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1. Introduction

The qualitative behaviour of control systems based on ordinary differential
equations has been investigated with clarity and elegance using axiomatically
defined General Control Systems. Here an attainablity set function, evolving in
semigroup fashion, is the main entity of interest [1], [2], [3], [4].

In stochastic control theory quite complicated and messy mathematical
machinery is required, usually obscuring the properties being investigated. It
is felt that an analogous axiomatic approach could help circumvent this diffi-
culty, at least for stochastic systems with perfect state observations and satis-
fying the Markov Principle, i.e. the future evolution is completely determined
by the dynamics of the system and the current state, independently of how the
current state was attained.

In [5] the author showed that the attainability set function of stochastic
control systems, governed by Ito stochastic equations and with perfect state
observations, had similar properties to the attainability sets of deterministic
systems. There the state space was a space of random variables with the topology
of mean square convergence. However, any axiomatic attempt in this space
would require additional measurability axioms. To avoid this it is necessary
to consider probability measures as the basic state points. Then the attainability
set function satisfies all but one (a minor one) of the axioms of a deterministic
General Control System. The price paid for this simplification is the use of a con-
siderably weaker topology, that of weak convergence of probability measures.
The advantages though are quite tempting: the underlying space on which the
probability measures are defined can be either finite or a continuum; there is
need to specify the source or sources of randomisation, thus avoiding many of
the modeling difficulties associated with stochastic control systems; the extensive
qualitative theory developed for deterministic General Control Systems carries
over with little modification.
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In this note we will axiomatically define a Generalised Markovian Control
System on a space of probability measures. A simple example involving finite
dimensional transition matrices will be given. The note will conclude with some
comments on the stability results applicable to the system.

Unfortunately this approach does not seem to be extendable to include
random times, imperfect observations or non-Markovian processes (that is, those
not satisfying the Markov principle.)

2. Notation and preliminaries

Let (X,d) be a metric space and 38 the collection of all Borel subsets on X.
Denote by B(X) the set of all realvalued bounded ^-measurable functions on
X, C(X) the subset of B(X) consisting of all functions on X, and V{3&) the set
of all finite realvalued countably additive set functions on 88. Then

9C = {/jeK(J); fi(A) ^ 0 V Ae8S, fi(X) = 1}

is the set of probability measures defined on X.
We will put on 3C the topology of weak convergence, as it is called in standard

probabilistic terminology.
Let C*(X) denote the dual of C(X). Then V(@) s C*(X) by a Riesz Re-

presentation Theorem. Let V{8$) have the weak * topology. Then the induced
relative topology on X is the topology of weak convergence.

Since \i e V{3S) can be represented uniquely as a linear functional L^ on
C(X), namely LJJ) = jxfdfi, then a sequence nne£ converges weakly to
fi e X if and only if for each fe C(X)

lira f fdfin - f fdfi
Jx Jx

= 0.

The following well known theorem will be needed.

THEOREM ([7], [8]. [9]). 9£ is a compact metric space if and only if X is
compact metric.

In this note we will assume that the space X, in which the control system
is acting, is compact and metric. This is true for finite spaces X = (1,2, ••-, iV)
and holds for the systems considered in [5], provided they are restricted with
probability 1 (w.p. 1) to a compact subset of R". Consequently 9C will be compact
and metric. Compatible metrics are given by Kallianpur [8] and Prokhorov [9].
Such a metric will be denoted p.

When X = (1,2, •-,N)

and S Pi = l j
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Here the topology of weak convergence is the subspace topology induced
by the usual topology on UN and 9C is obviously a compact subspace of UN.

For nonempty subsets A, B of J" define

p(H,B) = inf p(n,<j>) where fieSt

p*(A,B) = sup p(p.,B)

and
p(A,B) = max{p%4, B), p*(B, A)} the Hausdorff metric on

nonempty closed (hence compact) subsets of 3C.

3. Definition of a Generalised Markovian Control System

A Generalised Markovian Control System (g.m.c.s.) on (&,p) will be given
in terms of an attainability set function F(p.o, t0, f), the set of all ^ e J that can
be reached from the initial position (/*0,f0)e$" x U+ at time t ^ t0 under all
possible choices of the control action. The attainability set function is assumed
to satisfy the following axioms:

(I) F(fi0, t0, t) is a compact nonempty subset of 9C, defined for every
and 0 ^ t0 ^ t < oo,

(II) Initial condition: F(fi0, to,to) = {fi0} for all n0, t0,

(III) Semigroup evolution: for all fi0 and t0 g ty ^ t2

0, t2) = U {F(<t>u tu t2); (j>x eF(ii0, t0, tt)}

(IV) F(no,to,t) is continuous in t: given no,to ^ tt, e > 0 there exists a
d > 0 such that

p(F(ji0, t0, t), F(fi0, t0, tx)) < 8 for 11 - t, | < 8

(V) F(fi0, t0, t) is upper semicontinuous in (p0, t0) uniformly in any finite
interval tt S t ^ tt: given / i | ) , 0 | y t 1 S ( 2 , j > 0 there exists a 5 > 0 such
that

p*(F((i'o, t'o, t), F(p0, t0,0) < £ for all p.o, t0, t satisfying

o) < <5, | fo ~ to | < <5, ' i g < g ?2 and 0 g ^ , f0 g t.

Axioms I and III imply

(a) the system satisfies the Markov Principle

(b) the class of admissible control functions is sufficiently large to include
piecewise combinations of admissible controls, and is compact in some sense
(see [5]).
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Deterministic General Control Systems usually also satisfy a backwards
extendability axiom: given / i l s t0 ^ tt there is a /x0 such that nt eF(fi0, t0, tt).
This is not so for stochastic systems. Its omission introduces start events into the
system, the consequences of which are discussed in [6].

DEFINITION. A trajectory of a g.m.c.s. is a mapping <j>: [fo>'i] ~* & sucn

that <j>(tb)eF(<j>{Q,ta,tb) for all <0 ^ '„ ^ <6 ^ ' i •

The following results are proved in [6] for General Control Systems defined
on a locally compact metric space and satisfying axioms I to V.

THEOREM. Each trajectory of a g.m.c.s. is continuous in t.

THEOREM. If for a certain g.m.c.s. fil eF(fi0, fo»'i)> then there exists a
trajectory (j)(t) defined on \_t0, f t] such that (j)(t0) = fi0

 and 4>{h) = j"i •

We also require these trajectories to be meaningful in some probabilistic
sense as stochastic processes. To do this we introduce the following definition
due to Neveu ([10], page 73.)

DEFINITION. Given two measurable spaces (X, s^x) and (X2, s42).
 a transition

probability P\ is a mapping of Xt x s/2 into [0,1] such that:

(a.) for every xleXl,P2(xl, •) is a probability measure on {X2,-^2)-
(b) for every A e s&2, P\[ •, A) is measurable on (X, s/^).

Then the following result holds:

THEOREM. Each trajectory <p(t) of a g.m.c.s. on [t0, f j is a transition
probability in the sense of Neveu.

PROOF. Let

Xt = [f0,11] the interval of definition of <f>(t)
s/1 — the Borel field on [<0>'i]
X2 = X
s#2 = 08 the Borel field on X.

Then (a) follows since (j>(t) is a probability measure on X for each ?e[fo>' i]
and (b) follows from the continuity of 4>{t) in t.

Although the g.m.c.s. satisfies the Markov Principle, its trajectories need
not be Markov processes in the strict probabilistic sense. In the example to be
given the trajectories are actually piecewise Markov processes, but not Markov
processes. Piecewise Markov processes, just recently introduced by Kuczura [11],
are actually more realistic in control theory and result from the switching of
controls.
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4. An example

Here we give a simple example of a g.m.c.s. based on an even simpler sto-
chastic control system defined on a finite state space X = {1,2, •••, N]. It is
autonomous, that is, stationary in probabilistic terminology.

Let P(t) be a standard N x N Markov transition matrix i.e. satisfying
(i) P(0) = / identity matrix
(ii) P(s + t) = P(s)P(t) for any s, t ^ 0
( i i i ) P y £ 0 for i,j= 1 , 2 , - , N
(iv) I 7 = 1 p l 7 = 1 for i= 1,2, -,N
(v) P(t) is continuous in t, for all t ^ 0.
We will define an attainability set function

F:3Cx U+ -* 2*
by

f(Po.O = U {P(s)Po} for all / ^ 0, p o e ^
O S s S I

This corresponds to a control system with only two control actions: apply
P{t) or leave it switched off (i.e. apply the identity.)

The following five propositions show that the attainability set function satis-
fies the axioms of a g.m.c.s.

PROPOSITION. F(po,t) is defined for all p0e9C and t ^ 0, for which it is
a nonempty compact subset of 3C.

PROOF. This follows from the definition, the continuity of P(t) and the
compactness of [0, t] .

PROPOSITION. F(po,0) = {po} for all p0e^ .

PROPOSITION. F(p0,t + s) = F(F(po,t),s) for all s,t S; 0, poe&.

PROOF.

F(p0, t + s)= U {P(r)p0; 0 ^ T ^ * + S } = U {Pit! + z2)po; O l i ^ l ,

0 ^ T2 S s}
= U {P(T2)P(T1)PO; o ^ T, g I , o ^ T2 ^ s} = u {P{i2)q; o ^ 2 | S ,

qeF(po,t) = F(F(po,t),s).

PROPOSITION. F(po,t) is uppersemicontinuous in (po,t).
PROOF. Suppose this is not so. Then there exist pn -> p0, tn -> / and

qn e F(pn, ttt) such that {qn} has no limit point in F(p0, t).
Now 9C is compact, so {qn} has limit points. Also there are {tn} with

0 ^ i , S I, such that qn = P(rn)pn. Since tn -> t we have fn, t e [0,T] for some
T < oo. Then rn e [0, T] for each n, and consequently has a convergent sub-
sequence T^ -* T0 , where T0 6 [0, T] .
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Let q'm = P(t'm)p'm. Then by the continuity of the function

g(s,p) = P(s)p, qm-> P(TO)PO = <?o>

and thus the hypothesis is contradicted.

PROPOSITION. F(p0, t) is continuous in t.

PROOF. In view of the preceding proposition it remains only to prove that

lira p*(F(po,to), F(po,0) = 0
t-*to

Since F(p0, t0) is compact this is equivalent to showing that for any q0 e F(p0, t)
and tn -* t0 there is a sequence qn e F(p0, tn) such that qn -> q0 as n -> oo.

We will construct such a sequence. Since q0 e F(p0, t0) there is a i 0 e [0, r0]
such that q0 = P(TO)PO . Then define {qn} as follows:

(i) 0 ^ T 0 ^ t0 g tn, qn = P(tn - t0 + T0)p0

(ii) 0 ^ T 0 ^ fn ^ / 0 . qn = ^o = ^ (T O )PO >

(iii) 0 ^ /, ^ T 0 ^ / 0 , qn = P(QPo-

In each case <jn e F(p0, tn) and clearly gM -* q0 as /„ -» t0.
We now give an example of a trajectory of this g.m.c.s. which is not a Markov

process.

S(t) _ / ' 'or 0 S r £ 1
M 0 ~ \P(t-l) for f ^ l .

Then for any />0 e J", <f)(t) = S(0Po 'S a trajectory of the g.m.c.s, but it is not
a Markov process as S(t) does satisfy the semigroup relation required of Markov
transition matrices. It is however a piecewise Markov process, according to the
definition of Kuczura.

5. Stability in a G.M.C.S.

The stability theory of Generalised Markovian Control Systems is a special
case of that for General Control Systems without the backwards extendability
axiom. This is discussed in [6].

There are two basic concepts: strong properties if every trajectory satisfies
the desired property, and weak if at least one trajectory satisfies the property.
From the control theoretic viewpoint the weak properties are of greater interest.

Many types of stability can be considered e.g. stability, asymptotic stability,
finite time stability, etc., in both strong and weak cases. For example

DEFINITION. A set Ac X is said to be strongly stable (with respect to a certain
g.m.c.s.) if for every <0 = 0 and e > 0 there is a 5 — <5(e, r0) > 0 such that
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F(SP(A), t0,0 <= Se(A) for all t S; t0

(Here Sp(A) = {fieX; p(n,A) < 5}).

DEFINITION. A set A<^2£ is said to be weakly stable if for every t0 ^ 0

and E > 0 there is a 5 = S(t0, e) > 0 such that for each p0 with p(p0, A) < 6 there

exists a trajectory 4>{i) with <j>(t0) = Po an& satisfying

p((j>(t),A)<£for all t ^ t 0 .

Necessary and sufficient conditions in terms of Liapunov functions have been

given by Roxin and Zubov ([1], [2], [3], [4]) for many kinds of stabilities of a

set. These will carry over to the g.m.c.s., with the modifications mentioned in [6].

Szego and Trecanni [12] have developed a theory on limit sets for General

Control Systems, and should be of interest from a probabilistic point of view.
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