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ABSTRACT

Kornya-type higher order approximations are derived for the aggregate claims
distribution and for stop loss premiums in the individual model with arbitrary
positive claims. Absolute error bounds and error bounds based on concentration
functions are given. In the Gerber portfolio containing 31 policies, second order
approximations lead to an accuracy of 3 x 10", and third order approximations
to 1.7x10 5.
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1. INTRODUCTION AND SUMMARY

Consider a portfolio containing N policies, where for i = l,...,N the claim
amounts distribution Q, of the individual risk i can be represented as

Q, = (l-q,)S0+q,Pl.

Here, So is the Dirac measure of zero, 50{0} = 1, and P, is a probability measure
with P,(0, oo) = 1. The number q, e (0,1) is the probability that risk i produces a
claim. The distribution P, is the conditional distribution of the claims in risk i,
given that a claim occurs in risk i. We shall be concerned with approximations
for the convolution

which is the aggregate claims distribution of the portfolio in the individual model.
In this first section we shall (a) give heuristic motivations for the approxima-

tions, (b) introduce the approximations, and (c) present error bounds. In Section
2 a numerical illustration is given. All our proofs are deferred to Section 3.

(a) Assume for the moment that N = 1, and write

Q1 = Q = (l-q)S0+qP

and g for the characteristic function of P. The characteristic function of Q is
given by

1 - 1 + qs = exp (log (1 - q + qg)).
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The fcth-order approximations Hk for Q suggested by KORNYA (1983) are derived
as follows: Expand the right-hand side of the equation

l o g (1 - q + qg) = l o g (1 + qg/(l- q))-log (1 + q/(l- q))

in powers of q/{\ — q). This yields the following approximation for the characteris-
tic function h of Q:

K = exp ( I (-iy+1(l/j)(q/(l -q)Y(g> - 1)).

Whenever q is small, hk will be a good approximation for h. The approximation
Hk has characteristic function hk, an hence Hk will be a good approximation for
Q according to the continuity theorem for characteristic functions (see LOEVE
1977, p. 204).

We consider slightly different fcth-order approximations Hi which are derived
as follows: Expand the right-hand side of the equation

in powers of q. We then obtain the following approximation for h:

The approximation H* has characteristic function h*.
For arbitrary JV> 1 the approximations Hk and H* for G are constructed as

follows. Let Hk{i) and Hf(i) be the approximations for Q,, i = 1 , . . . , N. Then

and

respectively.

(b) We introduce first the compound Poisson distribution

H = I (A7»!)e- A P*"

with Poisson parameter

A = <?i + • • • + qN

and claim amount distribution

In the collective risk theory model, H is the aggregate claims distribution of the
portfolio.

Consider next the compound Poisson distribution

H^KxTinir1 e'y(PX"

https://doi.org/10.2143/AST.16.2.2015001 Published online by Cambridge University Press

https://doi.org/10.2143/AST.16.2.2015001
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with Poisson parameter

l' = qi/(l-qi) + - • - + qN/(l-qN)

and claim amount distribution

The approximation //, for G is always on the safe side in the sense that for all
real t

(1)

In order to define Kornya's approximations Hk for G it is convenient to extend
the concept of compound Poisson distributions to finite signed measures M, i.e.
to countably additive set functions M satisfying

sup|M(>\)|<oo.
A

Define the n-fold convolution M*" of M by

= + y)M*"(dy)M{dx)

and define the signed Poisson measure with Poisson parameter A e R and signed
claim amount measure Mo by

n=0

For ( = 1 , . . . , N and j = 1, 2 , . . . define

a n d f o r /c = l , 2 , . . . , l e t

Ak = I I cv
1=1j

Write //fc for the signed compound Poisson measure with Poisson parameter kk

and signed claim amount measure Rk. Notice that Hi is the compound Poisson
distribution defined earlier. For arbitrary k s* 1 the signed measures are normed,
Hk(U) = 1, but Hk can be negative, Hk(A) < 0 for some sets A.

For k = 1, 2 , . . . the approximations H* are defined as follows. Let

uk=i (-\y+\i/j) i tf(p,-so)*
j.

j=i 1 = 1

The signed measure Uk can uniquely be represented by
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with A*eR and Rf a signed normed measure with J?J"{0} = 0. Let Hf be the
signed compound Poisson measure with Poisson parameter A* and signed claim
amount measure R%. Then

Hf = H

A f = I iq, + q2j2)

Notice that the computation of Hk and H% can be done using fast Fourier
methods (see BERTRAM 1981) or the recursion algorithm (see PANJER 1981). The
characteristic functions of Hk and H* equal

expfl I {-lY+l(l/j)(q,/(l-q,)Y(g',-\))
\ i = i j = i /

and

i = l 7 = l

respectively, where g, is the characteristic function of P,. These characteristic
functions can easily be computed, and hence fast Fourier methods work.

Assume now that for some fixed positive h, the distributions P, are concentrated
on the positive integral multiples of h, i.e.

P,{h,2h,3h,...}=l, i = l , . . . , JV.

Then for non-negative integral p we have the recursions

(p + l)Hk{h(p + l)} = \k"z rRk{hr}Hk{h(p+l-r)}
r = l

and

(p + l)HUHp + l)} = \*k
PZ rRUhr}H*k{h(p + l-r)}

r = l

and the initial values

Ht{0} = exp(-AJfc) and Hf{0} = exp (-Xf).

(c) In contrast to classical higher order approximations for G such as the
normal power method or Edgeworth-expansions, theoretical error bounds can
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easily be derived for the approximations Hk and Hf. Well known error bounds
for the case k = 1 are

(2) sup|G(A)-H(A)|« I q2

A 1 = 1

(see GERBER 1984, p. 192, theorem l.a) and

(3) sup|G(/l)-H1(A)|^(l/2) I (q,/(l-q,))2.
A i = l

Smaller error bounds have been derived in HIPP (1985) for the distance between
the corresponding distribution functions:

(4) sup |G(-oo,*)- t f ( -«U) |*5 I q2/(l-q,)C(P,a,).
i 1 = 1

Here, a, is the mean of P,, and C(P, r) is the concentration function of the
probability measure P at r>0,

C(P, r) = sup P[x,x+r).
X

Finally, P is the compound Poisson distribution with Poisson parameter

A =(1/2) I q,(l-q.)
1 = 1

and claim amount distribution

The right-hand side of (4) will often be considerably smaller than the right-hand
side of (2). Consider, e.g.

P,{1}=1, 9, = cATI/2, i = 1 JV
with a fixed constant ce (0,1). Then P is a Poisson distribution with parameter
dV1/2(l-dV~l/2)/2 and hence C(P, 1) is of order JV~1/4 (compare (11) in HIPP

1985). So the right-hand side of (4), with a, = 1, is of order N~1/4, too, while the
right-hand side of (2) equals c2.

For the presentation of error bounds for Hk and Hf corresponding to (2) and
(4) we need some notation. Fix k 3= 1, and for i = 1 , . . . , N define

and

Let

«*=!
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The error bounds corresponding to (2) are

(5) snp\G(A)-Hk(A)\^er-l
A

and

(6) sup\G(A)-Ht(A)\^e°-l.
A

The error bounds corresponding to (4) are

(7) sup|G(-oo,0-H1(-oo,r) |«5 I (e2r. -1)C(P, 2a,)

(8) sup |G(-oo,0-Hk(-oo,

(e2r.
1 = 1

I
1 = 1

and

(9) sup|G(-oo,r)-tf*(-oo,0|(l-S*)«5 I (e2^
i 1 = 1

The probability measure P occurring in the concentration function is the com-
pound Poisson distribution denned above. The numbers T, in (7) have to be
defined with k = 1. In (5)-(9) we tacitly assumed that

q,<l/2, i = l , . . . , N.

Comparing (5) and (8) with (6) and (9) one might expect that the approximations
Hk perform better than Hf. In our numerical illustration this is not true. Notice
also that the mean of Hf and the mean of G coincide, while the mean of Hk

and the mean of G are different.
Finally, Kornya's approximations Hk can be used for approximate computation

of the stop loss premium

(x-z)+G(dx)

in the individual model. Under the assumption

we obtain the following error bound:

(10) | (x-z)+G(dx)-j (x-z)+Hk(dx)

(x-z)+G(dx)

Notice that for fixed N,Qt,..., QN, the approximations Hk and Ht converge
to G when k tends to infinity. The error bounds (5), (6) and (8), (9) converge
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to zero when k tends to infinity. Hence if an upper bound for the error is given
we can choose k such that the error of approximating G by Hk (or by H*) is
smaller than the prescribed upper bound. The computation time which is needed
for the numerical computation of Hk or Hf, e.g. with Panjer's recursion algorithm
in the arithmetic case, is linearly increasing with k.

2. NUMERICAL ILLUSTRATION

We consider the small portfolio of GERBER (1979, p. 53, table 3). The following
table shows the values G(-oo, x), Hk(-<x,x), Ht(-°o,x) for A; = 1,2, 3 and
x = l , . . . , 2 0 .

X

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

G

0.238195
0.252929
0.340663
0.453846
0.564555
0.660883
0.722431
0.791453
0.846270
0.889418
0.919525
0.943054
0.961336
0.973846
0.982556
0.988468
0.992620
0.995335
0.997076
0.998193

0.229700
0.244014
0.328876
0.438079
0.547070
0.640235
0.703134
0.770973
0.828072
0.871906
0.904912
0.930424
0.950689
0.965402
0.975869
0.983358
0.988711
0.992455
0.994992
0.996704

H2

0.238496
0.253249
0.341094
0.454416
0.565265
0.661712
0.723259
0.792362
0.847221
0.890284
0.920386
0.943877
0.962039
0.974490
0.983125
0.988918
0.993002
0.995640
0.997317
0.998376

w3
0.238183
0.252916
0.340645
0.453823
0.564526
0.660847
0.722394
0.791413
0.846230
0.889376
0.919482
0.943012
0.961299
0.973809
0.982522
0.988436
0.992594
0.995311
0.997054
0.998175

H*

0.246597
0.261393
0.348145
0.459370
0.569766
0.662625
0.723633
0.789060
0.843637
0.884958
0.915537
0.938845
0.957189
0.970338
0.979556
0.986061
0.990656
0.993832
0.995956
0.997370

Ht

0.238473
0.253210
0.340851
0.453872
0.564611
0.660717
0.722303
0.791157
0.846108
0.889120
0.919389
0.942970
0.961242
0.973842
0.982596
0.988510
0.992680
0.995401
0.997142
0.998250

Hf

0.238206
0.252940
0.340667
0.453840
0.564555
0.660869
0.722421
0.791436
0.846270
0.889402
0.919525
0.943058
0.961338
0.973853
0.982565
0.988472
0.992626
0.995339
0.997078
0.998193

For all approximations K the actual error

E(K) = sup |G(-oo, 0 - K(-ao, t)\
t

together with bounds (5) and (6) are shown in our next table.

K

E(K)
(5) or (6)

0.020648
0.040015

w2
0.000951
0.001395

H3

0.000043
O.OOOO58

H*

0.008402
0.160690

m
0.000295
0.010060

m
0.000017
0.000785

In this small portfolio the concentration function is quite large. Hence (7), (8),
and (9) do not yield reasonable error bounds here.
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3. PROOFS

Relation (1) follows from the fact that a Bernoulli random variable X with
P{X = 1} = p is stochastically smaller than a Poisson random variable with para-
meter p/{\ -p).

For the proof of (3) it suffices to consider the case N = 1 and to show that

supH1(A)-Ql(A)^(q1/(l-ql))
2/2.

A

This follows from //,{()} =s <?,{()} (see (1)),

xe-"»&x/(\+x), x = qt/(l-ql)>0,

and

For the proof of (5)-(9) we introduce exponentials for finite signed measures M.
If M has characteristic function

J= J e"xM{dx)

then exp (M) is the finite signed measure with characteristic function exp (/(/))•
For exp (M) we have the explicit representation

exp(M)= Z (l/nl)M*n.
n=0

Notice that for finite signed measures M,, M2, the signed measure exp (M, + M2)
is the convolution of exp (M,) and exp (M2). In the following we shall always
assume that

* < 1/2, » = 1,.. . ,N.

In this case, the set function

is a finite signed measure, and

exp(M0) = G.

For finite signed measures M we shall write M = M+ — M for the Hahn-Jordan
decomposition of M, and \M\ = M++M~, \\M\\ = \M\(U).

3.1. LEMMA. For measurable functions f and finite signed measures M,
exp( |M|) -5 0 is a (positive) measure, and

(a)

(b)

/(x)(exp (M) - S0)(dx) - S0)(dx)
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PROOF, (a) Notice first that

j /(x)(exp(M)-80)(dx) « j|/(x)||exp(Af)-80|(«k).

Hence it suffices to show that for arbitrary measurable sets A

|(exp (M) - 80)(A)\ *£ (exp (|M|) - 80)(A).

This inequality is true for A = {0}, and for sets A with Qi A we have

|(exp(Af)-50)(A)|« I
n = l

= exp (|M|)(A) = (exp (|M|) - 50)(A).

(b) With (a) we obtain

||exp(M)-50H(exp(|M|)-50)(R)= £

=

PROOF OF (5). Notice that Hk = exp (Rk) with

Hence

G - Hk = exp (Mo) -exp (Rk) = G * (S0-exp (Rk - Mo)).

Because of

| |G-Hf c | |«| |exp(i?f c-M0)-50| |

we obtain with Lemma 3.1b)

\\G-Hk\\^exp(\\M0-Rk\\)-l.

Now || Mo — Rk || =s T implies the assertion.

PROOF OF (7) AND (8). For i = 1 , . . . , TV let

RV= x (-iy+1(i/Mqj(i-qi

Af, = <?,«•••* Q,_, * HiI+1) * • • • *
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and

Then

HIPP

A = max sup |G(-oo, *)-<?«* Mm(-oo, t)\.
m \

I sup I M,(-<x,t-s)(Q,-H^)(ds)
1 = 1 t U

For i = 1 , . . . , N and t e R we have

\
j

2) say.

Lemma 3.1b) yields /!=£A(eT' -1) . In order to compute an upper bound for I2

we fix a positive r and notice that for s 3= 0

Furthermore,

")-R<"ll J

This implies

With r = (fc+l)a, we obtain

and hence

As in HIPP (1985, p. 231, (24)), we obtain the following upper bound for C(G, r):

C(G,r)^(7T2/2)C(P,r).
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Hence

which proves (8).
If k=l, then for i=l,..., N the signed measures M,*Q, are (positive)

measures, and therefore the above mentioned methods can be applied to derive
an upper bound for C{M, * Q,, r). We obtain with r = 2a,

j M, * Q,[t-s, 0(exp(*(
1°-.R(0)-«o)(«fa)

C(M, * Q,, r) | (1 + 5/r)(exp (\R? - R<'>\) - S0)(ds)

^(Tr2/2)C(P,2a,)(e2r'-l).

This proves (7).
The proofs for (6) and (9) are modifications of the above proofs.

PROOF OF (10). For arbitrary x, z and positive y we have

This implies

(x-z)+(G-Hk)(dx) ^(x+y-z)+G(dx)(exp(Rk-M0)-80)(dy)

](x-z)+G{dx)\\exp(Rk-M0)-80\\

+ ]y\exp(Rk-M0)-80\(dy)

= I3 + h, say.

Lemma 3.1 yields the following bounds:

r - l ) j ( x - z ) +
G(dx)

eTj y\Rk-M0\(dy).
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From
f N f

yPV(dy)\ y\Rk-M0\(dy)^ £ (1/j) J (qjil-qtf \

we obtain the asserted inequality (10).
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