isan isomorphism
from E(¢) onto E(w¢).

Proof. Letty € E(¢). By the previousLemma, e=27€(w™ ") yy) is holomorphic
a X = 0. Also, since H is invariant, w1 is an eigenfunction with eigenvalue
472 (¢, ¢) and therefore wy € E(wé). O

EXAMPLE. Let g = gy, and U be the 2s + 1-dimensiona irreducible represen-
tation. The Weyl reflection s1 acts as (—1)° on U[0]. Fix anonzero v € U[0] and
let 1)¢ be the eigenfunction (9). Then (s11)(A) = (—1)e(—A) = S()Y_e(N),
where S(¢) can be computed in the limit X — 0. This gives the ‘two particle
scattering matrix’

LS (s + DIT((€, @
v S i ) H 5 an

=0 k=1

We say that afunction « is Weyl antiinvariant if wiy = e(w) fordl w € W.

PROPOSITION 6.3. (cf. Proposition 3in [7]) Let ¢ be a meromorphic Weyl anti-
invariant solution of the eigenvalue problem H+) = 1), regular on

b — U Uren lal)=m},

mezZ aeA

such that (A + p) = x(p)y(X) for al pinthelattice PY = {p € b | a(p) € Z}
and some character x of PV, then 1) extends to a holomorphic function on § .
Moreover, for all « € A andm € Z,

ey = O((a(d) —m)"™) (18)

asa(\) — m.

Proof. By periodicity with respect to the coweight lattice PV, we may limit our
considerations to the hyperplanes through the origin. One proceeds as in Lemma
3.2 by approaching the singular hyperplanein atransversal direction. The leading
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term in the Laurent expansionin thetransversal coordinatez = «(\) isdetermined
by the differential equation

d? €ab_q + €e_gtq
(a,a)ﬁz/)o - Tl/)o =0.
Let us decompose U into irreducible representations of the subalgebra generated
by e+. Since 1 is of zero weight, we may replacee,ec_, + e o€ DY

1
Co = ——hoha +eqe o +e_qeq,
(@, )

where hy, = [eq,e—a]- If 1o belongs to a 20 4+ 1 dimensional irreducible repre-
sentation, i.e., if eLyp # 0 but el = 0, then the Casimir element C,, acts as
(a0, @)l(l + 1). Therefore either ¢po ~ 2!T1 or 49 ~ z~!. On the other hand, the
Wey! reflection with respect to the hyperplane o = 0 changes the sign of z and
multiplies the value by (—1)!. Since 1 is antiinvariant, it follows that the first
possibility is realized and the function vanishesto order [ + 1. O

In particular, if £ belongs to the weight lattice P, spanned by the fundamental
weights wy, ..., w,, and ¢ € E(¢), then the Weyl antiinvariant function " =
Ywewe(w)wyp is arationa function of X, ,..., X, regular on (C — {0})".
Therefore, v is a Laurent polynomial. To apply the previous lemma, £ should not
bein S. Thisistrueif —¢ is dominant, and we have the following result.

COROLLARY 6.4. Let ¢ = —p where i is a dominant integral weight and ¢ €
E(&). Then "V = Sy, cpe(w)wyp isaLaurent polynomial in X, , ..., Xy, .

EXAMPLE. Letg = dy, U = SPNCV, the scalar case, and let wo, ..., wy_1
be the fundamental weights of sl . Let us fix an identification of U[0] with C.
Let +»_, be the eigenfunction of the previous corollary, normalized so that ) =
e~2m1(N (1 4 -..). By the previous corollary, it is a Laurent polynomial in the
X, Then the vanishing property (18) of Proposition 6.3 implies that the Weyl
antiinvariant eigenfunction ¢ isdivisiblein thering C[X:!] by IIP+! where

I=Xx_, [ (1-X,).

aEAJ,_

Theratio P = +_, /TIP*1 isaWeyl invariant polynomial (since Il is antiinvariant)
and obeys the differential equation

—AP+ (p+1)2r > cot(ra(A))d P = EP, (19)
aEA L
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(04 is the derivative in the direction of «), with & = 47%(u + (p + 1)p, p—
(p + 1)p). This equation defines multivariable Jacobi polynomials (or Jack poly-
nomials) associated to a dominant integral weight v: The Jacobi polynomial P,
is the unique solution in C[XE1, ... X+ 7 of (19), normalized in such a way

w1 2"t WN -1

that P, = X_, + > 5eqs aﬂX_,,H; for some coefficients a,, € C. The leading
term of ¢_,, /1P is X+ (p+1)p- After antisymmetrization, we obtain a leading
term ¢ X4 (p+1)) Where wo is the longest element of the Weyl group. Thus we
obtain a function proportional to P, by choosing . = worv — (p + 1)p (wp isan
involution). Therefore we have the corollary:

COROLLARY 6.5. Inthe scalar caseg = sy, U = SPVCV, with fixed identifi-
cation of U[0] with C, let » be a dominant integral weight, and for any¢ € h* — S
let +)¢ denote the eigenfunction in £(¢) given in Theorem 3.1 with v = 1 and
P = Vyewe(w)wipe its antisymmetrization. Then

w
Yuwor—(p+1)p
e+
for some constant ¢, # 0. Here wg denotes the longest element of the Weyl group,
I.e,, the permutation j — N + 1 — j of Sy.

P,=c,

A formulafor ¢, is given below.
We next study more closely the action of the Weyl group.
Let slo(j) be the subalgebra of g generated by e, and for a g-module U,

let U = @SUS( 2 be the decomposition of U viewed as sl2(7)-module into isotypic

components: Us( D is isomorphic to adirect sum of 2s + 1-dimensional irreducible
sla(7)-modules.

THEOREM 6.6. Let ¢ be generic and denote by j(¢) the isomorphism U[0] —
E(€&) mapping u to the eigenfunction with leading term 7€ (M4, Then there exists
afamily of maps S(¢): W — GL(UI0]), w — Sy (&) suchthat if 1» = j(&)u, then
wip = j(wé)Sy (&)u. These maps have the composition property

Swlwz (5) = Swl (w2§)SUJ2 (5)

If w = s; isasimplereflectionthen S, = S; hasthe form

k+ (o, &)
Si( — pY — sl pli), 20
O+ S 0

where PY) ¢ End(U10]) isthe projection onto U9 n Ul0].
Proof. Thefirst part of thistheoremisjust arephrasing of the preceding lemma.
The composition property follows from the definition:

7 (W1w28) Sy, (§) = wrw2j(§)
= wij (w2§) Swz (5)
= j(wlw2§) Swl (w2§) Swz (5) :

https://doi.org/10.1023/A:1000138423050 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000138423050

THREE FORMULAE FOR EIGENFUNCTIONS 161

If w = s;, we may compute S; by letting all X;, [ # j go to zero. Then the
coefficients Az, in Theorem 3.1 tend to zero except if L = (4,4,...,7). and the
formula for exp(—2ni&(A))y reduces to an sl formula, and we can apply the
previous example in each isotypic component. O

Remark. Note the similarity between this scattering matrix and the rational
R-matrix associated with general representations of sl [11].

EXAMPLE. Let g = dy, and identify h* with CV /C(1,...,1). The Weyl
group is the symmetric group Sy and the simple reflections s; act on CV by
transposition of the jth and j 4 1st coordinates. The corresponding S; depends
only on (a;,&) = & — &j41. Therelations s;s;15; = s;y15j5;41 trandate into
‘unitarity’

Sj(€j+1 = &5)55(&5 — &) = 14,
and the Yang—Baxter equation

Sj(&+1 — &+2)Sj+1(&§ — &+2)95(& — &)

= Sj11(&5 — &+1) 55 (& — &+2)Sj4a(§ir1—Ejr2)-

COROLLARY 6.7. Inthe scalar case (g = dy, U = SPVCY)

Lok + (o, €)

S;(&) = L AL
Proof. The only isotypic component US(J ) with non-trivial intersection with
U[0] has s = p in this case. O

L et us conclude with aformula for the constant ¢, in Corollary 6.5. This constant
can be computed from the leading term in "V which appears in the summand
indexed by wo: ¢;1 = £(wo)Swy(wo(v + (p + 1)p)). If we identify v € h with

the diagonal traceless matrix with diagonal entriesv, ..., vy, asimplecaculation
gives
L k+vi—vi—(p+ 1)@ —j)
-1 ¢ J
ol — (21)
il;[jlgok—l/i+uj+(p+l)(z—j)
This constant is clearly different from zero since for dominant v we have v; < v;
ifi>j.

7. Betheansatzin theélliptic case

Let usfix 7 in the upper half-plane, and denote £ the torus C/Z + 7Z. We first
quote the result of [7] on eigenfunctions of the differential operator

H,=-A+ Z v(a(AN))eqe_aq,
a€EA

https://doi.org/10.1023/A:1000138423050 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000138423050

162 GIOVANNI FELDER AND ALEXANDER VARCHENKO

on U[0]-valued functionson b . The elliptic function v isv(z) = —d?/dz?In6(z),
0(r) = mtsin(rx)I° (1 — 2¢7 cos(mx) + ¢%), ¢ = €. It differs from the
Weierstrass g-function by a constant.

THEOREM 7.1. ([7]) Suppose U is an irreducible highest weight module with
highest weight A = X;n;a; and highest weight vector vy. Set n = Xn; and let
c{1,...,n} — {1,...,r} betheunique nondecreasing function suchthat ¢ ={;}
hasn; elements, for all j = 1,...,r. Thenthe function parametrized by ¢ € C*

d)(tu >‘) = esz(/\) Z wU,C(tJ Oé]_()\), s uaT(A))fc(zr(l))

oESY
X .o fe(o(n) VA (22)

(see (14) for the definition of w,..) is an eigenfunction of H, if the parameterst,
., t, area solution of the set of n equations (‘ Bethe ansatz equations’)

0'(t; — 1) o' (1)) . .
c _ A+227 c(i :O, ::I.,...7 . 23
(HZ#] ot —t) <D 6(t;) 5 ) g - @

The corresponding eigervaluec is

0
e = An?(£,¢) — 4mES(tl, ety T,

S(ta,- s tm, T) = Y (i), Qes)) INO(E; — 1)

1<j
—ZAa ) In6(t;).

Remark. Solutions of the Bethe ansatz equations are critical points of
(1) = @TEL ) TT O(t; — t7) (@) He Qi)
1<J

in the domain ®.(t) # O.

Asinthetrigonometric case, we definethe Hermite-Bethe variety by eliminating
the spectral parameter ¢ from the Bethe ansatz equations. The resulting equations
arethen — r equations

> (el(t‘j —t) 0t — tl)) o
i N0 =) 0t —t) «®
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_(0'() O (t+a) .
<H(tj) 0(tj+1) > A et > =0 @)

where j runs over the set of indices such that ¢(j) = ¢(j + 1).

LEMMA 7.2. Theleft-hand side of each of the equations (24) isa doubly periodic
function of each of its arguments ¢;.

Thislemma follows easily from the formulas

O'(t+1)  0'(¢) o'(t+71)  0'(t) o
o(t+1) 0@  6t+n 6@ "
taking into account the zero weight condition A = ¥na;.

Thereforewemay view theequationsasalgebraic equationson E* = E, X - - - X
E.,aproduct of elliptic curves. Moreover, wehaveanactionof S, = Sy, x--- xSy,
permuting ¢; with the same ¢(7), that maps solutions to solutions, and does not
change 4. Let D(c) betheset of ¢ € E? suchthat ¢; = ¢; for somes # j with
(e(iy, @e()) # 0, 0r t; = 0 for some s with (A, ar(;)) # 0. On this set the Bethe
ansatz equations are singular.

DEFINITION. With the notation of the Theorem, assume that »; > 0 for all ;.
The Hermite-Bethe variety HB(c) is the subvariety of (E? — D(c))/S. defined
by the equations (24).

The remaining » equations determine £ as a function of a solution ¢ of (24).
They can be chosen to be the equations (23) with j = ni,n1 + no,...,n. We
see from this formula that if ¢; is replaced by t; + n 4+ m7, then £ is shifted by
—maj). Itiseasy to seethat these replacements do not change the eigenfunction
. Therefore we have a map ¢ HB(c) — h*/Q mapping ¢ to ¢, and HB(c)
parametrizes eigenfunctions ¢ such that ¢ (\ + w) = e7¢@y(\), w € PV.

One would like to prove that ‘all’ eigenfunctions are obtained in this way. In
the general case not much is known, however in the scalar case and the case of the
adjoint representation we have the following result:

THEOREM 7.3. Letg = sy, U = SPNCY or the adjoint representation. Then
for each generic ¢ € h thereare dim(U[0]) solutions¢ € C" of the Bethe ansatz
equations (23). The corresponding eigenfunctions obey 1 (A + w) = e2™€@q(N),
w € PV, and arelinearly independent.

The proof of this theorem is essentially the same as in the trigonometric case
(Theorem 5.3): in the case of g, one has Hermite's result, and one proceeds by
induction in N. The point is that one only has to use the asymptotic behavior of
the theta functionsinvolved, and this is the same as in the trigonometric case.
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8. Theg-deformed case

We give here the ¢-deformed version of our first formula. Our conventions for
quantum groups are the following. Let ¢ be a complex number different from 0, 1
or —1. Wefix alogarithm of ¢, so that ¢* isdefined for all ¢ € C. We normalize the
invariant bilinear formong insuchaway thet (¢, o) € Z,foral j,l € {1,...,r}.
The Drinfeld-Jimbo quantum universal enveloping algebra U,g, a Hopf algebra,
is the algebra with unit over C generated by f;, e;, commuting elements £, and
their inverses kj_l, j =1,...,r with relations kjelkj_l = q(o‘f"”)el, /ﬁjfl/ﬁj_l =
g oD fi e fi — fre; = (ks — k;1)/(q — ¢ ), and deformed Serre relations
sqa(q) =0,a=1,...,2m, (see[1]). The coproduct is defined on generatorsto be
A(f) = fi@1+k7 ® fj, Ale)) = ¢; @ k; + 1@ ¢; and A(kH) = kit @ kit
We consider modules M over U,g admitting a weight decomposition into finite
dimensional weight spaces M [uz], . € b *, onwhich k; actsas (%), In particular,
the Verma module of weight . is the quotient M, = Ugg /1(11) by the left ideal
(1) generated by kj — ¢{%"1, e, 5 = 1,...,r. It is generated by its highest
weight vector v, the class of 1.

If U is afinite dimensional U,g-module, and ¢ a homomorphism of U,g-
modules ®: M¢_, — M,_, ® U, we may define, asin the classical case,

ZN ezm'u()\)trMﬁfp[“}q) i€ ()

P(\) = 2T € & CN[Xy,..., X,]]. (25)
Recall that X; = e 27N, Asin the classical case, we have for generic ¢, ¢,
and for each « in the zero-weight space U [0] of a finite dimensional U,g-module
U, aunique homomorphism of U,g -modules ®: M¢_, — M¢_, ® U, sending the
generating vector vg_, to ve_, ® u [4]. So, in the generic case, the +)-function is
uniquely determined by ¢, ¢ and avector v € U[0Q]. It isaformal power series, but
its explicit expression below showsthat it is actually ameromorphic function of .

If ¢ = dy and U is a deformation of the p/Nth symmetric power of CV, it
was shown by Etingof and Kirillov [4] that ¢()\) is a common eigenfunction of
a commuting family of difference operators (related by conjugation by a known
function to the A 1-Macdonald operators).

Asinthe classical case, the image of the generating vector is asingular vector
(a vector killed by ¢;, 7 = 1,...,r) of weight £ — p and all singular vectors
of weight & — p correspond to some homomorphism. Set f;, = f;, ... f;,, for a
multiindex L = (l3....,l,). Our formula gives, for each v € UJ0], ¢ in terms
of the coefficients uy, in the formula of the the unique singular vector of the form
v ®u+ X frve—, ® ur, These coefficients are given explicitly in terms of + and
the inverse Shapovalov matrix, see[5].

THEOREM 8.1. Let £ € h* begenericand let ve_, ® u + X1 frve—, @ ur, bea
singular vector of weight { —pin M¢_,®U. Let ® € Homy, 4 (Mg, M, ®U)
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be the corresponding homomorphism, and + the ¢-function (25). Then (\) =
N (u 4+ XA (Nug), with

a(L,o) a(J
A lla -l Z q H ‘Oél (1>+"'+al ()|2
oESp J:ll_Xla(l) “‘Xla(j)q g ol

Xflg(l) A flg(p)7

wherea; (o) isthecardinality of thesetof mm € {j,...,p—1} suchthato(m+1) <
o(m), X; = exp(—2micj(A)), and

p
= (o, p— &)+ (ar, iy Uy i)
J=1

k<j,o(k)>o(j)

+2 (Z%WZ lam)

mes
S={me{l,...,p—1}|o(m) > o(m+ 1)} U{p}.

We conclude this section by giving a conjectural formulafor Macdonald poly-
nomials, which is a g-deformation of Corollary 6.5. The Ay _; Macdonald poly-
nomials [12] are symmetric polynomials P, (z, q,t) (we use the notation of [4])
in N variables 1, ...z, depending on parameters ¢ and ¢. They are labeled by
dominant integral weights v of gly, i.e., decreasing sequence vy > --- > vy Of
non-negativeintegers. We consider the casewheret = ¢* for some positiveinteger
k asin [4]. The symmetric polynomials P(z, q, ¢*) are uniquely characterized by
having leading term z7* ... 2 (@S x/ziy1 — o0, i = 1,..., N — 1) with unit
coefficient and by being orthogonal with respect to the inner product (f,g) =
constant term of f(z1,...,zn5)g(z1 %, ... 25 )A(x), where

k
=11 IT @ —a®"xi/x;).

i#j m=0

Obviously P, (1.1 = 71...xnP, S0 it is sufficient to evaluate Macdonald
polynomialsonthe hypersurfacez; ...z = 1. Thenv may be considered modulo
Z(1,...,1), i.e, as sly dominant weight. The ¢g-analogue of Corollary 6.5 is the
following conjecture, which can be proved with the same method asin the classical
caseif N = 2 or 3, but isopen in the general case.

CONJECTURE 8.2. Consider the scalar case g = sy, withh = {\ € CV |
¥\ = 0}, U = SPNCV, and fix an identification of U[0] with C. Set z; = €27,
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Let v € h* be a dominant integral weight, and for £ € h*, let ). denote the
function given in Theorem 8.1 with v = 1. Then

Puoy—(p+1)p(WA)
P, $aQaqp+1 =Cy : ’
™ = B T
where
p . -
5(}\) — H H(em(/\jf)\l) - (]72777,67”()\17)\]-))7

m=0;<I

for some constant ¢, # 0. Here wp denotes the longest element of the Weyl group,
i.e., the permutation j — N + 1 — j of Sy.

As before, the constant ¢, may be computed in terms of the ¢g-analogue of the
scattering matrix (21)

[m+v; —v;—(p+1)(i —j)lg g —q
HH e 1 R e

i>jm= O m =i

—~

9. Proof of Theorems 3.1 and 8.1

We givethe proof of Theorem 8.1. The proof of Theorem 3.1 isessentially aspecial
case.

The proof is in two parts. We first prove that the calculation can be done in
the algebra without Serre relation (Proposition 9.2), and then do this calculation,
reducing it to acombinatorial problem.

We denote by U,b the subalgebra of U,g generated by f;, k%, j = 1,...,r
and by U,n the subalgebra generated by f;, 7 = 1,...,r. We have A(Uyn) C
U,b® Ugn. Let usintroduce a)-grading of these algebras by setting deg( f;) = o,
deg(k;) = 0. What we need to know about the deformed Serre relations is that
(i) Ugn is the quotient of the free algebra generated by f1,. .., f, by theidea J,
generated by the deformed Serre relations s1(q),. . - ,Sm(q), (ii) s1(q), ..., sm(q)
are homogeneous polynomials in the f; with coefficientsin z[g, ¢ ] reducing to
the (classical) Serrerelationsat ¢ = 1, and (iii) A(s4(q)) = sa(q) @ 1+ K ® 54(q)
forsome K =[]k, .

We will also need the fact that the dimensions of the spaces of fixed degree
in Uyn are independent of ¢ and coincide with the dimensions of the classical
enveloping algebra Un of the Lie subalgebran C g generated by f; = e_q;,
j=1,...,r(see eg.,[1]).

Thefirst observation is that the computation of the trace, given the components
of the singular vector is acomputation in Uyn:
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LEMMA 9.1. Let for w € M¢_,, ®"(w): M¢_, — M¢_, ® Uyn be the unique
homomor phism of U,n-modules mapping v¢_, to w ® 1. Then, in the notation of
Theorem 8.1,

2y &Vt (froe—p)
E e2rin(X tI’M [M]l

Ap(N) =

This Lemmafollows immediately from the fact that Verma modules are free over
Ugn.
L et usintroduce algebras without Serre relations.

DEFINITION. LetU,b bethealgebraover(Cgenerated by f1, ..., fr ki, .o ki
withrelationsk; fi.k; * = q (%) fi., k;k; = kikj, kk;* = 1and with coproduct
asin Uqg LetUmn C U, b be the free algebraon generatorsfl, .., fr- The Verma
moduIeM over U, b of highest weight 12 € h * isthe left module U,b/I (1) where

I(w) |stheleft |deal generated by k; — ¢»%)1, j = 1,...,r. Theimage of 1in
M,, is denoted by ©,,.

The Verma module ]\7,1 has a weight decomposition with finite dimensional
weight spaces, and is freely generated by v, as a Ugn-module. In particular,

M,, = M,/ J,5,. Moreover, A(U,i) C Uyt ® U,i. Therefore the construction of
the homomorphisms ®" (w): M¢_, — M¢_, ® Usn works aso in this case and
traces make sense (as aformal power series).

PROPOSITION 9.2. Let for w € M; ,, ®"(w): Mg, — M , ® Uyn be the

unique homomor phismof U,n-modules mapping v¢_, tow ® 1, and for w € 1\7§ »
let @"(w) be the same obj ect for the algebra without Serrerelations. Then for any

w projecting to w under the canonical projection Mg_p — Me¢_,,

Z e2min(A) tl‘]\/[6 []@“(w) E e?rin) tl’~ q)n(w)

— Me_p[u] 2
>, &Ny, il YN 1 (26)

M_, [N]

olul

The proof of this proposition requires some preparation, and will be completed
after Lemma 9.7 below.

LEMMA 93. If z € Uyn is homogeneous of degree o = ¥;mja; € Q, then

A(z) canbewrittenas A(z) = []; ]m” ® r + Xz ® z'}, where ] are homoge-
neous of degree < a.

Thislemmais an easy consequence of the form of the coproduct of the generators

i
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DEFINITION. Letn bethefreeLie algebraon r generators f1, ..., f, (see[10]).
An iterated bracket of length oneisan element f; of thisset. Aniterated bracket of
length [ > 1isdefined recursively as an expression of the form [a, b], where a, and
b areiterated bracketsof length 1, [ — [ respectively, for somel; € {1,...,l—1}.
Aniterated bracket of length/ iscalled simpleif itisof theform f;,, [ fi,, [. - -, fi,]])-

LEMMA 94. Let a,b € 71, and a be an iterated bracket. Then [q, b] is a linear
combination of elements of the form

[fil?[fizv [ a[fi,,b]]]]- (27)

Proof. We use induction in the length of a. If the length of « is one there
is nothing to prove. If a = [a1, ag] is of length [, with a; of length I; < [, the
Jacobi identity gives [a, b] = [a1, [a2, b]] —[a2, [a1, b]]. By theinduction hypothesis,
v = [a1,b] and b = [ap,b] are alinear combination of elements of the desired
form (27). Then we use the induction hypothesis once more with b replaced by '
and b”. O

We apply this lemma to the following situation. The Lie algebran C g is the
quotient of the free Lie algebran on r generators by the Lie ideal s generated by
Serrerelations sy, . . ., s, Which are simple iterated bracketsin .

LEMMA 9.5. Denote by n the free Lie algebra on r generators fi, ..., f., and
let s1,..., s, besimple iterated bracketsin n. Let s be the Lie ideal generated
by s1,...,sm, and assume that d = dim(n/s) < oo. Then there exists a basis
b1, b2, ... of 1 consisting of simple iterated brackets such that b1, bg42,...isa
basis of s, and such that, for j > d, b; is of the form

[fil’ [fizv [ ) [fllask;]”]

Proof. By definition every element in n is a linear combination of iterated
brackets. Theideal s is spanned by iterated brackets containing at least one of the
s;. Using the skew-symmetry of the bracket, we see that every element of s isa
linear combination of elements of the form [aq, [a2, ..., sk]]] for some iterated
brackets a ;. The claim then follows from the preceding lemma. O

By the Poincaré-Birkhoff-Witt theorem, the universal enveloping algebra U has
abasis b’ = bk - .- bi2b} |abeled by the set 7 of sequences J = (ja, j2,...) Of
non-negative integers with j; = 0 for all sufficiently large l. Asthe Vermamodule
M,, isfreely generated by the highest weight vector 7, asaUs-module, (b7, se 7
isabasisof M,.

Let us extend this to the ¢-deformed case. Note that U,n as an algebra is the
samefor all g.
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LEMMA 9.6. There exists a sequence b1(q), b2(q), . . . of homogeneous elements
in U ® Clg, ¢~*] such that

(i) bj(g) = b; mod(q — 1)Clg, ¢ *] , _
(i) If ¢ is a transcendental number, the elements b/ (q) = - - - ba(q)72b1(¢)’* form
abasisof Ujn.

(iii) For j > d—l—lA( i(q)) = bi(q) ® 1mod Uyb ® J,.

Proof. We may take b;(q) = b; if 7 < d. If a € Uyn is a homogeneous
element of degree 8 € Q, set ad,(f;)a = fja — ¢W%)af;. If j > dand b; =
ad(f;) - - - ad(fj,) sk, set

bj(q) = ady(fj,) - - - ady(f5)sk(q)-

Itisclearthat (i) holds. (ii) holdstoo, sincethe determinant of the matrix expressing,
in each homogeneous component of U7 ® Clg, ¢~1], b7 (¢) in terms of b” has a
determinant in Q[g, ¢—*] with the value 1 at ¢ = 1, and is therefore invertible if ¢
is transcendental. As for (iii), we know that s (q) has the required property since
A(sk(g)) = sk(q) ® 1+ K ® si(q) for some K. Moreover if a € Uyn of degree
[ obeysA(a) = a® 1lmodU,b ® J,, then

A(adg(fj)a) = fija®@1+k;ra® f; — qP)
X(af; ® 1+ ak;l ® f;) modUzb ® J,
= ady(fj)a ® 1modUgb @ Jy,

jncekjla = q(ﬂ’%)ak;l.Therefore, by induction, Ab;(q) = b;(¢g)®1mod U,b®
a O

Suppose that ¢ is transcendental, and fix a sequence b;(q¢), asin Lemma 9.6 and
thusabasis (b7 (¢)) of U,n. To simplify the notation, we will write, for any J € 7,
deg(J) = deg(b”’(q)). Let 7", betheset of J = (j1,j2,...) € J suchthat j, = 0
if ] > d,and J' bethesetof J suchthat j; = 0ifl < d. ThenJ = 7' x J"
canonically, and wemay writethebasisasb”’' (q)b”" (¢), (J', J") € J' x J". Then
v’ (q)b”" (q) € J, if J' is nontrivial. Since the dimensions of the homogeneous
componentsof U,n arethe sameasin the classical case, the basis elementswith .J/
nontrivial formabasisof J, andtheclassesof b’ (¢) formabasisof U,n = U,/ J,.

LEMMA 9.7. Suppose that ¢ € C is transcendental. Then the elements b7 (q),
J € J' form a basis of the subalgebra of U,n consisting of elements « such that
A(z) =z ®1modU,b ® J,

Proof. Call B thissubalgebra. By Lemma9.6(iii), the linearly independent ele-
mentsb”’ (q), J € J'belongto B. Whatislefttoproveisthatany = € B canbewrit-
ten asalinear combination of theseelements. Writex = 71, zna b’ (q)b”" (¢),
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with complex coefficientsa ;. Let Z C () bethe set of 3 such that there exist
J', J" with deg(J") = g and ay j» # 0. An element 3 € Z is called maximal
if 3/ > g implies ' ¢ Z. Obviously, every element in Z is < some maximal
element. Therefore, if we show that the only maximal element is 0, we have proved
the Lemma.

By Lemma 9.6,

ZG,J/ J// ® 1)A(bJ’I(q)) mOd UqE@ Jq.
Let 5 bemaximal. The termswhose second factor hasdegree 5 are, by Lemma9.3,

A@)=++ 3 apb” (@0 (@) +- modU,b® J,.
deg(J"")=p4

These terms must vanish if 3 # 0 since z € B. But the elements b”" are linearly
independent, even mod J,. And, by construction, a;/ ;» # 0 for some J', J” with
deg(J") = 3. Therefore 5 = 0. O

The proof of Proposition 9.2isacalculation of thetracesusing the basisb” (¢) ¢,
J € Jof M, and b’ (q)ve_,, J € J" of M¢_,. Itissufficient to prove Proposi-
tion free in the case where ¢ is transcendental, since all traces over weight spaces
are clearly rational functionsof ¢. Let w and w beasin Proposition9.2. If J € 7",
Ab‘](q){ﬁ = ZLeij(q) ® Ay, for some Ay, € Uq’ﬁ.

The numerator of the left-hand side of (26) isthen

>Ny @ (w) = Y AssXepides) Mod .
Jeg"
On the other hand, the calculation of the numerator on the right-hand side of (26)
involves (see Lemma 9.6(iii))

AW (v (@))we 1= v" (q)b*(g) ® Ay modUyb ® J,.
LeJg

Now we claim that the only terms in this summation that may give a nontrivia
contribution to the trace are those with L € 7", Let indeed b" (¢) = b%' (q)b"" (¢),
withL' € J'and L” € J". Sinceboth '’ (¢) and b (¢) arein the algebra defined
inLemma 9.7, their product isalso in this algebraand is thus a linear combination
of bM'(q), M' € J', deg(M') = deg(J') + deg(L’). If L' # 0, this degree is
strictly larger than deg(J’) and therefore does not contribute to the trace. The trace
is therefore

Zezm tre . ®"(d)

M, p[]

= Z Z AJIIJIIXp_é‘_l_dq](JH)Xdeg(Jl) mod Jq
JET JIET"

https://doi.org/10.1023/A:1000138423050 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000138423050

THREE FORMULAE FOR EIGENFUNCTIONS 171

( > Xeg(r ) Zezm“ trage [ @" (w) mod Jj.

J'eJg’
On the other hand,
(A
> e i )trpr[u]l = D D Xyideg(s)rdeg()
m Jeg Jneg"

:(Z Xdng/>Z€2m“ trM [}1

J'eJ’

Taking theratio of the last two expression completes the proof of Proposition 9.2.

We now turn to the actual calculation of theratio of traceson the right-hand side
of (26). We use the basis (f; = fj, ... fj,.) of Uyn, labeled by finite sequences
Jin{1,...,r} of arbitrary length m > 0 (if m = 0, we set f() = 1), and we
may assumethat w = frv¢_,, With L = (ly,...,l,). By definition, the trace in the
numerator of (26) isthe sumover J = (j1,..., jm) Of the diagonal elements B,
in

A(f)fLPe—p ®1="" frule_p, ® Buy (28)
M

weighted by a factor X, ¢ [~ X, . Expanding the coproduct on the left-hand
side of (28) gives 2™ terms, each of them of the form

Q" Fyy - - Fing LU= © fjgy - fia,_,

labeled by subsets B = {b1 < --- < bs} of {1,...,m} with complement D =
{d1 < -+ <dy_s}. Theexponent of g is

a=({—p+ Zalﬂ Z Qg | + Z (ajb7ajd)‘ (29)
j deD B>b>deD

Thisterm gives a contribution to the trace if and only if

(Gbys - Jbsalty -y lp) = (15 -5 Jm)- (30)
If it does, the contribution is

0" Xe-pXj - Xjo fja, - fia

Notethat the j,, are necessarily equal to the/; up to ordering. In particular m — s =
p. The terms contributing to the trace in the numerator are therefore in one-to-one
correspondencewith pairs consisting of afinite sequence (1, . . ., j,) and asubset

m—s
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B c{1,...,m} obeying (30). Let B ={1< b1 <by<---<bs} CNbegiven.
Ifbo; = jforall j,sett = s+ 1. Otherwiselet ¢ bethesmallestinteger sothat b; > t.
Then the condition (30) on J determines uniquely j;, ji+1, - - ., jm in terms of L,
and gives no constraint on j1,.. ., j; 1. Therefore we can restrict our attention to
thecaset = 1: thegeneral solution (J, B) of (30)iSJ = (ji1, .-, Jt—1,71s -+ »Jim)s
B={1...,t—-Lb+t—1,...,b +t— 1} where (J', B') isasolution with
by > 1, and j1,...,j;—1 are arbitrary. The contribution to the trace of such a
solution (J, B) is X, ... Xj,_, times the contribution of (.J', B'). The sum over
all such solutions with fixed (J', B") gives afactor that cancels with the trace in
the denominator (except for X ).

(A _ . .
3 i )trﬁ,p[u]l_XP > | Z X X,
I m=0j1,....0m
Thisimplies
LEMMA9.8. Let L = (I1,...,1p).

(A n ~
Z“ez " )trﬁs—p[u]@ (Frve-p)

Eu &G L

(J,B)

where (J, B) runs over all solutions of (30) such that b1 > 1. The exponent
a=a(J,B)is(29),and {d1 < --- < d,} isthe complement of B.

Our problem is therefore reduced to the combinatorial problem of finding all
solutions (J, B) of (30) with b1 > 1 and computing their contribution to the trace.
The problem can be reformulated as follows: consider a circle with p distinct
marked points numbered counterclockwise from 1 to p starting from a base point
* distinct from the marked points. The marked points are assigned labels: the jth
point is assigned the label [;. Solutions (J, B) are in one-to-one correspondence
with games that a player can play erasing marked point on this circle according
to the following rules. The player walks around the circle in clockwise direction
starting from « a finite number of times to return to . Each move consists of
proceeding to the next (not yet erased) marked point. When the player meets a
marked point, he or she has the option of erasing it. If he or she does not eraseit,
the scoreis X; where! isthelabel of the point, and we say that the player ‘visited’
the point. The score for erasing the point is X;q(*"%), where 8 = 3~; m;cy, and
m; is the number of times the jth point has been visited previously. The game
continues until al marked points have been erased. The score of the game is the
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product of scores collected during the game. For instance, if L = (1,1, 2), one
game consists of the sequence VEVEE of visits (V) and erasures (E). Its scoreis

Xzqu(al,Oéz)Xleq(Oéz,al-I-ocz)qu(al,061+042) — X]:':"ng(alaaz)+|al+062|2_

The relation with the previous description is that j,,, .. ., j2, j1 iSthelist of labels
of marked points met (visited or erased) at each move of the game, and B indicates
at which moves points are visited. The contribution of a solution (J, B) to (31) is
the overall factor

q—(zjalj ,6—/)—2]4%.)ezwig()\)7 (32)
times the score of the corresponding gametimes f;, ... f;, whereis, ... i, arethe
labels of the erased points, in order of erasure.

The next step is areduction to the classification of ‘minimal’ games. An empty
round in agameis a sequence of of subsequent visits of all marked points exactly
once without any erasures. A game without empty rounds is called minimal. Out
of a game we can construct a new game by inserting an empty round just before
an erasure. The score of the new gameis[[, . X, " times the score of of the old
game, where the product is taken over the set £ of marked points yet to be erased,
and b = |Ssepay, |2 Any game can be obtained from a unique minimal game by
doing this construction sufficiently many times. The games obtained this way have
al the same sequence of erased points, and give thus proportional contributionsto
thetrace.

Minimal games are in one-to-one correspondencewith permutation o € S,,: we
erasefirst o(p), then o(p — 1), and so on, always at the earliest opportunity. The
example above gives the minimal game corresponding to the permutation (231).
If o is the identity, the score of the corresponding minimal game is X;, ... X, .
For general o, we must calculate the numbers b, of times the point o (k) has been
visited before o () is erased. The score of the minimal game correspondingto o is
then

P P

bij+1

¢ Hle;Zj) ’ €= 'kzlbjk(ala(jwala(k))' (33)
J= k=

The sum of the scores of al games obtained from this game by inserting empty
roundsis then
¢ TTP bjj+1
L (3
Fotayg 2
H?zl(l ~ Xipqy -+ Xla(j>q|al”(1) ot )

We proceed to compute the numbers b,;,. Roughly speaking, b;;, is the number of
times one goesaround the circle before erasing either o () or o (k). More precisely,
let

S*={me{l,....,p—1} | o(m) > o(m+1)}.
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If & < jando(k) > o(j), o(j) is erased first, and bj;, is the number of times
the player passes through the base point *, including at the beginning of the game,
before erasing o(j). Thisnumberisb;, = |[{m € S*|m > j} | +1.1f k < j,and
o(k) < o(j4), bjx isthe number of passages through + before erasing o (), minus
Lbjp=|{meS*|mz>j}.1fk > j, wegetinall casesthe number of passages
through « before erasing o (k), minus 1: b, = [{m € S* | m > k}|. In particular,
bjj = {m € {j,...,p — 1}|o(m) > o(m + 1)}. The exponent c of ¢ in (33) is
then

m m
c= > (@1, )5 01, ) + > Zo‘lawzlalam
=

k<j,o(k)>a(j) mesx \j=1

Theformulain the Theorem is then obtained by combining this formulawith (34),
(32).
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