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The Ergodic Hilbert Transform for
Admissible Processes

Doğan Çömez

Abstract. It is shown that the ergodic Hilbert transform exists for a class of bounded symmetric ad-

missible processes relative to invertible measure preserving transformations. This generalizes the well-

known result on the existence of the ergodic Hilbert transform.

1 Introduction

Let (X, Σ, µ) be a probability space and T : X → X be an invertible measure pre-

serving transformation. For f ∈ Lp(X), define Hn f =
∑

′n
i=−n

T i f
i

, where
∑

′n
i=−n

stands for summation without the term with zero denominator. The operator H f =

limn→∞ Hn f =
∑

′
i∈Z

T i f
i

is known as the ergodic Hilbert transform. In 1955

M. Cotlar proved that when T is induced by an invertible measure preserving trans-

formation, the ergodic Hilbert transform exists a.e. for every f ∈ L1 [C]. This result

has since been revisited by various authors [CaP, DL, P1]. Among them, Petersen

[P1] gave a direct proof of this result, and Derriennic and Lin [DL] investigated the

conditions under which the a.e. convergence of the one-sided ergodic Hilbert trans-

form holds. All the results above deal with additive processes in their respective set-

tings. This naturally leads to the question of whether the analogous results can be

obtained for not neccessarily additive processes. In this article, we will answer this

question affirmatively for a class of bounded superadditive processes, namely, for ad-

missible processes. This type includes additive processes {Tk f }k∈Z as a special case.

Hence, our result generalizes some of the theorems mentioned above.

A family F = { fi}i∈Z ⊂ Lp is called a T-superadditive process on Z if the sequence

of its partial sums {Fk}k∈Z, where Fk =
∑k−1

i=0 fi , if k ≥ 1 and Fk =
∑0

i=k+1 fi , if

k ≤ −1, satisfies that

Fn+m ≥ Fn + TnFm and F−(n+m) ≥ F−n + T−nF−m, for all n, m ≥ 0.

The process F is called T-subadditive when the reverse inequalities hold. If F is both

superadditive and subadditive, it is called T-additive and is necessarily of the form

{T i f }i≥1, for some f . For a T-superadditive process F we will adopt the notation

HnF =
∑

′n
i=−n

1
i

fi and HF = limn HnF.

A process F = { fi}i∈Z ⊂ Lp is called a T-admissible process on Z if

T fi ≤ fi+1 for i ≥ 0, and T−1 fi ≤ fi−1 for i ≤ 0.
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204 D. Çömez

Obviously, any T-admissible process is T-superadditive. An admissible family F =

{ fi} ⊂ Lp, 1 ≤ p < ∞, is called strongly bounded if supn∈Z
‖ fn‖p < ∞. When

p = 1, a T-superadditive process F ⊂ L1 on Z is called bounded if

γF := sup
n∈Z

1

|n| ‖Fn‖1 < ∞.

In what follows, T will always be an invertible measure preserving transformation,

and all families F = { fi}i∈Z defining a T-admissible process will be assumed to satisfy

the symmetry condition:

T2i f−i = fi for all i ∈ Z.

When F is a T-admissible process on Z, we have fi − T i f0 ≥ 0, and consequently, if

a result holds for Hn f0, then the same is also valid for HnF if and only if it is valid for

HnG, where gi = fi − T i f0. Therefore, in such a case, we can assume that fi ≥ 0,

for each i ∈ Z. In particular, since we will consider sums without 0-th term, for

convenience, we will always assume that f0 = 0.

2 Preliminaries

By Kingman’s decomposition theorem [AS, K], any bounded T-superadditive process

F = {Fn}n≥1 ⊂ L1 can be decomposed into a difference of two processes as Fn =

Gn−Hn, where G = {Gn} is an additive process and H = {Hn} is a purely subadditive

process, in the sense that H does not dominate any nonzero T-additive process and

limn
1
n

Hn = 0 a.e. (and hence in norm). The function δ for which Gn =
∑n−1

k=0 Tkδ
is called the exact dominant of the process, and

∫

δ = γF holds. If H = {Hn} is the

purely subadditive part of a superadditive process, then necessarily Hn =
∑n−1

i=0 hi ≥
0, for each n ≥ 0. However, in general, this does not imply that each hi ≥ 0.

The following statement shows that positive symmetric strongly bounded admis-

sible processes relative to invertible measure preserving transformations admit a sim-

pler representation.

Proposition 2.1 Let T be an invertible measure preserving transformation and F =

{ fn} be a positive symmetric strongly bounded T-admissible process. Then there exists

a sequence of nonnegative functions {vk} ∈ Lp such that fn = Tnv|n| for all n ∈ Z.

Furthermore, there exists δ ∈ Lp such that fn ≤ Tnδ for all n ∈ Z and ‖δ‖p =

supn∈Z
‖ fn‖p.

Proof Define {vi} ⊂ L+
p by vi = T−i fi and v−i = T i f−i , i ≥ 0. From the symmetry

condition vi = v−i for all i ∈ Z. Since F is T-admissible, we have vi ≤ vi+1 for

all i ≥ 0. By monotone convergence theorem and by (strong) boundedness of the

process, there exists δ ∈ L+
p such that ‖δ‖p = limi ‖vi‖p. It is clear that for any

n ∈ Z, vn ≤ δ, and hence fn ≤ Tnδ for all n ∈ Z.
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Remarks (1) The function δ ∈ L+
p is an exact dominant for F if p = 1. When p > 1,

it is called a dominant for F.

(2) Proposition 2.1 also implies that if F is a strongly bounded admissible process

relative to an invertible measure preserving transformation, and if H = {
∑n−1

i=0 hi} is

the purely subadditive part of F, then each hi ≥ 0. Indeed, hi = T iδ− fi = T i(δ−vi).

The following simple statement shows that boundedness and strong boundedness

are the same for admissible processes in L1.

Proposition 2.2 A positive T-admissible process F ⊂ L1 is bounded if and only if it is

strongly bounded.

Proof Obviously, if supi ‖ fi‖1 < ∞, then F is bounded. Conversely, assume that

F is bounded. By the symmetry condition, it is enough to consider the case i ≥ 0.

Since T is measure preserving and F is T-admissible,

‖ fi‖1 =
1

m

m−1
∑

k=0

∫

Tk fi ≤
1

m

m+k−1
∑

i=k

∫

fi ≤
1

m

∫

[Fm+k − Fk] ≤ 1

m

∫

Fm+k

=
m + k

m

[ 1

m + k

∫

Fm+k

]

≤ m + k

m
γF.

Letting m → ∞ we have supi≥0 ‖ fi‖1 ≤ γF .

Remark Proposition 2.2 is not valid if p 6= 1. Indeed, there are admissible processes

in L2 satisfying supn
1
|n|‖Fn‖2 < ∞, which are not strongly bounded. We provide an

example of such a process here.

Example 1 Let bounded positive functions gn, n = 0, 1, 2, . . . be given on some

probability space, and suppose that a measure-preserving point transformation T is

given such that the entire doubly-indexed family {Tngm}n,m=0,1,2,... is independent,

considered as a family of random variables. For example, we could take T to be the

product of countably many shifts on countably many infinite product spaces, and

choose gn as a function of the first coordinate of the n-th product space. Consider the

case in which g0 = 0 and
∫

gn = 1/2n,
∫

g2
n = 1/

√
n. Define fn, n = 0, 1, 2, . . . by

fn = Tng0 + Tn−1g1 + · · · + Tgn−1 + gn.

As usual, define Fn = f0 + f1 + · · · + fn−1. It is easy to check that the sequence { fn}
is T-admissible. Clearly

∫

fn ≤ 1 for all n. Also

∫

f 2
n ≤

(

∫

fn

) 2

+

∫

g2
0 +

∫

g2
1 + · · · +

∫

g2
n,

and therefore,
∫

f 2
n ≤ 1 + c1

√
n.
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The independence assumption implies that { fi} is an independent family. It follows

that
∫

F2
n ≤

(

∫

Fn

) 2

+

∫

f 2
0 + · · · +

∫

f 2
n−1 ≤ n2 + c2n

√
n,

and so supn
1
n
‖Fn‖2 < ∞. But

∫

f 2
n ≥

∫

g2
0 +

∫

g2
1 + · · · +

∫

g2
n ≥ c3

√
n,

and hence F is not strongly bounded.

It is well known that if {ai} is a sequence of nonnegative real numbers with mean

zero (i.e., limn
1
n

∑n−1

k=0 ai = 0), then there exists a set of zero density K ⊂ N such

that limn∈N\K,n→∞ an = 0. So, for a fixed x ∈ X, since limn
1
n

∑n−1

k=0 hi = 0, there

exists a set K ⊂ N, of density 0 such that limn∈N\K,n→∞ hn(x) = 0. On the other

hand, since 0 ≤ Hn, we also have 0 ≤
∫

1
n

Hn =
1
n

∫
∑n−1

k=0 hi =
1
n

∑n−1

k=0

∫

hi . By

subadditivity, Hn ≤
∑n−1

k=0 T ih0, which implies that 0 ≤
∫

1
n

Hn ≤ 1
n

∑n−1

k=0

∫

T ih0 ≤
‖h0‖1. Hence the sequence { 1

n
Hn} is L1-norm bounded. Now, if gn =

1
n

∑n−1

k=0 T ih0,

then 1
n

Hn ≤ gn, and gn → g∗ a.e. for some g∗ ∈ L1. Since 1
n

Hn → 0 a.e., by

the generalized Lebesgue Convergence Theorem, lim
∫

gn →
∫

g∗ implies that 0 =

limn
1
n

∫

Hn = limn
1
n

∑n−1

k=0

∫

hi . Consequently, there exists a set K ⊂ N, of density 0

such that limn∈N\K,n→∞

∫

hn(x) = 0. Since, by admissibility, hm ≤ Tkhm−k for any

m ≥ k ≥ 0, we must have that limn→∞

∫

hn(x) = 0 while n ranges through all

positive integers. This fact, though, does not exclude the possibility that ‖Hn‖1 ↑ ∞,

indeed, this is the case that is most interesting. In the same vein, the convergence of

averages of the form 1
n1−α

∑n
k=1 ‖hk‖1, for some α ∈ (0, 1), is not guaranteed either.

Under some assumptions on the sequence {‖hk‖p}, however, one can say more

about the convergence of averages like 1
n1−α

∑n
k=1 ‖hk‖p. To that end, first we state

the following proposition (without proof), which can be referred to as l’Hôpital’s

Rule for sequences:

Proposition 2.3 Let {an} be any sequence of positive real numbers and let {bn} be a

sequence with bn ↑ ∞. Then

lim inf
n

an+1 − an

bn+1 − bn

≤ lim inf
n

an

bn

≤ lim sup
n

an

bn

≤ lim sup
n

an+1 − an

bn+1 − bn

.

Consequently, if lim an+1−an

bn+1−bn
exists, then so does lim an

bn
.

3 Existence Theorems for Admissible Processes

We begin with proving a lemma needed for the proof of the weak (1,1) maximal

inequality. Following the observations made in the preceding section, we will assume

that if H = {hi} is the purely subadditive part of an admissible process F ⊂ L1, then

(∗) nα‖hn − h−n‖1 = O(1), for some 0 < α < 1.
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This condition, which is rather easy to check, seems necessary for the proof of max-

imal inequality, at least when the techniques utilized in this article are concerned.

That is why, in what follows, we will assume that all the admissible processes satisfy

this property.

Lemma 3.1 Let F ⊂ L1 be a bounded symmetric T-admissible process with exact dom-

inant δ. Assume that the purely subadditive part H = {hn}n∈Z of F satisfies (∗). Then

there exists a constant A > 0 such that

∫

∣

∣

∣

∞
∑

i=1

Hi − H−i

i(i + 1)

∣

∣

∣
dµ ≤ A‖δ‖1.

Proof First, observe that for any n ≥ 1,

∫

∣

∣

∣

n
∑

i=1

Hi − H−i

i(i + 1)

∣

∣

∣
dµ ≤

n
∑

i=1

∫ |Hi − H−i|
i(i + 1)

dµ

≤ lim
n

n
∑

i=1

( 1

i(i + 1)

i−1
∑

j=1

‖h j − h− j‖1

)

.

Now,

n
∑

i=1

( 1

i(i + 1)

i−1
∑

j=1

‖h j − h− j‖1

)

≤
n

∑

i=1

1

i1+α

( 1

i1−α

i−1
∑

j=1

‖h j − h− j‖1

)

for any α ∈ (0, 1) . Let an =
∑n−1

j=1 ‖h j − h− j‖1, and bn = n1−α. Since H satisfies

(∗), without loss of generality we can assume that supn nα‖hn−h−n‖1 ≤ ‖δ‖1. Then,

lim sup
n

an+1 − an

bn+1 − bn

= lim sup
n

‖hn − h−n‖1

(n + 1)1−α − n1−α
≤ lim

n

n−α

(n + 1)1−α − n1−α
‖δ‖1

= lim
n

[
1
n

(1 + 1
n

)1−α − 1
]‖δ‖1 =

1

1 − α
‖δ‖1.

Thus, by Proposition 2.3,

lim sup
i

1

i1−α

i−1
∑

j=1

‖h j − h− j‖1 ≤ 1

1 − α
‖δ‖1,

which implies that the sequence { 1
i1−α

∑i−1

j=1 ‖h j − h− j‖1} is bounded above by a

constant multiple of ‖δ‖1. Therefore,

∫ n
∑

i=1

|Hi − H−i |
i(i + 1)

dµ ≤ A‖δ‖1, for some constant A.
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Theorem 3.2 Let F ⊂ L1 be a bounded symmetric T-admissible process and let its

purely subadditive part H = {hn}n∈Z satisfy (∗). If λ > 0, then there is a constant C

(which may not be the same at each occurrence) such that

µ
({

x : sup
n≥1

∣

∣

∣

n
∑

′

i=−n

fi(x)

i

∣

∣

∣
> λ

})

≤ C

λ
‖δ‖1,

where δ is an exact dominant for F.

Proof Using the Kingman decomposition,

n
∑

′

i=−n

fi

i
=

n
∑

′

i=−n

T iδ

i
−

n
∑

′

i=−n

hi

i
,

where {hi} is the purely subadditive part of F. Therefore, by Abel’s summation by

parts formula,

n
∑

′

i=−n

fi

i
=

n
∑

′

i=−n

T iδ

i
−

n
∑

i=1

Hi − H−i

i(i + 1)
− 1

n
Hn −

1

n
H−n.

If E = {x : supn≥1 |
∑

′n
i=−n

fi (x)

i
| > λ}, then E ⊂ E0 ∪ E1 ∪ E2 ∪ E3, where

E0 =

{

x : sup
n

∣

∣

∣

n
∑

′

i=−n

T iδ(x)

i

∣

∣

∣
>

λ

4

}

,

E1 =

{

x : sup
n

∣

∣

∣

n
∑

i=1

Hi(x) − H−i(x)

i(i + 1)

∣

∣

∣
>

λ

4

}

,

E2 =

{

x : sup
n

1

n
Hn(x) >

λ

4

}

,

E3 =

{

x : sup
n

1

n
H−n(x) >

λ

4

}

.

Clearly, since {∑′n
i=−n

T iδ
i
} admits weak (1,1) maximal inequality [P1], µ(E0) ≤

C1

λ ‖δ‖1, for some constant C1. On the other hand, by subadditivity,

1

n
Hn ≤ 1

n

n−1
∑

i=0

T ih0 and
1

n
H−n ≤ 1

n

n−1
∑

i=0

T−ih0,

where h0 = δ − f0. Hence, we have µ(E2) ≤ C2

λ ‖δ‖1 and µ(E3) ≤ C3

λ ‖δ‖1, for some

constants C2 and C3.
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Now, observe that the sequence {∑n
i=1

|Hi−H
−i|

i(i+1)
}n≥1 is monotone increasing.

Hence, if we define ĥ(x) := limn

∑n
i=1

|Hi (x)−H
−i (x)|

i(i+1)
, then supn |

∑n
i=1

Hi (x)−H
−i (x)

i(i+1)
| ≤

ĥ(x) a.e. By the monotone convergence theorem and Lemma 3.1,

∫

ĥ dµ = lim
n

∫ n
∑

i=1

|Hi − H−i |
i(i + 1)

dµ ≤ A‖δ‖1.

Hence, by Chebyshev’s inequality,

µ
{

x : sup
n

∣

∣

∣

n
∑

i=1

Hi(x) − H−i(x)

i(i + 1)

∣

∣

∣
>

λ

4

}

≤ µ
{

x : ĥ(x) >
λ

4

}

≤ 4

λ
‖ĥ‖1 ≤

4A

λ
‖δ‖1.

Therefore, we obtain that µ(E) ≤ C
λ ‖δ‖1, where C = C1 + 4A + C2 + C3, proving the

assertion.

Let F = { fn}n∈Z ⊂ L1 be a positive bounded symmetric T-admissible process.

For k ≥ 0, define gk
i (x) = fi(x) for 0 ≤ |i| ≤ k and

gk
i (x) =

{

T i−k fk(x) for i > k,

T−i+k f−k(x) for −i > k.

Thus, gk
i (x) ≤ fi(x) for every i ∈ Z and for each k ≥ 0. Also, by Proposition 2.1,

0 ≤ fi(x) − gk
i (x) ≤ T i(δ − vk)(x) if |i| > k,

and

0 = fi(x) − gk
i (x) if |i| ≤ k.

Observe that, ‖δ − vk‖1 ↓ 0 as k → ∞.

The following theorem generalizes existence of the ergodic Hilbert transform

[C, P1] to the setting of bounded symmetric admissible processes.

Theorem 3.3 Let T be an invertible measure preserving transformation and F ⊂ L1

be a bounded symmetric T-admissible process whose purely subadditive part satisfies the

condition (∗). Then

HF(x) = lim
n

n
∑

′

i=−n

fi(x)

i
exists a.e.

Proof By the existence of the ergodic Hilbert transform for additive processes [P1],

we can assume without loss of generality that fi ≥ 0 for each i ∈ Z. Fix k ≥ 1,
and let G(k)

= {gk
i }i∈Z be the process where each gk

i is defined as above. Since gk
i =
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T i(T−k fk) = T ivk for |i| > k, actually,
∑

′n
−n

gk

i

i
=

∑

′n
−n

T i vk

i
+

∑

′k
−k

fi−T i vk

i
, therefore

limn

∑

′n
−n

gk

i

i
exists a.e. Now,

∑

′n
−n

fi (x)

i
−

∑

′n
−n

gk

i

i
=

∑

′n
−n

si

i
, where

si(x) =











0 for 1 ≤ |i| ≤ k,

fi(x) − T i−k fk(x) for i > k,

f−i(x) − T−i+k f−k(x) for −i > k.

Since

Tsi = T( fi − T i−k fk) ≤ fi+1 − T i+1−k fk = si+1 when i > k,

and

T−1s−i = T−1( f−i − T−i+k f−k) ≤ f−i−1 − T−i−1+k f−k = s−i−1 when − i > k,

the process S = {si} is T-admissible. From the construction, S is bounded with exact

dominant δ − vk. Letting f ∗ = lim supn

∑

′n
−n

fi

i
and f∗ = lim infn

∑

′n
−n

fi

i
, we

observe that 0 ≤ f ∗ − f∗ ≤ 2| f ∗ − g∗k |, where g∗k = limn

∑

′n
−n

gk

i

i
. Therefore, if

E = {x : f ∗(x) − f∗(x) > λ}, then

E ⊂
{

x : lim sup
n

∣

∣

∣

n
∑

′

−n

si(x)

i

∣

∣

∣
>

λ

2

}

.

From Theorem 3.2 it follows that, for some constant C > 0,

µ(E) ≤ C

λ
‖δ − vk‖1.

By letting k → ∞, we obtain that µ(E) = 0. Thus limn HnF(x) exists a.e.

Remarks (1) Since Lp ⊂ L1, the strong boundedness in Lp implies strong bounded-

ness in L1 (we deal with a probability space). Consequently, the assertion of The-

orem 3.3 is also valid for strongly bounded symmetric admissible processes F ⊂
Lp, 1 < p < ∞, whose purely subadditive part satisfies the condition

(∗∗) nα‖hn − h−n‖p = O(1) for some 0 < α < 1.

(2) It should be stressed here that without the symmetry condition, which is

needed for cancellation, Theorem 3.3 is false. In fact, there are functions f ∈ L∞

with integral zero for which the one-sided ergodic Hilbert transform (i.e.,
∑∞

k=1

Tk f
k

)

need not exist (see [P2, pp. 94–99]. Take the above f and define { fk} by fk = Tk f for

k > 0 and fk = 0 for k ≤ 0. Then { fk} is T-admissible, and the desired convergence

fails. Also, it should be observed that given any invertible ergodic measure preserving

transformation T, the one-sided ergodic Hilbert transform diverges a.e. for any non-

negative f (not identically zero), since the convergence of one-sided ergodic Hilbert

transform implies convergence of the ergodic averages to zero (Kronecker’s Lemma),

so
∫

f = 0.
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Further Comments

In [DL], among others, norm and a.e. convergence of the one-sided Hilbert trans-

form was studied. An equivalent formulation of the a.e. result of [DL] is: if

sup
∥

∥

∥

1

n1−β

n
∑

k=1

Tk f
∥

∥

∥

1
< ∞

for some 0 < β < 1, where T is a linear contraction on L1 with mean ergodic

modulus, then
∑∞

k=1

Tk f
k

converges a.e. and in L1-norm. Naturally, this prompts the

question whether under similar conditions one would hope to have the a.e. (or norm)

convergence of the one-sided ergodic Hilbert transform for admissible processes. The

answer to this question is, as the following argument shows, affirmative for all (not

necessarily admissible) bounded superadditive processes.

Let T be a measure preserving transformation and F = { fi}i≥0 ⊂ L1 be a bounded

T-superadditive process with sup ‖ Fn

n1−β ‖1 < ∞ for some 0 < β < 1. In [DL, (3.1)]

replace Tk f by fk and Sk by Fk. Then, since Fn

n
converges a.e. by the superadditive

ergodic theorem [K], we obtain as in [DL], that
∑∞

k=1
Fk

k
converges a.e. Note that

in Theorem 3.3, for the two-sided Hilbert transform, we use a condition only on the

purely subadditive part (which trivially holds in the additive case).

Recently, in [CoL] pointwise ergodic theorems with rate are obtained as well as

convergence of the series of the form
∑∞

k=1

fk

k1−γ , γ ∈ [0, 1), where { fk} is a norm

bounded sequence in Lp, 1 < p < ∞. There, the sequence { fk} is also assumed to

satisfy a growth condition

(†) sup
n

∥

∥

∥

1

n1−β

n
∑

k=1

fk

∥

∥

∥

p
< ∞,

for some β ∈ (0, 1]. Hence, when one-sided Hilbert transform is considered, if

F = { fi} ⊂ Lp, 1 < p < ∞, is a purely subadditive process (i.e., with δ = 0 a.e.),

then the condition (∗∗) takes the form

sup
n>1

nα‖ fn‖p < ∞.

Clearly, this condition is stronger than (†). Consequently, for 1 < p < ∞, if F ⊂ Lp

is a strongly bounded admissible process satisfying supn nα‖ fn‖p < ∞, for some

0 < α < 1, then [CoL, Theorem 1] implies that
∑n

k=1

fk

k
converge a.e. This fact, in

turn, implies that if F ⊂ Lp, 1 < p < ∞ is a strongly bounded symmetric admissible

process satisfying supn∈Z
nα‖ fn‖p < ∞, then HF(x) exists a.e. As noted in [CoL, p.

1001], their result fails for p = 1, hence Theorem 3.3 does not follow from their

results. It should also be noted here that the family of functions { fk} considered in

[CoL] is more general than the family of admissible processes, and their method of

proof is different from the method used in this article.
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