</{\ Compositio Math. 142 (2006) 937-961

/ doi:10.1112/50010437X0600203X

Elliptic determinant evaluations and the Macdonald
identities for affine root systems

Hjalmar Rosengren and Michael Schlosser

ABSTRACT

We obtain several determinant evaluations, related to affine root systems, which provide
elliptic extensions of Weyl denominator formulas. Some of these are new, also in the
polynomial special case, while others yield new proofs of the Macdonald identities for the
seven infinite families of irreducible reduced affine root systems.

1. Introduction

Determinants play an important role in many areas of mathematics. Often, the solution of a par-
ticular problem in combinatorics, mathematical physics or, simply, linear algebra, depends on the
explicit computation of a determinant. Some useful and efficient tools for evaluating determinants
are provided in Krattenthaler’s survey articles [Kra99, Kra05], which also contain many explicit
determinant evaluations that have appeared in the literature and give references where further such
formulas can be found.

As examples of interesting determinant evaluations, we mention the Weyl denominator formulas
for classical root systems, which play a fundamental role in Lie theory and related areas. In general,
the Weyl denominator formula for a reduced root system reads

> det(w)er@ = [ 1 —e™), (1.1)
weW acRy

where W is the Weyl group, R the set of positive roots and p = % > «. For the classical root

systems A,,_1, By, C, and D,,, this identity takes the explicit form

det (ajg_l): H (xj —x4), (1.2a)

acER,

1<i,j<n -
1<z<]<n
l<cziet<n(xg_n - n+1 ) Hl‘l "(1— ;) H (xj —x3)(1 — 25), (1.2b)
ILIX 1<i<j<n
l<cziet<n(xg_”_1 - n+1 ) H:U (1—a? H (xj —x)(1 — z4j), (1.2¢c)
ILIX 1<i<j<n
(det (2" o) =2 [T ] (- 20) (1 — iy, (1.2d)
SHIS =1 1<i<j<n

respectively.
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In this article, we are interested in generalizing (1.2) to the level of elliptic determinant eval-
uations. By this we mean that the matrix elements should be defined in terms of theta functions,
so that it is a priori clear that the quotient of the two sides of the identity is an elliptic function
of some natural parameters. Up to date, according to our knowledge, very few elliptic determi-
nant (and pfaffian) evaluations are known, see [Fro82], [FS77], [Has97, Lemma 1], [Oka04], [Rai05,
Theorem 2.10], [TV97, Appendix B] and [War02, Theorem 4.17, Lemma 5.3]. Most of these results
contain elliptic extensions of Weyl denominators, and are thus apparently related to root systems.

An elliptic extension of the Weyl denominator formula was obtained by Macdonald [Mac72], see
also [Dys72]. He introduced, and completely classified, affine root systems. Moreover, he extended
the Weyl denominator formula to the case of reduced affine root systems. In this setting, both the
root system and the Weyl group are infinite, so the resulting Macdonald identities equate an infinite
series and an infinite product. The precise statement is more complicated than (1.1), see [Mac72,
Theorem 8.1] and, for the special cases of interest to us, Corollary 6.2 below. The Macdonald
identities can be interpreted in terms of Kac-Moody algebras [Kac90]. Notable special cases include
Watson’s quintuple product identity [Wat29] (for the affine root system BCY), Winquist’s identity
[Win69] (for By) and the so-called septuple product identity [FK99, Hir83, Hir00] (put o = —1 in
the BCy case of Proposition 6.1 below).

There are seven infinite families of irreducible reduced affine root systems and seven exceptional
cases. We only consider the infinite families, which Macdonald denotes by A, B, BY, C, CV, BC
and D. They should not be confused with the classical root systems mentioned above. (For instance,
the classical root system BC), is non-reduced whereas the affine root system BC), is reduced.)
Although the corresponding Macdonald identities do give elliptic extensions of (1.2), it is only for
type C, CV and BC that they can immediately be written as determinant evaluations. Nevertheless,
one of our goals is to rewrite all seven cases in determinant form, and prove them by an ‘identification
of factors’” argument similar to the usual proof of the Vandermonde determinant (1.2a). This new
proof of the Macdonald identities is rather similar to Stanton’s elementary proof [Sta89], but the
use of determinants makes the details more streamlined.

For each affine root system R under consideration, we define a corresponding notion of an R theta
function. We then give a ‘master determinant formula’, Proposition 3.4, which expresses a determi-
nant of R theta functions as a constant times the R Macdonald denominator. When the constant
can be explicitly determined, we have a genuine determinant evaluation. Such explicit instances of
the master formula include a determinant of Warnaar (Proposition 4.1 below), new generalized Weyl
denominator formulas for all seven families of reduced affine root systems (Theorems 4.4 and 4.9
and Corollaries 4.11-4.15) and determinant versions of the Macdonald identities (Proposition 6.1).
Theorem 4.4 includes as special cases the determinants of Frobenius and Hasegawa cited above, and
has a non-trivial overlap with the determinant of Tarasov and Varchenko.

The most striking difference between our new elliptic denominator formulas and those found by
Macdonald is the large number of free parameters in our identities. This probably makes the results
more difficult to interpret in terms of, say, affine Lie algebras. On the other hand, the presence of
free parameters seems useful for certain applications. Indeed, special cases of our identities have
found applications to multidimensional basic and elliptic hypergeometric series and integrals, see
[GK97, KN03, Rai03, Rai05, Ros01, Ros04, RS03, Sch97, Sch99, Sch00a, Sch00b, Spi03, War02], to
the study of Ruijsenaars operators and related integrable systems [Has97, Rui87], to combinatorics,
see [Kra99] for an extensive list of references, as well as to number theory [Ros05]. It thus seems
very likely that our new results will find similar applications.

Our paper is organized as follows. Section 2 contains preliminaries on Jacobi theta functions.
In §3 we introduce theta functions associated to the seven families of reduced affine root systems.
We then give our master formula, Proposition 3.4. In §4 we obtain several elliptic determinant
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evaluations that can be viewed as explicit versions of Proposition 3.4. The main results are
Theorems 4.4 and 4.9 (the other determinant evaluations are corollaries of these). Section 5
features several corollaries obtained by restricting to the polynomial special case. Finally, in §6,
we obtain determinant evaluations that are shown to be equivalent to the Macdonald identities for
non-exceptional reduced affine root systems.

2. Preliminaries

Throughout this paper, we implicitly assume that all scalars are generic, so that no denominators
in our identities vanish.

The letter p will denote a fixed number such that 0 < |p| < 1. When dealing with the root
system C, we will also assume a fixed choice of square root p/2. The case p = 0 will be considered
in §5.

We use the standard notation

(@)oo = (a5p)o0 = [ [(1 = ap?),
=0

(ala AR 7an)oo - (ala AR 7an§p)oo - (alap)oo T (an7p)00
Then,
k—1 ‘ k—1 ‘
(@000 = [[(@w]iP)oos  (#P)o0 = [ [ (@73 9")se, (2.1)
=0 =0

where wy denotes a primitive kth root of unity.

We employ ‘multiplicative’, rather than ‘additive’, notation for theta functions. This corresponds
to realizing the torus C/(Z + 7Z) as (C\ {0})/(z — pz), where p = >, Thus, we take as our
building block the function

0(x) = 0(x;p) = (2,p/7; D)oo
We sometimes use the shorthand notation
O(a,...,an) =0(ay)---0(ay),
0(zy™) = 0(zy)0(z/y).
The function #(z) is holomorphic for  # 0 and has single zeroes precisely at pZ. Up to an

elementary factor, §(e?™%; e2™T) equals the Jacobi theta function 6 (x|7). We frequently use the
inversion formula

1
0(1/x) = —;9(3})
and the quasi-periodicity
1
0 =——0(x).
() = —0(z)

By Jacobi’s triple product identity, we have the Laurent expansion

0(z) = ﬁ nioo(—l)”p(g)m". (2.2)
Similarly to (2.1), we have
k—1 ‘ k—1 '
0(z"*:p*) = [ 0(awisp),  O(x;p) = [] 0Car’sp"), (2:3)
j=0 Jj=0
939
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which, when k& = 2, implies that
1 1

0(x?) = 0(z, —x,p2x, —p2 ). (2.4)

Since 0(x) has a single zero at x = 1, it follows that

0(~1,p?, —p?) = lim

3. Theta functions on root systems

The Macdonald identities involve the Macdonald denominator

I[J a—e™, (3.1)

acER

where R is the positive part of a reduced affine root system and e a formal exponential. Although
we will not need anything of Macdonald’s theory, it may be instructive to explain what (3.1) means
in the case R = C,,. Let ¢;, 1 < i < n, be a basis for R, and write k + &; for the affine function
ej +— k + ;5. Then, affine (), consists of the roots

k+2e, keZ,1<i<n,
ktete;, keZ 1<i<j

The positive roots are

k42, k>0, 1<i<n,

k—2g, k=1, 1<i<n,
k+e+ej, kt+e—¢e, k=20,1<i<j<n,
k—ei+ej, k—e—¢g, k=21 1<i<j<n.

Thus, the Macdonald denominator for C,, is

(1 _ e—(k+2€i))(1 _ e_(k+1—25i))

n [e.e]

1=1 k=0

« H H(l - e—(k-i—ai-i-aj))(l - e—(kz—l—ai—aj))(l o e—(k’-l—l—ai-‘raj))(l o e—(kz—l—l—ai—aj)).
1<i<j<n k=0
(3.2)

Introducing variables p and x1,...,2, by p=e~ !, x; = p~¢, (3.2) takes the form

n

1o I 6@y,

i=1 1<i<j<n

where 0(x) = 0(x;p). The C,, Macdonald identity gives the explicit multiple Laurent expansion
of this function, where z; are viewed as non-zero complex variables and p as a constant with

Ip| < 1.
More generally, the Macdonald denominators for the seven families of reduced affine root systems
equal, up to a trivial factor that has been chosen for convenience,
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WAn—l(m) = H ‘Tje(xi/mj)7

1<i<j<n

n

W, (x) = [[0@) [ =07,
i=1 1<i<j<n

n

Wy (o) = [[ 20202 [ o '0a),

i=1 1<i<j<n

We, (@) = [[=7"0@F) ] @ '0)),

i=1 1<i<j<n

WCX(m):HQ(mi;p%) H x;@(mmi),

i=1 1<i<j<n

Wae, (x) = [[0@)0@a:p*) [[  =7'0@a?),

i=1 1<i<j<n
Wp, (z) = H mz_le(xla;jc)
1<i<j<n

We use the above list as a rule for labelling our results. Each of our elliptic determinant evaluations
expresses the Macdonald denominator of some affine root system as a determinant.

The following definition may seem strange, since root systems are usually associated to multi-
variable functions. However, it will enable us to give a very succinct statement of Proposition 3.4.
Note that, except in the case R = A,,_1, Wg is an R theta function of each z;. This is easy to check
directly, and is also clear from Proposition 3.4.

DEFINITION 3.1. Let f(z) be holomorphic for  # 0. Then, we call f an A,_; theta function of

norm t if
_1)
fom) = " s ). (33
Moreover, if R denotes By, B, Cy, C\, BC,, or D,, we call f an R theta function if
1 1
f(px) = _W f(x), f(1/z)= 7 f(z), R= DBy,
fpr) =~ flo), $(1/) = ~f(a), R= B},
1
flpz) = i gent? fx), f(/z)=—f(z), R=0Cy,
fpr) = ——— f@), fO/r) =~ f(z), R=C},
p2at
1 1
flpz) = Pzl f(@),  f(l/z) = T f(x), R=BCy,
1
f(pz) = P f(@), f(l/z)=f(z), R=Dn.

These notions depend on our fixed parameter p, and in the case of CY on a choice of square root
1/2
pe.

The following result gives useful factorizations of R theta functions.
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LEMMA 3.2. The function f is an A,_1 theta function of norm t if and only if there exist constants
C, by,...,b, such that by ---b, =t and

f(z) =CO(biz, ..., byx).

For the other six cases, f is an R theta function if and only if there exist constants C', by,...,b,_1
such that

flx) =C0(z)0(b1a™*,... by12F), R=B,,

f(z) = Cz10(z%p?) O(bra™, ... by_12F), R=BY,

f(z) =Cax'0(z*) 0(b1a™,. .. by 12F), R=0C,,

flx) = 09(:1:;]9%) O(byz™,... by_1a%), R=C,

f(z) = CO(x)0(pz?p?) O(brz™, ..., bp_1zT), R = BC,,

f(z) =CO(bz™,... by_125), R=D,,

where 0(z) = 0(x;p).

Proof. Up to the change of variable x — €*™ what we call an A,,_; theta function is usually called

a theta function of order n. In that case, the factorization theorem is classical, see [Web91, p. 45].
Nevertheless, we review the proof. The ‘if” part is straightforward, so we assume that f is an A,,_;
theta function. Let N be the number of zeroes of f, counted with multiplicity, inside any period
annulus A = {|p|r < |z| < r}. It is well-known that

['(@) do

N= oa [(x) 2mi

The equality (3.3) differentiates to
f'@)  fllpz) _n

f@) Vi) @

which gives N = n. Thus, there exist b1,...,b, so that the zeroes, counted with multiplicity, are
enumerated by p"b;, m € Z, i =1,...,n. The function g(x) = f(x)/0(b1z,...,byx) is then analytic
for x # 0 and satisfies g(px) = g(x), so by Liouville’s theorem it is constant. Finally, if f has norm
t, one checks that by ---b, = t.

Let us now consider the case R = D,,. Since any D,, theta function f is an A, 3 theta function,
it has 2n — 2 zeroes in each period annulus. It is easy to check from the definition that if a is a
zero, then 1/a is a zero of the same multiplicity, and if some zero should satisfy a? € p”%, then
its multiplicity is even. Thus, there exist ay,...,a,_1 so that the zeroes, with multiplicity, are
enumerated by p™at, m € Z, i = 1,...,n — 1. As before, g(z) = f(x)/0(arz™, ... ap_12%) is
analytic for = # 0 and satisfies g(px) = g(x), so by Liouville’s theorem it is constant.

The other cases are easily deduced from the case R = D,. For instance, assume that f is
a BC, theta function. Letting + = 1, x = 1/\/p and x = —1/,/p in Definition 3.1, one finds
that f vanishes at these points and thus f(p™) = f(£,/pp™) = 0 for any m € Z. It follows that
g(x) = f(x)/0(x)0(px?; p?) is analytic for = # 0. It is straightforward to check that g is a D,, theta
function, so the desired factorization follows from the case R = D,. The remaining cases can be
treated similarly. O

We also use the following result, which expresses R theta functions, when R is not of type A, in
terms of type A theta functions.
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LEMMA 3.3. The function f is an R theta function if and only if there exists a function g(x),
holomorphic for x # 0, such that

ope) =~ 9la), f(a) = gla) ~2g(1/a), R =B,
o) =~ gla), J@) = gla) ~g(1/a). R= B},
op2) =~z 0(0), 1) = 9(a) ~g(1/2). R =Ci.
glpr) = mgm), J(@) = gla) —zg(1/zx). R=C,
pe) =~ 9(a@), f(@) = g(a) ~ag(1/a). R=BC,,
ope) = g (@), f(@) = g(a) +9(1/2). R=Dy.

Proof. 1If f is an R theta function, one may in each case choose g = f/2. The converse is straight-
forward. O

An important example, to be used later, is the case when R = Cy and g(z) = 2~20(ax, bz, cx, dz),
abed = 1. Combining Lemmas 3.2 and 3.3 gives g(x) — g(1/x) = C a2~ '0(x?), where C' may be
computed by plugging in x = a. This leads to the identity

1 1
s 0(ax,bx, cx,dr) — 2°0(a/x,b/z,c/z,d/z) = P 6(ab, ac,ad,z*), abed =1, (3.4)

which is equivalent to Riemann’s addition formula (cf. [WW96, p. 451, Example 5]).

We are now in a position to state our ‘master formula’.

PROPOSITION 3.4. Let fy,..., fn be A,_1 theta functions of norm t. Then,
det (fj(z:)) = CO(twy - an) Wa,_,(2) (3.5a)
1<i,5<n

for some constant C. Moreover, if R denotes By, B, Cp, C), BC, or D, and f1,...,f, are R
theta functions, we have

det (fj(x:)) = CWr(x) (3.5b)

1<i,j<n
for some constant C.

Proof. Consider first the case of (3.5a). For fixed ¢ = 1,...,n, let L(x;) and R(x;) denote the left-
hand and right-hand sides, viewed as functions of x;. It is straightforward to verify that both L and
R are A,,_; theta functions of norm ¢. Thus, f = L/R satisfies f(px) = f(x), so if we can prove that
f is analytic, it follows from Liouville’s theorem that it is constant. Up to multiplication with pZ,
the zeroes of R are situated at x; = x;, j # 4 and at ; = 1/tzy--- &; - - - x,,. For generic values of z;,
j # i, they are all single zeroes, so it is enough to show that L vanishes at these points. In the first
case, T; = xj, j # 14, this is clear since the ith and jth rows in the determinant are equal. It then
follows from Lemma 3.2 that L vanishes also at x; = 1/txy -+ ;- - - xy.

In the other cases, the same proof works with obvious modifications. It is actually enough to go
through this for R = D,,, since the remaining five cases can then be deduced using Lemma 3.2. [

In the case R = D,,, one may well attribute Proposition 3.4 to Warnaar. Although he only states
it in a special case, see Proposition 4.1 below, his proof extends verbatim to the general case.
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Remark 3.5. Replacing z; by x;/{/t one sees that (3.5a) is equivalent to its special case t = 1.
Thus, if we would redefine Wy, | as 6(x1---2,)Wa, ,(z), we could give a unified statement of
Proposition 3.4 for all root systems. We have chosen to formulate the result using the superfluous
parameter t since this seems convenient for applications, in particular to multidimensional hyper-
geometric series.

4. Elliptic determinant evaluations

We do not consider Proposition 3.4 as a determinant ewvaluation, since we do not have a simple
formula for the constant C. From our perspective, the main use of Proposition 3.4 is to systematize
our knowledge of elliptic determinant evaluations, as corresponding to various special cases when
this constant can be computed.

4.1 Warnaar’s type D determinant

For comparison and completeness, we first review the following determinant evaluation due to
Warnaar [War(02, Lemma 5.3]. Warnaar used it to obtain a summation formula for a multidimen-
sional elliptic hypergeometric series; further related applications may be found in [Ros01, Ros04,
RS03, Spi03]. In the limit p — 0 it reduces to Krattenthaler’s determinant [Kra95, Lemma 34],
which has been a powerful tool in the enumeration of, and computation of generating functions
for, restricted families of plane partitions and tableaux, see the discussion of Lemmas 3-5 and
Theorems 26-31 in [Kra99].

Warnaar’s determinant corresponds to the case of Proposition 3.4 when R = D,, and

fix) = P(x) ] Olara™),

k=j+1
with P; a D; theta function. Then, for z; = a;, the matrix in (3.5b) is triangular, so that its
determinant, and thus the constant C', can be computed. This leads to the following result.

PROPOSITION 4.1 (A D type determinant evaluation [War02]). Let x1,...,z, and ai,...,a, be
indeterminates. For each j = 1,...,n, let P; be a D; theta function. Then there holds
n n
+ -1 +
Kc}e;tgﬂ(]-jj(ajz) H O(apx; )) :HPi(aZ-) H ajz; 0(zja;).
k=j+1 i=1 1<i<j<n

The parameter a; is introduced for convenience, its value being immaterial since P; is constant.
Similar remarks can be made about many of our results below.

COROLLARY 4.2 (A D type Cauchy determinant). Let z1,...,z, and a4, ..., a, be indeterminates.
Then there holds

-1 + +
1 > _ H1<¢<j<n a;x; O(zjz; 7aiaj)

det
lgi,ej<n<(9(ajl’;7t) | 0(ajz;)

Proof. Let Pj(x) = Hi;i 0(ara™) in Proposition 4.1, pull [[}_, O(azxi) out of the ith row of the
determinant (i = 1,...,n) and divide both sides by [[;";_, 0(ajr). O

Corollary 4.2 was used by Rains [Rai03, Rai05] to obtain transformations and recurrences for
multiple elliptic hypergeometric integrals. Perhaps surprisingly, it is equivalent to the classical
Cauchy determinant

1<i,j<n '

( 1 > H1<i<jgn(uj —u;)(v; — v;)
det = =~

Uj + vj Hi,j:l(ui +v;)

see [Rai05].

944

https://doi.org/10.1112/50010437X0600203X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X0600203X

ELLIPTIC DETERMINANT EVALUATIONS AND MACDONALD IDENTITIES

Another simple consequence of Proposition 4.1 is the following determinant evaluation, which
is included here for possible future reference. Two related determinant evaluations, corresponding
to the type A root system and restricted to the polynomial case, were applied in [Sch97, Sch00a]
to obtain multidimensional matrix inversions that played a major role in the derivation of new
summation formulae for multidimensional basic hypergeometric series, see Remark 5.4. Eventually,
Corollary 4.3 may have similar applications in the elliptic setting.

COROLLARY 4.3 (A D type determinant evaluation). Let x1,..., %y, a1,...,ay+1 and b be indeter-
minates. For each j = 1,...,n+ 1, let P; be a D; theta function. Then there holds
n+1 P n+1
n+l +
P,1(b) lggt@< () J] Olara; o ) T[ o(axd )
k=j+1 k j+1
n+1
-1 +
=[P TI e o),
i=1 1<i<j<n+1

where x,11 = b.

Proof. We proceed similarly as in the proof of Lemma A.1 of [Sch97]. In particular, we utilize
det ( J‘g ’7) = v det(M —~y~1n¢) (which is a special case of a formula due to Sylvester [Syl51]) applied

to M = (Pj(x:) [T5j 4 0(aray), € = (Py(0) TTiZ 5 0(arb®)), n = (Pata(2:)), 7 = Pay1(b), and
then apply Proposition 4.1. O

4.2 An A type determinant

If one tries to imitate the proof of Proposition 4.1, using Proposition 3.4 for By, B)/, C,, C
or BC,, rather than D,, one will find results that are equivalent to Proposition 4.1 in view of
Lemma 3.2. However, for the root system A, _; one obtains the following new elliptic extension
of the Vandermonde determinant (1.2a), see Remark 5.15.

THEOREM 4.4 (An A type determinant evaluation). Let x1,...,%,, a1,...,a, and t be indetermi-
nates. For each j = 1,...,n, let P; be an Aj_; theta function of norm tay ---aj. Then there holds
n
O(ta AnT1 -+
| det. (Pj(xi) 11 H(akxi)> _ Oltar- 9(“ 1t Tn) HP Vai) [ ajz;0(xi/z;). (4.1
<ij<n k=11 1<i<j<n

Proof. By the A,_1 case of Proposition 3.4, with ¢ replaced by ta; - - - a,, (4.1) holds up to a factor
independent of z;. To compute this constant one may let z; = 1/a;, in which case the matrix on
the left-hand side is triangular. O

By Lemma 3.2, we may without loss of generality assume that
PJ(.’E) = H(bljx) cee Q(b]’jx), (42)

where by -+ bj; = tai - - - aj. On the right-hand side of (4.1), we then have Pi(1/a1)/0(t) = 1. After
replacing ¢t by t/aj - - - a,, this gives the following equivalent form of Theorem 4.4:

153tgn<n 0 (brjz;) H O(apz; > = 0(twy - H H9 bri/a;) H ajx; O(z;/xj),

k=j+1 i=2 k=1 1<i<j<n
where
bij---bjjajp1---a,=t, j=1,...,n.
If we make the further specialization
(b1j,...,b55) = (c1,...,¢cj—1,b5)
945
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and then interchange a; and c¢;, we recover the following determinant evaluation due to Tarasov and
Varchenko. In a special case, it was also obtained by Hasegawa [Has97, Lemma 1], who used it to
compute the trace of elliptic L-operators, leading to the elliptic Ruijsenaars(—Macdonald) com-
muting difference operators, see [Rui87].

COROLLARY 4.5 (Tarasov and Varchenko). Let x1,...,Zpn, @1,...,0n—1, b1,...,by, C2,..., ¢y and t
be indeterminates, such that

al---aj_lbjcj+1---cn:t, jzl,...,n
Then there holds

7—1 n n
1<C}E;'t<n<H O(agz;) - 0(bjz;) H H(Ckmi)> =0(tzy - xp) He(bi/ci) H cjxjO(xi/xj,a:/cj).
ST Ne=1 i=2

1<i<j<n

Note that [[/",0(bi/c;) = [T/ 0(bi/as).
Remark 4.6. Corollary 4.5 appears rather implicitly in [TV97, Appendix B, as a special case of a
much more general result. More precisely, it is the case £ = 1 of an infinite family of evaluations for
the determinants

det (Ji(u>m)), (4.3)

LmeZp

where rows and columns are labelled by the compositions

zg:{[_(tl,..., >0, Z[Z_e}

When ¢ = 1, Z} can be identified with {1,...,n} and one gets a ‘usual’ determinant. For an
explanation of the other symbols in (4.3), the reader is kindly referred to [TV97].

If we let a; = ¢j in Corollary 4.5 and replace t by ta; - - - ay, so that b; = ta;, we recover the
following determinant evaluation due to Frobenius [Fro82]. This identity has found applications
to Ruijsenaars operators [Rui87], to multidimensional elliptic hypergeometric series and integrals
[KNO03, Rai03] and to number theory [Ros05]. It is closely related to the denominator formula for
certain affine superalgebras, see [Ros05]. For a generalization to higher genus Riemann surfaces, see
[Fay73, Corollary 2.19].

COROLLARY 4.7 (An A type Cauchy determinant evaluation [Fro82|). Let x1,...,xy, a1,...,a,
and t be indeterminates. Then there holds

; O(tajz;) \  O(tay---anxy---1p) [licicicnaizjblai/aj, xi/z;)
1<i,j<n 9(25, ajxi) o H(t) H?,jzl 9((1]'1‘2') '

Finally, the following result is included here for similar reasons as Corollary 4.3.

COROLLARY 4.8 (An A type determinant evaluation). Let x1,...,2p, ai,...,ay+1 and b be inde-
terminates. For each j = 1,...,n + 1, let P; be an A;_; theta function of norm ta; ---a;. Then
there holds
n+1 P n+1
n+1
P11 (b) et n< () [ 0lar:) Pn+1 ) T[ 0(axd) >
k=j+1 k j+1
1
9(tba1 cUp4127 n+
_ e? H P(1/a) [ ajx;0(xi/z)), (4.4)
1<i<j<n+1

where x,11 = b.

Proof. Proceed as in the proof of Corollary 4.3, but apply Theorem 4.4 instead of Proposition 4.1.
O

946

https://doi.org/10.1112/50010437X0600203X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X0600203X

ELLIPTIC DETERMINANT EVALUATIONS AND MACDONALD IDENTITIES

4.3 A C type determinant

The following identity, associated to the affine root system of type C, provides a new elliptic exten-
sion of the Weyl denominator formulas (1.2b), (1.2c) and (1.2d); see Remark 5.15.

THEOREM 4.9 (A C type determinant evaluation). Let x1,...,Zn, a1,...,a, and c1,...,cpto be
indeterminates. For each j = 1,...,n, let P; be an A;_1 theta function of norm

(c1++ - Cntoaji1--an)”

Then there holds

n+2 n+2 n
n—1 n+l -1 o1 -1
1<(zl,ejt<n <a; H O(czi)Pj(z;) H O(agz;) — ] H O(cpz; ") Pj(z; ) H O(akx; )>

k=j+1 k=1 k=j+1
n
a _ _
= e 2 " HP (1/ai) H Q(Cicj)Ha;i 10(x2) H a;x; 19(9;11-]*)
107 tnt201° 1<i<j<n+2 i=1 1<i<j<n
(4.5)

Equivalently, factoring P; as in (4.2), we have

n+2 7 n n+2 J
1<det< (a: n—1 HO CLT; HG bijxi) H O(apx;) — "+1 HG crT; H (brjx; H O(arx; >
ShIST = k=1 h=j+1 = k=1 h=j+1

n ) n
=——— [T 00kisa) ][] Olcicy) [[="0(3) H z7 ' 0(zia),
TOnt2 i 1<i<j<n+2 i=1 <i<j
where
blj-'-bjjajﬂ---ancl~-cn+2:1, j:].,...,n

We give two proofs of Theorem 4.9.

First proof of Theorem 4.9. Using Lemma 3.3, one checks that the determinant is of the form (3.5b),
with R = C,,. Proposition 3.4 then guarantees that the quotient of the two sides of (4.5) is a constant,

so it is enough to verify the equality for some fixed values of x;. We choose z; = ¢;, so that the
second term in each matrix element vanishes. The factor Hk,+1 0(cxx;) may then be pulled out from
the ith row of the determinant and cancelled, using

n n+2 1 n
H H O(crz;) = 7) H 0(cicy) HG(&:?) H O(ziz;).
i=1 k=1 (en+1cns2 1<i<j<n+2 i=1 1<i<j<n
Introducing the parameter ¢t = 1/c¢y - - - ¢p40a1 - - - ay, we note that
O(cntiCni2) _ O(tay - - anxl ﬁ 1
0(61 ...Cn+2a1 an) Pl az

Thus, we are reduced to proving

n O(tay - anxy - Tpn) 1
T | ) e e | TR | Q!

1<, 5<n
SHIS h=j+1 1<i<j<n

where P; is an A;_; theta function of norm ta; - - - aj, and where x; may again be viewed as free
variables. This is exactly Theorem 4.4. O
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Let R; denote the reflection operator R; f(z;) = f(x;'). Then, due to linearity of the determi-
nant, the left-hand side of (4.5) may be written

ﬁ(l—Ri)ﬁ@—"—l:ﬁe(mi)) lgietgn<13j(xi) ﬁ H(akxi)>

i=1 i=1 7 k=j+1
1 - i Ty, >
= Pz 1 a; 1- RZ 0| ———
9(1/01”’Cn+2a1"'an) 21;[1 ( / )zI;II( ) <Cl"'cn+2
n n+2
X H <xi_”_1 H H(Ckxi)> H a;x;0(x;/xj), (4.6)
i=1 k=1 1<i<j<n

where we used Theorem 4.4 to compute the determinant. Comparing this with the right-hand side
of (4.5) gives the following equivalent form of Theorem 4.9.

COROLLARY 4.10. In the notation above,

ﬁ(l—me(u>ﬁ(m;"—lﬁe@jxi)) I 6/

c e C
i=1 1 nt2/ 5 1<i<j<n
n
1
1 2 -1 +
T H (cic;) sz 0(x3) H z; 0(ziz;).
1 2 1<ici<ng2 i=1 1<i<j<n

Corollary 4.10 resembles some identities in the work of Rains [Rai03]. It can be used to give an
alternative proof of his type I BC), integral, originally conjectured by van Diejen and Spiridonov
[DS01] (Rains, personal communication). It would be interesting to know whether Corollary 4.10
can be obtained by specializing a multidimensional elliptic hypergeometric summation theorem on
0<k; <m; (i=1,...,n) to the case m; = 1.

One consequence of (4.6) is that if we can compute the left-hand side for some special choice of
a; and Pj, we can compute it in general, since a; and P; appear trivially on the right-hand side.
This observation can be used to give an alternative proof of Theorem 4.9, based on the type D
Cauchy determinant of Corollary 4.2.

Second proof of Theorem 4.9. We consider the special case when a; = cj_l, 1<j7<n,and

Jj—1
Py(z) = 0(tc; 'z) [ (e ),
k=1
where tc,11¢,42 = 1. Then, the left-hand side of (4.5) can be written

det << H C;Zl@(ckxit)>(1 - Rz‘)331'_29(Cn+1$i,Cn+2$i,0j$z',t0j_133i)>-

1<i,5<n
LI k’:l,k;ﬁ]

By (3.4) and Corollary 4.2, this equals

n
det << H cl;l e(ckm?:)>xi_lcj_19(mz27t7cjcn+17Cjcn+2)>

1<i,j<
LISN k:1,k7£_]
()" - & 1
-1 2 +
= ———— 1|z, 0(x,cic CiCnt2) O(cjz;") det | ———
nnH i i» “itntl; ©int2 H v 1e I
R =1 1<ij<n \ (cjz;)

n
—7‘9@)” “Llo(x2 e . Y0z T
T ... en Ty (ﬂfiaCzCn+1,CzCn+2) CjT; (a:]aci ) CiCj ),
! ™ i=1 1<i<j<n
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which agrees with the right-hand side of (4.5). As was remarked above, the general case now follows
using (4.6). O

4.4 Determinants of type B, BY, CV, BC and D

If ¢? € pZ, then 0(cx) and (c/x) are equal up to a trivial factor. Thus, if one of the parameters ¢; in
Theorem 4.9 is of this form, then the factor [[;"; 6(c;x;) may be pulled out from the determinant.
Up to the trivial scaling ¢; — pc;, there are four choices: ¢; € {1,—1 p2, —p%} By (2.4), 0(cjz;)
then cancels against a part of the factor 6(z ) on the right-hand side. Making various specializations

of this sort, the C,, Macdonald denomlnator in (4.5) can be reduced to the Macdonald denominator
for B, B, C), BC,, and D,,.

As a first example, we let ¢, 19 = —1 in Theorem 4.9. Then,

0(x?)

1

_E) (e 0(pa2: p?

This gives the following determinant of type BC.

COROLLARY 4.11 (A BC type determinant evaluation). Let x1,...,Zp, a1,...,a, and ¢1,...,Cyy1
be indeterminates. For each j = 1,...,n, let P; be an A;_; theta function of norm

—(c1 Cpg1@j41an)

Then there holds

n+1 n+1 n
det H O(crzi)Pj(x;) H 0(akx;) "H H O(cpz; ) Pj( m_l) H H(akxi_l)
IStysn k=j+1 k=j+1
n+1 n

- O(—cy - - HP (1/ai) 1_[<9 —ci) H 9(Cicj)H9(xi)9(px?;p2)

 Cpa1@
n+1%1 - 1<i<j<n+1 i=1

X H aja:i_IQ(mim;-—L).

1<i<j<n

If we let ¢p11 = —p% in Corollary 4.11, we obtain the following determinant of type C'V.

COROLLARY 4.12 (A CV type determinant evaluation). Let x1,...,Zp, ai,...,a, and ci,...,c, be
indeterminates. For each j =1,...,n, let P; be an A;_; theta function of norm

1 —
(pZCl...cnaj_,’_l...an) 1_

Then there holds

et (o7 T oema iy 11 ot o7 [ty T otows)

k=j+1 k=j+1
a1 -+ and(p?
- 11 = (p ) HP 1/0’2 H pr% H 9 CZC] He(mhp%)
O(p2cr---cpar---apn) i 1<i<j<n —1
X H ajx;t O(xaT).
1<i<j<n
If we let ¢ 41 = —p% and cp40 = p% in Theorem 4.9, and replace ¢; by ¢;/p for convenience, we

obtain the following determinant of type BY.
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COROLLARY 4.13 (A BY type determinant evaluation). Let x1,..., Ty, ai,...,a, and cy, ..

.,cn be
indeterminates. For each j =1,...,n, let P; be an A;_; theta function of norm

_(Cl . Cnaj—i-l e an)_l
Then there holds

o (o Tloanon T1 st —at Tl o) T o)

k=j+1 k—j—i—l
al PEEEY ancl ..

T 0(—cicar - ap) ZHlP e 11:11 (peisr) H Bleics) Hx (275p%)

1<i<j<n
-1 +
X Il ajz; 0(xx;).

1<i<j<n

If we let ¢, = —1 in Corollary 4.13 we obtain, using also (2.5), the following determinant of
type B.

COROLLARY 4.14 (A B type determinant evaluation). Let x1,...,x,, a1,...,a, and c1,.

<y Cn—1
be indeterminates. For each j = 1,...,n, let P; be an A;_; theta function of norm

(Cl - Cn—laj+1 - an)_l_
Then there holds

(o1 T aopon T ooy T ot T o)

k=j+1 k=j+1

2a1 - apcy

:_0(61 S “Cn—1 HP 1/&2 H9 CZ pcz,p) H H(CZC])HH(I'Z)

X H ajr;?t H(xzxjc)

1<i<j<n

Finally, assuming n > 2, we let ¢,,—; = 1 in Corollary 4.14. Again using (2.5), we obtain following
type D determinant.

COROLLARY 4.15 (A D type determinant evaluation). Let x1,..., %y, a1,...,a, and c1,.

<oy Cpn—2
be indeterminates. For each j =1,...,n, let P; be an A;_; theta function of norm

(Cl T Cp—20j41 an)_l

Then, for n > 2, there holds

=
— n—2 n
1— n—1 —\p (1 ~1
Kc}gtgﬂ( ; 1:[ i) Pj(z;) H O(akx;) + HG(ckxi )Pj(x; ) _1_[ O(arx; ))

daq -+ -apcy -

:_9(01 2 HP 1/a;) H 0(cicy) H ajaci_le(acixf),

*Cp—207 -

5. Some polynomial determinant evaluations

In this section we consider the polynomial special case, p = 0, of the elliptic determinant evaluations
in §4. The resulting identities involve the Weyl denominator of classical (non-affine) root systems,

cf. (1.2).
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We must first interpret the term ‘A, _; theta function’ in the case p = 0. One way is to rewrite
Definition 3.1 in terms of the Laurent coefficients of f(z) = >_;a;z’. Namely, f is an A,_; theta
function of norm ¢ if and only if

ajn = (—1)"tp’ a;.
When p = 0 this means that a; = 0 unless 0 < j < n and that a, = (—1)"tag. Thus, we obtain
precisely the space of polynomials of degree n and norm t, where the norm of ag + a1z + - - - + apa"
is defined as (—1)"a,/ag. Equivalently, the polynomial C(1 — byx)--- (1 — byz) has norm by - - - by,.
Thus, we obtain the same result by formally letting p = 0 in Lemma 3.2. With this interpretation
of the term A, _1 theta function, Theorems 4.4 and 4.9 remain valid when p = 0.

5.1 Determinants of type A
We first give the case p = 0 of Theorem 4.4.

COROLLARY 5.1 (An A type determinant evaluation). Let x1,...,2p, a1,...,a, and t be indeter-
minates. For each j = 1,...,n, let P; be a polynomial of degree j and norm ta; - --a;. Then there
holds

det <Pj(xi) 11 (1—akmi)> - 1_’5“1’;_@’?1”“"Hpiu/ai) I aje — .

1<i,j<n
SIS k=j11 i=1 1<i<j<n

It is easy to prove Corollary 5.1 directly by a standard ‘identification of factors’ argument.

It is possible to remove the restriction on the norm of the polynomials P; through a limit
transition, decreasing their degree by one. Such limits do not make sense in the elliptic case (p # 0).
This leads to the following determinant evaluation due to Krattenthaler [Kra95, Lemma 35], who
obtained it as a limit case of [Kra95, Lemma 34], see the discussion of Proposition 4.1 above.

COROLLARY 5.2 (An A type determinant evaluation [Kra95]). Let x1,...,z, and ay,...,a, be
indeterminates. For each j = 1,...,n, let Pj_1 be a polynomial of degree at most j — 1. Then there
holds
n n
d P . _ . — - ) (s — ).
et (st TT 0 -a) =T[Post/a) TT asas =
k=j+1 =1 1<i<j<n

Proof. In Corollary 5.1, write Pj(x) = (1—tbjx)P;j_1(x), let t — 0 and then relabel P;_; +— P;_;. O
We also note the following consequence of Corollary 4.8.

COROLLARY 5.3 (An A type determinant evaluation). Let x1,...,x, and b be indeterminates. For

each j =1,...,n, let Pj_i(x) be a polynomial in x of degree at most j — 1 with constant term 1,
and let Q(z) = (1 —y1z) -+ (1 — yny12). Then there holds

Q(b) det (m?*l_jpj_l(mi) _ bn+1—jpj_1(b)Q($i)>

1<i,j<n Q(b)
=(1—=bxy  Tpyr " Ynt1) 1_[(:1:Z —b) H (i — ;). (5.1)
i=1 1<i<j<n

Proof. In Corollary 4.8, let p = 0 and assume, as a matter of normalization, that the polynomials
P; have constant term 1. Write ¢ = s"Ha; = ¢i/s,

PJ(ZL‘) = (1 - Sn+1_jdj33)]5j_1(l‘), j = 1, BRI
Poyi(z) = (1 —yw) - (1 = ypy17).
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Then, ]5]-_1 has norm ¢; - - - cj/dj and P,4; norm ¥y -+ Ynpt1 = C1 - - Cpt1, Which are in particular
independent of s. Dividing both sides of (4.4) by [];<;;cny1(—a;), letting s — 0 and finally

relabelling ]5j_1 — Pj_1, P41 — Q, we obtain the desired result. ]

Remark 5.4. Note that the right-hand side of (5.1) is independent of P;_;. The special case
Pj_1(x) =1, for j = 1,...,n, is Lemma A.1 of [Sch97], which was needed in order to obtain
an A, matrix inversion that played a crucial role in the derivation of multiple basic hypergeometric
series identities. A slight generalization of [Sch97, Lemma A.1] was given in [Sch00a, Lemma A.1].

5.2 Determinants of type B, C' and D

Next, we turn to the p = 0 case of Theorem 4.9.

COROLLARY 5.5 (A C type determinant evaluation). Let x1,...,2y, a1,...,a, and ¢1,...,Cyy2 be
indeterminates. For each j = 1,...,n, let P; be a polynomial of degree j with norm

(c1 Cpt2aji1- - an)”

Then there holds

n+2 n n+2 n
1<(%th<n<xi_n_l]:€l—[(l — cpx) Pj(x;) H (1 —agz;) ”H H (1 —cpx; ") Pj(x; h H (1-— akx;1)>

k=j+1 k=j+1
n
o P H P/a) [ (-ee)[ar 0 -a
—C1 o Cpg20l e 1<i<j<n+2 i=1
X H aj(a;j —xl)(l —mixj).
1<i<j<n

If we let ¢,12 = —1 in Corollary 5.5 or, equivalently, p = 0 in Corollary 4.11, we obtain the
following determinant of type B.

COROLLARY 5.6 (A B type determinant evaluation). Let x1,...,2y, a1,...,a, and ¢1,...,Cyq1 be
indeterminates. For each j = 1,...,n, let P; be a polynomial of degree j with norm

—(c1 Cng1ajy1 e an)

Then there holds

n+l n n+1 n
det <xl_” H(l — cpwi) Py (;) H (1 —agx;) — 't H (1 — cpa; P (z;h) H (1-— akx;1)>

s k=1 k=j+1 k=j+1
n+1 n
aij - B
=17 HP Va;) ] —cie) [JQ+e) [Jai (0 —2:)
R 1<i<j<nt1 i=1 i1
< JI ajley -2 - ziay).
1<i<j<n

If we let ¢,41 = 1 in Corollary 5.6, the factor [[;" (1 — z;) may be cancelled. This gives the
following determinant of type D.

COROLLARY 5.7 (A D type determinant evaluation). Let x1,...,2p, a1,...,a, and cy,...,c, be
indeterminates. For each j = 1,...,n, let P; be a polynomial of degree j with norm

_(Cl e Cnaj—l—l [ an)_l'
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Then there holds

n n n n
- ~1 ~1 ~1
1<(z1,ejt<n <xl n H(l — cpwi) Pj(x;) H (1 —agz;) + =} H(l —cpx; )Pz ) H (1 —agz; ))
k=1 k=j+1 k=1 k=j+1
n

2a1 - - B
=T ! HP 1/a;) H (1—cicj)Hx} " aj(z; — x;)(1 — z25).

- CnQ
n&Le 1<i<j<n i=1 1<i<j<n

Similarly as when deriving Corollary 5.2 from Corollary 5.1, we may remove the restriction on
the norm of P; in Corollaries 5.5, 5.6 and 5.7 by a limit transition, through which their degree is
lowered by one.

COROLLARY 5.8 (A C type determinant evaluation). Let x1,...,2y, a1,...,a, and ¢1,...,Cyq1 be
indeterminates. For each j = 1,...,n, let Pj_1 be a polynomial of degree at most j — 1. Then there
holds
n+1 n n+1 n
15?@@["1_[(1 — o) Pj—1(zi) H (1 — agw;) — 33?1_[(1 — cpr; )P () H (1- awf))
k=1 k=j+1 k=1 k=j+1

n

H (a) [ Q-aep[Jam@—ad) ] ajle; -2 - ziay).
=1

i=1 1<i<j<n+1 1<i<y<n

Proof. ITn Corollary 5.5, write Pj(z) = (x + bjcay2)Pj_1(2), let ¢,10 — 0 and relabel Pj_;

P_y. O
COROLLARY 5.9 (A B type determinant evaluation). Let x1,...,2,, a1,...,a, and cy,...,c, be
indeterminates. For each j = 1,...,n, let Pj_1 be a polynomial of degree at most j — 1. Then there
holds
n n n n
-1 —1
133271(33 H — cpi) P () H (1 —apz;) — 2p [ [ (1 = cwz; )P () H (1 — agw, )>
k=1 k=j+1 k=1 k=j+1
n n n
H 1(1/a;) H (1 —cicy) H(l +¢i) Haz%_"(l — ;) H aj(z; — x;)(1 — ziz;).
i=1 1<i<j<n i=1 i=1 1<i<j<n
Proof. Let ¢,41 = —1 in Corollary 5.8 and divide by []" (1 + xi_l). O
COROLLARY 5.10 (A D type determinant evaluation). Let x1,...,Zn, a1,...,ay and ¢1,...,Cq_1
be indeterminates. For each j = 1,...,n, let P;_1 be a polynomial of degree at most j — 1. Then

there holds

n—1 n
det <xi_" H(l — cpxi) P () H (1 —agz;)

1<i,j<n ;
k=1 k=j+1
n

"1H 1—cka: VPj—1(x; -1 H(l—akmi—l)>

k=j+1

n n

ZQHR—I(]-/QZ) H (1—67;6]')1_[%%_” H aj(a:j—xi)(l—mimj).
i=1 1<i<j<n—1 i=1 1<i<j<n
Proof. Let ¢, =1 in Corollary 5.9 and divide by []" (1 — ;). O

Next, we give some further specializations of our determinant evaluations, which are closer to
the classical Weyl denominator formulas.
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COROLLARY 5.11 (A C type determinant evaluation). Let z1,...,z, and c1,...,c,41 be indeter-
minates. For each j = 1,...,n, let Pj_1 be a polynomial of degree at most j — 1. Then there
holds

n+1 n+1
—j -1
K‘%Stgn(% | | (1 — cpx;) P — kl_ll (1—cpz; ) Pi1(x; )>

k=1
n n
= HPZ'_l(O) H (1 —cicy sz (1—a? H (i — ) (1 — z5x5).
i=1 1<i<j<n+1 i=1 1<i<j<n

Proof. In Corollary 5.8, divide both sides of the identity by H1<i<j<n(_aj)7 and then let a; — oo,
successively for 7 =2,...,n. O

Remark 5.12. The special case Pj_i(xz) =1, for j =1,...,n, is Lemma A.11 of [Sch97], needed in
order to obtain a C,, matrix inversion (which was later applied in [Sch99]).

COROLLARY 5.13 (A B type determinant evaluation). Let x1,...,x, and c1,...,c, be indetermi-
nates. For each j = 1,...,n, let Pj_1 be a polynomial of degree at most j — 1. Then there holds

n
det a: Hl—ckxl Pi_i(z;) —x ng—ckm Pz )
1<i,j<n P ]
n

=[[P-0) [] Q-ccpJa+e) ][]zl —2) [] (@i—2)—aa;)
=1 =1 =1

1<i<j<n 1<i<j<n
Proof. Let ¢,11 = —1 in Corollary 5.11 and divide by T[]/, (1 +z; ). O
COROLLARY 5.14 (A D type determinant evaluation). Let z1,...,x, and ci,...,c,—1 be indeter-
minates. For each j = 1,...,n, let Pj_1 be a polynomial of degree at most j — 1. Then there
holds

n—1
1—j5 ] 1 —1
1<(%S't<n< kH1 1 — i) Pyo1 (i) H 1—cpr; ) Pia (g ))
n

:2HB_1(0) H (1 —cicy) Hazl " H x; —xj)(1 — xx5).

i=1 1<i<j<n—1 1<i<j<n
Proof. Let ¢, =1 in Corollary 5.13 and divide by [ (1 — ;). O
Remark 5.15. If we let ¢; = 0 and Pj(x) = 1 for all j, Corollaries 5.11, 5.13 and 5.14 reduce,
up to reversing the order of the columns, to the classical Weyl denominator formulas (1.2c),
(1.2b) and (1.2d), respectively. Similarly, Corollary 5.1 contains (1.2a) as a limit case. Thus,

Theorems 4.4 and 4.9 give elliptic extensions of the Weyl denominator formulas for the classical
root systems.

6. The Macdonald identities

In §4, we have focused on the left-hand sides of (3.5), trying to find as general families of R theta
functions as possible, such that the constant C' can be determined. We now focus on the right-hand
sides, trying to find a particularly simple expression for Wg as a determinant. More precisely, we
want the functions f; to have known explicit Laurent expansions, so that the multiple Laurent
expansion of W can be read off from (3.5).

Starting with the case of type A, we observe that the function
fim(x) = 2™0((—=1)" " Ltp™a™; p"), (6.1)
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with m an integer, is an A,,_; theta function of norm ¢. Moreover, its Laurent expansion is known
from (2.2). Thus, we are led to consider determinants of the form det;;(fy, (z;)), with m; integers,
hoping that the constant

_detigjcn(fmy (20))

C O(twy - xn) Wa, ()

can be evaluated.

To compute this constant, we specialize the x; to nth roots of unity, since the theta functions
may then be pulled out from the determinant. To avoid zeroes in the denominator, the x; should be
distinct, so we assume that z; = w'~!, with w a primitive nth root of unity. By the Vandermonde
determinant (1.2a), we then have

det (fm, (1) =[T0C=1)" " p™p™) ] (@™ —w™).
j=1

1<i,5<n
SIS 1<i<j<n

To obtain a non-trivial result, this should be non-zero, so the m; should be equidistributed modulo n.
Thus, we assume that m; =i — 1. In that case, by (2.3),

[To(=0) " tp™5p™) = 0((=1)"""t) = O(tws - -~ ) ,
J=1 r;=wi=t
which gives
Wil il

det (a'0((=1)"'tp M) = ]

o Anfl (:L‘)'
1<i,jsn o
1<i<j<n

By (2.1), the constant simplifies as

wi—1 _ i1 1
I S =, 1 oo

1<i<j<n 1<i<j<n
n n
1 1 (p; )%
= (p)s ——— = (p)x = =
> I:Il (P! ™ )oc > kl;[l (p®)s (™5™

Thus, we arrive at the A,,_1 case of Proposition 6.1 below.

For the remaining root systems, we consider the case of Proposition 3.4 when the theta functions
are constructed using Lemma 3.3, with the corresponding functions g of the form (6.1). By similar
arguments as for A,_1, one is led to the following determinants, one for each root system.

PRrOPOSITION 6.1. The following determinant evaluations hold:

J=lpri_1\n—1,3—1, n. ny\ _ (p; P)5o
et (@700 i) = T Ot ) W,y (@)

o Cinr el 1 ~ 2(p; p)%
j—n 1,2n—1. 2n—1y ﬂ—i—l 7 1,.1-2n., 2n—1yy _ s 1Y) oo
1<(}Stgn($’ 9(]?] €T; P ) Ly e(p] Z; 3P )) (p%_l;p%_l)go Wa, (ZL‘),

n—1,, i i g1 2(p?%;p?) oo (pi )
1 +1 2
et @07 ) a0 ) = AL (),

j—n—1 j 2n+2.  2n+2 n+l—j j p2n—2, 2042V (p;p)go
153271(% 0(_psz 3P ) —Z; 9(_]7]1'2 P )) - (p2n+2;p2n+2) WCn($)7

n
o0
. | (p7;p?)o (3 0)2
j— i1 +1—9 j—=  — ) )
et (@70 arep?) a0yt = L e ),

j— i 2n+1. 2n+1 +1—j j—2n—1, 2n+1\\ __ (p;p)n
1<(3§t<n($g n@(_p]%n 3P " )_ :L‘? Je(_p]‘rz " 3P " )) - (p2n+1;p220+1) WBCn (ZL‘)

n
o0

955

https://doi.org/10.1112/50010437X0600203X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X0600203X

H. ROSENGREN AND M. SCHLOSSER

and, for n > 2,

det (xj—ne(_ '—1:L_2n—2,p2n—2) + xn—je(_ '—1$2—2n,p2n—2)) _ 4(p; )
1<i,j<n i i ) % i ) (p2n—2;p2n—2)go

Whp, (x).

To complete the proof of Proposition 6.1, all that remains is to verify the identities for some
fixed values of ;. We have already done this for A,_;. In general, we proceed exactly as in [Sta89].
Namely, letting w;, denote a primitive kth root of unity, we specialize z; as z; = wz;__g for R = B,
z; = wi! for R =B, z =uwh, , for R=C,, z; =wh, for R=C), z; =wh, | for R = BC,
and x; = w2n_2 for R = D,,. Under these specializations, the theta functions can be pulled out from
the determinants, which are then computed by the Weyl denominator formulas (1.2b) (for B,,, C)Y
and BC),), (1.2¢) (for B) and C,) and (1.2d) (for D,,). If we let Qg denote the quotient of the
determinant and the expression Wpg, this gives

R ]
OB, = ! ;

+ 1
H;L:l( pw%(y 1n )oc H1<2<]<n(pw2n 17pw2n l’pw2n 1 va2n11])oo

0 [Tj=, 0=~ "5 p™")
By = £(2j—1 i+j—1 1 '
H?:l(p2w2n( ’ )§P2)oo H1gz’<j<n(pw2n 7pw2n 7pw2n] JUWQnZ ])oo

Q H] ) ( p] p2n+2)
C, — 12; — — v — s
H;L 1 (pw2n+2) H1<i<j<n(pwzn+2a pw2n+2, pwénim prnZ_;.%)oo

QCV - 1 1 H?:1 0(_p7_%p2n) )

n 1 4 1
H?:l(pzwzrf?m)oo H1<i<j<n(pw2n va2n ’pw2n ’pw2n ])oo

o [Tj—, 0(—p7;p** 1)
BC, = e T2 — — 7 — s
! H?:l(pw%"f—i-l) (pWQnJ]rﬁ ?) oo H1<i<j§n(pw%nil7pw;ni—hpw;nil’pw%f-i-{)oo

Op, — 2HJ 1 (— LT 2)
n 2 *
Hl<z<]<n(pw2n 27pw2n 2’pw2n 2 ’pw2n22])00

It remains to simplify these expressions into the form given in Proposition 6.1. We indicate a
way to organize the computations for R = B,; the other cases can be treated similarly. We factor
@p, as Fy/FyF5, where

(=P 50" oo (=™ 0" Ve

I

Fy

<
Il
-

P (—pwi ™ oo (—Pwhin? Voo,

<
I
—

I

_ i+7—1 1—1—3
F3 = H (pw2n l7pw2n 12 PWon—1 s PWop_1 )00

1<i<j<n

In F}, we make the change of variables j — 2n 4+ 1 — j in the second factor and use (2.1) to

obtain
2n

Fr=TJ=250"" Voo = 2(=050)oc (0" 159" Moo
j=1
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Similarly, in F» we change j — 2n — j in the second factor, obtaining

n 2n—1
Jj=1 j=n

Finally, in F3 we rewrite the first two factors as

1
P |

n . .
I wd, )
=1

Making the change of variables ¢ — 2n — ¢, this equals

In the fourth factor in F3, we change (i,7) — (n —i,n 4+ 1 — j), which gives
i i
I o' Do= JI  (wit’i)eo-
1<i<j<n 1< <i<n—1

Thus, the third and fourth factor can be combined into

n—1 n
S
H H(pw%:il )007
i=1 j=1
which, together with (6.2), gives
1 n 2n—1 i 1 n on 1 om1 (p2n—1.p2n—1)n
Fy = (P31 oo = PP oo = : =
(p)&j[[l iR (O * (P p)%
In conclusion, this shows that
Qp = - 2PiPk

T
in agreement with Proposition 6.1.

The determinant evaluations in Proposition 6.1 imply the following multiple Laurent expansions.
We give two versions of each identity, the second being obtained from the first by an application
of one of the classical Weyl denominator formulas (1.2). To verify that these identities agree with
Macdonald’s, the easiest way is to take the second version, replace p by q, m; by —m; and x; by
z; !, and then compare with how the Macdonald identities are written in [Stag89]. (Equation (3.16)
in [Sta89] should read ¢(q) = 1/(¢)%, not ¢(q) = q¢/(q)%.)

COROLLARY 6.2. The following identities hold:

) Wa, (@)= > Y sgu(o) [Lapm o0 pr ()0 -Dm:

mi,...mn€ZL 0ESH i=1
mi+--+mnp=0
n
§ nm;, _n(" m m
g HQ}Z zp (2) H (xjp J _J;Zp 7«)7
mi,...mp€Z =1 1<i<j<n
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(P;P)oc W, (z) = Z Z sgn(o H (2n—1)m; (2n (") +(n—1)m;

mi,...mn€L  0ESh
mi+--+m,=0 (2)

« ((mipmi)a(i)—n - (m,pmi)"‘i‘l—g(i))

n n
2n—1)m;+1— n (2n— 1
- > = I - zm)
=1

mi,....mMn€ZL i=1
mi+-+m, =0 (2)

X H (l'Jp i —xip™ )(1 - :L'zx]pmi-i_mj)a
1<i<j<n

(%5 0%)oo (P P) % Wy (z) = > > sgn(o H g2 p2n('y) Fnm
=1

mi,...,mn€Z 0ESy
mi+--+mp=0(2)

X ((z,pmi)a(i)—n—l — (zip™ )n—i-l o(4)

:1:v

=Y e [a - 2
m1,...,Mn €L i=1 Z:1
mi+--+mp=0 (2)
X H (z;p™ — zp™ )(1_xlxjpmi+mj)’
1<i<j<n
2n+2)m; m;
P We,(x)= > Y se(o H 22 DM (nt2) ()t Dom
mi,...,mMp €L 0€Sn =1

X ((l‘p z) o(i)—n—1 _ (l"pmi)n—i_l_g(i))

_ Z H (2n42)m;—n (2n+2)( i) +m; H(l — g2pm)

mi,....mp €L 1=1 =1
<TI0 G@p™ —ap™) (1 = aiap™ ),
1<i<j<n
n
(p% p%) (P5P)oe lwog(m) = Z Z sgn(o Hm T gy )+ (n—g)m;
=1

mi,.. 7mn€Z G'Esn
« ((:L,lpmi)a(i)—n - (:L,mel)n—i-l ol )

n

S| LR )
mi,...,mp€7Z i=1 i=1
< JT @™ —ap™) (1 —aapm ),
1<i<j<n
n
(p;p)go WBCn(gj) = Z Z sgn H$§2n+1)m1p(2n+l)( )+nml
my,...,mMp €L 0€Sny i=1

X ((@p™)7D 7 = (@gp™i )+ 0)

mi,...mn€Z 1=1 i=1
m;j m; ;1
X H (zjp™ —zp™) (1 — wiz;p™ ™),
1<i<j<n
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1 . n—2)m; n—2) (M n—1)m;
PP Wou() =5 Y sgu(o) [J ol 2mip@n-2 () +n—tms

mi,...mn€ZL  0ES, i=1
mi+-+mp=0 (2)

« ((:L,ipmi)a(i)—n + (mipmi)n—a(i))

= Z ﬁ xl(n—l)(2mi—1)p(2n—2)(’;i)

mi,..mp€ZL i=1
mi+-+my=0 (2)

< I (@™ —2p™)(A - ziap™™), n>2.
1<i<j<n
Proof. We start from the determinant evaluations in Proposition 6.1. In the cases when there are
two theta functions in each matrix elements (i.e. R # A, _1), we apply 0(z;p") = 0(p" /z;pV) to
the second theta function. We then expand the left-hand sides using (2.2). For C,,, C;/ and BC,,
this leads immediately to the desired expansions.

For A,,_1, expanding also the factor 6(txy - - - x,), we obtain

i Z sgn(o) ﬁ(—1)nmipn("5i)+(a(i)_1)mi tmix?mi—i-a'(i)—l

M1,...,Mp=—00 €Sy, =1
© N
= () Wa, () S ()Pt ).
N=—00

Viewing this as a Laurent series in ¢, taking the constant term gives the desired result. (Picking out
any other Laurent coefficient gives an equivalent identity.)

For B, B and D,,, we obtain series with the correct terms but different range of summation.
More precisely, we find that

2X = Z flmy,...,my),

mi,...mpn€ZL

where the identity we wish to prove is

X = Z (=Mt f L my,)
mi,...mn€ZL
mi+-+mp=0 (2)

in the cases B,, and B, and

X = Z flmy,...,my)

mi,...,Mp€ZL
mi+-+m,=0 (2)

in the case of D,,. In any case, it remains to show that

Z flmy,...,my) = Z flmy,...,my).

mi,...,mn€Z Mmi,....;Mn€ZL
mi+-+mp=0 (2) mi+-+mp=1 (2)

To see this, we fix o and restrict attention to the index m;, where i = ¢~1(1). Then, we may write
flma,...,my) = C(g(m;) + g(m; + 1)), where C' is independent of m; and

g(m) = (~1)"pCr VD@ R B,

g(m) = (-1 ()", R = By,
g(m) _ p(2n—2)(73)m§"—1)(2m_1)7 R= Dn
This observation completes the proof. ]
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