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Abstract
Somatic cells (SCs) inmilk are a heterogeneous population composed of several subsets of cells.
However, a complete understanding of this heterogeneity in cow’s milk remains elusive. This
study aimed to characterize heterogeneity withinmammary epithelial (MEC) and immune cell
subpopulations from healthy Holstein cows. An initial cell characterization of SC populations
was completed using a single milk collection (3.8 L) from a base population of 25 multiparous
Holstein cows to identify MEC and immune cells using flow cytometry with Butyrophilin
1A1 (BTN) and CD45 as cell surface markers. From the base population, 5 multiparous cows
(≥300 days in milk (DIM), ≤162 × 103 SC/mL, and milk yield (MY) ≥ 25 kg/d) were selected
for fluorescence activated cell sorting and single-cell RNA sequencing (scRNA-seq) analysis.
A single-cell-suspension of approximately 1,000 sorted cells was prepared from each cow for
characterization using scRNA-seq. Gel beads and barcodes were generated, cDNA amplified,
cDNA sequencing libraries constructed and sequenced. After data normalization, scaling, and
filtering control, two CD45+ databases were generated. The CD45+ databases contained 923
and 851 single cells, each comprising 17,771 and 12,156 features, respectively. Principal com-
ponent analysis revealed seven and eight distinguishing clusters. Based on marker expression,
most immune cells present in the samples were T cells (CD3E and PTPRC). Three differ-
ent T cell subpopulations were revealed: helpers (CD4), cytotoxic (CD8A and CD8B), and
regulatory T cells (IL2RA). The remaining four clusters were composed of granulocytes (neu-
trophils, eosinophils, and basophils; TLR4 and CXCL8), macrophages (PTPRC, CD14, CD68,
TL2, IL1B), and a small population of B cells (CD19, CD22, andMS4A1).The study and charac-
terization of immune cell subpopulations present inmilk provide a basis for developing greater
insights into mammary gland immune function, offering potential avenues for enhancing
animal health and milk production in the future.

Introduction

Bovine lactation is characterized by substantial milk production over a prolonged period and
has been extensively researched, leading to a broad understanding of milk synthesis regulation
in the bovine mammary gland. Milk production is an integrative response to the functional
interaction of many cell types in the bovine mammary gland supporting milk synthesis includ-
ing secretory mammary epithelial cells (MEC), myoepithelial cells, adipocytes, fibroblasts,
endothelial cells, and immune cells. Milk also contains cells that originate from the mammary
gland and together with immune cells are referred to as milk somatic cells (SCs).The SCs found
in milk primarily consist of immune cells (Sharma et al. 2011) and secretory MEC (Boutinaud
and Jammes 2002b).

The characterization of specific molecular mechanisms within cell subpopulations has been
challenging due to technology limitations. Moreover, the difficulty of cell identification is fur-
ther exacerbated when dealing with uncommon cell subpopulations. However, in recent years,
advances in molecular technologies have facilitated the identification of numerous cell types
within immune and epithelial cells present in human and bovine milk (Becker et al. 2021;
Gleeson et al. 2022).Thediverse range of cell subtypes presentwithin these twoprimary subpop-
ulations in milk makes milk a valuable and easily accessible sample source for gaining insight
into fundamental aspects of lactation. This noninvasive approach allows for the examination
of molecular and cellular features, providing a deeper understanding of the intricate processes
occurring in the mammary gland (Martin Carli et al. 2020). As a result, the utilization of milk
samples for investigating and elucidating the mechanisms occurring in the mammary gland
has gained significant relevance. Still, SCs found in bovine milk exhibit complex heterogeneity
which hinders the precise delineation of individual cell type functionality and their roles within
a heterogeneous group.
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Table 1. Descriptive statistics of parity, days in milk, milk yield and milk com-
ponents of lactating Holstein cows (n = 25) sampled for milk analysis and cell
characterization using flow cytometry

Item Mean ± SD Minimum Maximum

Parity 3.4 ± 1.1 2 6

DIM 278 ± 70 109 414

MY per milking, kg 19.1 ± 4.9 9.1 30.2

SCC, × 103 cells/mL 134 ± 90 13 460

Fat, % 3.3 ± 0.7 2.3 5.6

Protein, % 3.7 ± 0.3 2.8 3.9

Technologies such as fluorescence-activated cell sorting (FACS)
and RNA sequencing help address the challenges posed by
cell heterogeneity (Chattopadhyay et al. 2014). However, these
technologies have limitations including limits on the number of
subpopulations that can be identified and the dilution of rare cell
types in a bulk gene expression pattern reducing the complex-
ity and diversity of cell heterogeneity. Recently, the development
of new research technologies such as single-cell RNA sequencing
(scRNA-seq) with the capacity to identify low abundance cell types
and compare the transcriptome profile of individual cells within
a heterogeneous sample has facilitated tracing molecular identi-
ties at the individual cell level (Papalexi and Satija 2018; Villani
et al. 2017). The objective of this preliminary study was to identify
and recognize the functional diversity of MEC and immune cell
populations in milk from healthy Holstein cows using scRNA-seq
technologies.

Materials and methods

Experimental design

The use of animals and all procedures for this investigation were
approved by the Virginia Tech Institutional Animal Care and Use
Committee (21-220). Twenty-five healthy Holstein cows across
different parities, lactation stages, milk yields (MYs), and preg-
nancy statuses were used in the experiment. These cows were used
to identify a subset of cows to select for cell isolation. Specific
details regarding characteristics of these animals are presented
in Table 1. Throughout the experiment, cows remained in the
main milking dairy herd and were housed in a sand-bedded free-
stall barn at the Virginia Tech Dairy Science Complex – Kentland
Farm (Blacksburg, VA). Cows were milked twice daily at 0100 and
1300 h, andMYs were recorded at the morning milking. Cows had
ad libitum access to a total mixed ration balanced for milk pro-
duction and composition. Cows were fed once daily (0800–1000 h)
and had free access to clean water at all times. Milk samples were
collected between February and July 2022.

Flow cytometry and FACS

On the day prior to milk sample collection, we assessed each cow’s
health status using farm records (PCDART Software; available
from Dairy Records Management Systems, Raleigh, NC). Criteria
included no reported health issues, no presence ofmastitis, somatic
cell counts (SCCs) <200,000 cells/mL on the most recent DHIA
test day, and consistent daily milk production over the past week.
On a collection day, individual representative samples (3.8 L) from
two to four eligible cows were collected at the morning milking.

A milk subsample from each cow (35 mL) was sent to Lancaster
Dairy Herd Improvement Association (Mannheim, PA) and ana-
lyzed for SCC, fat, protein, and solids (CombiFoss™ 7, Foss North
America). Milk samples (n = 25) were processed in the laboratory
for milk cell isolation following a previously established protocol
(Lengi et al. 2021). Briefly, milk samples (3.8 L) containing a final
concentration of 0.5 mM ethylenediaminetetraacetic acid (EDTA)
were placed into conical containers (500 mL) and centrifuged (850
× g for 10min) to pellet total cells present inmilk. During each cen-
trifugation step, the supernatant milk was discarded, and another
500 mL portion was added to the existing pellet. This process was
repeated until the complete 3.8 L of milk were processed. This
method ensured that the entire volume of milk was utilized to
concentrate all cells into a single pellet for subsequent analysis.

Thepellet waswashed oncewithDulbecco’s phosphate-buffered
saline and EDTA (0.5 mM final concentration), centrifuged, resus-
pended in red blood cell lysis buffer (154 mM NH4Cl, 10 mM
KHCO3, 0.1 mM EDTA) for 15 min, and filtered through 100-
and 40-μm sterile cell strainers (Genesee Scientific, El Cajon, CA)
to remove noncellular debris. Total cell number was evaluated in
each sample using a hemocytometer and samples were standard-
ized to contain 2 × 106 and 2 × 107 cells for flow cytometry and
FACS analysis, respectively. To label individual cells, we simulta-
neously incubated primary antibodies for hematopoietic cell sur-
face protein (CD45 mouse IgG2a clone CACTB51A, Kingfisher
Biotech, St. Paul, MN, 3.1 ng/μL), macrophages (CD14 mouse
IgG1 clone CAM 36A, Kingfisher Biotech, 1.25 ng/μL), and MEC
(Butyrophilin 1A1 (BTN), rabbit clone 2151C conjugated to APC,
NOVUSBiologicals, Centennial, CO, 7 ng/μL) for 1 h at room tem-
perature and protected from light. Sequentially, secondary anti-
bodies used were rat anti-mouse IgG2a-phycoerythrin ([PE] clone
SB84a, Southern Biotech Associates, Birmingham, AL, 1.0 ng/μL)
and goat anti-mouse IgG1-AlexaFluor 488 ([AF488], polyclonal,
Southern Biotech Associates, 1.25 ng/μL). Secondary antibodies
were incubated for 1 h at room temperature. Lastly, cell viability
was determined using propidium iodide (PI; BD Biosciences, San
Jose, CA, 5 μg/mL) dye, and Hoechst 33342 (Invitrogen, Carlsbad,
CA, 10 μg/mL) was used as a nucleic acid stain (Fig. 1). Cells were
washed between antibody incubations, centrifuged at 850 × g for
10 min, and resuspended in Hoechst and PI for 60 min. After
a final wash, cells were resuspended in 100 or 1,000 μL of Cell
Staining Buffer (BD Bioscience) and examined by flow cytome-
try or sorted by FACS, respectively. Flow cytometry analyses and
FACS were performed on a BD FACSAria Fusion (BD Biosciences)
using FACSDiva software (BD Biosciences). Side scatter (SSC) and
forward scatter thresholdswere carefully established to exclude cel-
lular debris and aggregates from analysis. Gating parameters were
maintained across all samples to ensure consistency, allowing for
minor adjustments for SSC variability. After initial gating based on
morphology, nucleated cells were selected and further refined to
identify PI-positive populations. Subpopulations were then iden-
tified by gating on cells labeled with CD45-PE, CD14-AF488, and
BTN-APC (Fig. 1).

Using preliminary data, we estimated that >65% of SCs have
a hematopoietic origin (CD45+) and 1.5% are secretory MEC
(BTN+). Based on this information, we selected 5 cows from the
base population of 25 that consistently exhibited higher propor-
tions of BTN+ cells for cell isolation using FACS. This selection
was intended to reduce the time and cell stress resulting from cell
sorting of BTN+ cells. Sorted samples were used for scRNA-seq
analysis. Sample inclusion for scRNA-seq analysis was based on cell
composition consistency and the prevalence of BTN+ cells.
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Figure 1. Representative flow cytometry dot plots showing sequential gating and staining of nucleated cells: Hoechst 33342 for nucleated cell selection (A), propidium
iodide (PI) for viability assessment (B), BTN staining with APC (C), and dual staining for immune markers CD45 (PE) and CD14 (Alexa 488; D).

Statistical analysis

Descriptive statistics were calculated using the dplyr (Version
1.1.4) and psych (Version 2.4.6.26) packages in R software (Version
2024.09.0+375). Results are presented as mean ± standard devia-
tion (SD).

Single-cell RNA library construction

A total of 6,399, 15,529, and 11,592 live (PI−) MEC cells
(BTN+CD14−CD45−, BTN+CD14+CD45−, BTN−CD14+CD45−)
and 303,813 and 600,000 live (PI−) immune cells (BTN-CD14-
CD45+) were obtained after sorting. Sorted cells, obtained approx-
imately 12 h after sampling, were prepared for further scRNA-seq
library preparation following the manufacturer’s instructions
(Chromium Next GEM Single Cell 3′ Low Throughput, 10X
Genomics, Pleasanton, CA, USA). Briefly, immune and MEC live

sorted cells from individual samples were diluted in resuspension
buffer to achieve a concentration of 100−600 cells/μL for down-
stream analysis. Cell suspension was loaded into a master mix
containing reverse transcription reagent B, template switch oligo,
reducing agent B, and reverse transcription enzyme C plus
nuclease-free water with a targeted cell recovery after sequenc-
ing for all samples from 500 to 1,000 cells (1,000 cells being
the maximum cell number allowed per library). For library
preparation, cell suspension, barcoded gel beads with oligonu-
cleotides, and partitioning oil were loaded into a 10X Chromium
Next GEM Chip L (10X Genomics) and combined in the
ChromiumController (10XGenomics; https://www.10xgenomics.
com/instruments/chromium-controller). Using a microfluidics-
based method, single-cell gel beads-in-emulsions (GEM) were
generated. After GEM generation, the gel bead was dissolved,
releasing primers and lysing the cells that were partitioned together
within each GEM. Within each GEM and for each sample,
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Table 2. Descriptive statistics for cell subpopulations, expressed in percentage, yield and concentration of single nucleated live and dead cells present in milk
from Holstein multiparous cows identified by flow cytometry

Viability Cell labeling Subpopulation ± SD, % Yield± SD, cells × 106 Concentration± SD, cells/mL

Live BTN+CD45+CD14− 0.4 ± 0.3 7.0 ± 4.9 379 ± 252

BTN+CD45+CD14+ 0.4 ± 0.7 7.6 ± 15.8 414 ± 814

BTN+CD45-CD14− 0.8 ± 3.5 18.8 ± 80.6 947 ± 3520

BTN+CD45-CD14+ 0.9 ± 2.0 20.4 ± 55.7 1211 ± 3573

BTN−CD45+CD14− 34.5 ± 20 945.4 ± 1271.7 49,590 ± 54,417

BTN−CD45+CD14+ 5.3 ± 5.8 140.2 ± 231.7 7040 ± 8641

BTN−CD45−CD14- 5.5 ± 5.7 127.4 ± 161.3 6842 ± 9111

BTN−CD45−CD14+ 3.4 ± 5.1 72.9 ± 104.3 3901 ± 6191

Live Total 51.22 ± 22 1,340 ± 1310 70,324 ± 56,418

Dead BTN+CD45+CD14− 0.5 ± 0.5 10.5 ± 9.4 581 ± 532

BTN+CD45+CD14+ 1.1 ± 1.9 21.9 ± 42.9 1137 ± 1969

BTN+CD45−CD14− 1.7 ± 2.7 33.9 ± 56.0 1768 ± 2876

BTN+CD45−CD14+ 2.4 ± 4.0 48.9 ± 91.7 2535 ± 4943

BTN-CD45+CD14- 22.1 ± 9.9 669.1 ± 897.6 32,743 ± 34,951

BTN−CD45+CD14+ 3.3 ± 1.9 90.1 ± 89.7 4589 ± 4571

BTN−CD45−CD14− 11.0 ± 5.0 270.7 ± 214.1 13,934 ± 10,311

BTN−CD45−CD14+ 6.1 ± 6.4 125.8 ± 124.8 6615 ± 7129

Dead Total 48.2 ± 14 1,271 ± 942 63,902 ± 37,900

Total 99.5 2,610 134,226

Note: Primary antibodies for immune cell surface protein (CD45), macrophages (CD14 and CD45), and mammary epithelial cells (Butyrophilin 1A1 (BTN) were used for cell labeling.
Results are presented as mean ± standard deviation (SD).

Table 3. Descriptive statistics of parity, days in milk, milk yield and somatic
cell count of Holstein cows sampled for milk analysis of mammary epithelial
cells (MEC; n = 3) and immune cells (n = 2) using scRNA-seq

Item MEC libraries Immune cell libraries

Parity 2.7 ± 0.6 2.5 ± 0.7

DIM 361 ± 46 320 ± 72

MY per milking, kg 14.2 ± 4.7 14.5 ± 5.8

SCC, ×103 cells/mL 115 ± 39 139 ± 33

Results are presented as mean ± standard deviation (SD).

polyadenylated mRNA was reverse transcribed into cDNA. The
resulting cDNA was amplified for a total of 12 cycles (98∘C for
3 min, 98∘C for 3 s, 63∘C for 20 s and 72∘C for 1 min). Post
cDNAamplification, cDNA concentration and sample quality were
assessed using an Agilent TapeStation (High Sensitivity D5000).
A fraction (10 μL) of the amplified and cleaned cDNA was frag-
mented using fragmentation buffer, fragmentation enzyme, and
buffer EB, and incubated at 32∘C for 5 min, at 65∘C for 30 min, and
kept at 4∘C until further analysis. Adaptor ligation used ligation
buffer, DNA ligase, and adaptor oligos, followed by a 30∘C incuba-
tion for 30 min. After post-ligation clean up (SPRIselect, Beckman
Coulter, IN, USA), individual sample index sets (Dual Index Plate
TT Set A, 10X Genomics) were added and incubated for 10−12
cycles depending on cDNA input (150−1000 ng) for 45 s at 98∘C,
20 s at 98∘C, 30 s at 54∘C, and 20 s at 72∘C. The resulting cDNA
sequencing libraries were evaluated for DNA concentration and

fragment size using high-sensitivity Agilent TapeStation (D5000)
analysis, ensuring that DNA fragment peaks were between 240 and
460 bp.

scRNA-seq and bioinformatics analysis

Individual sequencing libraries were sent to Novogene Sequencing
Center for paired-end sequencing on an Ilumina HiSeq 6000 plat-
form system (Novogene, Sacramento, CA, USA) using one lane per
sample. The sequenced reads were processed and analyzed using
the Cell Ranger pipeline v7.0.0 by 10X Genomics, as described in
Zheng et al. (2017). In summary, sequenced reads were demulti-
plexed, cell-barcode sequences corrected, and the FASTQfileswere
aligned to the Bos Taurus ARS-UCD1.2 genome using the default
parameters and the Spliced Transcripts Alignment to a Reference
(STAR; Du et al. 2020) aligner, as implemented in the Cell Ranger
count pipeline. Subsequently, unique molecular identifier (UMI)
sequences were corrected to ensure unique read mapping, and
cell barcodes were filtered to ensure data quality and reliability.
Mapped sequences from each library were used for UMI counting.
Reads generated by barcode-associated cells were quantified and
used to establish a UMI count matrix. Due to the limited quantity
of live MEC obtained frommilk by FACS, we employed the aggre-
gated pipeline from Cell Ranger by 10X Genomics to merge the
data from three MEC libraries.

Data obtained from MEC (n = 3) and immune cell libraries
(n = 2), were analyzed individually. To identify cell populations
present in the datasets, we followed the scRNA-seq integration
pipeline described by Stuart et al. (2019) using the Seurat package
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Figure 2. Clustering of integrated immune cells in milk (A) from two Holstein cows (B) carried out using the uniform manifold approximation and projection (UMAP)
dimension reduction technique. The total 1,774 immune divided into 11 clusters and differential clustering expression per cow (C). Cell proximity represents gene expression
similarity and identification of cell types was completed by analyzing significantly enriched expression of established cell markers.

(v. 4.3) from R (v. 4.2.2). The count matrix was converted to
an object using the Seurat package for individual downstream
dataset analysis following the recommended pipeline (Butler et al.
2018; Slovin et al. 2021). Briefly, the data were normalized and
scaled according to quality control metrics to ensure robust dataset
integrity. Cells with fewer than 100 detected genes and high mito-
chondrial gene expression (>5%) were filtered out to exclude
low-quality cells.

Despite these efforts, the merged MEC libraries contained
insufficient data quality due to the predominance of cells with low
gene counts and elevated mitochondrial content, limiting the via-
bility of scRNA-seq analysis using the Seurat package. Immune
cell libraries retained sufficient data quality, allowing for success-
ful downstream analysis. Following quality filtering, dimension-
ality reduction, clustering, and visualization were performed on
immune cell libraries to elucidate immune cell subpopulations.

Results and discussion

Heterogeneity of cells in bovine milk samples identified by flow
cytometry

The standard technique to study the bovine mammary gland, a
heterogeneous organ, at the cell level is through mammary gland
biopsies. Nevertheless, bovine mammary biopsies can introduce a
variety of risks and pitfalls (i.e., pain and discomfort in the animal,
post-biopsy infection, and tissue fibrosis in biopsy site, nonrep-
resentative sample of the gland). Recently, the use of noninvasive
“milk liquid biopsies” that can be regularly obtained easily elimi-
nate related surgical biopsy pitfalls and mimic the results obtained
from mammary gland biopsies (Martin Carli et al. 2020). The
collection of SCs present in milk is composed of secretory and
nonsecretory MEC and immune cells. It is known that secretory
MEC in milk result from the desquamation of the epithelium
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Figure 3. Expression of immune marker PTPRC (CD45) across all clusters from dataset 1, including 851 cells, shown by violin plots (A) and feature plots (B) using the using
the uniform manifold approximation and projection (UMAP).

of alveoli and ducts (Alhussien and Dang 2018). In contrast,
immune cells of a hematopoietic origin are white blood cells that
surveil the mammary gland and enter in response to injury or
infection (Boutinaud and Jammes 2002a; Sharma et al. 2011).
Immune cells play a pivotal role in supporting milk production
by maintaining gland health, whereas MEC are solely responsi-
ble for milk synthesis. These cells are extensively studied due to
their significant impact on offspring nutrition and food produc-
tion. The definition of the extended cell profile and transcript
expression of the bovinemammary gland during lactation is essen-
tial for a better understanding of the factors determining milk
production.

Fresh milk samples from 25 multiparous Holstein cows were
sampled across 6 months. Descriptive statistics for the cows
used for milk collection and milk sample characteristics are pre-
sented in Table 1. To evaluate heterogeneity of the SCs present
in milk by flow cytometry, we used cell surface markers for
secretory MEC (BTN), cells of hematopoietic origin (CD45), and
macrophages (CD45 and CD14) that resulted in eight subpop-
ulations (Table 2). Nucleated cells identified by Hoechst nucleic
acid staining averaged 58.2 ± 24.4%. According to flow cytom-
etry analysis, the overall average including both live and dead
MEC, total immune cells, and macrophages observed in this study
was 2.5 ± 4.4%, 56.6 ± 22.2%, and 8.6 ± 6.1%, respectively. As
expected, the main cell type present in milk was live immune
cells (CD45+) with 34.5 ± 20% of the total cells, while live MEC
(BTN+CD45-CD14-) were 0.8± 3.5% of the total cells.The utiliza-
tion of BTN, a protein involved in fat droplet secretion, ensured
the isolation of only secretory MEC, excluding ductal epithelial
cells, which are traditionally considered nonsecretory epithelial
cells and therefore not expressing BTN due to lack of milk fat
secretion. Additionally, we identified a cell population marked
as BTN-CD14+CD45−, which was not classified by the available
markers in this study. The CD14 transcript is recognized as a pro-

genitor cellmarker inMEC, supported by several studies in rodents
and humans (Bach et al. 2017; García Solá et al. 2021; Martin
Carli et al. 2021). The average cell yield was 152 × 106 cells/milk-
ing and the concentration was 8,389 cells/mL independent of cell
type.

The immune cell proportion within SCs observed in this study
(64.4% live and dead CD45+) is notably lower compared to pre-
vious findings. Earlier reports indicated that 87% of SCs in milk
samples from healthy Holstein cows (±100 × 103 SCC/mL) are
immune cells. Of the total cells from hematopoietic origin, 42%,
11%, and 34% were granulocytes, lymphocytes, and monocytes,
respectively (Koess and Hamann 2008). Similarly, macrophage
percentages present in milk samples in this study were less than
observed byDeMatteis et al. (2020) wheremilk samples frommul-
tiparous Holstein cows at 2 weeks postpartum contained 14.3%
macrophages identified by flow cytometry ranging from 2.3% to
36%.On the other hand, the average ofMEC observed in this study
aligns with previous reports where live MEC in milk from healthy
Holstein cows averaged 1.2% andwere the least abundant of the SC
types (Lengi et al. 2021).

Excluding the three main subpopulations identified in this
study, 32.4% of remaining cells had an unidentified identity that
expressed a combination of the cell surface markers suggesting
potential heterogeneity within each subpopulation. However, due
to technical capabilities such as wavelength overlap between avail-
able fluorescent dyes for flow cytometry, there is limited use
of markers for subpopulation identification. To further explore
cell identities within the main subpopulations identified by flow
cytometry, milk samples from five cows were used for scRNA-
seq analysis. Milk samples from three Holstein cows were used
to assess the heterogeneity within the MEC (BTN+) sorted sub-
population. Additionally, samples from two Holstein cows were
utilized to evaluate the heterogeneitywithin the sorted immune cell
population expressing the CD45 marker.
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Figure 4. Clustering immune cells in milk from one Holstein cow (dataset 1) using the uniform manifold approximation and projection (UMAP) dimension reduction
technique.
Note: The total 851 cells were divided into seven clusters. Cell proximity represents gene expression similarity and identification of cell types was accomplished by analyzing
significantly enriched expression of established cell markers.

Heterogeneity within MEC – BTN-positive cells

To complete single-cell analysis of MEC, fresh milk samples
were obtained from three multiparous Holstein cows (2.7 ± 0.6
lactations), averaging 361 ± 46 days in milk (DIM), MY of
14.2 ± 4.7 kg/milking, and averaging an SCC of 115 ± 39 × 103
cells/mL (Table 3). Milk samples were processed and sorted by
FACS using BTN as the cell surface marker for secretory MEC.

Sorted MEC (BTN+) were used to construct three individ-
ual sequencing libraries. Due to the use of a Low Throughput
chip, which has a maximum target cell recovery of 1000 cells, we
encountered challenges in obtaining high-quality data from the
limited amount ofMEC in bovinemilk.Therefore, sequencing data
from each library were combined and processed as a single dataset
(n= 839 cells; data not shown). Following data quality assessment,
cells with fewer genes and high mitochondrial gene expression
were removed.

Analysis of the remaining cell population revealed minimal
variability, with only one single-cell cluster and a low num-
ber of expressed transcripts (data not shown), which prevented
further exploration. This lack of expression diversity and low
transcript count limited clustering analysis, a critical step for

identifying distinct cell states and functions within the MEC
population. The MEC data lacked the resolution necessary to
provide biologically meaningful insights into MEC heterogene-
ity, and the dataset was therefore excluded from downstream
analyses.

The limited cell yields of sorted live MEC, attributable to the
inherently low abundance of this cell type within milk samples,
limited the comprehensive characterization of this population.
Moreover, the quality of the sorted MEC in milk further compli-
cates the analysis, requiring careful consideration for future studies
that consider using this approach.

It is plausible, and possibly likely, that MEC shed in milk are no
longer functional and may be undergoing cell death and detach-
ment or cell death because of detachment. This would lead to
cessation of new transcription and the onset of RNA degradation.
Themammary epithelium is characterized by a bilayer hollow cav-
ity enclosed by a basal membrane. The inner monolayer is formed
by luminal cuboidal cells facing the central apical cavity and sur-
rounded by an external basal monolayer of myoepithelial cells. If a
cell is damaged, loses functionality, or is dying, it can be a threat to
the tight barrier that epithelia form. To preserve the integrity of the
MEC barrier, live or dying cells are apically or basally extruded in
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Figure 5. Heatmap of transcriptome similarities between cell clusters for dataset 1.
Note: Rows represent representative genes and columns represent cell clusters. Numbers and colors on the right represent log2 fold changes relative to the median gene
expression level across all clusters. Color scheme is based on z-score distribution from −2 (purple) to 2 (yellow). Right margin color bars highlight gene sets specific to the
respective cluster.

response to apoptotic stimuli or homeostasis regulation (Mleynek
et al. 2018; Slattum and Rosenblatt 2014). When cells are detached
from the basement membrane and no longer have communication
with the extracellular matrix and neighboring MEC, this produces
an impairment of cell–matrix interaction and the loss of essen-
tial signals for survival leading the cells to a programmed cell
death known as anoikis (Frisch and Francis 1994). Anoikis would
result from detachment of viable epithelial cells from the base-
ment membrane (Bretland et al. 2001) and has been implicated
in luminal clearance during mammary gland development in mice
(Humphreys et al. 1996). Nevertheless, the occurrence of this cell
death type in the bovine mammary gland during lactation remains
unexplored. Further investigation is needed to shed light on this
aspect.

Although only live and viable MEC were used for library con-
struction, the foundation of MEC sorting selection using FACS
is based on membrane permeability and dye exclusion of PI.
PI penetrates the cell membrane with loss of integrity, enter-
ing the cell nucleus and binding double-stranded nucleic acid,
while intact membranes from viable cells prevent PI dye pen-
etration and staining. While it has been reported that certain
dyes may not effectively label early apoptotic cells (De Schutter

et al. 2021), there is no specific evidence of such limitations with
PI. Additionally, it is important to note that not all cell death
types described in the literature display membrane rupture as
a characteristic feature, as there are over 20 different mecha-
nisms of cell death documented (Galluzzi et al. 2018). In fact,
during apoptosis – the major form of programmed cell death
described and studied – cell membrane integrity is retained,
while non-apoptotic cell death like pyroptosis is mostly char-
acterized by membrane rupture (Yan et al. 2020; Zhang et al.
2018).

In this study, we encountered challenges in obtaining a sub-
stantial number of MEC from milk samples. To overcome these
challenges and enhance the study of this specific cell type, future
investigations could consider utilizing biopsy samples. Biopsy sam-
ples could be a better approach to increase availability of viable
cells and possibly reduce the variability observed between animals
and cell states. Furthermore, the use of functional secretory and
viable MEC obtained through biopsies will enable the collection
of a greater number of MEC for analysis. This approach will con-
tribute to a deeper understanding of the heterogeneity of MEC in
the bovine mammary gland and enhance our comprehension of
milk synthesis capacity.
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Figure 6. Violin plots for representative genes of clusters identified from immune cells (CD45+) sorted using FACS present in milk from a healthy Holstein cow (dataset 1).
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Figure 7. Expression of immune marker PTPRC (CD45) across all clusters from dataset 2, including 923 cells, shown by violin plots (A) and feature plots (B) using the using
the uniform manifold approximation and projection (UMAP).

Heterogeneity within cells of hematopoietic origin –
CD45-positive cells

To address the molecular diversity within cells from hematopoi-
etic origin, fresh milk samples were obtained from two Holstein
multiparous cows averaging 2.5 ± 0.7 lactations, 320 ± 72 DIM,
14.5 ± 5.8 kg/milking at collection, and 139 ± 33 × 103 cells/mL
(Table 3). Cells were sorted by FACS using the CD45+ cell sur-
face marker. After sorting, individual libraries were sequenced,
and individual data were integrated and analyzed as one dataset to
explore the general heterogeneity within CD45+ cells following the
integration method pipeline.The cluster analysis for the integrated
data presented in Fig. 2A exhibited 11 distinct cell communities
across both libraries. T cells were the most abundant cell type and
depicted seven distinct types within the T cell subpopulation. The
remaining four clusters were composed of granulocytes, including
neutrophils, as well as macrophages and B cells. Integration analy-
sis identified shared cell populations across sample sets; therefore
both animals showed the same cell types. However, cell population
proportion was different between them (Fig. 2B). As presented in
the cluster graph per sample in Fig. 2C, cow one revealed a higher
number of macrophages, neutrophils, CD4 helper T cells, and CD4
cytotoxic T cells, while cow two had a higher amount of T cells with
low expression of CD96 and high expression of CD3E (Fig. 2C).
To gain a deeper understanding of the heterogeneity observed
between the two cows, we conducted a more detailed exploration
of the immune cell heterogeneity within each milk sample.

The dataset for Cow 1 included 851 cells with 12,156 features
where seven clusters were identified. Initially, we conducted veri-
fication of the expression of the CD45+ marker, also known by its
gene name PTPRC. This verification was completed using a vio-
lin plot and a feature plot (Fig. 3), which supported the accurate
sorting of cells. After clustering analysis, seven distinct clusters
were identified and are presented in Fig. 4. According to identi-
fied differentially expressed genes after heatmap analysis (Fig. 5)
and the individual analysis of the main expression of canonical

immune subpopulation markers (Fig. 6) reported in the literature
(Azizi et al. 2018; Becker et al. 2021), the putative cell subpop-
ulations identified were granulocytes-expressing TLR4 and CD68
(22.8%), macrophages-expressing CD14 (6.9%), B cells-expressing
CD19 and CD22 (2.1%), and T cells-expressing CD96, CD3E, and
CD3D with four different identities: regulatory T cells-expressing
CD4 and IL2RA (26.9%), cytotoxic T cells-expressing CD8A and
CD8B (21.7%), helper T cells-expressingCD4 (10.2%), and a group
of T cells-expressing CD8A, CD8B, and the ZBTB16 (9.4%).

The dataset for Cow 2 included 923 cells with 17,771 fea-
tures and eight differentiated clusters. Despite initial sorting based
on CD45, it is noteworthy that only seven of the eight clusters
express the PTPRC transcript (encoding CD45) as shown in Fig. 7.
Interestingly, in our study, dendritic cells (group 6) were an excep-
tion, displaying no detectable RNA expression of CD45 despite
their well-established characterization as CD45-positive immune
cells, the marker used for sorting in our study. We have not deter-
mined an explanation for the difference between protein-level
CD45 expression and the transcriptomic data.

The putative identity for each population depicted by clus-
ter analysis is macrophages-expressing CD68, TLR4, and IL1B
(8.3%), dendritic cells-expressing ICAM1 and RF4 (4.7%), B cells-
expressing CD19, CD22, and CD79A (4.3%), and five populations
expressing T cells features classified as, helper T cells-expressing
CD4 and IL2RA (10.9%), cytotoxic T cells-expressing TNF and
CD8B (16.6%), a subgroup of T cells-expressing TNF, CD28, and
CD69 (23.9%), T cells-expressingKIT, CD69, and CD2 (7.2%), and
T cells-expressing CAMK4 and CD69 (24.1%) (Fig. 8). Population
and cell identity were based on the top 10 up- and downregu-
lated transcripts shown by heatmap analysis (Fig. 9) and analysis of
individual recognized markers of immune cells identities (Fig. 10).

As demonstrated in review papers, the presence of immune
cells such as neutrophils, macrophages, and lymphocytes in milk
has been widely reported in multiple species such as cows, buf-
falo, ewe, goat, and camels (Alhussien and Dang 2018). In human
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Figure 8. Clustering immune cells in milk from one Holstein cow (dataset 2) using the uniform manifold approximation and projection (UMAP) dimension reduction
technique. Note: The total 923 cells were divided into eight clusters. Cell proximity represents gene expression similarity, and identification of cell types was accomplished
by analyzing significantly enriched expression of established cell markers.

breast milk, the reported immune cells include monocytes, T cells,
natural killer cells, B cells, neutrophils, eosinophils, and immature
granulocytes (Witkowska-Zimny and Kaminska-El-Hassan 2017).
However, the exploration of cellular heterogeneity within these cell
subpopulations has beenmainly characterized in humanmilk,with
only a few studies addressing cells present in bovine milk.

Consistent with our findings, immune cells in human milk
comprise major immune cell types, including a high propor-
tion of T cells, monocytes, macrophages, and B cells (Twigger
et al. 2022). Additionally, immune cell identities, including T
cells, B cells, macrophages, and dendritic cells have been reported
in milk samples from 15 different human donors from 3 to
630 days of lactation. Nevertheless, the immune cell subpop-
ulations described in that study showed a wider range of cell
types including CSN1S1macrophages, fibroblast, eosinophils, and
Langerhans cells (Nyquist et al. 2022).

Expecting possible differences between species, immune cells
present in bovinemilk from scRNA-seq analysis reported in the lit-
erature showed a similar profile to that observed in this study and
in immune cells from human milk depicting immune cell com-
munities of macrophages, monocytes, T cells, B cells, dendritic
cells, and natural killer cells which have not been reported before

in milk (Becker et al. 2021; Zorc et al. 2024). Clustering analysis
from Becker et al. (2021) showed five, two, and three different sub-
populations of monocytes, macrophages, and T cells, respectively.
Within this immune population, most cells in the dataset were
monocytes and macrophage, contrasting with the results observed
in our study where the major immune cell type identified was
T cells, and only a main community of macrophages was identi-
fied, while no monocytes were observed. In a more recent study
conducted by Zorc et al. (2024), the group exhibiting the highest
cellular diversity consisted primarily of T cells, including four sub-
populations, followed by three subpopulations of neutrophils and
monocytes. These findings align with prior literature and are con-
sistent with our study results. Notably, researchers in this study also
identified a significant presence of mast cells, which have not been
previously reported in bovine milk. It is important to note that the
studies by Becker et al. (2021) and Zorc et al. (2024) used residual
milk samples (120–200mL), whichmight account for the variation
observed in their results compared to our investigation, which uti-
lized a significantly larger sample volume collected throughout the
complete milking session (3.8 L).

Neutrophils, the primary type of granulocyte found in milk
(Alhussien et al. 2021), play a vital role in the innate immune
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Figure 9. Heatmap of transcriptome similarities between cell clusters for dataset 2.
Note: Rows represent representative genes and columns represent cell clusters. Numbers and colors on the right represent log2 fold changes relative to the median gene
expression level across all clusters. Color scheme is based on z-score distribution from −2 (purple) to 2 (yellow). Right margin color bars highlight gene sets specific to the
respective cluster.

response by primarily targeting and combatting bacterial infec-
tions (Kobayashi and DeLeo 2009). Given their known abundance
inmilk, it was anticipated that a greater number of these cells would
be observed in the study. However, neutrophils are terminally dif-
ferentiated cells with a remarkably short lifespan, serving as the
frontline defenders against invading pathogens (Paape et al. 2003).

The limited lifespan of neutrophils relative to T cells could
produce a difference in the proportions of live cells after cell
sorting leading to an enriched profile of T cells in this study.
Furthermore, the increased infiltration of neutrophils to infection
sites as opposed to these samples obtained from clinically healthy
animals could have influenced the relative contribution of other
immune cells, such as T cells, to the overall sample composition.
Consequently, the viability and presence of neutrophils could have
played a significant role in shaping the observed immune cell pro-
file. Further investigation and analysis are warranted to explore this
intriguing relationship fully.

The observed differences in the broader heterogeneity of
immune cells inmilk between humans and cattlemay be attributed
to inherent species-specific variances, as well as the number of
cells analyzed. In this study, we had the capacity to analyze only
1,000 cells from a representative sample, while other studies in the

literature includemore than 8,000 cells whichmight have increased
the diversity and the amount of rare immune cells. Also, a greater
amount of cell types and cell number would add diversity to the
dataset allowing for amore delineated identification ofmore subtle
immune cell communitieswithin a cell subpopulation and a greater
ability to detect minor populations.

Conclusion

In summary, milk-derived SCs are a diverse, enriched sample
containing multiple cell types, as shown in this study. While
cells of hematopoietic origin predominate in bovine milk from
healthy Holstein cows, the presence of live MEC raises intrigu-
ing questions related to their abundance in healthy mammary
glands under normal conditions. Based on our findings, the con-
duction of further investigations into the heterogeneity of MEC
derived from milk using low-throughput technologies is not rec-
ommended. However, technologies like scRNA-seq have facilitated
the exploration of molecular identities within bovine milk, par-
ticularly within immune cells, where T cells and granulocytes
were present as the main cell types in healthy Holstein cows.
Future studies leveraging these advancements to explore factors
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Figure 10. Violin plots for representative genes of clusters identified from immune cells (CD45+) sorted using FACS present in milk from a healthy Holstein cow (dataset 2).

influencing the immune system in animals hold promise for unrav-
eling interconnections within specific cell subpopulations, crucial
for comprehending the roles of immune cells. This research clears

the way for deeper insights intomammary gland function, offering
potential avenues for enhancing animal health and milk produc-
tion in the future.
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