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SOME CRITERIA FOR HERMITE RINGS AND 
ELEMENTARY DIVISOR RINGS 

THOMAS S. SHORES AND ROGER WIEGAND 

Recall that a ring R (all rings considered are commutative with unit) is 
an elementary divisor ring (respectively, a Hermite ring) provided every 
matrix over R is equivalent to a diagonal matrix (respectively, a triangular 
matrix). Thus, every elementary divisor ring is Hermite, and it is easily seen 
that a Hermite ring is Bezout, that is, finitely generated ideals are principal. 
Examples have been given [4] to show that neither implication is reversible. 

In [5], M. Henriksen asked whether every semilocal Bezout ring is Hermite. 
This question was answered affirmatively in [8], where it was shown there 
that every semilocal Bezout ring is an elementary divisor ring, and that every 
Bezout ring with only finitely many minimal primes is Hermite. In the present 
paper we extend these results by showing that every Bezout ring with noethe-
rian maximal ideal spectrum is an elementary divisor ring, and that every 
Bezout ring with compact minimal prime spectrum and T-nilpotent nilradical 
is Hermite. 

1. Hermite rings. It was shown in [7] that a ring R is Hermite if and only 
if every 1 by 2 matrix over R is equivalent to a triangular matrix. In other 
words, R is Hermite if and only if every pair of elements a, b in R satisfies 

(H) There exist d, a!, V in R such that 
a = a'd,b = b'd and (a',V) = (1). 

In this case (d) = (a, 6); conversely [3], if (dr) = (a, b) and the pair a,b 
satisfies (H) then there exist a", b" such that a = a"d', b = b"d' and 
(a",b") = (1). 

1.1. THEOREM. Let R be a Bezout ring with compact minimal prime spectrum. 
Then R is Hermite if (and only if) every pair of nilpotent elements satisfies (H). 

Proof. We begin by showing that R/N is semihereditary, where N is the 
nilradical of R. Every localization of R/N is a semiprime valuation ring, 
that is, a valuation domain, and it follows that every ideal of R/N is flat. 
Thus it will suffice, by [1] to prove that the classical quotient ring of R/N is 
von Neumann regular. But this follows from [11, Proposition 9], since every 
finitely generated faithful ideal of R/N contains a non-zero-divisor (namely, 
its generator). 
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Now let a,b G R, and let (d) = (a, b). We have to show t h a t the pair a, b 
satisfies (H) . Denote passage to R = R/N by bars. Since Rd is a projective 
^ -modu le , the annihilator ann^ ( J ) is a direct summand of R, say a n n ^ ( J ) = 
Rë. Since idempotents can be lifted modulo N, we may assume e = e2. Now 
(ea, eb) = (ed) C N, so by hypothesis the pair ea, eb satisfies (H) . T h e 
following lemma completes the proof: 

1.2. LEMMA. Let R be a Bezout ring with Jacobson radical J. Suppose 
(a, b) = (d), and e is an idempotent such that (ann^d) C\ (1 — e) C / . / / the 
pair ea, eb satisfies (H) , so does the pair a, b. 

Proof. Wri te d = aa + fib, a = aid and b = bxd for suitable elements 
a, fi, a\, b\ Ç R. Then d(l — aa\ — fibi) = 0, and, multiplying by 1 — e, we 
see t h a t 1 - e - aax(l - e) - pbi(l — e) £ (ann^d) Pi (1 - e) C J. I t fol­
lows t ha t (1 — e) = ( a i ( l — e),bi(l — e)). Since (ea, eb) = (ed), the remark 
preceding (1.1) provides elements a<i, bi such t ha t ea = a^ed, eb = b^ed and 
(«2, b2) = (1). Finally, set a' = ea2 + (1 — e)a,\ and b' = eb2 + (1 — e)bi, 
and obtain t ha t a = a'd, b = b'd and (a', bf) = (e, 1 — e) = (1). 

Recall t h a t an ideal / of R is said to be T-nilpotent if for each sequence 
{dk\ ^ I there is an integer n such tha t a,\ . . . an = 0. 

1.3. COROLLARY. Le£ Rbea Bezout ring with compact minimal prime spectrum. 
If the nilradical of R is T-nilpotent then R is Hermite. 

Proof. Let N be the nilradical of R. For each jR-module A, define a Loewy 
series {La(A)} as follows: L0(A) = 0, La+1 = {x £ ^4|iVx C La\, and Lx = 
U«<x La if X is a limit ordinal. By [12, Proposition 3.3], the T-nilpotence of TV 
is equivalent to the condition t ha t La(R) = R for some ordinal a. T h e least 
such ordinal is called the iV-length of R. (The results in [12] are s ta ted for 
1 ' / -Loewy series" where / is a maximal ideal of R. The proofs, however, can 
easily be altered to fit our set-up.) We proceed by induction on the iV-length 
of R, which, we note, cannot be a limit ordinal. 

If the TV-length of R is 1, then N = 0, and R is Hermi te by Theorem 1.1. 
Assume R has iV-length a > 1. Let a, b £ N and let (a, b) = (d). By Theorem 
1.1 we need only verify t ha t a and b satisfy condition (H) . Let I be the annihi­
lator of d, so t h a t R/I ^Rd;we claim La^(R/(N H I ) ) = R/(N H I). We 
have R/(N Pi I) Q R/N © Rd, and 

La_x((R/N) © Rd) = La^R/N) 0 La_,(Rd) = 

R/N © (Rdr\La^(R)), 

by [12, 3.1 and 3.2]. Bu t La^(R) 3 N, so La^(R/N © Rd) = R/N © Rd, 
and another application of [12, Proposition 3.1] verifies the claim. I t follows 
t h a t the ring R = R/(N P I) has (N/(N P I ) ) - length a t most a - 1. Since 
R is Bezout and has compact minimal prime spectrum, R is Hermite , by 
induction. 
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Choose u,v G R such that a = ud and b = vd. Applying condition (H) to 
û,v £ R and lifting back to R, we obtain elements h, a', V such that u £ a'h + 
(N C\I),v G b'h + (NC\ J ) , and {a\ V) + (N C\ I) = (1). Then a = ud = 
a'(hd), b =vd = V(hd), and (a', br) = (1). 

Theorem 1.1 was triggered by a letter from M. Henriksen, asking whether 
every Bezout ring with compact minimal prime spectrum is Hermite. This 
question remains unsettled, although we suspect counterexamples exist. 
Another unanswered question arises in connection with Theorem 1.1. Suppose 
R is a Bezout ring with nilradical N. If R/N is Hermite and elements of N 
satisfy condition (H), is R necessarily Hermite? 

2. Elementary divisor rings. By a j-ideal of R we mean an intersection 
of maximal ideals of R; similarly, a j-prime is a prime j-ideal. A ring R is 
j-noetherian provided R has maximum condition on j-ideals. 

2.1. THEOREM. Every j-noetherian Bezout ring is an elementary divisor ring. 

Proof. We will appeal to the following facts about Bezout rings: (1) If R 
is a Bezout ring with only finitely many minimal primes then R is Hermite. 
(2) If R is a Hermite ring with Jacobson radical J(R), and if R/J(R) is an 
elementary divisor ring, then R is an elementary divisor ring. (3) A ring R is 
an elementary divisor ring if and only if every P-module presented by a 2 X 2 
triangular matrix is a direct sum of cyclics. Statement (1) is Theorem 2.2 of 
[8], (2) is Theorem 3 of [5], while (3) is clear from the proof of [8, Theorem 3.8]. 
One more detail must be checked before we proceed to the proof of the theorem: 

2.2. LEMMA. Let R be a ring such that for each prime P , the set of primes con­
tained in P is totally ordered by inclusion. Then R is j-noetherian if and only if 
every ideal of R has only finitely many minimal prime divisors. 

Proof. The sufficiency of the latter condition is valid in any ring, by [9, 1.4] 
and [10]. To prove necessity, assume R is j-noetherian. Choose, for each 
minimal prime P of R, a j-prime P' minimal over P. (This is possible by Zorn's 
lemma.) We claim P' is in fact a minimal j-prime. For, suppose Q\ is aj-prime 
properly contained in P'. Then Qi contains a minimal prime Ç2. Since P and Q2 
are minimal primes contained in P', we must have P = Q2, contradicting the 
minimality of Pf over P. Now the map P —> P' is clearly one-to-one, and since 
R has only finitely many minimal j-primes [9], it follows that R has only 
finitely many minimal primes. Now, for each ideal 7, R/I is a j-noetherian 
ring satisfying the hypothesis of the lemma. By what we have shown, R/I 
has only finitely many minimal primes. 

Now let R be a Bezout ring with noetherian maximal ideal spectrum. By 
2.2 and (1), R is Hermite. Therefore by (2) we may assume J(R) = 0. 

Suppose, first of all, that R is a domain. Then 0 is a j-prime, and we can 
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assume, by "noetherian induction", that R/P is an elementary divisor ring 
for every non-zero j-prime P. Let M be the i?-module presented by the matrix 

By (3) it will suffice to prove that M is a direct sum of cyclics. Note that 
acM = 0, so that if M is faithful, either a = 0 or c = 0. Since R is Hermite, 
it follows easily that A is equivalent to a diagonal matrix, and hence M is a 
direct sum of cyclics. If M is not faithful, let / be the annihilator of M, let 
Piy . . . , Pk be the j-primes minimal over I", and let J = Pi P\ . . . C\ Pk. 
Then R/J = R/Pi X . . . X R/Pjc, so R/J is an elementary divisor ring. But 
J11 is the Jacobson radical of R/I, and it follows from (2) that R/I is an 
elementary divisor ring. Since M is a finitely presented (R/I)-module, M is 
a direct sum of cyclics, and hence R is an elementary divisor ring. 

Finally, if R is not necessarily a domain, let Qlt . . . , Qm be the minimal 
j-primes of R. Since J(R) = 0, R = R/Qx X . . . X ^/Qm- But we have just 
seen that each R/Qt is an elementary divisor ring; therefore so is R. 

We remark that there exist j-noetherian Bezout domains with arbitrary 
j-dimension [6]. (The j-dimension of R is the supremum of lengths of chains 
of j-primes in R.) The referee has pointed out, however, that every Bezout 
domain with 1 in the stable range is an elementary divisor ring, by [2, Propo­
sition 5.1], whether or not it is j-noetherian. 
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