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Abstract. Let X be a projective, geometrically irreducible, non-singular, algebraic curve defined
over a finite field F» of order ¢*. If the number of F-rational points of A’ satisfies the Hasse—Weil
upper bound, then X is said to be F2-maximal. For a point Py € X'(F,2), let = be the morphism
arising from the linear series D := |(¢ + 1)Py|, and let N := dim(D). It is known that N > 2
and that n is independent of Py whenever &' is F,.-maximal.
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1. Introduction

Let X be a projective, geometrically irreducible, non-singular, algebraic curve
defined over Fy, the finite field of order £. There is a natural way to define a F,-linear
series D on the curve X provided that X(F,) # @, and geometrical and arithmetical
properties of X may be investigated by using D. This linear series D arises from
the characteristic polynomial /4(#) of the Jacobian 7 (over Fy) of X in the following
way; see [7, Section 1.3]. Let ]_[,T: L B (7) be the factorization of /() over Z[t]. Since
the Frobenius morphism Fr; (over F,) on 7 is semisimple and the representation
of endomorphisms of 7 on the Tate module is faithful [22, Theorem 2], [17, VI,
Section 3], we have

T
th-(Frj) =0, onJ.
i=1

Now let Py € X(F;) and set m := |]_[iT:lh,-(l)|. Then the foregoing equation is
equivalent to the following linear equivalence of F,-divisors on X

U
> aFryT(P) + Fr§(P) ~mPy, PeX, (1.1)
i=1

where Y7 itV 4 ¢V .= ], hi(1); see [7, Section 1.3].
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Assume from now on that £ is a square, and let ¢ := +/¢. Then h(1) = (¢ + q)zg ifand
only if & is Fp-maximal, that is #X(F,) attains the Hasse-Weil upper bound
1 + ¢* 4+ 2qg, where g is the genus of X. From (1.1), every F,-maximal curve X
is equipped with a Fp-linear series D = Dy = |(¢ + 1)Py| which is independent of
Py € X(F,) and satisfies the so-called “Fundamental Equivalence” [6, Corollary
1.2]:

qP +Fry(P) ~ (¢ +1)Py, forany Pe X. (1.2)

In particular, (¢ + 1)P ~ (¢ + 1)Py for all points P € X(Fp); see [19, Lemma 1].

Maximal curves have been intensively studied also in connection with coding
theory and cryptography. The pioneer work by Stéhr and Voloch [21], giving among
other things an alternative proof of the Hasse—Weil bound via Weierstrass Point
Theory, has been widely used to investigate maximal curves, their D-Weierstrass
points and the support of the F,.-Frobenius divisor associated to D. However,
the fundamental question in this context, namely whether the F,-morphism
7. X — n(X) associated to D is an isomorphism, has only had a partial answer
so far [6, Proposition 1.9]. Our Theorem 2.5, which is the first statement in Theorem
0.1, states that = is indeed an isomorphism. This result was originally stated in [7,
Section 2.3] but the proof giving there is not correct. Hence the maximal curve
X may be identified with a curve of degree ¢ + 1 embedded in the projective space
PY(F,) with N = dim(D).

This allows us to investigate in more detail the geometric behaviour of X. In the
smallest case, N = 2, the curve X is a non-degenerate Hermitian curve, according
to a result due to Riick and Stichtenoth; see [19]. Our Theorem 3.4, which is
actually the second statement in Theorem 0.1, is a generalization for N > 2,
as it states that X lies on a Hermitian variety H € PV (qu) defined over Fp.
It might be that H is degenerate in some cases, such a possibility occurring when
X is (N — 1)-strange, that is, the osculating hyperplanes to X at generic points
have a non-empty intersection. This kind of pathology in positive characteristic
has been considered by several authors; see for example [9, 12, 15, 16]. What
we are able to prove in this direction is the existence of a projection
¢ PV (qu) — pM (qu) such that ¢(n(X)) lies on a non-degenerate Hermitian var-
iety defined over Fp of PM (qu); see Theorem 0.2 and Section 3. Here M is
the dimension of the smallest linear series R containing all divisors
qP + Fry(P) with P ranging over X. In other words, M is the dimension of
the smallest Fp-vector subspace V' of the function field F,(X) such that for
any two points P, P, € X there exists f € V' satisfying ¢gP; + Fry(P)) =
qP> + Fry(P;) + div(f). The converse of the first statement of Theorem 0.2 also
holds; see Theorem 0.3 and Section 4. Putting together these two theorems
we see that the study of Fj,-maximal curves is equivalent to that of projective
geometrically irreducible non-singular curves of degree ¢+ 1 lying on a
non-degenerate Hermitian variety defined over Fp. in a projective space over
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qu. Note that ¢+ 1 is the minimum degree that a non-singular curve of degree
bigger than one lying on a non-degenerate Hermitian variety can have.

2. Maximal Curves and their Natural Embedding in a Projective Space

Our terminology in this and subsequent sections is the same as employed in Section 2
of [21], and in [6].

In this section we assume that &' is a F >-maximal curve. Our aim is to show that X’
is F p-isomorphic to a curve in PV (qu), where N is the dimension of the linear series
D=7Dy=|(g+1)P| with Pye X(Fp). Let m: X - PV(Fz) be the morphism
associated to D.

LEMMA 2.1 ([6, Prop. 1.9]). The following statements are equivalent:

(1) & is Fp-isomorphic to n(X);
(2) n(P)e PN(qu) if and only if P € X(Fp), for P € X;
(3) g is a Weierstrass non-gap at P, for P € X.

Hence we can limit ourselves to prove the above statement (2). To do this we need
some previous results concerning D-orders and Fp-Frobenius D-orders.

Letgg=0<eg =1<---<eyand vo=0<v; <--- <vy_; denote respectively
the D-orders and the Fp-Frobenius D-orders of the curve &.

LEMMA 2.2 ([6, Thm. 1.4]). The following statements hold:

) ev=g¢

2 wa=g¢

3) wi=1lifandonly if N = 3;

@ 0,1, and q (resp. q+1) are (D, P)-orders provided that P ¢ X(Fp) (resp.
PeX(Fp)).

Let m=(fo:...:fy) where each projective coordinate f; belongs to F,(X), the
function field over Fp of X. As in [21], we will consider m: & — PV (qu) as
a parametrized curve in PV (l_qu), and the points P € X will be viewed as its
places (or branches). Then the intersection divisor n~'(H) of X arising from
a hyperplane H of PV (qu) is defined in the usual manner, and D turns out
be the linear series of hyperplane sections, see [21, p. 3]. In particular, the
osculating hyperplane at P is the hyperplane in PV (qu) which intersects the
branch P with multiplicity jy, where (jo,ji,...,Jjy) is the (D, P)-order sequence,

see [21, p. 4].
Put L((¢g+ D)Py) = {fo,...,fn). By Lemma 2.2(1) and [8, Thm.1], there exist
20, .- -, zy € Fp(X), not all zero, such that
o+ +25fn=0. (2.1)
Some features of the homogeneous N-tuple (zy, ..., zy) are stated in the following
lemma.
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LEMMA 2.3
(1) The osculating hyperplane at P € X has equation

wi(P)Xo + w{(P)X1 + ... + Wi (P)Xy =0

where w; 1= t°z;, with t a local parameter at P, and ep := —min{vp(z), ...,
ve(zn)};
(2) The following relation also holds:
Z()foq-i-...+ZNf1?,=0. (2.2)

(3)  The Fp-rational functions z, z1, . . . zy are uniquely determined by Equation (2.1)
up to a non-zero factor in Fp(X);

Proof. (1) Fori=0,..., N, let

o0
wi(t) =Y a'¥ e Fp[[1]
=0
be the local expansion of w; at P. As there exists i € {0, ..., N} such that ag) #_O (e.g.
i satisfying ep = —vp(z;)), we can consider the following hyperplane in PN(qu):

H: ) (@) X; =0.

Then, thanks to Lemma 2.2(4), part (1) follows, once we have shown that
vp(n~'(H)) > q. Taking Equation (2.1) into consideration,

N N oo
v (Z(aé’))qﬁ) = (rq Z@f’)t‘”"fi>, 2.3)
i=0 i=0 j=1
yielding the desired relation vp(n~'(H)) > gq.

(2) By the Fundamental Equivalence (1.2), Fry(P) belongs to the osculating
hyperplane at P for every P € X. Then from Equation (2.1) we infer for all but
a finitely many points P € X that
N 2
zi(P)'fi(P)* =0
=0

14

and part (2) follows.

(3) This is clear because once the projective coordinates are fixed, then the
osculating hyperplane at any point is uniquely determined modulo a non-zero
element of qu. O

LEMMA 2.4. Let P € X be such that n(P) € PN(qu). Then P € X(F).
Proof. Since n(P) is Fp-rational we can take it to be the point (1:0:...:0) by
means of a Fp-linear transformation. The new coordinates still satisfy Equations
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(2.1)and (2.2). In addition, we can assume that 7 = (1 : f] : ... : fy)sothat vp(f;) = 1
for i = 1. Now, the set-up and the results of the computation involving local
expansion in the proof of Lemma 2.3(2) together with Lemma 2.2(4) allow us to
limit ourselves to check that vp(n~!(H)) = ¢ + 1 for every point P chosen such that
n(P) € PN(qu). As we have already noted, vp(f;) = 1 for i > 1. Then, taking also
into consideration Equation (2.3), we only need to see that a(lo) = 0. As a matter
of fact, this follows from Equation (2.2), and hence the proof of the lemma is

complete. O
As a corollary to Lemmas 2.1 and 2.4, we obtain the following result.

THEOREM 2.5. The morphism r is a closed embedding, i.e., X is ¥ p-isomorphic to
(X).

Remark 2.6. (1) As was shown in [6, Section 2], [7, Section 2.3], a class of
F,»-maximal curves can be characterized by the type of the Weierstrass semigroup
at some Fp-rational point of the curve. The semigroups involved in such a
characterization belong to a special family of numerical semigroups H defined
by the following two properties:

() ¢.q+1€H;
(ii) there exist r, s € H so that each 7 € H with h < ¢+ 1 is generated by r and s.

Indeed, if a F 2-maximal curve has a F»-rational point Py such that the Weierstrass
semigroup H(Py) at P, satisfies each of the above two conditions, then
H(Py) = (r,s). In particular, the genus of such a curve is (r — 1)(s — 1)/2. Other
interesting properties of maximal curves depending on the behaviour of their
Weierstrass points were pointed out in [7, Section 2.4].

(2) Theorem 2.5 implies that

Auth2 (X) = {4 € PGL(N + 1, ¢*) : An(X) = n(X)}. (2.4)

For a stronger result on Aut(Xx), see Theorem 3.7.
Remark 2.7. For an application of Theorem 2.5 in Section 3 we stress that the
condition of D being a complete linear series was not used. Hence Theorem 2.5 holds

true if D is replaced by a (non-complete) linear subseries R of D as long as R contains
all divisors gP + Fry(P) with P € X, and n means the morphism associated to K.

3. On the Dual of n (X)

The dual curve (also called strict dual) Z* of a non-degenerate, projective,
geometrically irreducible, algebraic curve Z of a projective space P is the closure
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in the dual projective space P* of the subset of points which represent the osculating
hyperplane Ly~! to Z at some general point P € Z, see for instance [12] and [9].

In this section, we assume that X' is a maximal curve over F ., and identify & with
n(X) according to Theorem 2.5. Let n*: X — PV (qu) be the morphism with

coordinate functions zy, zy, ..., zy introduced in the previous section. By Lemma
2.3(1), Fryomn* is the Gauss map P|—>Lgv_l), where Fr,:(Xo:...: Xy)—
(X{ :...: X}). This leads us to consider the curve n*(X) in PY(F,). Note that,

7*(X) might be a degenerate curve in the sense that it might happen that 7*(X)
is contained and non-degenerated in a subspace PM of PV (qu). By a result due
to Kaji [16, Prop. 1], see also [9, Prop. 2], if this is the case then there is a
(N — M)-dimensional subspace PY~™ of PV (qu) which is the intersection of the
osculating hyperplane to X at general points P € X, that is apart from a finite
number of points P € X.

In our situation, no point of X lies on P’ In fact, let R € P’ and assume on
the contrary that R € X. Choose a point Q € X such that Q # R but the osculating
hyperplane Ly to X at Q contains PY~V_ Since Ly meets X in {Q, Fry(Q)} we have
that Fry(Q) = R, and hence Q is uniquely determined by R. But this is a
contradiction, as we can choose Q in infinite different ways.

Furthermore, RM is invariant under the Frobenius collineation
Xo:...: Xn)—>(X{ - X]’{,z). This yields that P is defined over F,. Take a
new Fp-invariant frame in PY(F ;) in such a way that PY has equation
Xys1=0,...,Xy=0. Then zy41 =0,...,zy =0 and 7*: X - PM is given by
(zo : ...:zy). Hence, according to Lemma 2.3(1), the equation of the osculating
hyperplane to X at Q is y§Xo + ... + 9%, Xy =0, where 7*(Q) = (yg : ... Vpp)-

LEMMA 3.1. We have deg(n*(X)) = q + 1, and the linear series cut out on w*(X) by
hyperplanes of PM contains all divisors qP + Fry(P) with P € X.

Proof. Choose a point Py = (a9 : ... : ay) € X(Fp). Here, o; # 0 for some i with
0<i< M.Infact,ifo; =0fori=0,..., M, then Py would belong to the hyperplane
osculating at general points of X and so Py would be in the above PY~ which is
impossible as we have shown before. Now consider the hyperplane H of equation
%3 Xo + - - 4+ o, Xy = 0 which can be regarded as a hyperplane of PM.

Let P € X such that n*(P) = (yy:...:yy) € HN7(X), y; € I_qu. We have that
adyg + -+ + a7y = 0sothat piog + . .. 4+ 94,00, = 0. This shows that the osculating
hyperplane to X at P passes through Py (Lemma 2.3(1)). Since Py € X(F,), this is
only possible when P = Py. Thus we have proved that H N 7*(X)) contains no point
different from 7*(Py). We want to show next that the divisor (7*)"'(H) of X is
(¢ + 1)Py. To do this we have to show that

Ve, () (H)) = vp, (afwo + ...+ odfown) =g + 1,

where vp, denotes the valuation at Py, w; := 1%z, t is a local parameter at Py and
ep, = —min{vp,(2o), ..., vp,(zn)}. (Recall that zyr11 =... =zy =0.)
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After a Fp-linear transformation of (qu) we may assume that
Py=(1:0:...:0) and that

fo=1, fi=ail' +--, fyv=ant" +---,

where f; = f;/fo and (0, j1, . . ., jn) is the (D, Py)-order sequence of X'. Then we have to
show that vp,(wo) = g + 1.
From Equation (2.2) we deduce that

wo(t) + wi(D)(ar?" + - ) + -+ wy(Oay ™ +--) = 0. 3.1
On the other hand, we claim that vp (w;(f)) = 1. By (2.1)

wo()T + wi(O (@t + )+ +wy(@)(ant™ +--) = 0.
From the definition of w; it follows that vp,(w;(¢)) = 0 for almost one index i. Since
l=ji<p<---<jy=¢qg+1 and jy_; < g the only possibility is i= N, and
wi(f) = ut + - - - with u # 0. The latter relation proves the claim. Now, this together
with Equation (3.1) yield that vp ((*)'(H)) = ¢+ 1. Hence, (n*)"'(H) of X is

(¢ + 1)Py from which the first part of the Lemma 3.1 follows. The second part follows
from the Fundamental Equivalence (1.2). O

This lemma together with Remark 2.7 have the following corollary.
LEMMA 3.2. The curves X and n*(X) are Fp-isomorphic.
Also, since D is a complete linear series, Lemma 3.1 gives the following result:
LEMMA 3.3. Every z;,0 <i <N, is an qu-linear combination of fy, ..., fn.
Now, we are in a position to prove the following theorem.
THEOREM 3.4. The curve X lies on a Hermitian variety defined over F ofPN(l_*"qz).

Proof. Without loss of generality we may suppose that fy =zo=1. For

i=0,...,N, letzizzjliocafjwith cij € Fp. Note that ¢;; =0 for M +1<i< N

and that the matrix C = (c¢;) has rank M + 1. We prove that C is actually a
Hermitian matrix over F. To do this, we re-write Equation (2.2) in the following
manner:

N N
L+ ()i + -4 Y (hfd)fy =0.
i=0 i=0

Taking into account the uniqueness of the N-tuple (zo =1, zj, ..., zy) proved in
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Lemma 2.3(3), comparison with Equation (2.1) gives

N N N N
D Si=D S ) elvli=D enifs
i=0 i=0 i=0 i=0

Since fo = 1, f1, ..., fv are linearly independent over F ., this yields ¢; = cj’.]i for every
0 < i,k < N. This proves that C is Hermitian. After a qu-linear transformation of
PV (qu) we may assume that C is the N x N diagonal matrix with M + 1 ones
on its diagonal. Then (2.1) becomes foqul + ... +/# =0, and hence X lies on
the Hermitian variety of equation X¢™' + ... + x4 = 0. O

Remark 3.5. From the proof above, z; = f; for 0 <i < M. Hence =n*(X) is the
projection (fo:...:fx)—> (fo:...: fm), a_nd 7*(X) lies on a non-degenerate
Hermitian variety defined over Fp of P (Fp2).

Taking into account Lemma 3.2 we obtain the following result.

THEOREM 3.6. X admits a non-singular model given by a curve defined over Fp
which has degree q + 1 and lies on a non-degenerate Hermitian variety defined over
F,. of PY(F ) of dimension M < N.

From the above arguments, it also turns out that the osculating hyperplane to X at
any point P € X coincides with the tangent hyperplane to the non-degenerate
Hermitian variety at the same point P. This allows us to improve the previous result
(2.4) on Auth2 (X):

THEOREM 3.7. Authz(X) is isomorphic to a subgroup of the projective unitary
group PGU(M + 1, Fp).

Proof. By a way of contradiction, assume that X’ lies not only on H but also on the
non-degenerate Hermitian variety ' which is assumed to be the image of H by a
non-trivial Fp-linear collineation fixing &X. Choose any point P € X. Then the ‘H
and H' have the same tangent hyperplane at P, as each of these tangent hyperplanes
coincides with the osculating hyperplane to X at P. To express this geometric
condition in algebraic terms, set P :=(xp:...: X)), and write the equations of
H and H explicitly: H := Xg+1 +o X =0, W =X'C(X)?=0 where
X = (Xo, ..., Xy), and C is a non-singular non-identity unitary matrix of rank
M + 1. Then the above geometric condition in algebraic terms is that the
homogeneous (M + 1)-tuples  (x{,....x%,) and (cooxd+ -+ caroxiy, ...
comXg+ -+ cmmxiy) are equal up to a non-zero factor. Another meaning of
the latter relation is that the non-trivial F-linear collineation associated to the
matrix C fixes X pointwise. Since X is not contained in a hyperplane of P¥, so
C must be the identity up to a non-zero factor. But this occurs only if H and
‘H' coincide; a contradiction. O
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Remark 3.8. We point out that the possibility mentioned in the Introduction and
Remark 2.7 can actually occur.

Let F2(x) be the rational function field, and let X’ be the normal rational curve & of
degree ¢ + 1 in Pq“(l_?‘qz) given by the coordinate functions f; = x', i =0,..., ¢+ 1.
Clearly X is an Fp-maximal curve of genus g=0. For a point
Play=(0:a:...:a'Y e X, the hyperplane of Pq+1(qu) of equation
alriXy — alX, — a"zXq + X,41 = 0 cuts out on X the divisor gP + Fry(P). To show
it note that Fry(P(a)) = P(aqz), and choose a local parameter ¢ of X at P(a). Then
xi=(a+1, i=0,...,q+1,isalocal expansion of X at P(a), and the claim follows
from the following straightforward computations

a”t —ala+1)—a” (@ + 0! + (a+ 0T = a - a” +1)

and

a1t — g ()T + (anrl)‘Iz -0

This shows that the smallest linear series R containing all divisors ¢P + Fry(P)
with P ranging over all points P of X is cut out by the 3-dimensional linear systems
of all hyperplanes of equation uXo + w1 X1 + uyg X, + ug+1 X441 = 0; that is M =3
in our case. On the other hand, since X is rational, the complete linear series
I(¢ + DP| with P € X(F,) has dimension N = g+ 1. Hence, for ¢ > 2, the strict
inequality M < N occurs.

Our final remark is that X is in the intersection of the Hermitian variety
XIX5 + XoX! — XI' — X' = 0 and the quadric XpX; — X, X» = 0.

4. Curves Lying on a Hermitian Variety

The aim of this section is to show that the property given in Theorem 3.6
characterizes Fp-maximal curves. For this purpose, we assume from now on that
X is a projective geometrically irreducible non-singular algebraic curve defined over
a finite field F,» which is equipped with a non-degenerated F.-birational morphism
n=(o:...: fu): X —> PM(qu) such that the curve ) := n(X) has the following
properties:

e It has degree ¢ + 1, and it lies on a non-degenerate Hermitian variety H € P¥ (I_qu)
defined over Fp.

The main result in this section is the following theorem.
THEOREM 4.1. The curve X is Fp-maximal.

The Hermitian variety H of PY (qu) is assumed to be in its canonical form
X+ 4+ x4 = 0. By our hypothesis,

ARy AR (4.1)
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For any point P € X, let n(P) = (o : ... : apy). Choose a local parameter ¢ at P, and
arrange the coordinate functions to have vp(f;) >0 for i=0,...,M and
vp(fr) = 0 for at least one index k € {0, ..., M}. Then

Ji() = Zai,jlj € Fp[l]
Jj=0

is the local expansion of f; at P. Here, a; = a; and a0 # 0. The tangent hyperplane
Hp to the Hermitian variety at n(P) has equation ofXo + -+ o4, X) = 0.
The first step toward Theorem 4.1 is the following lemma.

LEMMA 4.2. The linear series R cut out on Y by hyperplanes contains the divisor
qP + Fry(P) for every P € X.

Proof. We show that Hp cuts out on ) the divisor ¢P + Fry(P). From Equation
4.1),

q q

(iaol,‘ti>fo+'”+<ia/w,jfi> fMZO. (42)
=0 =0

Writing the lower order terms in ¢, we have

M M R

+1
E alofi + 10 E aoaf| + 11! § :a?,l +0PLL ] =0,
i=0 i=0 i=0

Hence vp(n~!(Hp) > g and equality holds if and only if ZZO af{la,-,o # 0. We show
that, if P € X(F,), then 3 af,a;0 = 0. From (4.2),

M M
Za%l + tZa?’Oa,-,l +19..]1=0.
i=0 j=0
Thus, Zf‘io alya;; = 0. Since (Zﬁo alyair)! = Z[ZO ajoa}, for P € X(F ), the claim
follows. Since = is birational and deg()) = ¢+ 1, we obtain n~'(Hp) = (¢ + )P
for every P € X(F,), which shows the lemma for every P € X(F,). For the case
PgXx (lj‘qz), we also need to check that Fry(P) € Hp. This inclusion occurs when
S M, @l T = 0. Since the latter relation is a consequence of (4.2), the claim follows.
Hence, n~'(Hp) = ¢P + Fry(P) because 7 is birational and deg())) = g + 1, O

Then, from Remark 2.7 and Lemma 4.2, follows that X and ) = n(X) are
qu-isomorphic. Hence, if M = 2, Y is the Hermitian curve and so X is qu—maximal.
From now on we assume M > 3.

Our approach is based on a certain relationship between the Wronskians
determinants of ) and its projection to a (M — l)-dimensional subspace of
PY(F.). More precisely, let 7:X—PY!(Fp) be defined by
X— (fo:...:fu-1); 1.e., YV is the projection of ) from the point (0:...0:1) to
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the hyperplane X, = 0. It might happen that ) and ) are not F,.-birationally
equivalent. However, it is alyvays possible to avoid this situation by changing
the coordinate system in PM (F,2). A technical lemma is needed.

LEMMA 4.3. (1) The space PM(qu) contains a point P satisfying each of the following
three conditions:

e P is not on H;
e no tangent line to Y at a ¥ p-rational point passes through P;
e no chord through two F p-rational points of Y passes through P.

(2) Let r be a Fp-rational line through a ¥ p-rational point R of Y. Then r NY only
contains F p-rational points from ).

Proof. (1) Take a F »-rational point Q € ). Since the number of F»-rational points
of Xis ¢ + 1+ 2gq < ¢> + 1, there are at most ¢ chords through Q and another
F,.-rational point of ). But, since M > 3, the number of F.-rational lines through
Q is at least ¢* + ¢* + 1 and hence one of these lines is neither a line contained
in ‘H, nor a tangent line to ) at O, nor a chord through Q and another F-rational
point of V. Now, any Fp-rational point P outside H is a good choice for P.

(2) Assume on the contrary that r meets ) in a non F.-rational point S. Then r is
the line joining S and Fr(S). This implies that r is contained in the osculating
hyperplane of ) at S. Hence the common points of r with ) are only two, namely
S and Fr(S). But this contradicts the hypothesis that R e rN Y. O

Take a point P as in Lemma 4.3(1). By a classical result (see [20], and also [14,
23.4]), the linear collineation group PGU(M + 1, ¢*) preserving H acts transitively
on the set of all points of PM (qu) not on H. Hence a linear collineation of
P (qu) can be applied which preserves H and maps P to (0:...:0:1). Lemma
4.3 ensures now that Y and Y are qu-birationally equivalent.

So we can assume that ) is qu-birationally equivalent to ).

Choose a separating variable ¢ of X, and define D, as the Hasse derivative with
respect to £; see [11]. Then [21, Section 1]:

Dfo  DPfi ... D fu-
W(fow"sfol):: det :
DI fy DR DM
and
D?O fO D?o fl . D?O fM
DM fo DMfi ... DM fu
Note that in our case ¢g = 0,61 =1,...,ey =q.
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LEMMA 4.4. We have that

diviW(fo. . ... fu)) = divOWV(fo. . ... fu-1)) — qdiv(fu)
+div(foDIf) + - + fu D [

Proof. Multiplying the last column by f}; and adding to it f; times the first column
plus £} times the second column etc. plus f}, | times the penultimate column gives

f() fl 0q+1+...+];;14+1

D.fo D.fi ... fiDifo+-+[fiDifu
fj\qJW(f(),,fM): : : :

D?fo D?f] fqu?ﬁ)_{_..._{_fA‘gD?fM

Each element but the last one in the last column is actually 0. In fact, this follows
from the relation (4.1) by derivation. Furthermore, the gth Hasse derivative of
the same relation gives

FID fo+ -+ LED fur +foDI ST+ -+ fuDIfY =0,

and this completes the proof. O

Let Ry be the ramification divisor of the linear series cut out on ) by hyperplanes
of PM(qu). The following result comes from [21, p. 6]:

LEMMA 4.5. Let P € X. If t is a local parameter of X at P, then
ve(Ry) = veOWV(fo, - - - fm))-

Similarly, let Ry;_; be the ramification divisor of the linear series cut out on y by
hyperplanes of P¥ ’I(qu).

LEMMA 4.6. Let P € X. If t is a local parameter of X at P, then
ve(Ry—1) = veONV(fo, - - -, fu-1)).
Proof. By [21, p. 6],

ve(Ry—1) = veWV(fo, - - -, fu-1)) + (e0 + &1 + -+ - em—1)vp(dl) + Mep,

where ep := —min{vp(fp), ..., vp(fyr—1)}. Actually, ep = 0. In fact, ep > 0 together
with ep = 0 would imply that the point Uy :=(0:...:0:1) lies on ) but this
contradicts (4.1). Since ¢ is a local parameter at P, we also have vp(df) = 0, and
the claim follows. O

The following result will play a crucial role in the sequel.
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LEMMA 4.7.
, 1 when P e X(Fp)
4 q ey )
vP(foDify &+ uDi ) = {0 when P & X(F).
Proof. From the proof of Lemma 4.2 we obtain the following result. For any point

Pe X,

o P ¢ X(Fp)if and only if Y¥ a? ay, #0,
e P e X(Fp) if and only if Zf‘io aZIaM,l =0 but Zf‘io a,[{Jfl # 0.

On the other hand,

foD?qu + ... +fMD;1f]€[ = (Zao,jtj)(ag’l + lq[. D+ + (Zanjlj) X
=0

=0
x (df,  +1...]).
Hence

o vp(oDIff + ...+ fuDifyy) = 0 if and only if )" a;oa], # 0.
o vp(oDIff + ... +fuDifyy) =1 if and only if )" a;0a, =0 but Zaﬁl £ 0.

Now, comparison with the previous result proves Lemma 4.7. OJ

Now we are in a position to finish the proof of Theorem 4.1. By [21, p. 6],

3 ve(Rur) = (6o + 61+ - ea) (28 — 2) + (M + D)(g + 1)

and

S vp(Ryo1) = (0 + 61+ 628 — 2) + M(q + 1),

Hence ) (vp(Ry) — vp(Ry-1)) = q2g —2) + g+ 1. Lemmas 4.4, 4.5, 4.6, and 4.7
together with Y vp(far) = ¢+ 1 give Theorem 4.1.

5. Examples

We will show how each of the known examples of maximal curves_with deg(D) =3
can be embedded in a non-degenerate Hermitian variety of P3(qu). In this way
we obtain an independent proof of the maximality of these curves.

EXAMPLE 5.1 ([4, Thm. 2.1.(IV)(2)]). Let ¢ = 2 (mod 3), and fix a primitive third
root of unity ¢ € Fp.. For i =0, 1, 2, let C; be a projective, geometrically irreducible,
non-singular, algebraic curve defined over F, whose function field over F, is
generated by x and y satisfying the irreducible polynomial relation

glxlath/3 oL g2\ 2q+1)/3 +yq+1 —0.
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Let

fo:=x,N I:XZ,lezy3,ﬁ, =Xy

be the coordinate functions of a morphism 7 : C; — P3(Fq2). Note that these three
curves ni(C;) are pairwise F-projectively equivalent in P3(qu). In fact, the linear
transformation induced by the matrix

g 0 0 0

@ _ |0 & 0 0
= 0 0 1 0
0 0 0 ¢&

maps 7(Cy) to n(C;). We show that n(C;) is a non-singular algebraic curve defined over
F,» of degree ¢ + 1 and contained in the non-degenerate Hermitian surface H; of
equation X¢™' 4+ X' 4 X 4 X7 = 0. To do this we start with the relation
in Fp[X, Y]:

(X(q+1)/3 +X2(q+1)/3 + Yq+1)(8X(q+1)/3 +82X2(q+1)/3 + Yq+1)

(EXUTDB 4 o x2atD/3 4 yatly = yo+l 4 x2et) 4 ydat _ 3yatl yg+l
which is just a special case of the classical identity
@+ b+ —3abe = (a+ b+ c)a+¢eb+ &c)a+ b + o).

This yields x7t! 4 x20tD 4 y3@+D) _ 3xa+1yatl — 0 and  thus, fI7 477+
quH — 3]‘3‘”rl = 0. This shows that n(C;) lies on the non-degenerate Hermitian variety
‘Hsz, up to the projective transformation (Xy: X : Xz : X3)—>(Xo: X1 : Xo i wX3)
with wet! = —3. Furthermore, 7n(C;) is contained in the cubic surface X3 of
P3(F,) of equation X3 +w’XoX;X, =0. More precisely, the intersection curve
of H; and X; splits into the above three pairwise projectively equivalent curves,
namely 7(Cy), n(C;), and n(C,), each of degree ¢ + 1. By Theorem 0.3, =n(C;) is a
non-singular maximal curve defined over Fp. According to [4, Thm. 2.1.(IV)(2)],
its genus is equal to (¢ — g +4)/6.

EXAMPLE 5.2 ([3, Section 6]). A similar but non-isomorphic example is given in [3].
Again, assume that ¢ = 2 (mod 3), and fix a primitive third root of unity ¢ € F,.. For
i=0,1,2,letC; be curves as in Example 5.1 whose function field over qu is generated
by x and y satisfying the irreducible polynomial relation

giyx(qu)/S + 99 4 &2 (2-D/3 _
Let

foi=x, fi:= X2, f ::y3, f3:==3xy
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be the coordinate functions of a morphism 7 : C; — P3(qu). Note that these three
curves ni(C;) are pairwise F.-projectively equivalent in P3(qu). In fact, the linear
transformation induced by the matrix Té(‘i) in Example 5.1 maps n(Cy) to n(C;).

We show that n(C;) is a non-singular algebraic curve defined over F,. of degree
g+ 1 and contained in the non-degenerate Hermitian surface H; of equation
X 4 x4 x4 4 X4 = 0. As in Example 5.1 we start with the relation in
qu [X, Y]Z

VL XY YXYS 4 Y4 XNV 4 Y 4 e XS
(YX5 + Y+ X ) eYX 7 +YI4+E2X 7 )EYX5 + Y +eX )
=Y X124 Y x2h 3yl yet]

This implies p3x972 4 p3 4 x271 —3x471patl =0 so that p3x9 4 )32+
x4+ 33t patl — 0. Hence foff + /i + /7 fo — 3/ =0 and this shows that
n(C;) lies on the surface ,.; of equation XJX)+ XX+ XX, —3x¢™ =o0.
Furthermore, n(C;) is contained in the cubic surface X3 of P3(Fq2) of equation
X; +27XoX1X> = 0. More precisely, the intersection curve of .1 and X3 splits
into the above three pairwise projectively equivalent curves, namely 7(Cy), 7(C;),
and 7(C;), each of degree g + 1.

To prove that X 4, is projectively equivalent to H3, we use the same argument
employed in [3]. Choose a root a of the polynomial p(X) := X9t! + X + 1. Then
a”+t! =1, and hence a € F,s. By [3, Lemma 4], ' +atH 44 =0 and
a2 et 4 1 =0, but a2 +a" 447 £0 as (@2 +a? T 4 o) =g,
Furthermore, the matrix

2
a 1 a? !
2
My = | g7t} a 1
2
1« g

is non-singular. Also, choose an element u € F, satisfying —3u¢*! = g7 et 4
a’ 44, and define k as the projective  linear  transformation
x : P’(F,) — P*(F,) induced by the non-singular matrix

a 1 a0
s 1 0
M4 = 1 't g 0

0 0 0 -

A straightforward computation shows that x~! maps X441 to H3, and X5 to the cubic
surface X3 of equation

(X3 + X} + X3) + Tr[a ™ (X2 X1 + X7 X + X3 Xo) +
+ Tr{a)(Xg X + X2 Xo + X3 X)) + (B + Tr[a” ' DXo X1 Xz — a? " 13 X3
=0

where Tr[u] ;= u + u? + u? is the trace of u € F,; over F,. Furthermore al™ '3 e Fp,
and this shows that X3 is actually defined over F 2. Now, n(C;) is mapped under k!to
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a projectively irreducible algebraic curve of degree ¢+ 1 defined over F. and
contained in H3. By Theorem 0.3, x~'(C;) is a non-singular maximal curve defined
over Fp. By [3, Lemma 6.1.(5)], its genus is equal to (¢* —q—2)/6.

EXAMPLE 5.3 ([6]). Let ¢ be odd and for i = 1, 2, Iet Ci(F ) be curves as in Example

5.1 whose function field over F, is generated by x and y such that

Wy + (=) X2 =0,
The functions
fo=1Lfi=xf=y.f ::y2

define a morphism 7 :C; — P3(l_7qz). The resulting curves n(C;) are projectively
equivalent, since the linear transformation induced by the matrix

1 0 0 0
0 ¢ 00
=10 01 0
0 0 0 1
with £@+D/2 = —1, maps my(Co) to n(C1). The polynomial relation

(YO+Y — X(q+1)/2)( YI+Y + X(q+1)/2) = Y% yoyertt 4 y2 _ xet!

implies that 2 + 29+ 4 )2 — x4+ = 0 and so that f{ + f; + 2f7*" — 4! = 0. This
proves that ©(C;) lies on the surface T of equation X¥Xo + X3X{ + 2)(3+1 — X" =0
which is actually a non-degenerate Hermitian variety of P* (}_qu). Also, C; lies on the
quadratic cone K of equation X5 — XoX; =0, and hence the intersection of X
and K splits into the curves 7(Cy) and n(C;). By Theorem 0.3, n(C;) is a non-singular
maximal curve defined over F,.. Its genus is equal to (¢ — 1)?/4, according to [6].

EXAMPLE 5.4 ([1]). Let ¢=2', and put Tr[Y]:=Y + Y?>+...4+ Y92 For
i=0,1€F, CFp, let C; be curves as in Example 5.1 whose function field over
F,. is generated by x and y such that

q
Trly] 4+ x7' +i=0.

Let n:C; — P3(qu) be given by the coordinate functions
fo=11 :=xfr:=pfs:=x.

Since

(Tr[ Y]+ XY+ (Tr[ Y]+ X + 1) = Y94+ ¥V + X9 4 X242,

we have y7 + y 4+ x?*+! 4 x?¢+2 = 0. This implies that 7(C;) lies on the non-degenerate
Hermitian variety H of equation X3 X, + X>X{ + Xf“ + X;’H = 0. Furthermore,

https://doi.org/10.1023/A:1017553432375 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017553432375

EMBEDDING OF A MAXIMAL CURVE IN A HERMITIAN VARIETY 111

the quadratic cone K of equation X3 Xy = X7 also contains n(C;). Hence H N K splits
into 7(Cy) and 7(C;). Note that n(Cy) and n(C;) are projectively equivalent curves in
P3(Fq2), and hence both have degree ¢+ 1. Again, by Theorem 0.3, n(C;) is a
non-singular maximal curve defined over Fp.. Its genus is equal to g(g — 2)/4.

Remark 5.5. Let X be a Fp-maximal curve with dim(D) = 3. Suppose that X
admits a plane model with equation Y? = f(X), where f(X) € F,[X] is assumed
to have all its roots in F., and f(0) = 0. Furthermore, we assume that d is coprime
to £ :=deg(f), d, ¢ < g+ 1, and that either 2d < g+ 1 or 2¢ < g+ 1. Then X turns
out to be Fp-isomorphic to either to (any) one of the curves in Example 5.3 or
to (any) one of the curves in Example 5.4. This can be shown by using previous
results from [6] and [1]. Here we give a independent proof via Theorem 3.4.

To do this, we note at first that gcd(d, £) = 1 implies the existence of just one point
Py € X(Fjp) lying over x = co. Moreover, divy(x) = dPy and dive(y) = £Py. Now,
by dim(D) = 3, the second and third non-negative elements of the Weierstrass
semigroup at Py are ¢ and ¢ + 1, respectively. Hence

d,0)efg+1,q/2),(q.(q+1)/2),(q/2,q+ 1), (g + 1)/2, ¢)}.

Then we have a Fp-morphism = = (fo : f1 : 2 : f3) : & — P3(l_7qz). By Theorem 3.4,
satisfies a relation of type

> ufiff =0, (5.1)

0<ij<3

where u;; = uﬁi and u;; € Fp, that is U = {u;;} is a 4 x 4 non-trivial Hermitian
matrix with entries in Fp. For (d,¢) = (¢ + 1, q/2) (resp. ((¢ + 1)/2, ¢)), we have
n=(1:y:y*:x)(resp. (1 : x: y : x?)) and, after some computations, from Equation
(5.1) one finds that f(X) = X792 + X9* 4+ .. 4+ X?> + X (resp. f(X) = X7 + X).
For (d, ¢) = (g, (q+ 1)/2) (resp. (q/2,g+ 1)), we have m=(1:y:x:y?) (resp.
(1:x:x?:y)), but no Hermitian matrix U exists such that Equation (5.1) holds.

EXAMPLE 5.6 ([10]). Let ¢=3’, and put Tr[Y]:=Y + Y?>+ ...+ Y93 For
i=0,1,2€F; CFp, let C; be curves as in Example 5.1 whose function field over
F,» is generated by x and y such that

Try)* — x7 — x + i(Tr[y] + i) = 0.

Since
(Tr[YP + X7 — X)(Tr[Y]P? — X7 — X + Tr[ Y]+ D)(Tr[ Y] = X9 — X = Tr[Y]+ 1) =
(X714 X)(X74+ X —1)> — (Y9 — Y)?, we have

R e R R G B ) Bk AN LA )

Let n =C; — P3(1_7qz) be given by the coordinate functions fy :=1, f] ;= x, f> 1=y,
f3:=x34+x>—3p>+x. It can be checked that these three curves are pairwise
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projectively equivalent in P3(qu). From the equation above, n(C;) lies on the
non-degenerate Hermitian variety of equation XoX7 + X/ X3 — Xf’“ - Xé’“ =0.
Furthermore, the cubic surface of equation X3X3 — X7 + X7 Xy + X3X, — X1 X¢ also
contains n(C;). It turns out that n(C;) has degree ¢ + 1, and Theorem 0.3 ensures that
n(C;) is a non-singular maximal curve defined over Fp. Its genus is equal to

q(g — 1)/6.

Remark 5.7. In all the above examples X lies not only on a non-degenerate
Hermitian surface but also on a cubic surface. This is related to a classical result
of Halphen on reduced and irreducible complex algebraic curves in P3 not lying
on a quadratic surface which states that the degree d and the genus g of such a curve
satisfy the following inequality:

d’/6 —d/2+1  ford =0 mod 3;

g<smd,3)= {d2/6—d/2+1/3 for d # 0 mod 3.

A rigorous proof of the Halphen theorem and its extension to higher-dimensional
spaces is found in the book [5]. Rathmann [18] (see also [2]) pointed out that
the proof also works in positive characteristic apart from some possible exceptional
cases related to the monodromy group of the curve.
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