
JFP 16 (4&5): 375–414, 2006. c© 2006 Cambridge University Press

doi:10.1017/S0956796806005971 Printed in the United Kingdom

375

Sound and complete models of contracts

MATTHIAS BLUME and DAVID McALLESTER

Toyota Technological Institute at Chicago, Chicago, IL, USA

(e-mail: {blume,mcallester}@tti-c.org)

Abstract

Even in statically typed languages it is useful to have certain invariants checked dynamically.

Findler and Felleisen gave an algorithm for dynamically checking expressive higher-order

types called contracts. They did not, however, give a semantics of contracts. The lack of

a semantics makes it impossible to define and prove soundness and completeness of the

checking algorithm. (Given a semantics, a sound checker never reports violations that do not

exist under that semantics; a complete checker is – in principle – able to find violations when

violations exist.) Ideally, a semantics should capture what programmers intuitively feel is the

meaning of a contract or otherwise clearly point out where intuition does not match reality.

In this paper we give an interpretation of contracts for which we prove the Findler-Felleisen

algorithm sound and (under reasonable assumptions) complete. While our semantics mostly

matches intuition, it also exposes a problem with predicate contracts where an arguably

more intuitive interpretation than ours would render the checking algorithm unsound. In our

semantics we have to make use of a notion of safety (which we define in the paper) to avoid

unsoundness. We are able to eliminate the “leakage” of safety into the semantics by changing

the language, replacing the original version of unrestricted predicate contracts with a restricted

form. The corresponding loss in expressive power can be recovered by making safety explicit

as a contract. This can be done either in ad-hoc fashion or by including general recursive

contracts. The addition of recursive contracts has far-reaching implications, deeply affecting

the formulation of our model and requiring different techniques for proving soundness.

Capsule Review

Dynamic assertions about the behavior of code are one of the programmer’s oldest and

most enduring debugging tools. In imperative languages like C, they take the form of assert

statements. In object-oriented languages like Eiffel and Java, they are known as contracts.

Recently, researchers have begun to investigate the use of contracts in functional programming

languages. The authors of this paper extend our understanding of the latter topic by devising

a denotational semantics for contracts in the context of the lambda calculus – a topic long

overdue for study. Of particular interest to functional programmers are the examples the

authors design to demonstrate the unintuitive behavior of contracts in certain contexts. The

authors’ semantics helps us to understand the examples, and, more generally, leads to a deeper

understanding of the ramifications of using contracts in higher-order programs.

1 Introduction

Static types can serve as a powerful tool for expressing program invariants that a

compiler can verify. Yet, many invariants a compiler cannot enforce. It is therefore

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

376 M. Blume and D. McAllester

useful to allow for dynamic checks of runtime properties of programs, regardless of

whether the language is statically typed or not. Many languages have mechanisms

for reporting abnormal situations that arise at runtime. For example, in the ML

programming language (Milner et al., 1997; Leroy, 1990) one typically raises an

exception when an intended program invariant is violated. While these mechanisms

enable people to program defensively in an ad-hoc manner, they are an inappropriate

basis for designing, implementing, and composing program components.

Findler and Felleisen introduced the notion of higher-order contracts (Findler &

Felleisen, 2002) as a more systematic way of expressing and monitoring runtime

invariants. Higher-order contracts are a generalization of first-order contracts which,

for example, had long been a feature of the programming language Eiffel (Meyer,

1992). Contracts in general, and higher-order contracts in particular, can be thought

of as a form of types too expressive for static verification. Implementations such

as the DrScheme system (Findler et al., 2002; Felleisen et al., 1998) can provide

a meaningful way of monitoring contracts dynamically, at runtime. The contract

checker automatically raises exceptions called contract exceptions.

Once an exception indicates the violation of an intended invariant one would

like to identify the part of the program (the module) that is actually in error. Thus,

a raised contract exception should blame a specific contract declaration. To be

somewhat more concrete, consider a program of the form

let x1 : t1 = e1 in . . . let xn : tn = en in xn (�)

where each ti is a closed contract expression acting as the interface of module ei.

Findler and Felleisen give an algorithm for assigning blame to one of the ei in the

case when a contract exception is raised. Intuitively, this means that ei does not

satisfy contract ti, but the concept of contract satisfaction had not actually been

defined formally. Still, we can view the algorithm as implying a semantics of contracts.

In particular, we can say e satisfies t unless there is some program for which the

algorithm claims otherwise. To be able to gain some intuition and make this notion

precise, let us first describe the contract checking algorithm in some detail.

A Findler-Felleisen-style contract checker consists of an ordinary higher-order

language such as Scheme or Standard ML, augmented with a special language

construct called a guard, and rules for handling guards in the operational semantics.

Programs of the previously mentioned form (�) are handled via translation into

the calculus with guards.1 Section 2 provides precise definition of the two language

levels, the translation from the first to the second, as well as the semantics of the

second that we use later in the paper. For the remainder of this introduction we

limit ourselves to a somewhat higher-level description.

In the simplest setting, a contract t on some expression e is either a first-order

contract 〈φ〉 or a higher-order contract t1 → t2. In the first-order case, φ is a

predicate, i.e., a function that maps the value of e to either “true” or “false.”

1 Findler and Felleisen use a similar translation of contract annotations into an internal form of guarded
expressions (which they call obligation expressions). The definition of their translation function Ie can
be found in Findler’s Ph.D. Thesis (Findler, 2002).

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 377

A guard for any contract t wrapped around an expression e is used to monitor

compliance of e with t:

(Wt e)

In the specific case where t = 〈φ〉, the operational meaning of this expression is to

first evaluate e to a value v, then to apply φ to v, and depending on the outcome of

this application either to raise a contract exception or to produce v as the result of

the guard.

Higher-order contracts are contracts on function values and express properties of

the behavior of these functions. More precisely, a function f satisfies the higher-order

contract t1 → t2 if any application of f to any argument satisfying t1 satisfies t2.

Fundamentally, such properties are undecidable (Rice, 1953), so there is no hope of

having a one-shot test that f could either “pass” or “fail.” Therefore, the operational

meaning of (Wt1→t2 f) (after confirming that f is indeed a function value and not,

say, an integer) is to return a new function f′ defined by the following equation:

(f′ y) = (Wt2 (f (Wt1 y)))

We make two important observations here:

1. Suppose the argument of f does not satisfy t1, causing the corresponding

guard to raise an exception. This exception does not imply that f has failed

its contract t1 → t2. Instead, it indicates that the context is trying to call f

with an argument that did not meet the precondition for f returning a value

satisfying t2.

2. When a guarded expression evaluates to a value without raising a contract

exception, it is still not guaranteed that the original value satisfied the

corresponding contract. The evaluation of a guard often “bakes” other guards

into its result, effectively suspending them until the value is later applied

as a function. Thus, a guard can fail long after its original evaluation has

completed.

The Findler-Felleisen algorithm accounts for point 1 by annotating each guard

with information that uniquely identifies the guarded source expression as well as

its context. Moreover, for every guard there is a complement guard where the roles

of expression and context are swapped. In our notation we use superscripts and

annotate each guard Wξ′ ,ξ
t with exceptions ξ, ξ′. Wξ′ ,ξ

t raises ξ upon detecting that

the guarded expression violated t. Likewise, ξ′ is raised when the context is found

to “abuse” the value, i.e., if it fails to meet the preconditions that are encoded in t.

The complement of Wξ′ ,ξ
t is Wξ,ξ′

t . Thus, (Wt1→t2 f) becomes (Wξ′ ,ξ
t1→t2

f), and the

resulting function f′ is defined to satisfy the following equation:

(f′ y) = (Wξ′ ,ξ
t2

(f (Wξ,ξ′

t1
y)))

In short, while the result guard uses the original expression-context relationship,

that relationship is reversed in the argument guard.

The other observation (point 2) is directly related to the semantics of contracts

implied by the contract checking algorithm. We will write [[t]]FF for the set of values

that – according to the Findler-Felleisen algorithm – satisfy t. Let us now define what

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

378 M. Blume and D. McAllester

[[·]]FF is. Since the contract checker can only falsify claims of the form v ∈ [[t]]FF,

we say that value v is not in [[t]]FF if and only if there exists a guard Wξ′ ,ξ
t together

with a context c such that evaluating the guarded v in c causes ξ to be raised. This

leads to the following definition:

Definition 1 (Implied semantics of contracts)

v ∈ [[t]]FF ⇔ ∀ξ, ξ′, c . (ξ 	= ξ′ ∧ ξ 	∈ c) ⇒ c[(Wξ′ ,ξ
t v)] does not raise ξ

The side conditions ξ′ 	= ξ and ξ 	∈ c (“ξ does not occur in c”) are necessary to

avoid contexts that “fabricate evidence” against v. Without them there would be no

value that satisfies any contract at all as it is very easy to produce, for any ξ, a

context cξ[·] which always raises ξ no matter how its hole is filled.

It is important to show that the Findler-Felleisen algorithm is correct, where

correctness means that when the algorithm blames a contract declaration, that

contract declaration is actually wrong. [[·]]FF as defined above makes correctness

vacuously true, because a declaration is “wrong” by definition if the algorithm

blames it. A more meaningful notion of correctness must be based on an independent

definition of the meaning of contracts, preferably defined in a mostly compositional

manner. In this paper we give such a semantics.

The structure of a non-compositional semantics like [[·]]FF is difficult to understand.

With just definition 1 at hand, an answer to the question “Does e satisfy t?” is not

easy because it requires consideration of every possible context. Unfortunately, we

cannot just ignore this problem and hope that intuition will help us out since in our

experience most people’s intuition actually disagrees with [[·]]FF:

Consider a predicate contract 〈true〉 whose predicate is true for all values. The

corresponding guard Wξ′ ,ξ
〈true〉 is a no-op. One might expect every value to satisfy 〈true〉

and, consequently, the identity function λx.x to satisfy (int → int) → 〈true〉. (We

write int for the contract satisfied by all integer values.) But DrScheme disagrees!

When evaluating the following example (translated to Scheme) in DrScheme, the

identity f is blamed for violating (int → int) → 〈true〉:

let f : (int → int) → 〈true〉 = λy.y in

((f λz.z) λw.w)
(��)

For any t, if the identity function does not satisfy t → 〈true〉, then there must be

at least one value satisfying t which does not satisfy 〈true〉. How can this be? How

can there be values not satisfying 〈true〉 given that Wξ′ ,ξ
〈true〉 does nothing? To answer

this question it is useful to recall observation 2:

“When a guarded expression evaluates to a value without raising a contract exception, it

is still not guaranteed that the original value satisfied the corresponding contract.”

Even 〈true〉, the contract whose guard does nothing, can be violated by “self-

incriminating” values – values that already happen to contain an exception that

they are capable of triggering. Since the semantics always raises an exception for

ill-formed applications (as opposed to getting “stuck”), an example for such a value

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 379

is λx.(1 2) in:

let g : 〈true〉 = λx.(1 2) in (g 0)

Moreover, such values are routinely constructed by the contract checking algorithm

itself. For example, the guard Wξ′ ,ξ
int→〈true〉 around function f produces a function

value f′ defined by

(f′ y) = (Wξ′ ,ξ
〈true〉 (f (Wξ,ξ′

int y)))

= (f (Wξ,ξ′

int y))

Here ξ occurs in f′, but it cannot be triggered since only function contracts have non-

trivial preconditions, and int is not a function contract. Using a function contract,

e.g., int → int in place of int changes this situation. Function value g′ obtained from

guarding an identity function g = λx.x with Wξ′ ,ξ
(int→int)→〈true〉 is defined by:

(g′ y) = (Wξ′ ,ξ
〈true〉 (g (Wξ,ξ′

int→int y)))

= (g (Wξ,ξ′

int→int y))

= (Wξ,ξ′

int→int y)

Applying g′ to another identity function h gives an h′ defined by:

(h′ z) = ((g′ h) z)

= ((Wξ,ξ′

int→int h) z)

= (Wξ,ξ′

int (Wξ′ ,ξ
int z))

Indeed, here it is quite easy to trigger ξ simply by applying h′ to a non-integer. By

no coincidence, this is exactly the construction of our “counterexample” (��).

In our semantics of contracts, 〈true〉 is interpreted as the set of safe values (see

Section 2.9). As we will see, safe values are precisely those that are incapable

of triggering any of their embedded exceptions. Since not every value satisfying

int → int is safe2, this interpretation supports and justifies DrScheme’s claim that

the identity violates (int → int) → 〈true〉. As a non-trivial theorem we prove that the

Findler-Felleisen algorithm is sound and complete with respect to this semantics.

Soundness and completeness together mean that the semantics is equivalent to [[·]]FF.

Let us now come back to programs of the form (�):

let x1 : t1 = e1 in . . .

let xn : tn = en in

xn

For a given interpretation [[·]] of contracts, we call the contract checking algorithm

sound if blame on a module ei is explained by the fact that ei violates one of its

contract interfaces. If ei is closed this says that its evaluation result (written [[ei]])

is not in [[ti]]. If ei contains free references to variables xj (with j < i) it means

2 For example, we have already seen that the identity function guarded with Wξ′ ,ξ
int→int is not safe although

it does satisfy int → int.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

380 M. Blume and D. McAllester

that there are values v1 ∈ [[t1]], . . . , vi−1 ∈ [[ti−1]] such that ei[vj/xj]j=1...i−1 produces a

result that is not in [[ti]]. (As usual, we write A[B/x] for the term A′ obtained from

A by substituting B in a capture-free manner for all free occurrences of x in A.)

Soundness relative to [[·]] can be stated as ∀t.[[t]] ⊆ [[t]]FF.

Conversely, we say that the algorithm is complete with respect to the semantics

if the contract checker can detect every interface violation in at least one context.

Concretely, let e have free variables x1, . . . , xi−1. If there are values v1, . . . , vi−1

satisfying t1, . . . , ti−1 such that the result of e[vj/xj]j=1...i−1 is not in [[t]], then there

are terms e1, . . . , ei−1 and some p such that running the algorithm on

let x1 : t1 = e1 in . . .

let xi−1 : ti−1 = ei−1 in

let xi : t = e in p

results in e being blamed. Completeness relative to [[·]] can be stated as ∀t.[[t]] ⊇
[[t]]FF. Soundness and completeness together imply [[·]] = [[·]]FF.

Another way of stating completeness is to say that contract violation is a

recursively enumerable property.3 By Rice’s theorem there is no hope for it to

be decidable. On the flip side, completeness implies that contract satisfaction is not

even recursively enumerable: we already know that it is undecidable, and it is the

complement of contract violation.

The rest of this paper is organized as follows:

In Section 2 we formally introduce our term- and contract-languages together

with a corresponding operational semantics of terms and an interpretation [[·]] for

contracts as sets of values. (This semantics, in particular the way it handles contract

guards, is – mutatis mutandis – the same as Findler and Felleisen’s contract checking

algorithm.) We also give several definitions of safety – a concept central to this

paper – and prove them pairwise equivalent.

In Section 3 we state the central lemma and use it to sketch the proof of soundness

for [[·]]. The next two sections are devoted to proofs of the central lemma: in Section 4

we take a step back and prove it in a setting that assumes all predicates in contracts

to be total. This simplification allows us to show the main idea of the proof without

getting bogged down in details of dealing with contracts that have effects. It also

allows us to prove that [[·]] is complete and therefore coincides with [[·]]FF. Section 5

then proves soundness (but not completeness) in the general case where predicates

in contracts may diverge.

Section 6 adds a recursion operator to the contract language and provides an

operational semantics for it. It then accounts for the resulting changes by formulating

an indexed model of contracts which is based on previous work on models for

recursive types (Appel & McAllester, 2001). The section also gives new proofs

for many of the lemmas since the original ones no longer work in this setting.

Recursive types have various practical applications, for example, the encoding of

3 The proof for this proceeds by considering (for a given contract and its guard) all possible expressions
and all possible contexts and letting them all run “in parallel” using the standard dovetailing
construction explained in many textbooks (Hartley Rogers, 1987).

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 381

x, y, . . . : variables

i, j, . . . : numeric literals

+ | − |<|�| . . . : function symbols

elements common to both external and internal languages

te ::= int | safe | te1
x→ te2 | 〈te | λx.ρe〉

ρe ::= ρe
0|(ρe x)

ρe
0 ::= ee (ee closed)

ee ::= x | i | λx.ee | (ee
1 ee

2) |
f(ee

1, . . . , e
e
k)

p ::= x | let x : te = ee in p

Fig. 1. External language.

t ::= int | safe | t1
x→ t2 | 〈t | λx.ρ〉

ρ ::= ρ0|(ρ x)⊥

ρ0 ::= e (e closed)

ξ ::= ⊥ | �0 | �1 | �2 | . . .
e ::= x | i | λx.e | (e1 e2)ξ |

fξ(e1, . . . , ek) |
(Wξ′ ,ξ

t e) | e1?ξe2

Fig. 2. Internal language.

object types (Bruce et al., 1997), so it is to hope that recursive contracts can play a

similar role. Yet more motivation for considering them stems from the observation

that they provide another angle from which to approach and understand the notion

of safety that is so central to our proofs and our results.

In Section 7, after summarizing our results, we conclude by speculating on the

potential use of contracts for static verification.

2 The formal setting

We consider programs at two different language levels: an external and an internal

one. The former can be thought of as a syntactically-sugared refinement of the latter.

(In practice there often will be a third level: a statically typed surface language. Here

we assume that static types – if originally present – have been checked and erased.

Appendix A briefly touches upon the likely interaction between static types and

contracts. In general it suffices to assume a dynamically typed setting.)

2.1 Syntax

At their core, both external and internal languages (see Figures 1 and 2) consist of

untyped λ-calculi with constants. As usual, there are variables x, y, . . ., λ-abstractions

λx.e, and applications (e1 e2). For simplicity we restrict ourselves to integer constants

0, 1, . . . and some primitive operations like + (addition) or < (comparison) over such

integers. (In examples we often use infix notation for those.) For boolean values we

use the convention: 1 = true, everything else = false.

Either language makes use of a sub-language of contract expressions consisting

of int (the contract satisfied by all integer values); dependent function contracts

t1
x→ t2 (satisfied by functions that take values v satisfying t1 to values satisfying

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

382 M. Blume and D. McAllester

t2[v/x]) and their non-dependent special case t1 → t2; the contract safe of safe

values; and restricted predicate contracts 〈t | φ〉 (satisfied by values v also satisfying

t such that φ applied to v yields true). The unrestricted version of predicate contracts

〈φ〉 shown in the introduction is not explicitly part of our languages and should

be thought of as an abbreviation for the operationally equivalent 〈safe | φ〉. (The

phrase “operationally equivalent” refers to the respective operational semantics of

W〈φ〉 and W〈safe|φ〉. These are equivalent since Wsafe is defined to be a no-op. From

this it follows that [[〈true〉]] = [[safe]]. But despite its suggestive name, we have yet

to show that interpreting safe as the set of safe values is sound.)

External: Programs in external form are closed terms

let x1 : te1 = ee
1 in . . . let xn : ten = ee

n in xn

where the ee
i are individual modules bound to “module identifiers” xi. The module

interface of ee
i is governed by contract tei . The scope of each let-bound xi consists

of everything to the right of ee
i (i.e., ee

i+1, . . . , e
e
n, xn). Predicates in predicate contracts

within the tei are taken from the expression language.

Module interfaces are the only place where contract expressions tei can appear.

Moreover, without loss of generality we require each such contract tei to be closed.

The effect of a free occurrence of xj in tei can be simulated by abstracting from xj
in both ee

i – using λ – and in tei – using a dependent function contract. Example:

Let ee
i = f(xj) and tei = 〈int | λx.x < xj〉. We can eliminate the free occurrence of xj

in tei by turning ee
i into λy.f(y) with a corresponding contract tj

y
→ 〈int | λx.x < y〉,

and then replacing every mention of xi with (xi xj).

Internal: The internal language makes pervasive use of contract exceptions �1,�2, . . .

as well as the “pseudo-exception” ⊥. When an exception �i is raised, the entire

program immediately terminates, producing �i as the final result. Raising ⊥,

however, causes the program to diverge. (We use ⊥ as a technical device to make

characterization and construction of “safe” expressions easier.)

One use of exceptions is to signal violations of language contracts: applications

of non-functions or ill-typed (i.e., non-integer in our case) arguments to primitive

operations. For this, they appear as annotations on all applications (e1 e2)ξ and

on all primitive operations fξ(e1, . . . , ek). A static type system can often eliminate

the need for most language contracts (array out-of-bounds errors being a notable

exception), but we do not make this assumption here.

There are also two additional expression forms:

• Wrapped expressions (Wξ′ ,ξ
t e) represent module contracts and are at the heart

of contract checking. They act as guards looking for evidence of violations of

contract t by either e or the context. If evidence for e violating t is found, then

exception ξ is raised. Similarly, when it is detected that the context tries to use

e in a way that is not consistent with t, then ξ′ is raised.

• The one-armed conditional e1?ξe2 evaluates to the value of e2 if e1 evaluates

to true. If e1 does not evaluate to true, then ξ is raised. (This form was added

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 383

Cξ(i; Γ) = i

Cξ(x; Γ) = x ; x 	∈ domain(Γ)

Cξ(x; Γ) = (Wξ,ξ′
t x) ; Γ(x) = (ξ′, t)

Cξ((e
e
1 ee

2); Γ) = (Cξ(e
e
1; Γ) Cξ(e

e
2; Γ))ξ

Cξ(λx.e
e) = λx.Cξ(e

e; Γ |	=x)

Cξ(f(ee
1, . . . , e

e
k); Γ) = fξ(Cξ(e

e
1; Γ), . . . ,Cξ(e

e
k; Γ))

C(int) = int

C(safe) = safe

C(te1
x→ te2) = C(te1)

x→ C(te2)

C(〈te | λx.ee〉) = 〈C(te) | λx.C⊥(ee; ∅)〉

C(x; Γ) = (W⊥,ξ
t x) where Γ(x) = (ξ, t)

C(let x : te = ee
1 in ee

2; Γ) = ((λx.e2) e1)⊥

where e1 = C�i (ee
1; Γ); e2 = C(ee

2; Γ, x �→ (�i,C(te)));

i uniquely identifies the module named x

Γ ∈ Var
fin�−→ X × T

Var − variables x, y, . . . X − exceptions ξ T − internal types t

dom(Γ |	=x) = dom(Γ) \ {x}
Γ |	=x (y) = Γ(y) ∀y 	= x

dom(Γ, x �→ (ξ, t)) = dom(Γ) ∪ {x}
(Γ, x �→ (ξ, t))(x) = (ξ, t)

(Γ, x �→ (ξ, t))(y) = Γ(y) ∀y 	= x

Fig. 3. Translation from external to internal language.

to make it easier to state the operational semantics of predicate contract

wrappers.)

There is no let-form in the internal language. Instead, module boundaries and the

contracts governing their interfaces are expressed using wrapped terms and function

application.

2.2 From external to internal syntax

Figure 3 shows the “de-sugaring” translation from external to internal syntax. The

idea is to arrange for �i to be raised when the contract checker finds evidence for

ee
i not respecting its contracts.

There are three ways in which a module ee
i of the external language can fail to

respect its contracts:

1. Its value might not satisfy its export interface tei .

2. It might try to use xj (where xj is one of its free variables) in a way that is

not consistent with the import interface tej .

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

384 M. Blume and D. McAllester

3. It might use one of the language’s primitive operations incorrectly – trying to

apply an integer, passing a non-integer or the wrong number of arguments

to one of the built-in operations. (One can think of this as having contract

wrappers on those primitive operations and even implement it that way).

The translation from external to internal language reflects this classification:

contract exception �i appears

1. in W�k ,�i

ti
which is wrapped around uses of xi in ee

k for k > i,

2. in W�i ,�j

tj
which is wrapped around uses of xj within ee

i for j < i,

3. and as an annotation on every application and built-in operation within the

translation of ee
i .

The translator is given in three parts: Cξ(e
e; Γ) annotates applications and

primitive operations within ee with exception ξ and replaces free occurrences of

variables bound in Γ with wrapped versions of these variables; C(te) translates

external contracts to internal ones; C(p; Γ) translates let-expressions. Environments

Γ are used to map let-bound module identifiers to their respective module exceptions

and translated contracts. Thus, a closed external program p is translated using

C(p; ∅).

The statement of our central lemma (Lemma 7) requires that predicates within

contracts do not raise contract exceptions of their own. This property, formally

captured by the notion of safe contracts, while not decidable in general, is guaranteed

by the way the operational semantics substitutes guarded values into contracts. This

relies on the fact that C(·) never inserts wrapper expressions into the code of

contract predicates while artificially using ⊥ for all language contracts. (This means

that the program will be sent into an infinite loop – as opposed to having it raise

an unaccounted-for contract exception – should a contract predicate “misbehave.”)

Thus, contracts start out safe and then stay safe during evaluation.

In a practical implementation it makes sense to use a separate �contract instead

of ⊥ for reporting contract violations caused by predicate code, effectively putting

contracts on these contract predicates. To account for �contract, most of the definitions

and proofs in this paper would have to be adjusted, making them superficially (but

not intrinsically) more complicated. Since the increased complexity does not pay off,

we do not explore this direction here.

2.3 Core semantics

We use evaluation contexts (Felleisen & Hieb, 1992) to specify the operational

semantics of the internal language (see Figures 4 and 5). Every closed expression e

that is not a value v has a unique decomposition into an evaluation context ce and

a current βv-redex e′; we write e = ce{e′} for this. Evaluation proceeds by repeatedly

replacing the current redex with its corresponding 1-step reduction until a value

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 385

v, w, . . . ::= i | λx.e
r ::= v | ξ
ce ::= {·} | (ce e)ξ | (v ce)ξ | fξ(v1, . . . , vi−1, ce, ei+1, . . . , ek) | (Wξ′ ,ξ

t ce) |

ce?ξe | v?ξce

c ::= [·] | λx.c | (c e)ξ | (e c)ξ | fξ(e1, . . . , ei−1, c, ei+1, . . . , ek) | (Wξ′ ,ξ
t c) |

c?ξe | e?ξc

Fig. 4. Semantic domains for values (v), results (r), evaluation contexts (ce), and contexts (c).

As a notational simplification, we will sometimes drop the subscript from evaluation contexts.

e = ce{e′} e′ ↪→ e′′ ce[e
′′]⇓nv

e⇓n+1v

fξ(i1, . . . , ik) ↪→ A(f, i1, . . . , ik)

((λx.e) v)ξ ↪→ e[v/x]

1?ξv ↪→ v

(Wξ′ ,ξ
int i) ↪→ i

(Wξ′ ,ξ
safe v) ↪→ v

(Wξ′ ,ξ

t1
z→t2

λx.e) ↪→ λy.(Wξ′ ,ξ

t2[(W⊥,ξ′
t1

y)/z]
((λx.e) (Wξ,ξ′

t1
y))⊥) (†)

(Wξ′ ,ξ
〈t|λx.e〉 v) ↪→ ((λx.e) (W⊥,ξ

t v))⊥?ξ(Wξ′ ,ξ
t v)

v ⇓0 v

ce{(i v)�j } ⇓0 �j

ce{f�j (v1, . . . , λx.e, . . . , vk)} ⇓0 �j

ce{(Wξ,�j

int λx.e)} ⇓0 �j

ce{(Wξ,�j

t1
x→t2

i)} ⇓0 �j

ce{v?�j v′} ⇓0 �j ; v 	= 1

(i v)⊥ ↪→ Ω

f⊥(v1, . . . , λx.e, . . . , vk) ↪→ Ω

(Wξ,⊥
int λx.e) ↪→ Ω

(Wξ,⊥
t1

x→t2
i) ↪→ Ω

v?⊥v
′ ↪→ Ω ; v 	= 1

where Ω ≡ ((λx.(x x)⊥) λx.(x x)⊥)⊥

Fig. 5. Operational semantics of the internal language.

is reached or a contract exception is raised.4 The meaning of built-in primitives is

assumed to be given by the semantic function A.

Evaluation immediately terminates with a non-value result of �j if the contract

exception �j gets raised at any point during evaluation. Raising the pseudo-exception

⊥ is modeled by replacing the current redex with an infinite loop.

4 Notice that e = ce{e′} and e′ ↪→ e′′ does not imply that substituting e′′ for {·} in ce has the form ce{e′′}
since in general e′′ is not the next current redex. For this reason we use the notation ce[e

′′] when
substituting into the hole of an evaluation context (just like we do when substituting into the hole of
a general context c).

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

386 M. Blume and D. McAllester

Evaluation of e either diverges or produces a result r (either a value or some �j)

after k steps. The latter fact is expressed by the relation e⇓kr. The valuation function

[[·]] from closed expressions to results is defined as follows:

e⇓kr ⇒ [[e]] = r (∀k, r.¬(e⇓kr)) ⇒ [[e]] = ⊥

It is easy to check that the full set of rules given here is exhaustive. This means

that there are no “stuck terms” in the internal language.

2.4 Contract checking

The heart of the contract checker is the set of rules dealing with the case when

the current redex is a wrapped expression (Wξ′ ,ξ
t v). These rules are directed by the

syntax of the contract t. If t is safe, then the wrapper acts as an identity function;

if t is int, then the wrapper checks v for being an integer, raising ξ if it is not.

If t is a (potentially dependent) function contract t1
x→ t2, then v is first checked

for being a λ-term. If that is the case, then rule (†) applies: the wrapper constructs

a function that first accepts an argument y and wraps it using contract t1, then

applies v to the wrapped y, and finally wraps the result using contract t2 where (a

wrapped version of) the original argument y has been substituted for x. The original

exception superscripts appear in reversed order in the argument wrapper – a detail

that is a crucial aspect of Findler-Felleisen-style contract checking since it reflects

the role reversal between the producer of a value and its context. Such role reversals

take place at the domain part of function contracts, the intuition behind it being

that a value f acts as the context of any arguments that f is applied to, whereas

the context of f is supplying these argument values. Formally, the rule follows the

standard construction for projections.5

If t is a restricted predicate contract 〈t′ | φ〉, then v is wrapped using t′ and

checked for satisfying the predicate φ. Substitution of values into predicate code

happens when such a predicate is applied or when a value is substituted into a

dependent type. Notice that we never substitute arbitrary values into predicate code.

The value v to be substituted is always guarded, and the context exception on the

guard is always ⊥. This trick is what guarantees that safe contracts stay safe during

the course of evaluation. As hinted in Section 2.2, a practical implementation should

use some �contract instead of ⊥ in order to be able to help track down predicate code

that is not behaving correctly.

We give an operational semantics to external programs by way of their translation

into the internal language:

[[p]]e = [[C(p; ∅)]]

5 Contract wrappers can be viewed as retractions. Unfortunately, the corresponding retracts do not have
the right properties to be used for interpreting contracts (although we have pursued this direction
elsewhere (Findler et al., 2004)). For example, we want λx.x to satisfy int → int, but no term equivalent

to λx.x is in the image of Wξ,ξ′

int→int.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 387

In the following examples, it is instructive to verify how the rule marked (†) in

Figure 5 produces the results in cases (2) and (3):

((W�1 ,�2

int→int 0) 1) ⇓ �2 (1)

((W�1 ,�2

int→int λx.x + 1) λy.y) ⇓ �1 (2)

((W�1 ,�2

int→int λx.λy.x) 2) ⇓ �2 (3)

((W�1 ,�2

int→int λx.x + 1) 1) ⇓ 2 (4)

2.5 Semantic equivalence

We write e ∼= e′ to say that e and e′ are semantically equivalent, i.e., that there is no

context c that could distinguish between the two:

([[c[e]]] ∈ [[int]] ∪ X ∨ [[c[e′]]] ∈ [[int]] ∪ X) ⇒ [[c[e′]]] = [[c[e]]]

We will also use the notation e′ � e for e, e′ (or t � t′ for t, t′) if e′ (or t′) can be

obtained from e (or t) by replacing zero or more occurrences of �i (for any i) with

⊥. We write �e� and �c� to denote the expression or context obtained from e or c

by replacing every occurrence of �i (for all i) with ⊥ (implying �e� � e).

Lemma 1

If e′ � e then the following is true:

[[e′]] = �i ⇒ [[e]] = �i

[[e]] = ⊥ ⇒ [[e′]] = ⊥
[[e]] = i ⇔ [[e′]] = i

Proof sketch

By showing that the rules of the operational semantics preserve the � relation on

terms until an exception is raised. �

2.6 Semantic interpretation of contracts

The interpretation of a contract t is some set of values [[t]]. A closed expression

e is said to satisfy t (written e : t) if it either diverges or produces a result

in [[t]]. The rules in Figure 6 define [[t]] for contracts t. The semantics [[·]]e for

the external contract language is handled by viewing it as a refinement (i.e., a

syntactically sugared subset) of the internal contract language. (This means that

external contracts are interpreted as sets of internal values. See Appendix A for a

justification.) The definition of Safe is given in Section 2.9. Notice that the semantics

of contracts invokes the operational semantics for terms – reflecting the fact that

contract satisfaction is determined based on runtime behavior. It is easy to check

that [[t]] is closed under semantic equivalence.

Any diverging term satisfies all contracts while a term whose evaluation raises

some contract exception �i satisfies no contract. Fortunately, the same is true under

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

388 M. Blume and D. McAllester

e : t ⇔ [[e]] ∈ [[t]] ∪ {⊥}

[[int]] = {0, 1, . . .}
[[safe]] = Safe

[[t1
x→ t2]] = {λy.e | ∀v ∈ [[t1]].e[v/y] : t2[v/x]}

[[〈t | λx.e〉]] = {v ∈ [[t]] | [[e[v/x]]] ∈ {1,⊥}}

[[te]]e = [[C(te)]]

Fig. 6. Semantics of contracts.

[[·]]FF (see definition 1). If e satisfies t under [[·]]FF then (Wξ′ ,ξ
t e) should not raise ξ

in any context c that does not contain ξ (assuming ξ 	= ξ′). However, this condition

is violated if e itself raises ξ.

2.7 Findler-Felleisen-style contract checking

We found it remarkable that contract checking works at all, i.e., that one can prove

it sound with respect to a simple compositional semantics. Checking higher-order

contracts requires type tests at higher-order types. But membership in [[t1 → t2]]

– as pointed out before – is undecidable. The trick used by the Findler-Felleisen

algorithm is to give up on this unattainable goal and settle for less. When a runtime

error is generated, the contract checker merely reports that a certain claim of the

form v : t is false. However, even the ability to do that might come as a bit of a

surprise since it seems to require being able to verify claims of the form v : t1 → t2
after all. In particular, consider proving that ¬(f : (t1 → t2) → t3). This requires

showing the existence of a witness v such that v : t1 → t2 and ¬((f v) : t3). But

once again, we generally cannot know whether some v satisfies t1 → t2. What we

do know, however, is that even if v was not in t1 → t2, at the time f got blamed

for not being in (t1 → t2) → t3, this fact had not yet been detected. In other words,

the argument v of f has so far behaved like a value in t1 → t2. The idea behind the

soundness proof is to show that there is some v′ that in this particular context acts

just like v but which actually does satisfy t1 → t2. The construction of v′ is one of

the technical difficulties of the soundness proof.

Let us look at two examples: First, let t1 stand for the contract

int
i→ (〈int | λx.x < i〉 → 〈int | λx.x > 0〉)

in the program fragment:

let x1 : t1 = λi.λk.k − i in

let x2 : int = ((x1 4) 3) in

x2

This code will fail at runtime and report a contract violation. The arguments to x1

pass their respective tests while the return value does not, so the contract checker

produces �1, accusing x1 for breaking t1. This is correct because the arguments to

x1 constitute a counterexample to x1 : t1.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 389

Now take a look at this variant of the program:

let x1 : t1 = λi.λk.i − k in

let x2 : int = ((x1 3) 4) in

x2

Here the body of x1 produces a positive number, as promised, if the arguments

satisfy their contracts. The order of the arguments, however, has been inverted so

that they no longer satisfy x1’s contract. The contract checker now raises �2 because

x2 fails to meet the preconditions on x1. Notice how important it is for the argument

contract to be checked before the result contract, as otherwise the wrong exception

would have been raised.

In our second example, let t1 stand for

(int → 〈int | λx.x � 0〉) → 〈int | λx.x � 0〉

and consider:

let x1 : t1 = λg.((g 1) − 1) in

let x2 : int = (x1 (λx.(x − 1))) in

x2

Again, this is a call of a function with an argument that is not in its stated domain

since, clearly, x − 1 is not non-negative for all integers x. But this failure to meet

the precondition escapes discovery. The code of x1 applies its argument only once

– to the number 1, and 1 − 1 = 0 is indeed non-negative, so the problem with

the argument value is never witnessed. Not knowing about the argument’s failure

to meet the precondition, the Findler-Felleisen algorithm detects a violation of the

range contract of x1 (because −1 	� 0), so the result is �1 which says that x1 does not

satisfy its contract – even though the checker has not really seen a counterexample!

Nevertheless, blaming x1 is not wrong here since there exist other values, for example

λx.0 ∈ [[int → 〈int | λx.x � 0〉]]

that can witness the problem with x1 in precisely the same way.

2.8 Behavioral correctness

An important property of contract checking is that it must not change the behavior

of a program in an essential way. By this we mean that as long as no exceptions are

raised, there is no other way of operationally distinguishing between e and (Wξ′ ,ξ
t e):

Lemma 2

Let e′ = (Wξ′ ,ξ
t e). If [[c[e′]]] = i then [[c[e]]] = i. Also, if [[c[e]]] = i and [[c[e′]]] is a

value, then [[c[e′]]] = i.

Proof sketch

Using a bi-simulation between expressions that contain instances of W and corres-

ponding terms with some of these wrappers stripped out. For brevity we omit the

details of the proof here. �

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

390 M. Blume and D. McAllester

2.9 Safety

The concept of safety that we use in the soundness proof and in the interpretation

of safe – the contract whose guard is a no-op – formalizes the familiar practice of

coding as defensively as possible. If a program is safe, then before attempting any

operation that could “go wrong” it makes sure that it will, in fact, not go wrong.

For example, a safe program in a dynamically typed language must verify that the

arguments of + are indeed numeric and take evasive action if they are not.6 In the

higher-order case the caveat is that one can never be sure that an unknown function

does not itself raise an exception after being called. The definition of safety takes

this into account.

Behavioral safety: An expression e is safe if and only if it is impossible to trigger any

of its syntactically embedded contract exceptions. Thus, e must remain semantically

unchanged if some or all of its �s are replaced with ⊥:

Definition 2 (Safety, take 1)

Safe1 = {v | �v� ∼= v}

Let Safesyn = {�v� | v is a value} be the set of syntactically safe values, i.e., values that

do not contain syntactic occurrences of �i. From definition 2 it is then immediately

clear that Safesyn ⊆ Safe1.

Safe in syntactically safe contexts: The second definition characterizes safe values as

those that do not trigger a contract exception in any syntactically safe context (i.e.,

contexts without syntactic occurrences of �):

Definition 3 (Safety, take 2)

Safe2 = {v | ∀c.[[�c�[v]]] is a value or ⊥}

Safety as a greatest fixpoint: To explicitly deal with the problem of safety in a

higher-order setting we would like to say that a function f is safe whenever the

result of applying f to a safe value v is still safe. Unfortunately, this is not a

definition for precisely the same reason that makes the interpretation of recursive

types difficult. The operator whose fixpoint we are after is not monotonic. To get

around this problem we weaken the condition and say that v is safe if it is a “flat”

value (0, 1, . . . in our case) or a function returning something safe whenever applied

to a syntactically safe argument. Thus, we take Safe3 to be the greatest fixpoint νS
of the monotonic operator S:

6 Depending on what one considers “wrong,” even statically typed programs must perform certain
runtime tests to be safe. Example: index range checks in subscript expressions.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 391

Definition 4 (Safety, take 3)

S(Q) = {v | ∀w.[[(v �w�)⊥]] ∈ Q ∪ {⊥}}
Safe3 = νS

Properties of safety: All notions of safety are pairwise equivalent.

Lemma 3

Safe1 = Safe2 = Safe3

Proof

This follows from lemmas 4 and 5 (see below). �

Lemma 4

Safe1 = Safe2

Proof for ⊆
By definition we have v ∼= �v�, so (by the definition of semantic equality) if [[�c�[v]]] =

� then also [[�c�[�v�]]] = �, but � does not even occur in �c�[�v�]. �

Proof for ⊇
Suppose v 	= �v� and c is a witnessing context that distinguishes between the two.

By Lemma 1 it must be the case that [[c[v]]] = �i for some i. �i is generated from

some particular occurrence of �i in either v or c, so it must also be the case that

either [[�c�[v]]] = �i or [[c[�v�]]] = �i.7 But since c is the witnessing context for v

and �v� being different, the latter is impossible. This concludes the proof. �

Lemma 5

Safe2 = Safe3.

Proof for ⊆
Indirect: If v 	∈ Safe3 then there must be a finite sequence of values v1, . . . , vk such

that

[[(. . . (v �v1�)⊥ . . . �vk�)⊥]] = �
but [[(. . . ([·] �v1�)⊥ . . . �vk�)⊥]] is a syntactically safe context. �

Proof for ⊇
Indirect: Pick a v ∈ Safe3 \Safe2 and a corresponding c ∈ C with �c�[v]⇓n�i for some

i so that n is minimized (i.e., we pick an unsafe but operator-safe value together with

the context that demonstrates non-membership in Safe2 in the smallest number of

evaluation steps).

7 Making this informal argument precise is not difficult but tedious.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

392 M. Blume and D. McAllester

The number n cannot be 0: there are no occurrences of � in �c�, so if �c�[v]⇓0�i

then also v⇓0�i, which contradicts the assumption that v ∈ Safe3.

For the case of n > 0 there is a unique evaluation context ĉe and corresponding

expression ê such that ĉe{ê} = �c�[v] where ê is the next βv-reduction to do

in �c�[v] (Felleisen & Hieb, 1992). The proof proceeds by case analysis on the

possible shapes of ê and shows that the transition system defining the operational

semantics can perform at least one step which gives rise to another pair (v′, �c′�)
with v′ ∈ Safe3 \ Safe2 such that �c′�[v′]⇓n−1�i.

If ê, which cannot be a subexpression of the value v, is a subexpression of �c�,
this is immediately clear. The remaining cases are those where v is a subexpression

of ê.

For brevity we only show the analysis for the two most interesting situations:

1. If v = λx.b and ê = (v �v′�)⊥ for some subexpression �v′� of �c�, then ĉe is also

syntactically safe. Moreover, since v ∈ Safe3 we can consider d = b[v′/x] and

find that [[d]] ∈ Safe3 as well. This means that for some k with 0 < k < n we

have d⇓kd
′ and d′ ∈ Safe3. But ĉe[d

′]⇓n−k−1�i, which is the contradiction that

we are looking for.

2. If ê = ((λx.b) v′)⊥ where v is a subexpression of v′ (v′ = c0[v]), then b,ĉe, and

c0 are syntactically safe. We know that ĉe[b[v
′/x]]⇓n−1�i. Since the value �i

is generated from some single occurrence of �i which must be within one of

the copies of v within b[v′/x], we can replace all occurrences of � in every

other copy of v by ⊥, thus rewriting b[c0[v]/x] as �c1�[c0[v]]. This means

that ĉe[�c1�[c0[v]]]⇓n−1�i, which is the contradiction we are looking for since

ĉe[c1[c0[·]]] is a syntactically safe context.
�

Since the three versions of safety are equivalent we drop the subscript and simply

write Safe. We use the subscripted version when we want to indicate the properties

of Safe that we use for a proof.

By definition, it is impossible to operationally distinguish between a v ∈ Safe1 and

the corresponding �v�. By plugging this fact into the definition of Safe3 we conclude

that Safe is also the greatest fixpoint of Ŝ, defined as

Ŝ(Q) = {v | ∀w ∈ Q.[[(v w)⊥]] ∈ Q ∪ {⊥}}

This coincides with our original intuition of safe values being those that remain safe

when applied to other safe values, a fact that can be stated as follows:

Lemma 6

e, e′ : safe ⇒ (e e′)⊥ : safe

Proof

Follows immediately from Safe being the greatest fixpoint of Ŝ and [[safe]] =

Safe. �

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 393

3 Soundness and completeness

We would like to show that [[·]]FF and [[·]] are the same, but this is true only if we

make certain assumptions about predicates. A sufficient condition is all predicates

being total. But even without assuming totality we can show contract checking to

be sound, i.e., [[t]] ⊆ [[t]]FF. This means that any difference between [[t]]FF and [[t]]

can always be explained by non-terminating predicate code.8 In any case, blame

assignment is sound as every blame is justified by a corresponding contract violation:

Theorem 1 ([[t]] ⊆ [[t]]FF)

If

[[let x1 : te1 = ee
1 in . . . let xn : ten = ee

n in xn]]
e = �i

then

∃v1 ∈ [[te1]]
e, . . . , vi−1 ∈ [[tei−1]]

e

such that

[[ei[vj/xj]j=1...i−1]] 	∈ [[tei]]
e ∪ {⊥}

where ei = C�i (ee
i ; ∅).

Moreover, there are ve
1, . . . , v

e
i−1 such that

C�i(ve
j ; ∅) ∼= vj

i.e.

ei[vj/xj]j=1...i−1
∼= C�i(ee

i [v
e
j /xj]j=1...i−1

; ∅)

Furthermore, we can get a completeness result if all base predicates ρ0 are assumed

to be total predicates. (For example, we could restrict ρ0 to the set of functions that

return false if one of their arguments is not an integer, and which otherwise compute

a boolean combination of the results of comparing its arguments with one another.

Such a class could be defined by a suitable syntactic restriction on expressions.) In

this case every contract violation has the potential for causing corresponding blame:

Theorem 2 ([[t]] ⊇ [[t]]FF)

If all base predicates ρ0 are total and ∃v1 ∈ [[te1]]
e, . . . , vi−1 ∈ [[tei−1]]

e with

[[e[vj/xj]j=1...i−1]] 	∈ [[te]]e ∪ {⊥} where e = C�i(ee; ∅)

for some ee with free variables x1, . . . , xi−1, then there are expressions ee
1, . . . , e

e
i−1 and

a program p such that:[[
let x1 : te1 = ee

1 in . . . let xi−1 : tei−1 = ee
i−1 in

let xi : te = ee in p

]]e

= �i

(The ee
1, . . . , e

e
i−1 can be picked from the set of closed expressions.)

8 For example, the contract checker cannot determine that λx.λy.y does not satisfy 〈int → int |
λz.(λx.(x x) λx.(x x))〉 because it always gets stuck in the infinite loop that is the body of the predicate.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

394 M. Blume and D. McAllester

st(ε; t)

t ∈ Tsafe

st(x1, . . . , xk; int) st(x1, . . . , xk; safe)

st(x1, . . . , xk; t) λx1. · · · λxk.λx.e ∈ Safe

st(x1, . . . , xk; 〈t | λx.e〉)

st(x1, . . . , xk; t1) st(x1, . . . , xk, x; t2)

st(x1, . . . , xk; t1
x→ t2)

Fig. 7. Definition of the set Tsafe of safe contracts.

3.1 The central lemma

Before we can state the central lemma we need to introduce a safety restriction on

contracts (Figure 7). Safety guarantees that predicates within contracts do not raise

exceptions of their own. The formula st(x1, . . . , xk; t) expresses that t, which may

have free variables in {x1, . . . , xk}, is safe. A closed contract t is in Tsafe if st(ε; t)

where ε denotes the empty sequence of variables.

By slight abuse of notation, let’s write Wξ′ ,ξ
t for λx.(Wξ′ ,ξ

t x) and Wξ′
1 ,ξ1

t1
◦ Wξ′

2 ,ξ2

t2

for λx.(Wξ′
1 ,ξ1

t1
(Wξ′

2 ,ξ2

t2
x)).

An easy induction on the structure of contract t shows that contract wrappers

have a telescoping property:

Wξ1 ,ξ2

t ◦ Wξ3 ,ξ4

t = Wξ1 ,ξ4

t

Thus, wrappers W�i ,⊥
t and W⊥,�j

t can be seen as two “halves” of W�i ,�j

t . The

central lemma states that one half coerces safe values into values satisfying the

contract while the other half coerces contract-satisfying values into safe values:9

Lemma 7 (Central lemma)

For any ξ and any t ∈ Tsafe:

a. v : t ⇒ (W⊥,ξ
t v) : safe

b. v : safe ⇒ (Wξ,⊥
t v) : t

Once again abusing notation, we can render this as:

W⊥,ξ
t : t → safe

Wξ,⊥
t : safe → t

3.2 Proof of soundness

The proof for Theorem 1 uses Lemma 7(b) to construct the required values v1, . . . , vi−1

and then finishes by applying Lemma 7(a).

9 One is tempted to look for an embedding-projection pair here, but notice that neither W�i ,⊥
t ◦W⊥,�j

t =

W�i ,�j

t nor W⊥,�j

t ◦ W�i ,⊥
t = W⊥,⊥

t is an identity on a domain we are interested in.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 395

Proof of Theorem 1 (sketch)

First we define a substitution σ defined by the equation

σ(xi) = C�i(ee
i ; ∅)[(W�i ,�j

C(tj)
σ(xj))/xj]

j=1...i−1

Let e be the expression (W⊥,�n

C(ten)
σ(xn)). Note that e is the let-expansion of the original

program’s internal form.

Suppose [[e]] = �i. Intuitively, there is a particular occurrence of an exception

label in e, the offending �i, which gets returned as the exception value. We can write

e as

c
[(

W�j ,�i

ti
C�i(ee

i ; ∅)[(W�i ,�k

tk
σ(xk))/xk]k=1...i−1

)]
such that the offending �i is not in c. Since the offending �i is neither in c nor in

any of the σ(xk), using ei = C�i (ee
i ; ∅), we have

[[�c�
[(

W⊥,�i

ti
ei[(W�i ,⊥

tk
�σ(xk)�)/xk]k=1...i−1

)]
]] = �i

Pick vk for k = 1 . . . i − 1 to be (W�i ,⊥
tk

�σ(xk)�). By Lemma 7(b) we find vk ∈ [[tek]]
e as

required. Each vk has a semantically equivalent external version ve
k (see Appendix A).

Substituting vk into the above equation yields

[[�c�
[(

W⊥,�i

ti
ei[vk/xk]k=1...i−1

)]
]] = �i

which means that ei[vk/xk]k=1...i−1 : [[tei]]
e would contradict Lemma 7(a). �

The proof sketch for Theorem 2 is shown in Section 4.2.

4 Assuming total predicates

In this section we consider the case that each ρ0 in a predicate contract

〈t | λxn.(. . . (ρ0 x1)⊥ . . . xn)⊥〉

is a total function from n arbitrary values to int. This assumption implies that

contracts are always in Tsafe. Moreover, relying on Lemma 2 we can equivalently

write the operational semantics for contract wrappers in a simpler way:

(Wξ′ ,ξ

t1
z→t2

λx.e) ↪→ λy.(Wξ′ ,ξ
t2[y/z]

((λx.e) (Wξ,ξ′

t1
y))⊥)

(Wξ′ ,ξ
〈t|λx.e〉 v) ↪→ ((λx.e) v)⊥?ξ(Wξ′ ,ξ

t v)

4.1 A simple proof of the central lemma

We now give a proof of Lemma 7 under the assumption of totality for predicates:

Proof of central lemma

By simultaneous induction on the structure of t. We only show the two most

important cases. (All other cases are trivial.) The first is t = t1
z→ t2 and v = λx.e:

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

396 M. Blume and D. McAllester

a. Consider any syntactically safe w: By induction hypothesis (part b.) we have

(Wξ,⊥
t1

w) : t1,

so using the contract on λx.e we get

((λx.e) (Wξ,⊥
t1

w)) : t2[(Wξ,⊥
t1

w)/z].

If this expression diverges, then by definition it satisfies t2[w/z]. Otherwise, we

get the same result by noting that [[t2[w/z]]] must be equal to [[t2[(Wξ,⊥
t1

w)/z]]].

This again follows from Lemma 2 since otherwise one of the total integer-

result predicates would have to be able to distinguish between w and (Wξ,⊥
t1

w).

Using the induction hypothesis (part a.) we find that

(W⊥,ξ
t2[w/z]

((λx.e) (Wξ,⊥
t1

w)))

is safe. By definition of Safe3, using the (simplified) rule for Wξ′ ,ξ

t1
z→t2

this means

that (W⊥,ξ

t1
z→t2

λx.e) is safe.

b. Consider any w : t1: By induction hypothesis (part a.) we know that

(W⊥,ξ
t1

w) is safe, so by Lemma 6 we find ((λx.e) (W⊥,ξ
t1

w))⊥ to be safe as well.

By induction hypothesis (part b.) this means that:

(Wξ,⊥
t2[w/z]

((λx.e) (W⊥,ξ
t1

w))⊥) : t2[w/z]

Using our semantics for t1
z→ t2 and the corresponding (simplified) operational

rule we get the desired result, namely (Wξ,⊥
t1

z→t2
λx.e) : t1

z→ t2

The other interesting case is t = 〈t′ | λx.e〉:

a. Since v ∈ [[〈t′ | λx.e〉]] we also have v ∈ [[t′]] and [[((λx.e) v)⊥]] = 1. But

(W⊥,ξ
〈t′ |λx.e〉 v) makes a transition to

((λx.e) v)⊥?ξ(W⊥,ξ
t′ v)

and finally evaluates to [[W⊥,ξ
t′ v]], which is safe by part a. of the induction

hypothesis.

b. ((λx.e) v)⊥ must evaluate to an integer (by our totality assumption). If that

result is not 1, then

((λx.e) v)⊥?⊥(Wξ,⊥
t′ v)

raises the ⊥ exception, so t′ is satisfied. The outcome 1 makes the final result

(Wξ,⊥
t′ v), which by induction hypothesis (part b.) satisfies t′. Furthermore,

Lemma 2 tells us that ((λx.e) (Wξ,⊥
t′ v)) cannot evaluate to anything other than

1, so the result is indeed in [[〈t′ | λx.e〉]]. �

4.2 Completeness

We now show that [[·]] is complete under the totality assumption. First we need the

following lemma:

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 397

Lemma 8

If v : t′ but ¬(c[v] : t), then ¬(c[(W�i ,�j

t′ v)] : t)

Proof

By induction on the structure of t:

int: Because of totality the extra wrapper cannot cause non-termination. But by

Lemma 2, if c[(W�i ,�j

t′ v)] were to return an integer, then so would c[v].

safe: We use the definition for Safe2 and consider the witnessing context c′ where

[[�c′�[c[v]]]] = �k

while

[[�c′�[c[(W�i ,�j

t′ v)]]]] is a value or ⊥.

The remainder of this case proceeds like the proof for Lemma 2 (e.g., using bi-

simulation), showing that given totality of predicates the second term must raise

either �k or �i. (It cannot raise �j since v satisfies t′.)

〈t | φ〉: By Lemma 2 and totality, the results of φ have to agree in both cases. Now

use the induction hypothesis with t.

t1
x→ t2: The only non-trivial case is where c has the form λx.c′, and by defin-

ition there has to be a w : t1 such that ¬(c′[v][w/x] : t2[w/x]) while

c′[(W�i ,�j

t′ v)][w/x] : t2[w/x]. Consider c′′ = c′[w/x] and use the induction

hypothesis with t2. �

We now have the tools for proving completeness (Theorem 2):

Proof of Theorem 2

To complete the proof of Theorem 2, recall that we have

v1 ∈ [[te1]]
e, . . . , vi−1 ∈ [[tei−1]]

e

such that C�i (ee; ∅)[vj/xj]j=1,...,i−1 does not satisfy C(te). We pick ee
1, . . . , e

e
i−1 equival-

ent to �v1� . . . , �vi−1�. (See Appendix A for how this can be done.) Now consider the

let-expansion of ee which is equivalent to

C�i(ee; ∅)[(W�i ,�j

C(tj)
�vj�)/xj]

j=1...i−1

It is easy to see that �vj� : tj , so according to Lemma 8 this expression, let’s call it

ê, does not satisfy C(tei).

What remains to be shown is the existence of a context c such that c[(W�i+1 ,�i

ti
ê)]

evaluates to �i. From such a c one can then easily construct a p that completes the

proof, for example p = let xi+1 : int = ((λy.0) c[xi])⊥ in xi+1. (For this we need c to

be syntactically safe. Again, see Appendix A for details.)

The construction of c proceeds by induction on the structure of ti. We make use

of the fact that the constructed context is always strict in its hole. First we note

that if evaluating ê raises an exception, then this exception must be �i since all

other available �j would, by Theorem 1, blame one of the vj , and those do satisfy

their respective contracts. We now consider the case of a value [[ê]] and construct c

according to ti.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

398 M. Blume and D. McAllester

int: It suffices to make c strict in its hole so that the wrapper for xi will be evaluated,

causing �i to be raised. For example, we can simply use [·].
safe: We pick c to be a context witnessing [[ê]] 	∈ Safe2. Since the witnessing context

itself is (syntactically) safe, it must be strict in its hole to be able to trigger the

exception.

〈t | φ〉: We use the induction hypothesis, construct the c′ corresponding to t, and

make c = c′. Because of totality, φ applied to [[ê]] must be either true or false. If it

is false, the wrapper will trigger �i (because c is strict in its hole). If the predicate

returns true, then [[ê]] must violate t, so by induction hypothesis c will cause �i

to be raised.

t1
x→ t2: If [[ê]] is of the form λy.e′, then there must be some v ∈ [[t1]] such that

((λy.e′) v)⊥ does not satisfy t2[v/x]. By Lemma 8 this means that

((λy.e′) (W�i ,�i+1

t1
v))⊥

also violates t2[v/x]. Using the induction hypothesis for this contract-expression

combination, we pick a c′ in such a way that

c′[(W�i+1 ,�i

t2[v/x] ((λy.e′) (W�i ,�i+1

t1
v))⊥)]

raises �i. But then c′[((W�i+1 ,�i

t1
x→t2

λy.e′) �v�)
⊥
] will also trigger �i. This means that

we can pick c to be c′[([·] �v�)⊥]. If ê does not evaluate to λy.e′, then any strict c

such as [·] will do.

�

This concludes our demonstration that – given totality of predicates – our semantics

for contracts [[·]] is the same as [[·]]FF.

5 Not assuming total predicates

In the absence of totality, there are two potential problems with predicates in

contracts: they might diverge, or they might raise contract exceptions of their own.

We cannot completely avoid either problem. However, by maintaining the safety of

contracts we manage to contain the damage well enough to keep soundness intact.

As hinted earlier, contract safety relies on details in the translation of external types

(C(·), where ⊥ is used as the exception annotation on predicate code; see Section 2.2)

and the way the operational semantics inserts wrappers that raise ⊥ when predicate

code misbehaves (see Section 2.4).

Without totality, neither the simplifications of the operational rules used in

Section 4 nor conclusions such as

[[t2[w/z]]] = [[t2[(Wξ,⊥
t1

w)/z]]]

are true. To prove Lemma 7 under these conditions, we have to strengthen the

induction hypothesis, using a partial order � on terms and contract expressions.

The definition of this relation, which is a generalization of the � introduced in

Section 2, is shown in Figure 8. Roughly, we say e′ � e (or t′ � t) if e′ (or t′) can be

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 399

e � e

e′
1 � e1 e′

2 � e2

(e′
1 e′

2)⊥ � (e1 e2)ξ

e′ � e t ∈ Tsafe

(W⊥,⊥
t e′) � e

t � t

t′1 � t1 t′2 � t2

t′1
x→ t′2 � t1

x→ t2

e′
1 � e1 · · · e′

k � ek

f⊥(e′
1, . . . , e

′
k) � fξ(e1, . . . , ek)

e′ � e t′ � t

(W⊥,ξ

t′ e′) � (Wξ′ ,ξ
t e)

e′ � e t′ � t

(Wξ′ ,⊥
t′ e′) � (Wξ′ ,ξ

t e)

t′ � t φ′ � φ

〈t′ | φ′〉 � 〈t | φ〉

Fig. 8. A partial order on expressions and contracts.

obtained from e (or t) by turning some or all occurrences of � into ⊥ and, at the

same time, inserting zero or more wrappers of the form W⊥,⊥
t̂

where t̂ ∈ Tsafe.

Using this relation we can state a generalization of Lemmas 1 and 2 as follows:

Lemma 9

If e′ � e and [[e′]] = i for some number literal i, then [[e]] = i. Also, if [[e]] = i and

[[e′]] is a value, then [[e′]] = i.

The proof for this proceeds like that for Lemma 2 (using a bi-simulation between

terms related via �). We omit the details here and just point out that the basic idea

is to have e′ either diverge or, as long as it does not diverge, behave exactly like e.

5.1 The stronger version of the central lemma

Now we are ready to state the stronger version of Lemma 7:

Lemma 10 (Stronger version of central lemma)

For any ξ, any t′ ∈ Tsafe, and t such that t′ � t

a. v : t ⇒ [[(W⊥,ξ
t′ v)]] : safe

b. v : safe ⇒ [[(Wξ,⊥
t′ v)]] : t

Proof

As in the proof given in Section 4 we only consider the two most important cases.

t1
z→ t2, λx.e By definition, we have t′1 � t1, t

′
2 � t2.

a. Using the fact that t′2[(W
⊥,⊥
t′1

v)/z] � t2[(Wξ,⊥
t′1

v)/z] we need to show that the

result of applying (W⊥,ξ

t′1
z→t′2

λx.e) to a safe value v is safe. This can be seen as

follows:

(W⊥,ξ

t′2[(W⊥,⊥
t′
1

v)/z]
((λx.e)

t1︷ ︸︸ ︷
(Wξ,⊥

t′1

∈Safe︷︸︸︷
v))︸ ︷︷ ︸

t2[(Wξ,⊥
t′
1

v)/z]

)

︸ ︷︷ ︸
∈Safe

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

400 M. Blume and D. McAllester

For this, from inside-out, we are using the assumption about v, the induction

hypothesis (b.), the assumption about the contract on λx.e, and the induction

hypothesis (a.).

b. Let v be a value in t1. Then, by induction hypothesis (a.), (W⊥,ξ
t′1

v) is safe, so

by definition of Safe1 it is, in fact, equal to (W⊥,⊥
t′1

v), which means that we

have:

t′2[(W
⊥,ξ
t′1

v)/z] ∼= t′2[(W
⊥,⊥
t′1

v)/z] � t2[v/z]

Using this we need to show that the result of applying (Wξ,⊥
t′1

z→t′2
λx.e) to v

satisfies t2[v/z], which can be seen from the following:

(Wξ,⊥
t′2[(W⊥,ξ

t′
1

v)/z]
((λx.e)

∈Safe︷ ︸︸ ︷
(W⊥,ξ

t′1

t1︷︸︸︷
v))︸ ︷︷ ︸

∈Safe

)

︸ ︷︷ ︸
t2[v/z]

Again, from inside-out, we used the contract satisfaction assumption about

v, induction hypothesis (a.), the safety assumption about λx.e, and induction

hypothesis (b.).

Remark: Notice that under the assumption of t′1
z→ t′2 being in Tsafe we find that

all contracts in wrapper expressions are also in Tsafe.

〈t | φ〉 By definition we have t′ � t and φ′ � φ.

a. Let v ∈ [[〈t | φ〉]], which means that v ∈ [[t]] and [[(φ v)]] ∈ {⊥, 1}. Consider

(W⊥,ξ
〈t′ |φ′〉 v) which expands into

(φ′ (W⊥,ξ
t′

t︷︸︸︷
v)︸ ︷︷ ︸

∈Safe

)

︸ ︷︷ ︸
∈Safe

?ξ(W⊥,ξ
t′

t︷︸︸︷
v)︸ ︷︷ ︸

∈Safe

As before, the annotations show the conclusions we can draw from induction

hypotheses and contract satisfaction assumptions. The only way the shown

expression might not be safe is by having (φ′ (W⊥,ξ
t′ v)), which by the properties

of safety is the same as (φ′ (W⊥,⊥
t′ v)), yielding a proper value other than 1.

By Lemma 9 this would imply that (φ v) also returns a value other than 1,

and that contradicts the assumptions.

b. Let v ∈ Safe and consider (Wξ,⊥
〈t′ |φ′〉 v) which expands into

(φ′

∈Safe︷ ︸︸ ︷
(W⊥,⊥

t′

∈Safe︷︸︸︷
v))︸ ︷︷ ︸

∈Safe

?⊥(Wξ,⊥
t′ v)

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 401

Clearly, if the final value here is not ⊥, then it must be true that

[[(φ′ (W⊥,⊥
t′ v))]] = 1

and the result is (Wξ,⊥
t′ v). But in that case, since φ′ � φ by Lemma 9 we also

have [[(φ (Wξ,⊥
t′ v))]] = 1, which means that the value satisfies 〈t | φ〉.

Notice that the proof for 〈t | φ〉 would not go through had the evaluation rule for

W〈t|φ〉 failed to place t-guards on either side of the ? operator (see Figure 5).

�

Lemma 7 is implied by Lemma 10. As a result, we have a proof for Theorem 1

(stating the soundness of contract checking) even in the more general setting where

contract predicates might not terminate, and where the substitution of unsafe terms

into predicate terms can cause contract exceptions from predicate code. The key here

is to carefully control the latter effect: contract exceptions raised by predicate code

always correctly point to genuine contract violations in other parts of the program.

6 Recursive contracts

Adding recursive contracts µα.t to the contract language and accounting for this

change in the operational semantics is relatively straightforward. We also add a

form of sum contracts t1∨χt2 where the sets [[t1]] and [[t2]] are recursively separated

by the computable total predicate χ on values. The predicate is false for all of [[t1]]

and true for all of [[t2]].
10 We will sometimes simply write t1 ∨ t2 for t1∨χt2, relying on

the existence of a suitable separation predicate without actually naming it. Finally,

for technical convenience there is also a contract bot which is satisfied by no value.

The changes to language and semantics that account for recursive contracts are

given in Figure 9. Also, in the following discussion we will silently drop any mention

of safe. Its place will be taken by rsafe, a contract that can be synthesized using other

contract constructors, and which, therefore, does not need to be added separately to

the contract language.

Because of the rule in the operational semantics that identifies µα.t with t[µα.t/α],

structural induction on contract expression breaks down in the presence of recursive

contracts. If we could restrict α to only occur in positive (covariant) positions within

t, then we would be able to salvage the situation using co-induction. For many uses

of recursive contracts this is sufficient. However, there are useful applications of

recursive types (and contracts) where α occurs in negative positions. For example,

several popular encodings of object types have this property.

There is another reason why considering recursive contracts in the context of

contract checking is useful: it gives a different (but consistent!) view on the problem

of how to interpret Findler and Felleisen’s original unrestricted predicate contracts.

10 Such sums are sometimes called tidy sums.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

402 M. Blume and D. McAllester

α | β | . . . : type variables

te ::= . . . | α | µα.te | te∨χt
e | bot

T ::= . . . | α | µα.t | t∨χt | bot

C(bot) = bot

C(α) = α

C(µα.te) = µα.C(te)

C(te1∨χt
e
2) = C(te1)∨χC(te2)

(Wξ,�j

bot v) ⇓0 �j

(Wξ,⊥
bot v) ↪→ Ω

(Wξ′ ,ξ
µα.t v) ↪→ (Wξ′ ,ξ

t[µα.t/α] v)

(Wξ′ ,ξ
t1∨χt2

v) ↪→
{

(Wξ′ ,ξ
t1

v) : if χ(v) 	= 1

(Wξ′ ,ξ
t2

v) : if χ(v) = 1

Fig. 9. Recursion-related modifications to external and internal contract language, to the

translation between them, and to the operational semantics.

6.1 Indexing

We have made extensive use of structural induction, so our proofs do not work in the

presence of recursive contracts. Fortunately, it is possible to adapt an indexed model

of recursive types (Appel & McAllester, 2001) to the case of recursive contracts and

to modify proofs accordingly.

In the indexed model, a contract t is interpreted as a set [[t]]idx of indexed terms

〈k, v〉. The idea is that v is a k-approximation of a value satisfying t, i.e., that no

context c can tell in k or fewer steps that v does not satisfy t. Each [[t]]idx is closed

under decreasing index, i.e., 〈k, v〉 ∈ [[t]]idx ∧ 0 � j < k ⇒ 〈j, v〉 ∈ [[t]]idx.

An index-free interpretation [[t]]∞ of contracts can then be recovered as:

[[t]]∞ =
⋂
k

{v | 〈k, v〉 ∈ [[t]]idx}

As we will see, [[·]]∞ coincides with our original [[·]] for contracts that do not

contain µ.

Along with the interpretation of contracts as sets of index-value pairs goes an

indexed contract-satisfaction relation e :k t, which is defined as:

e :k t ⇔ ∀j.0 � j < k ∧ e⇓jv ⇒ 〈k − j, v〉 ∈ [[t]]idx

The index-free version of this relation is then defined as:

e :∞ t ⇔ ∀k � 0.e :k t

To avoid additional complications arising from diverging predicates in predicate

contracts, we now revert back to the totality assumption that we used earlier (see

Section 4). This assumption once again simplifies the operational semantics of

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 403

[[bot]]idx = {}
[[int]]idx = {〈k, i〉 | k � 0}

[[t1
x→ t2]]idx = {〈k, λx.e〉 | ∀j < k∀v.〈j, v〉 ∈ [[t1]]idx ⇒ e[v/x] :j t2[v/x]}

[[〈t | λx.e〉]]idx = {〈k, v〉 | 〈k, v〉 ∈ [[t]]idx ∧ [[e[v/x]]] = 1}
[[t1∨χt2]]idx = {〈k, v〉 | 〈k, v〉 ∈ [[t1]]idx ∧ χ(v) 	= 1} ∪

{〈k, v〉 | 〈k, v〉 ∈ [[t2]]idx ∧ χ(v) = 1}
[[µα.t]]idx = {〈k, v〉 | 〈k, v〉 ∈ [[unroll(k + 1, α, t)]]idx}

where unroll(0, α, t) = bot

unroll(i + 1, α, t) = t[unroll(i, α, t)/α]

Fig. 10. The indexed model of recursive contracts.

contract guards for t1
x→ t2, and we use it to construct a slightly simpler indexed

model than otherwise possible.

A note of caution: Indexed models have the inherent disadvantage of being

extremely sensitive to details of the underlying operational semantics in general

and to the way steps are being counted in particular. As a consequence, [[t]]idx is in

general not closed under semantic equivalence, and two different ways of counting

steps produces two different, incomparable sets [[t]]idx. In the limit, however, these

differences vanish: [[·]]∞ does not suffer from such problems.

Like Appel and McAllester, we define [[t]]idx by induction on indices and refer

to them for the proof that the so-defined sets satisfy the required closure condition

(closed under decreasing index) the we need.

The indexed model of contracts is shown in Figure 10. Notice that [[t1∨χt2]]idx is

not simply the union of [[t1]]idx and [[t2]]idx. Our construction throws out those pairs

〈k, v〉 which the separator χ classifies as belonging to t1 (or t2) when they do not

look like a t1- (or t2-) value for at least k steps. (This detail only concerns values

which ultimately belong to neither t1 nor t2. It will be important later when we

prove the indexed version of the central lemma.)

All our type constructors are either well-founded or nonexpansive.11 The following

lemma is a consequence of this fact:

Lemma 11

Let 0 � j < i. Then the following statement holds:

〈j, v〉 ∈ [[unroll(i, α, t)]]idx ⇔ 〈j, v〉 ∈ [[unroll(j + 1, α, t)]]idx

This says that a value v looks like a sufficiently precise approximation of a recursive

type for some number of steps if and only if it also looks like an arbitrarily more

precise approximation of the same type for the same number of steps. We omit a

detailed proof here and refer to the literature (Appel & McAllester, 2001).

11 Let approx(k, T) = {〈j, v〉 | j < k ∧ 〈j, v〉 ∈ T }. We say a type constructor f is well-founded whenever
the functional F which maps [[t]]idx to [[f(t)]]idx has the property that for all t and all k � 0 we
have: approx(k + 1, F([[t]]idx)) = approx(k + 1, F(approx(k, [[t]]))). Similarly, we call f non-expansive if
approx(k, F([[t]]idx)) = approx(k, F(approx(k, [[t]]))).

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

404 M. Blume and D. McAllester

Lemma 12

〈k, n〉 ∈ [[t[unroll(k + 1, α, t)/α]]]idx ⇔ 〈k, n〉 ∈ [[t[µα.t/α]]]idx

Proof

By definition of [[·]]idx, the truth of the statement 〈k, n〉 ∈ [[t[unroll(k + 1, α, t)/α]]]idx

can be expressed as a function Ft on answers to questions of the form

〈j, w〉 ∈ [[unroll(k + 1, α, t)]]idx

where 0 � j � k. Moreover, function Ft is completely determined by t.

By the same argument, the truth of the statement 〈k, n〉 ∈ [[t[µα.t/α]]]idx is expressible

as the same function Ft applied to the answers to questions of the form

〈j, w〉 ∈ [[µα.t]]idx

for the same set of pairs 〈j, w〉 as above. By definition, these questions reduce to:

〈j, w〉 ∈ [[unroll(j + 1, α, t)]]idx

According to Lemma 11, each argument to Ft in case of the first statement is equal

to the corresponding argument to Ft in case of the second statement. �

For the purpose of comparison with [[·]]∞ we now extend the definition of [[·]] to

also handle sums and bot:

[[bot]] = {}
[[t1∨χt2]] = [[t1]] ∪ [[t2]]

The following lemma states that, in the limit, the indexed model for non-recursive

types coincides with our original model:

Lemma 13

For all t which do not contain µ we have [[t]] = [[t]]∞.

Proof

Straightforward by induction on the structure of t. (An inductive proof is fine since

t does not contain recursion.) �

6.2 Indexed safety

We will now build up the necessary machinery to adapt our original proof of

soundness to the indexed model. We use a modified version of the central lemma

(Lemma 7) which in its formulation requires an indexed version of the concept of

safety. It turns out that one of the major benefits of working with recursive contracts

is that we can used them to characterize safety directly.

In our non-indexed analysis we spent significant effort on showing that (abusing

notation)

Safe = µα.int ∨ (Safesyn → α)

where Safesyn = {�w� | w is a value} (see Lemmas 3 and 6). Here α occurs in positive

positions only, which makes it possible to use co-induction. Using the machinery

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 405

of recursive contracts we can avoid such detours and express safety directly as a

contract:

rsafe = µα.int ∨ (α → α)

We write rsafek for the k-approximation of rsafe:

rsafek = unroll(k + 1, α, int ∨ (α → α))

Notice that, by definition, if 〈k, v〉 ∈ [[rsafe]]idx then also 〈k, v〉 ∈ [[rsafek]]idx.

Lemma 14

[[rsafe]]∞ = Safe.

Proof

We show that [[rsafe]]∞ = Safe1, using an indexed version of the ∼= relation:

e∼=ke
′ ⇔ ∀c.c[e]⇓iv ∧ c[e′]⇓i′v

′ ∧ v, v′ ∈ [[int]] ∪ X ∧ i, i′ < k ⇒ v = v′

It suffices to show that e∼=k�e� ⇔ e :k rsafe. We do this by simultaneous induction

on k for both directions.

(⇒) The statement is trivially true if e does not reduce to a value within k

steps. Thus, we just need to focus on the case where e is already a value v,

i.e., that v ∼=k �v� implies v :k rsafe which is equivalent to 〈k, v〉 ∈ [[rsafek]]idx.

Indirect. Assume there is some w such that 〈i, w〉 ∈ [[rsafei]]idx for some i < k

but ¬((v w)⊥ :i rsafei) By induction hypothesis we know that w ∼=i �w�, so it

must be that also ¬((v �w�)⊥ :i rsafei) or otherwise w and �w� were operationally

distinguishable within i steps. We already have that v ∼=i �v� since i < k. Therefore,

it must be that ¬((�v� �w�)⊥ :i rsafei), which contradicts the induction hypothesis.

(⇐) As before, we only need to consider the case where e is some value v. We

proceed indirectly and consider the smallest k such that 〈k, v〉 ∈ [[rsafe]]idx but

¬(v ∼=k �v�). Pick a context c which demonstrates semantic inequality in less than

k steps. The only way this can happen is by having c[v]⇓k−1� while c[�v�] does

not evaluate to �. In this case we also have that �c�[v]⇓k−1�. We proceed by case

analysis on the current redex in �c�[v]:
1. The current redex is (v �w�)⊥ for some value w. By induction hypothesis we

have 〈k − 1, �w�〉 ∈ [[rsafe]]idx. Since the program must not loop forever, v has

to be of the form λx.b, implying that 〈k, λx.b〉 ∈ [[rsafek−1 → rsafek−1]]idx. Thus,

the program can make one step by reducing the current redex to b[�w�/x],

and for this term we have b[�w�/x] :k−1 rsafe. Plugging it back into the

evaluation context yields a program that yields � in k − 2 steps, so we have a

contradiction to the assumption that k was minimal.

2. The current redex has the form (λx.b a)⊥ where v is a sub-term of a. The

program can perform at least one reduction, after which in general there will

exist more than one copy of v. Since the only occurrences of � are in these

v, we can replace all but one of them with �v� and still have a program that

reduces to � in k − 2 steps. This again violates the assumption that k was

chosen minimal.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

406 M. Blume and D. McAllester

3. In all other cases, the program can perform at least one step after which there

still exists exactly one copy of v, so k could not have been minimal.

�

Notice that the definition of rsafe looks suspiciously like the equation often used

to characterize the domain of untyped λ-terms (Scott, 1972). However, it should be

noted that here it does not name the set of all possible values but rather a proper

subset thereof. (Of course, the original untyped λ-calculus does not have contract

exceptions, so all terms are safe there.)

6.3 The indexed central lemma

We restate Lemma 7 as follows:

Lemma 15 (Central lemma with recursive contracts)

For any ξ, any t ∈ Tsafe, and any k � 0:

a. e :k t ⇒ (W⊥,ξ
t e) :k rsafe

b. e :k rsafe ⇒ (Wξ,⊥
t e) :k t

Proof

The proof proceeds by simultaneous induction on k. Clearly, either statement of the

lemma is true for k = 0. In the induction step we can assume e to be some value v, as

otherwise the induction hypothesis applies trivially. Here is a complete description

of the induction step:

a. We perform a case analysis on the outermost contract constructor:

bot: [[bot]]idx is empty, which means that no v exists.

int: [[int]]idx is a subset of [[rsafek−j]]idx.

t1∨χt2: We consider the case that χ(v) evaluates to false. (The other case

proceeds analogously, with t1 and t2 swapped.) We have 〈k, v〉 ∈ [[t1]]idx, so

by downward closure 〈k − 1, v〉 ∈ [[t1]]idx. But (W⊥,ξ
t1∨χt2

v) makes one step to

(W⊥,ξ
t1

v), and by induction hypothesis we have (W⊥,ξ
t1

v) :k−1 rsafe.

〈t | φ〉: (W⊥,ξ
〈t|φ〉 v) makes one step yielding φ(v)?ξ(W⊥,ξ

t v). We know that φ(v)

evaluates to 1, so after i � 1 steps we have (W⊥,ξ
t v). But by induction

hypothesis and downward closure it is the case that (W⊥,ξ
t v) :k−i rsafe

(unless k − i < 0, in which case the statement of the lemma is also true).

µα.t: 〈k, v〉 ∈ [[µα.t]]idx, so by definition

〈k, v〉 ∈ [[unroll(k + 1, α, t)]]idx = [[t[unroll(k, α, t)/α]]]idx.

Using downward closure we get:

〈k − 1, v〉 ∈ [[t[unroll(k, α, t)/α]]]idx

By Lemma 12 this means that

〈k − 1, v〉 ∈ [[t[µα.t/α]]]idx.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 407

But (W⊥,ξ
µα.t v) can perform one step yielding (W⊥,ξ

t[µα.t/α] v). Applying the

induction hypothesis gives

(W⊥,ξ
t[µα.t/α] v) :k−1 rsafe.

t1
x→ t2: Here v must have the form λx.b. Taking one step (W⊥,ξ

t1
x→t2

v) reduces

to

λy.(W⊥,ξ
t2[y/x] (v (Wξ,⊥

t1
y))⊥).

Let’s call this expression X. We need to show that 〈k − 1, X〉 ∈ [[rsafe]]idx,

i.e., that 〈k − 1, X〉 ∈ [[rsafek−1]]idx. Given that X is not an integer, this is

the same as showing that 〈k − 1, X〉 ∈ [[rsafek−2 → rsafek−2]]idx. Pick any

j < k − 1 and 〈j, w〉 ∈ [[rsafek−2]]idx. By Lemma 11 this is equivalent to

〈j, w〉 ∈ [[rsafej]]idx, which means that w :j rsafe. Induction hypothesis(b.)

gives us (Wξ,⊥
t1

w) :j t1. If (Wξ,⊥
t1

w)⇓iw
′ with 0 < i � j, then 〈j − i, w′〉 ∈

[[t1]]idx, so b[w′/x] :j−i t2[w
′/x]. Induction hypothesis(a.) now implies that

(W⊥,ξ
t2[w′/x] b[w

′/x]) :j−i rsafe and, consequently, that12

(W⊥,ξ
t2[w/x] (v (Wξ,⊥

t1
w))⊥) :j rsafe.

So, indeed, we obtain the required result:

〈k − 1, λy.(W⊥,ξ
t2[y/x] (v (Wξ,⊥

t1
y))⊥)〉 ∈ [[rsafek−2 → rsafek−2]]idx

b. Again, we perform a case analysis on the outermost type constructor:

bot: The expression (Wξ,⊥
bot v) always goes into an infinite loop.

int: The expression (Wξ,⊥
int v) either returns the integer v or goes into an infinite

loop if v was not an integer.

t1∨χt2: We consider the case that χ(v) evaluates to false. (As before for (a.), the

other case is completely analogous.) (Wξ,⊥
t1∨χt2

v) takes one step to (Wξ,⊥
t1

v).

Let’s call this X. By downward closure we have that 〈k − 1, v〉 ∈ [[rsafe]]idx, so

applying the induction hypothesis yields X :k−1 t1. Let X⇓jw with j < k − 1.

(Otherwise the statement of the lemma is trivially true.) So 〈k − j − 1, w〉 ∈
[[t1]]idx and therefore 〈k − j − 1, w〉 ∈ [[t1∨χt2]]idx.

〈t | φ〉: (Wξ,⊥
〈t|φ〉 v) makes one step resulting in φ(v)?⊥(Wξ,⊥

t v). If φ(v) returns

false, then the expression diverges and the statement of the lemma is true.

Otherwise, if φ(v) returns true, then after i � 1 steps we arrive at (Wξ,⊥
t v).

Let’s call this X. Induction hypothesis and downward closure imply that

X :k−i t. Let X⇓jw with j < k−i (or else the statement of the lemma becomes

trivially true). Then 〈k − i − j, w〉 ∈ [[t]]idx and therefore 〈k − i − j, w〉 ∈
[[〈t | φ〉]]idx.

µα.t: We know that 〈k, v〉 ∈ [[rsafek]]idx, so by downward closure 〈k − 1, v〉 ∈
[[rsafek]]idx, and by Lemma 11 〈k − 1, v〉 ∈ [[rsafek−1]]idx. The term (Wξ,⊥

µα.t v)

12 We rely here on the fact that terms substituted into contracts never play any role outside of becoming
arguments to predicates – which we assume to be total. The number of steps they take to evaluate
are not part of the interpretation of contracts.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

408 M. Blume and D. McAllester

makes one step to (Wξ,⊥
t[µα.t/α] v). Let’s call this X. By induction hypothesis:

X :k−1 t[µα.t/α]

and by Lemma 12 this implies

X :k−1 t[unroll(k, α, t)/α],

i.e.,

X :k−1 unroll(k + 1, α, t).

Using Lemma 11 again we arrive at the desired result, namely

X :k−1 unroll(k, α, t) which means X :k−1 µα.t.

t1
x→ t2: Unless v has the form λz.b, the expression (Wξ,⊥

t1
x→t2

v) goes into an

infinite loop, and the statement of the lemma is satisfied. Let v ≡ λz.b.

Taking one step, (Wξ,⊥
t1

x→t2
v) reduces to

λy.(Wξ,⊥
t2[y/x] (v (W⊥,ξ

t1
y))⊥).

Let’s call this X. We have to show that 〈k − 1, X〉 ∈ [[t1
x→ t2]]idx. Pick

any j < k − 1 and 〈j, w〉 ∈ [[t1]]idx. By induction hypothesis(a.) we get

(W⊥,ξ
t1

w) :j rsafe. If (W⊥,ξ
t1

w)⇓iw
′ with 0 < i � j, then 〈j − i, w′〉 ∈

[[rsafe]]idx. We know that 〈k, λz.b〉 ∈ [[rsafe]]idx, so by downward closure also

〈j − i + 1, λz.b〉 ∈ [[rsafe]]idx, i.e., 〈j − i + 1, λz.b〉 ∈ [[rsafej−1 → rsafej−1]]idx.

Thus, b[w′/z] :j−i t2[w
′/x]. Using induction hypothesis(b.) we conclude that

(Wξ,⊥
t2[w′/x] b[w

′/z]) :j−i t2[w
′/x], and that therefore

(Wξ,⊥
t2[w/x] (v (W⊥,ξ

t1
w))⊥) :j t2[w/x].

Thus, we have proved that

〈k − 1, λy.(Wξ,⊥
t2[y/x] (v (W⊥,ξ

t1
y))⊥)〉 ∈ [[t1

z→ t2]]idx.

�

Using Lemma 15, the following corollary is immediately obvious:

Lemma 16

For any ξ and any t ∈ Tsafe:

a. e :∞ t ⇒ (W⊥,ξ
t e) :∞ rsafe

b. e :∞ rsafe ⇒ (Wξ,⊥
t e) :∞ t

6.4 Soundness of recursive contracts

The proof of soundness of contract checking in the presence of recursive contracts

(replacing [[·]] with [[·]]∞) proceeds exactly like the proof of the original Theorem 1,

using Lemma 16 instead of Lemma 7.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 409

6.5 Completeness of recursive contract checking

We omit the detailed proof of completeness (Theorem 2) for the case of recursive

contracts (assuming total predicates) and limit ourselves to the following informal

argument: If an expression e violates a potentially recursive contract t, then there is

an e′ derived from e by replacing every recursive contract with a sufficiently precise

approximation and a t′ derived from t in an analogous way such that e′ violates

t′. The original proof now applies to e′ and t′, showing that there is a context c in

which the contract checker finds the problem by raising some exception �. But the

same � will be raised when considering the original e with the original t in context

c.

6.6 Recursion, safety, and predicates

We started with a non-recursive contract language that included a primitive contract

safe. We interpreted it – in an ad-hoc fashion – as the set of safe values, and

subsequently found that this interpretation is sound and complete (under reasonable

assumptions). We could have motivated our choice by looking at the statement of

Lemma 7, noting that the contract wrapper for the always-true predicate is simply

the identity. If the identity maps safe values to values satisfying the contract and vice

versa, every satisfying term is a safe term, and every safe term is a term satisfying

safe. Thus, in any model [[·]] of contracts that has ambitions at being sound as well

as complete, it must be the case that [[safe]] = Safe. But Lemma 7 was just a means

and not the end here, so it might be worth asking the question whether another

interpretation would work as well – perhaps giving up on the central lemma in

exchange for a different method of proving soundness and completeness.

It turns out that this is not the case, and the consideration of recursive contracts

shows why. The guards for the two contracts safe and rsafe are operationally

equivalent, and contracts with equivalent guards should have equal interpretations:

Lemma 17

For an arbitrary expression e and for any k:

(Wξ′ ,ξ
rsafe e) ∼=k (Wξ′ ,ξ

safe e)

Proof

The right-hand side is clearly equivalent to e, so we show by induction on k that

the left-hand side is also equivalent to e. Consider the case where e is some value v.

(Otherwise the induction hypothesis applies trivially.) After one step, the left-hand

side yields (Wξ′ ,ξ
int∨(rsafe→rsafe) v) If v is an integer, it further reduces to (Wξ′ ,ξ

int v) and

then to v. Otherwise v must have the form λx.b. To be operationally distinguishable,

there must be some w such that (Wξ′ ,ξ
rsafe (v (Wξ,ξ′

rsafe w))⊥) is distinguishable from

(v w)⊥ in fewer than k steps. By induction hypothesis, this is impossible. �

Therefore, safe must be interpreted as Safe because rsafe is. Another consequence

of being able to define safe as a recursive contract is that we can keep the full

expressive power of the original Findler-Felleisen system while dropping our ad-hoc

addition of safe from the language of contracts.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

410 M. Blume and D. McAllester

As noted in the introduction, the Findler-Felleisen system has unrestricted pre-

dicate contracts 〈φ〉 whose guards are operationally equivalent to the guards

for our 〈safe | φ〉 (or 〈rsafe | φ〉). We originally started with a hunt for the

proper semantics of 〈φ〉. By the above equivalence, the answer turns out to be

{v ∈ Safe | (φ v) ∈ {1,⊥}} and not, as naively expected, {v | (φ v) ∈ {1,⊥}}.
Notice that “counterexamples” like that in Section 1 work in dynamically typed

settings such as DrScheme but not in the calculus given in Findler and Felleisen’s

paper (Findler & Felleisen, 2002) because they fail to statically type-check there.

7 Conclusions and outlook

We developed an independent model of Findler and Felleisen’s contracts for higher-

order functions and proved the soundness of their contract checker. Under reasonable

assumptions, it is also complete. In short, the contract checker always assigns blame

properly and is – in principle – able to discover all violations: for every violation

there is a context in which the checker finds it. The contract language can be

extended to include a recursion operator without compromising the existence of a

sound and complete model.

The main technical insight from our proofs is in the simple and apparently

fundamental theoretical properties of contract wrappers expressed in the central

lemma (Lemma 7 and its variations: Lemmas 10 and 15). The central lemma

shows that there is strong interaction between the semantics of contracts and

a notion of safety. Furthermore, the fact that Findler-Felleisen-style unrestricted

predicate contracts 〈φ〉 are operationally equivalent to our 〈safe | φ〉 implies that the

semantics of 〈φ〉 has to mention safety. In our system we can avoid this “leakage”

of the soundness proof into contract semantics by eliminating unrestricted predicate

contracts, letting the restricted version take their place. The full expressiveness of

the original system can be restored by making it possible to express safety explicitly

as a contract – either using a new ad-hoc phrase like safe or via recursive contracts.

Under reasonable assumptions about predicates, our model [[·]] for contracts is

exactly equivalent to the one implied by the contract checking algorithm. Moreover,

while completeness does not stay intact, soundness is not compromised even if

we drop those extra assumptions. It should be noted, however, that this result

crucially relies on the fact that our language is essentially pure, the only effects

being non-termination and contract exceptions. If the language has constructs

with general effects (mutation, I/O), then a compositional semantics that preserves

soundness seems out of reach at this point. In the calculus shown here, contracts

cannot interfere with a program’s execution other than by changing the termination

behavior. To make them into a reliable debugging tool even in the general case with

arbitrary effects, one definitely needs to preserve this property. One should be able

to remove contracts without altering the semantics of the program in an essential

way. A separate investigation of the restrictions on predicates that one needs for

this is currently under way (Findler et al., 2004).

There are several possible future directions for this work. We have not extended

the algorithm to handle polymorphism, although it may not be difficult to use

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 411

higher-order wrappers, i.e., functions from wrappers to wrappers, to treat contracts

of the form ∀α.t interpreted as
⋂

t′ [[t[t
′/α]]]. Similarly, we have not considered

mutual recursion between modules, although given the untyped nature of our core

calculus it appears easy to simulate such mutual recursion using value-level fixpoint

constructions. Our soundness proof is for a language with call-by-value semantics.

Since most real-world languages that are pure (e.g., Clean (Brus et al., 1987) or

Haskell (Jones, 2003)) are also lazy, it seems desirable to translate our results to a

lazy setting. We believe that doing so will not be difficult.

Of course, a natural direction for further work is to implement contracts in a

strongly typed language such as ML or Haskell.

7.1 Program verification

It also seems possible to apply ideas from contract checking to static program

verification. In particular, symbolic evaluation of programs with contract wrappers

might be able to statically verify that a particular contract exception �i can never

be raised, i.e., that module ee
i satisfies ti in the [[·]]FF model. Assuming completeness

this implies contract satisfaction in the [[·]] model as well.

One way of showing that �i cannot be raised is to eliminate it from the program.

(There are no operational rules that generate new exceptions.) One might hope to

rely on the telescoping property of contract wrappers, but this law is applicable only

if the wrappers in question are indexed by the same contract:

Wξ′
2 ,ξ2

t ◦ Wξ′
1 ,ξ1

t = Wξ′
2 ,ξ1

t

Now consider t1 and t2 with [[t1]] ⊆ [[t2]]. In this case we would like to argue that

the left side of

Wξ′
2 ,ξ2

t2
◦ Wξ′

1 ,ξ1

t1

is redundant because of the “stronger” wrapper on the right. However, the right side

is stronger only from the point of view of the wrapped value while it is actually the

left side that is stronger from the context’s point of view. Thus, we cannot simply

eliminate either t1 or t2, but we can argue that neither ξ′
1 nor ξ2 could ever be raised

here. It is possible to express this, e.g., as

Wξ′
2 ,⊥
t2

◦ W⊥,ξ1

t1

but doing so seems clumsy. A leaner notation separates the two roles of Wξ′ ,ξ
t

(watching the value and watching the context) by defining each contract wrapper as

the composition of two parts:

Wξ′ ,ξ
t = W−ξ′

t ◦ W+ξ
t

Operational rules for W−ξ′

t and W+ξ
t are easy to set up. The main idea is to alternate

between W− and W+ instead of swapping exception superscripts in contravariant

positions. The rules (abusing notation when “raising” ξ) for a simple contract

language with only int and → are shown in Figure 11.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

412 M. Blume and D. McAllester

(W+ξ
int i) → i

(W+ξ
t1→t2

λx.e) → λy.(W+ξ
t2

((λx.e) (W−ξ
t1

y))⊥)

(W+ξ
t v) → raise ξ ; otherwise

(W−ξ
t1→t2

λx.e) → λy.(W−ξ
t2

((λx.e) (W+ξ
t1

y))⊥)

(W−ξ
t v) → v ; otherwise

Fig. 11. Operational semantics for W+ξ
t and W−ξ

t for a simple contract language with only

int and →.

W− and W+ commute regardless of their contract subscripts, and assuming

[[t1]] ⊆ [[t2]] we have:

W+ξ′

t2
◦ W+ξ

t1
= W+ξ

t1
and W−ξ′

t2
◦ W−ξ

t1
= W−ξ′

t2

Notice that the requirements on the context expressed, by W−, are preconditions

while the requirements on the value, expressed by W+, are postconditions. Thus, the

above laws precisely capture the fact that one has to keep the weakest precondition

and the strongest postcondition (Hoare, 1969; Dijkstra, 1976). Using [[t1]] ⊆ [[t2]] we

get

Wξ′
2 ,ξ2

t2
◦ Wξ′

1 ,ξ1

t1
= W−ξ′

2
t2

◦ W+ξ2
t2

◦ W−ξ′
1

t1
◦ W+ξ1

t1

= W−ξ′
2

t2
◦ W−ξ′

1
t1

◦ W+ξ2
t2

◦ W+ξ1
t1

= W−ξ′
2

t2
◦ W+ξ1

t1

which – as we had hoped – no longer contains those contract exceptions (here ξ2

and ξ′
1) that can never be raised.

Acknowledgements

We greatly benefited from extensive discussions with Robby Findler as well as

from helpful advice given by Matthias Felleisen. We also would like to express our

appreciation to several anonymous reviewers as well as members of the audience at

ICFP’04, where an earlier version of this paper was presented (Blume & McAllester,

2004).

A Witness expressions

On a number of occasions, in particular in the proof of Theorem 1 shown in

Section 3.2 and also in the proof of Theorem 2 in Section 4.2, we construct values

v, e.g., as witnesses for some contract being violated. A potential problem with this

is the fact that these are values of the internal language, while the main theorem

had been stated in terms of the external language. If an internal witness turns out

to have no external counterpart, one might argue that its existence is irrelevant

since the programmer is only interested in the external language. Thus, we should

convince ourselves that external witnesses can be constructed from internal ones.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

Sound and complete models of contracts 413

The construction is possible because all our witness values v are syntactically safe.

Given sufficient language support safety can be “coded up.”

For the sake of simplicity we restricted the external language used in this paper to

an extremely simple one. A slightly more realistic version would certainly have some

form of conditional, for example a branch on equality to 1. If the language also

comes with a mechanism for separating functions from integers (as most dynamically

typed languages do), then all witnesses �v� have an operationally equivalent external

counterpart. For example, the language could come with some typecase construct

which is capable of implementing the separation function for int ∨ α → β. (Typecase

might be troublesome for the static type system of the surface language, but if

the surface language is indeed statically typed and “safe” in the sense “well-typed

programs do not go wrong”, then typecase is not even needed since all of its

outcomes would be statically known.)

Let us be more concrete. Suppose (tycase e1 e2 e3) evaluates to [[e2]] if [[e1]] ∈ [[int]]

and to [[e3]] if [[e1]] = λx.e′. Now consider an application (ee
1 ee

2) and re-code it as

((λf.(tycase f Ω (f ee
2))) e

e
1)

where – as before – Ω is a diverging term, e.g., Ω = ((λx.(x x)) λx.(x x)) and run that

through the translator C. The implicit exception inserted by the translation ends up

being “protected” by our explicit test. This means that the result is equivalent to

(e1 e2)⊥ (where e1 is the translation of ee
1 and e2 that of ee

2). Implicit exceptions in

primitive operations can be protected in a similar fashion.

Finally, in the proof for Theorem 1 we need to be able to represent wrappers of

the form W⊥,⊥
t and W�i ,⊥

t . Given conditionals and typecase, coding up a wrapper

in a type-directed fashion is straightforward. Each wrapper becomes an ordinary

value-level function; wrappers for recursive contracts are recursive functions, i.e.,

results of applying a value-level fixpoint operator. Raising ⊥ just means going into

an infinite loop. Raising �i can be simulated by, e.g., evaluating (0 0). Since the

overall expression gets translated using C�i (·; ∅) (see Theorem 1), the exception

annotation on (0 0) will indeed be �i.

References

Appel, Andrew W., & McAllester, David. (2001). An indexed model of recursive types for

foundational proof-carrying code. ACM Trans. on Programming Languages and Systems,

23(5), 657–683.

Blume, Matthias, & McAllester, David. (2004). A sound (and complete) model of contracts.

Pages 189–200 of: Proc. 2004 ACM SIGPLAN International Conference on Functional

Programming (ICFP’04). ACM Press.

Bruce, Kim B., Cardelli, Luca, & Pierce, Benjamin C. (1997). Comparing object encodings.

Pages 415–438 of: Theoretical aspects of computer software.

Brus, T.H., van Eekelen, M.C., van Leer, M.O., & Plasmeijer, M.J. (1987). CLEAN: A

Language for Functional Graph Rewriting. Kahn, G. (ed), Proc. of the Conf. on Functional

Programming Languages and Computer Architecture (FPCA’87), Portland, Oregon, USA.

Lecture Notes in Computer Science, vol. 274. Springer-Verlag, Berlin, Germany.

Dijkstra, Edsger W. (1976). A discipline of programming. Prentice-Hall.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

414 M. Blume and D. McAllester

Felleisen, Matthias, & Hieb, Robert. (1992). A revised report on the syntactic theories of

sequential control and state. Theoretical computer science, 103(2), 235–271.

Felleisen, Matthias, Findler, Robert Bruce, Flatt, Matthew, & Kristnamurthi, Shriram. (1998).

The DrScheme project: An overview. SIGPLAN Notices, 33(6), 17–23.

Findler, Robert B. (2002). Behavioral software contracts. Ph.D. thesis, Rice University.

Findler, Robert Bruce, & Felleisen, Matthias. (2002). Contracts for higher-order functions.

Pages 48–59 of: Proc. of the 7th ACM SIGPLAN International Conference on Functional

Programming. ACM Press.

Findler, Robert Bruce, Clements, John, Cormac Flanagan, Matthew Flatt, Krishnamurthi,

Shriram, Steckler, Paul, & Felleisen, Matthias. (2002). DrScheme: A programming

environment for Scheme. Journal of Functional Programming, 12(2), 159–182.

Findler, Robert Bruce, Blume, Matthias, & Felleisen, Matthias. (2004). An investigation of

contracts as projections. Tech. rept. TR-2004-02. University of Chicago Computer Science

Department.

Hartley Rogers, Jr. (1987). Theory of recursive functions and effective computability. Cambridge,

MA, USA: MIT Press.

Hoare, C A. R. (1969). An axiomatic basis for computer programming. Communications of

the acm, 12(10), 578–580.

Jones, Simon Peyton. (2003). Haskell 98 language and libraries. Cambridge University Press.

Leroy, Xavier. 1990 (Feb.). The ZINC experiment: an economical implementation of the ML

language. Tech. rept. No. 117. INRIA.

Meyer, Bertrand. (1992). Eiffel: The Language. Prentice-Hall.

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997). The definition of

Standard ML (revised). Cambridge, MA: MIT Press.

Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems. Trans.

amer. math. soc., 74, 358–366.

Scott, D. S. (1972). Continuous lattices. Pages 97–136 of: Lawvere, F. W. (ed), Toposes,

algebraic geometry and logic. Lecture Notes in Mathematics, vol. 274. Springer.

https://doi.org/10.1017/S0956796806005971 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005971

