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ON AUTOMORPHISMS OF P(1)/[/]<*

JAKOB KELLNER'2, SAHARON SHELAH'“', AND ANDA RAMONA TANASIE

Abstract. We investigate the statement “all automorphisms of P(1)/ [/l]“‘ are trivial.” We show that

MA implies the statement for regular uncountable 2 < 20, that the statement is false for measurable / if
2* =}, and that for “densely trivial” it can be forced (together with 2* = 2*%) for inaccessible /.

§1. Introduction. We investigate automorphisms of Boolean algebras of the form
Pl i=P(1) /="

The instance P2, i.e.. P(w)/FIN, has been studied extensively for many years.!
One can study variants for uncountable cardinals 4. Unsurprisingly, the behaviour
here tends to be quite different to the countable case. One moderately popular® such
generalisation is P/,. Here, we study another obvious generalization of the countable
case, P/. Some results for general P} can be found in [5].

The main result of the paper is:

The following is equiconsistent with an inaccessible: J. is inaccessible, 2" is

A, and all automorphisms of P% are densely trivial.

(Theorem A, Theorem 5.2)

Here, 24 > it is necessary, at least for measurables:

If ) is measurable and 2* = A*, then there is a nontrivial automorphism of Pi
(Theorem B, Theorem 4.1)

ReEmARK 1.1. From [12, Lemma 3.2] it would follow that Theorem B holds even
when “measurable” is replaced by just “inaccessible.” However, the proof there
turned out to be incorrect.’

For A below the continuum we get the following result under Martin’s Axiom
(MA). More explicitly, MA_; (6-centered) is sufficient, which is the statement that
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IRudin [7. 8] showed in the 1950s that CH implies that there is a non-trivial automorphism; Shelah
[9] showed that consistently all automorphisms are trivial. Further results can be found, e.g.. in [1-4., 11,
12, 15].

2See, e.g., [13-15].

3A corrected version has been submitted (see https://shelah.logic.at/papers/990a/). This version
again establishes the result only assuming inaccessibility.
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2 JAKOB KELLNER ET AL.

for any g-centered poset P and </ many open dense sets in P there is a filter G
meeting all these open sets:

For Xy < k < A < 2% and & regular, MA_;(o— centered) implies that every
automorphism of P,i is trivial.
(Theorem C, Theorem 3.1)

Larson and McKenney [5] showed the same under MAy, for the case 4 = 2%
and k = Nj.

Contrast this to the case 4 = k = w: Due to results of Velickovi¢, Steprans, and
the second author, “Every automorphisms of P(w)/[w]<® is trivial” is implied by
PFA [10], in fact even by MA+OCA [15]. but not by MA alone [15] (not even for
“somewhere trivial” [11]).

Contents. We start by introducing some notation and basic results in Section 2
(page 2).

The following sections are independent of each other:

In Section 3 (page 3) we show Theorem C, which we state as Theorem 3.1; in
Section 4 (page 6), we show Theorem B, i.e., Theorem 4.1; and finally in the main
part, Section 5 (page 7) we develop some forcing notions to prove Theorem A, i.e.,
Theorem 5.2.

§2. Definitions. We always assume that 4 is a cardinal and x < 4 is regular.

e The case k =Ny or 4 =1V is included only for completeness sake in the
following definitions.

e In Section 3 we will assume that X} < k < 1< 2Ro,

e In Section 4 we assume that A is measurable and xk = A.

e In Section 5 we assume that / is inaccessible and x = 4.

Notation:

o We investigate the Boolean algebra (BA) P/ := P(2)/[A]<". i.e.. the power set
of 4 factored by the ideal of sets of size <k.

e For A C 4. we denote the equivalence class of 4 with [A4]. We set 0 := [0].

e A C* B means |B\ 4| < &, analogously for 4 =* B: and “for almost all a €
A” means for all but <k many in 4. In particular, 4 =* / means 4 C A and
|4\ 4| < k.

e We denote the BA-operations in P} with xV y. x Ay and x¢ (for the
complement). So we have [4]V[B]=[4UB], [A]A[B]=[ANB], and
[AF =[i\ AL

e A function ¢ : PZ — P} is a BA-automorphism (which we will just call
automorphism), if it is bijective, compatible with A and the complement, and
satisfies ¢(0) = 0.

e Preimages of a function f are denoted by f~!x, images by /”x.

o We sometimes identify # € 2* with {1} C A without explicitly mentioning
it. by referring to # as element of 2% or of P(1).
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ON AUTOMORPHISMS OF P(1)/[A]<* 3

Let us note that P/ is <xk-complete’ and A*-cc. Also, any automorphism ¢ is

closed under <« unions: ¢(\/;c,[4:]) = V,c; ¢([4i]).
An automorphismi is trivial if it is induced by a function on A. A standard definition

to capture this concept is the following:

DEFINITION 2.1.  An automorphism ¢ : P} — P/ is trivial, if thereisa g : 4 — 4
such that ¢([4]) = [g '4] forall 4 C /.

However, we prefer to use forward images instead of inverse images, which can
easily be seen to be equivalent:

DEFINITION 2.2.

e For f : Ay — A with 4y =* /. define 7, : P} — P/ by ns([B]) :=[f"(BN
Ag)]forall B C A.

e f'is an almost permutation, if there are Ay =* Aand By =* Awith f : 49 — By
bijective.

(Such a 7, is always a well-defined function.)

LEMMA 2.3. Let ¢ : P/ — P} be a function. The following are equivalent:

(1) ¢ is a trivial automorphism.
(2) There is an almost permutation f such that ¢ = n.
(3) (Assuming k > No.) There is a bijection f : A — A such that ¢ = 7.

Proor. (1) implies (2): Assume ¢ is a trivial automorphism, witnessed by g.

Then X :=g"/ =" A(as¢([X]) =[g"'X]=[A]).and Y :={a € X : |g'{a}| #
1} =* : Otherwise, pick y? # yl foreacha € Y withg(»?) = g(y}) = a.So y? €
g'Ciff yl € g'C for any C C A Set B/ :={y. : a € Y} for i =0.1 and let
[C]= ¢ ([B°). So #([C]) =[g'C] =[B"]. i.e.. almost all y? are in g'C. but
then almost all y! arein g ' C as well, i.e., [B°] = ¢([C]) > [B']. a contradiction as
B'nB'=10.

Set Ag:= X \ Y. and By := g ' 4. Note that By =* 1. as 0 = ¢(0) = ¢([Y]) =
[¢7'Y].So g | By — Ay is bijective, and we can set f : Ay — By the inverse. Then f
is an almost permutation, and 7 = 7.

(2) implies (1): Let f : A9 — By be an almost permutation, and g : By — A, the
inverse (and let g be defined arbitrarily on A\ By). Then 7z, ([X]) = [/ (X N Ap)] =
[¢7'(X)]. It remains to be shown that 7/ is an automorphism: 7/ ([(]) = [f"0] =
0z, (XN YD) =[f"(XNYNA)] = [f"(XNAg) N f"(Y N A and 7s([2\
X)) =1/"(40\ X)] = [Bo\ f"X].

(2) implies (3) if cf (k) > Ng: This follows from the following lemma. =

LEMMA 2.4 (k > Ng). Let f be a k-almost permutation. Then there is an S =* ),
such that f | S : S — S is bijective.
PROOF. Set Xj:= Ay =dom(f). and X, :=X;N f"X;N f1X;. and S :=

Mico Xi-
The X, are decreasing, and |4\ X,| <  and thus |1\ (f"X,)| < & for n < w.
Accordingly, |1\ S| < k. We claim that g := f | S is a permutation of S. Clearly

4That is. if || < & then \/;¢,[4i] = [U;¢; 4i].
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it is injective. If @ € S then o € X, for all n € w. so f(a) € X, for all n. So
g:S—>S.Ifae S, thena € X, foralln, so f’l(a) exists and is in X,. =

Remark: For k = A = w, there are trivial automorphisms that are not induced
by “proper” bijections f : @ — w, e.g., the automorphism ¢ induced by the almost
permutation n — n + 1.}
We will investigate somewhere and densely trivial automorphisms. To simplify
notation, we assume k = 4 > Ny:
DEFINITION 2.5 (4 > N regular.). Let ¢ : P4 — P/ be an automorphism.
e ¢ is trivial on A € [A]%, if there is an f : 4 — A with ¢([B]) = [/ B] for all
B C A.

e ¢ is somewhere trivial, if it is trivial on some 4 € [A]*.

e ¢ is densely trivial. if for all 4 € [4]* there is a B C A of size 4 such that ¢ is
trivial on B.

Just as before it is easy to see that we can assume f to be a full permutation:

FACT 2.6 (4 > R regular.). An automorphism ¢ : P} — P is trivial on A € [}

iff there is a bijection f : A — . such that $([B]) = [f"(B)] for all B C A.
LemMA 2.7 (1 > N regular.). If every automorphism of Pj is somewhere trivial,
then every automorphism of Pf is densely trivial.

PROOF. Assume 7 is an automorphism of P, and fix 4 € [A]*. If A =* A and if
7 1s trivial on some B, then = is trivial on B N 4 C A, so we are done. So assume
A #£* A

Pick some representative 7* : P(1) — P(4) of z such that 7*(4) and n*(1\ 4)
partition 4, and such that 7*(C) C n*(A4) forevery C C A.Leti : A\ 4 — Aandj :
n*(A\ 4) — n*(A4) both be bijective. Let 7’ map [D] to [z*(D N A) U j'=n*(i"(D \
A))]. This is an automorphism of P;1 so it is trivial on some Dy. If |[Dy N A| = 4, we
are done, as ' restricted to Dy N A is the same as 7 and trivial. So assume otherwise.
Then 7’ is trivial on the large set Dy \ 4. Then 7 is trivial on i” (Do \ 4) C 4.

§3. Under MA, every automorphism is trivial for ; < /. < 2%,

THEOREM 3.1. Assume Ry < k < 4 < 2%, x regular, and MA_; (co-centered)
holds. Then every automorphism of P} is trivial.

For the proof we will use that we can separate certain sets by closed sets.

A tree T is a subset of 2<? such that s € T N 2" and m < nimpliess [ m € T; for
sucha T we set im(7") = {# €2 : (Vn € w)n | n € T}. A subset of 2 is closed
iff it is of the form lim(7") for some tree 7.

LeMMA 3.2. Assume Ry < 0 < 1< 2%, cf(0) >Ny, and MA_; (o-centered)
holds. Assume Ay, A) are disjoint subsets of 2% of size < A; |Ag| > 0. Then there
is a tree Ty in 2= such that |Ag N 1im(Ty)| > 6 and A, N lim(Tp) = 0.

If additionally |A| > 0, we get an additional tree Ty such that |A; N 1im(Ty)| > 0,
Ao NIm(Ty) = 0, and Ty N Ty C 2" for some n.

3 A bijection f : @ — o has infinitely many  such that f (n) # n + 1, and therefore an infinite set 4
such that /4 is disjointto {n + 1 : n € 4}.
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PrOOF OF THE LEMMA. In the following we identify an x € 2% with the according
(infinite) branch b in the tree 2<®. So a branch b can be in A, or in A4; (or in neither;
but not both, as 4y and A4; are disjoint).

We define a poset Q as follows: A condition ¢ € Qisatriple (n,. S,. f,). where:

L] I’lq € w,

e S, is a tree in 2<“ of the following form: S, is the union of 25" and finitely
many (infinite) branches {b; : j € m} for some m € w. each b; € Ay U 4.
and bj [ ng = bk [ ng implies (b] € A; iffbk S A,‘).

Soevery s € S, with |s| > ny is either “in 4(-branches” (i.e., there is one or
more b; € Ay with s € b;), or “in A;-branches” (but not in both).

Note thatan s € S, of length ny is either in 4¢-branches, or in A;-branches,
or in neither (but not in both).

e fy:S; — 2suchthat. fori = 0.1, f,(s) = i whenever s € S,. |s| > n, and s
is in A;-branches.

The order on Q is the natural one: ¢ < pifn, > n,, S, 2 S,.and f, extends f .

Q is g-centered witnessed by (n,.S,. f) = (ng. f4 125"): If p.q are in Q
with n, =n, =:n and f, | 25" = f, | 25", then (n,S, US,. f, U f,) is a valid
condition stronger than both p and ¢.

For x € A;, the set D, of conditions containing x as branch is dense: Given
p € 0. let n, > n, be such that all 4;_;-branches in p split off x below n,: set
S, :=S,U2%% Ux:andset F,(s) =ifors eS,\S,.

Similarly, for all n € w, the set D;; of conditions g with n, > 7 is dense as well.

By MA _;(o-centered) and |4;| < A. we can find a filter G which has nonempty
intersection with each D, for x € 4o U 4, as well as for each D;f. So F' := UpEG fr
is a total function from 2<% to 2; and for all x € 4; there is an n, € w such that
m > n, implies F (x [ m) = i.

As |Ay| > 0 and cf(0) > Ry we can assume that there is an n such that n, =
ny for 0 many x € A4o. If additionally |4;| > 0, we analogously get an n} and
set n* := max(ng.n}): otherwise we set n* :=nj. We set T := {s € 2<? : |s| >
n*, (Vn* <k <|s|)F(s | k) =i} and generate a tree from it; i.e., we set 7; :=
TrU{s | m: m<n* s e T’} Aswe have seen above, lim(7;) N 4; > 0 fori =0
(and, if |4,| > 0. for i =1 as well). Clearly Ty N T} C 2"": and lim(7;) N 4;_; is
empty, as for any x € 4, |, cofinally many n satisfy F(x [ n) =i — 1. -

PROOF OF THE THEOREM. Fix an automorphism 7 of P/ represented by some
n* : P(A) — P(A). and let 7 * represent 7~'. We have to show that 7 is trivial.
Fix an injective function 77 : 1 — 2. Set

C,={x€2”: x(n)=0}and A, :=5'C, = {a < 4 :5(a)(n) = 0}.
Define v : 4 — 2% by
v(B)(n) = 0iff B € n*(A,).

In the following, “large” means “of cardinality >«”, and “small” means not large.
We will show:

(*1) n*(y'C) =* v’ C for C C 2% closed.
(*2) Y C Aand |Y| > & implies v Y| > &.
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(*3) If Ag. A are disjoint subsets of 2°, 49 C v”/ large, then 7z '* (v 1 4¢) \ 7' 4,
is large.

(*4) If Ao, A; are disjoint subsets of 2°, 4g C "/ large, then 7* (7' 4) \ v 14,
is large.

(Note that (x;) is the only place where we use that  is regular.)
Proof:

(*1) n*(y'C,) = v''C, holds by definition of v. As © honors <k-unions and
complements, and as the C, generate the open sets, this equation (with =*)
holds whenever C is generated by <x-unions and complements from the
open sets, in particular, if C is closed.

(*3) Fix x €2”. Then #'{x} has at most one element (as # is injective),
and 7' {x} =" 7"*vY{x} by (). That is, v"!{x} is small. And Y C
Usrewry v {x}. so as & is regular we get p" Y| > &.)

(*;) Using the previous lemma (with x as 0) we get a tree T, separating A,
and A;. That is, im(7y) N 4; = ) and X := lim(7Ty) N Ao is large. As X C
Ay Cv" A, we get that v'1X is large. And v'X = v 1im(Ty) Nnv'4y =*
7* (771 1im(Ty)) N v~ 4y, the last equation by (x;). This implies 7! im(7p) N
n ' (v14y) is large. and so 7' (v14) \ 714, is large.

(*4) We get an analogous result when interchanging v and # and using 7* instead
of w1,

We claim that the following sets N; are all small:

(1) Ni={a€a: (=3 € W)nla) =v(p)}.

(2) Ny:={aeci: (328 e i)nla)=v(p)}.

(3) Ny:={pei:(=Faeci)nla)=v(p)}
Proof.

(3) Assume Nj is large. Set Ay := v”’ N3, which is large by (*;); and 41 := "' 2. So
Ag and A are disjoint, and by (x3) 7 *v 14, \ 7' 4; is large. but 5 ' 4; = /.
(1) Assume N, is large. Set Ay = 5" N; (large. as 5 is injective) and A, := v"'A. So
Ao and A are disjoint, and by (x4) 7* (771 40) \ v''4, is large, but v'4; = L.
(2) Assume that N, is large. For every o € N;, let 2 # B in J be such that
n(a) =v(p2) =v(BL). For i € {0.1}, set ¥; :={B.: a € N,} and X; :=
7 (Y;) (without loss of generality disjoint), and 4; := #” X;. So the A4, are
large and disjoint, and we can find a tree T, such that 4y N 1lim(7}) is large,
and A; N lim(Ty) is empty.
As Ay C 5”2, this implies that the inverse 7-image of 4y N lim(7p) is also
large. That is,
7 (Ag N1lim(Ty)) = 7 4o Ny ' im(Tp) =* Xo N v 1im(7Ty) is large
(for the last equation we use (x;)). Therefore also Yy, N v~ 1lim(7y) is large.
and so. by (x7). v'(Yo Nv ' im(Ty)) = lim(7Ty) N v" Yy is large as well.
On the other hand, lim(7p) N 4; isempty. so 0 =* 7*y ' (lim(T,) N 4;) =*
m*n ' im(Ty) N n*y ' A;. Using (*1) for lim(Tp). and noting that 7*5 ' 4, =
Y1, this set is (almost) equal to Y, N v~ lim(7) which therefore is also small,
and so lim(7,) N v Y] is small.
So we know that lim(Ty) N v’ Yy is large and lim(7y) N v" Y, is small, but
v'"Yy = v" Y], a contradiction.
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Note that this implies:

(*s) X N Y small implies v/X Nv"”Y small, for X, Y C A.
(*s) v W' X =* X for X C A.

Proof:

(*s) Assume otherwise. Without loss of generality we can assume that X and Y
are disjoint, and by (3) that v X and v"Y both are subsets of #”/. Then
v'X Nv"Y C 5’ N, is small.

(*¢) Set Y :=v1v’"X \ X.Thenv”Y C N, U Njissmall, and by (*,) Y is small.

Set D := A\ (N; U N,) and define e : D — A such that e(«) is the (unique) f € 4
with 57(a) = v(B). Clearly e is injective. We claim that e generates 7. i.e., that the
following are small (where we can assume X C D):

(4) Ny :=n*(X)\e"X.

(5) Ns:=e"X \n*(X).

Proof.

(4) Assume that Ny is large. Set Y = 7 '*(N,). without loss of generality ¥ C X
and 7*(Y) = Ny. So n*(Y) is disjoint from e”Y (as it is even disjoint from
e"”X). We set Ay :=v"'n*(Y) and 4; ;= v"e” Y, by (xs) we can assume they
are disjoint, and by (x,) both are large (e is injective).

By (x3), w7 (v14g) \ 771 4 is large.
7' (4)) =Y. asv(e(a)) =n(a) foralla € D. And (v 14y) =* Y by
definition and (), a contradiction.

(5) The same proof works: This time we set ¥ = ¢ ! Ns: see that 7*(Y) and e” Y
are disjoint and large; set Ay := v"'7*(Y) and A4; := v"e” Y; use (*3) to see
that Y \ #'v"e”Y = Y \ Y is large. a contradiction. 4

§4. For measurables, GCH implies a nontrivial automorphism.

THEOREM 4.1. If ) is measurable and 2* = )t, then there is a nontrivial
automorphism of P7.

PrROOF. Let D be a normal ultrafilter on 4 and denote by 7 := [A]* \ D its dual
ideal restricted to sets of size A.

Since 2* = 4%, we can list all permutations of 1 as {e, : @ < A*}; and analogously
all elements of Z as { X, : o < A1},

We will construct, by induction on o < A" a set 4, € Z and a permutation f', of
Aq, such that for a < f:

(1) Ao C* Ay

(2) Xo C Ayy1-

(3) falx) = fp(x) for almost all x € 4, N Ag.

(4) There is some X C A4y of size A such that e/ X and 7/, X are disjoint.

(Note that by x C* y we mean |y \ x| = Z.not y \ x € Z; and the same for ‘almost
all”.)
The construction:
e Successor stages « + 1: Fix any B € 7 disjoint to A,, such that 4, UB D X,.
Set C :=el/BN Ag.
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First assume that |C| = 1. Then set A,,] = A, U B and let f,; extend
fo by the identity on B. Then (4) is witnessed by X := e,' C.So we assume
|C| < 4. Partition B into large sets By. By, B, such that ¢!/ B; is disjoint to A,
fori =0.1. Set Ay, 1 := Aq U B Uel/B. and define f,,1 on B such that the
restriction to B; is a bijection op e By_; for i = 0,1, and the restriction to B,
a bijection to ¢’ B, \ A. Then (4) is witnessed by X := By.

e Limit stages J of cofinality <A: Let ¢ :=cf(J) and choose (o, :i<¢) a
cofinal increasing sequence converging to 6. The union [ J; <& Aa; 18. by <4
completeness, in Z. Remove < 4 many points to get a subset 45 such that:

— Foralli< j<{¢, f;and f; agree on Ay; N A;.

— Foralli <&, fi | (Ao, N As) is a full permutation (we can do this as in

Lemma 2.4).
Then f;. defined as the union of the f,, is a permutation of 45 and almost
extends each f'q,.

e Limit stages J of cofinality 1: We choose an increasing cofinal sequence (c; :
i < 1) converging to é. By induction on i € A we construct 4} =* A,,. such
that:

—Aini=0.

— The fq,’s fully extend each other on the 4}, ie., if x € 4/ N A;. then

fa,-(x) = foéj(x)-

— fa; t Ai = Al is a “full” permutation.

We can do this by removing from A, : the points less than i, the points where
S o; disagrees with some previous /', for any j < i; and by removing </ many
points to get a full permutation.

Now we can set A5 and f5 to be the unions of 4} and f,. respectively, for
i < J. Note that 45 is in Z (as it is a subset of the diagonal union); and f5is a
permutation of 4; satisfying (3).

Note that for all X C 4, either X € Z or A\ X € Z (but not both), i.e., either X
or 2\ X is C* 4, for coboundedly many o < /.

This allows us to define the automorphism 7 as follows: For X € [A]*,

2([X]) = L2 x. if X €¢Z,X C* A, for some a < A* (Case 1),
A\ SfIANX)] ifX ¢Z A\ X C* A4, for some a < AT (Case 2).

Note that in Case 2, n([X]) =[(A\ 4a)U (4o \ fL (A \ X)) =[(A\ 44) U
SU(X NAy) as flAy =* Aq.

7 is well defined on [4]*, as exactly one of X or 4\ X will eventually be C* A4,,.

7 is an automorphism: 7([()]) = 0. = honors complements: If X is Case 1, then
n([4\ X]) is by definition (Case 2) [A\ /(X )]. = honors intersections X N Y: This

1s clear if both sets are the same Case. Assume that X is Case 1 and Y Case 2. Then
X NY C XisCase |, and for any « suitable for both X and Y we have

(XD A=([Y]) = [foX N ((A\ 4a) U f5(Y N 4a))]
=[faXnfi(Y NA)] = [fa(X N Y)).
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7 is not trivial: Every automorphism e is an e, for some € A*; and according to
(4) there is some X, C A, (and therefore in Z) of size A such that e X,, is disjoint
to f ., X,. a representative of ([ Xa]). -

§5. For inaccessible /, all automorphisms can be densely trivial. In this section,
we always assume the following (in the ground model):

ASSUMPTION 5.1. A is inaccessible and 2% = A*. We set u := A*+.

In the rest of the paper, we will show the following:

THEOREM 5.2. (A is inaccessible and 2" = A*.) There is a A-proper, <i-closed. 27 -
cc poset P (in particular, preserving all cofinalities) that forces: 2 = J**, and every
automorphism of P is densely trivial.

By Lemma 2.7, it is enough to show that every automorphism is somewhere
trivial.

5.1. The single forcing Q.
DEeFINITION 5.3. We fix a strictly increasing sequence (0:) <z With 07 < A regular
and 07 > 204l

o Let ([ (*)46 ; be an increasing interval partition of / such that 7 l* has size 2% ;
and fix a bijection of /" and 20 Using this (unnamed) bijection, we set
[s]:={¢ € 176> s}fors e 207,

So the [s] are cones, i.e., the set of all branches in 1" extending s.
For { < 4. we set I*(<() := U, I and analogously I*(<() := I*(<({ +
1), I*(>) := 2\ I*(<). and I*(>(, <¢) := I*(>{) N 1*(<€).

e A condition ¢ of the forcing notion Q is a function with domain 4 such that,
forall{ € A, ¢({) is a partial function from [ / to 2, and such that for a club-set
CqC

— if { ¢ CY, then ¢({) is total,

— otherwise. the domain of ¢({) is 77 \ [s7] for some sg € 2<%

C? and sg are uniquely determined by ¢; and ¢ is uniquely determined by
th.e partial function ﬁ‘f : 2 — 2 defined as (J;¢; ¢(0).

e ¢ is stronger than p if #4 extends #”.

(This implies that C? C CP”, and that sg extends sép forall{ € CY.)
The following is straightforward:
LEmmA 5.4.  Q has size 2% is < J-closed, and adds a generic realil = quG ntin 27,

PrOOF. < /Z-closure is obvious, but for later reference we would like to point out
the “problematic cases”:

Let (p;)i<s be decreasing for a limit ordinal § < 4.

As a first approximation, set #* :=(J;_;#” (a partial function) and C* :=
Nics C7 (a club set) and s} := U, st" € 25% for s € C*. For { ¢ C*, n*is
indeed total on /;*, and for { € C* the domainin [ is [\ [s/].

The problematic case is when s; is unbounded in 0. (This can only happen
if ¢f(6) = 07. in particular for at most one { .) In this case we can just pick any
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extension 77 of #* by filling all values in IZ,. This gives the desired ¢, with C% =
C*\{+1 4

REMARKS.

e The limits of <A-sequences of conditions are not “canonical” if there are
problematic {’s, as we have to fill in arbitrary values.

e ;7 determines the generic filter, by G = {p € Q : n? C »}. This follows from
the following facts:

— p and ¢ are compatible (as conditions in Q) iff #? and #? are compatible
as partial functions and X, , :={{ € C?: sip and sg are incomparable}
is non-stationary.

— If p.q are such that X, ; is stationary, then the set of conditions r such
that " and #9 are incompatible (as partial functions) is dense below p.

5.2. Properness of Q: Fusion and pure decision.

DEFINITION 5.5. Wesay g <; p.ifg<p. € Cl andq|E=p]¢.
g <} pmeans g < pand ¢(¢) = p(&).

(Note the difference between ¢ gg p and g <g;; p: The former does not require
E+1ecCi)

LEMMA 5.6. Letd < A be a limit ordinal, £ € /. and (q;)i<s a sequence in Q.

(1) If6 < Aand q; <; g; for all i < j <0, then there is a oo such that qoo <; ¢
foralli.

(2) If q; <¢, qi for i < j <8, where (&;)ies is a strictly increasing® sequence in A.
then there is a (canonical ) limit qo such that qo <, q; for all i.

ProoF. (1): We perform the same construction as in the proof of Lemma 5.4.
If there is a problematic case {, then { > ¢ (as for {’ < ¢ the conditions ¢;(¢’) are
constant). We can then make #* total on 7*(> & < {). (It may not be enough to
make it total on 7%, as C*\ {{} might not be club.)

(2): Define goo (¢) := U, 5 ¢:(¢) for { € 4.

This is a non-total function (on IE‘) iff { € C% :=),s C%. which is closed as
intersection of closed sets, and also unbounded: If 6 < A because we have a small
intersections of clubs, if 6 = A as it contains each ¢&;.

There are no problematic cases: If { is below some ¢&;, then ¢;() is eventually
constant. If { is above all &;, which can only happen if § < A, then cf(6) <6 <
sup(&) << 0. 5

So Q satisfies fusion; and we will now show that it also satisfies “pure decision”;

standard arguments then imply that Q is A-proper and /*-bounding.

DEerINITION 5.7. Leté € 4, ¢ € Q.

e POSS2(¢) := 21"(<9) S0 in the extension V[G], for each & there will be exactly
one x € POSSZ (&) compatible with (or equivalently: an initial segment of) the
generic real 7. We write “x C ” or “G chooses x” for this x.

6Ford = 1. it is enough that the &; converge to 4. Ford < A, we use that the &; are increasing and that
sup(&;) > cf(9).
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e poss(g. &) is the set of x € POSSZ (&) compatible with 79 (as partial functions),
or equivalently: x € poss(q.&) iff ~¢ IF x € 5. So ¢ forces that exactly one

x € poss(g, &) is chosen by G.
o Let 7 be a name for an ordinal. We say that g¢-decides z, if there is for all
x € poss(q. &) an ordinal v such that ¢ forces x C 5 — 7 = 7%.

Note that for p€ Q and { € C?, ¢ gg p is equivalent to poss(q.{ +1) =
poss(p.{ + 1), while ¢ <; p is equivalent to { € C? and poss(q. () = poss(p. ().

LEMMA 5.8. Assume p € Q, { € CP, x € poss(p,{ + 1), and r < p extends’ x.
Then there is a q §? p forcing: x C n — r € G. This condition is denoted by r V (p |

C+1).
PrOOF. We set ¢(¢) to be p(£) for £ <, and r(¢) otherwise. If ¢’ < g forces
x C 7 then ¢’ extends x and thus ¢’ < r. -

COROLLARY 5.9. (“Pure decision”) Let T be a name for an ordinal, p € Q. and
{ € CP. Then thereis a q <! p which ({ + 1)-decides z.

ProoF. Let (x;);cs enumerate poss(p,( + 1), for some 6 < 4. Set py = p., and
define a g;—decreasing sequence p; by induction on j < ¢: For limits use Lemma
5.6(1), and for successors choose some r < p; deciding 7 with a stem extending x;
and set p; . torV p; [ (C+1). -

From fusion and pure decision we get bounding and A-proper, via “continuous
reading of names.” This is a standard argument, and we will not give it here; we will
anyway prove a more “general” variant (for an iteration of Q’). in Lemmas 5.25
and 5.27.

Fact 5.10.

o QO has continuous reading of names: If g is a Q-name for a A-sequence of ordinals,
and p € Q. then there is a ¢ < p and there are &; € 1 such that ¢&;-decides o (i)
foralli € A.

e Q is \*-bounding. That is, for every name g e M and p € Q there is an [ € J*
and q < p such that q forces f (i) > g(i) for all i € A.

o QO is J-proper. This means: If N is a <A-closed elementary submodel of H (x) of
size A containing Q, with y sufficiently large and regular, and if p € Q N N, then
there is a ¢ < pN-generic (i.e., forcing that each name of an ordinal which is in
N is evaluated to an ordinal in N).

For completeness, we also mention the following well-known fact (the proof is
straightforward):

Fact 5.11. Assume k is regular, and that the forcing notion R is k*-bounding. Then
R preserves the regularity of &, and every club-subset of k in the extension contains a
ground model club-set.

7By which we mean x C #’.
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5.3. The iteration P. Let us first recall some well-known facts:

FAcTs 5.12. A <A-closed forcing preserves cofinalities <A and also the inaccessi-
bility of A. The <A-support iteration of <A-closed forcings is <A-closed.

We will iterate the forcings Q from the previous section in a <A-closed <A-support
iteration of length u := A*+:

DEFINITION 5.13. Let (Pq. Qa)a<u be the <A-support iteration such that each Q,
is the forcing Q (evaluated in the P,-extension). We will write P to denote the limit.

REMARK. One way to see that P is proper is to use the framework of [6]. However,
we will need an explicit form of continuous reading for P anyway, which in turn
gives properness for free.

DEFINITION 5.14. Assume that w € [u]<* and & € /.
e 77 = (7 )acy is the sequence of Q-generic reals added by P.
~ ~a

e POSS(w, &) := 2w*I"(<<) Exactly one x € POSS(w, &) is extended by 77, we
write “x is selected by G.” or “x < G.”

e poss(p,w. &) = {x € POSS(w., &) : =pl--x<1G}.

e Let 7 be a name of an ordinal. 7 is (w,¢)-decided by ¢. if there are
(%) yeposs(gw.¢) Such that g forces x <G — 7 = %,

Clearly, if 7 is (w. ¢)-decided by ¢. and if ¢’ < ¢, w’ O w and & > &, then 7 is
(w', &")-decided by ¢’.

REMARK. If g € P(w,()-decides some P,-name 7. then the same ¢ will generally
not (w N ., &)-decide 7 for any &.°

In the following. whenever we say that q(w, {)-decides something, we implicitly
assume that w € [¢]<* and { € A.

DEFINITION 5.15. Let g be a P-name for a A-sequence of ordinals.

e ¢ continuously reads g. if there are (w;. &;);¢, such that ¢(w;, &;)-decides g (i)
foreachi € A.

e P has continuous reading, if for each such g and p € P there is some ¢ < p
continuously reading g.

The following is a straightforward standard argument:
FACT 5.16. If P has continuous reading. then it is *-bounding.

As a first step towards pure decision, let us generalize the <;-notation we defined
for Q:

8For example: For a p-condition Q. let obp? be the set of odd elements of C? (or any other unbounded
subset X of C” such that C? \ X is still club), and set 0pD} := J; coppe I;* \ dom(y?). Note that for

any x : ODD(f — 2, 7” U x defines a condition in Q (stronger than p). So if we fix any p(0) € Py, and
define the Pj-name 7 € {0, 1} to be 0 iff 7, [ODDf(O) is eventually constant to 0, then 7 cannot be

({0}, ¢)-decided by p(0) for any ¢. And if p(1) is any condition with p(0) I+ (1 (0) = 7, then Tis
({1}.1)-decided by ¢ := (p(0). p(1)).
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DEFINITION 5.17. Let p € P, w € [u]<*, and ¢ € /.

o pfits (w. &), if w C dom(p) and p [ aIF & € CP@ forall a € w.

e g <,¢pmeans:q < p.and foralla € w, g | a forces g(a) <¢ p(a).
oy g;‘ c P is defined analogously using <5+ instead of <.

Obviously ¢ g;é p implies ¢ <,,¢ p: and ¢ <, p implies that both p and ¢ fit
(w. &).

REMARK. In contrast to the single forcing (or a product of such forcings). g <,,¢
plorg <; . p)doesnotimply poss(q. w, &) = poss(p. w, £).” More explicitly, setting
w = {0, 1}, it is possible that x € poss(p, w. &) but p does not force that x(0) C 1,

implies x(1) € poss(p(1).&). (But see Section 5.5.)

5.4. Continuous reading and properness of P.

LemmA 5.18. Ifg;isa S;, ~decreasing sequence of length 6 < A, then there is an
r<.:dqiforalli<o.

PrOOF. Set dom(r) := (J,;os dom(g;). without loss of generality closed under
limits. By induction on o € dom(r) we know that r | o < ¢; | « for all i, and define
r(a) as follows: If oo € w, we know that the ¢; (o) are g;—increasing. Using Lemma
5.6(1), we pick some r(a) such that r(«) gg gi(a) for all i. If ¢ w, we just pick
any r(a) < g;(a) for all i. =

It is easy to see that P satisfies a version of fusion:

LEMMA 5.19. Assume (p;)i<s is a sequence of lengthd < . such that p; <., ¢ p;
Jor i < j <6, w; €[u]* increasing, & € A strictly increasing. Set weo == J;_s wi.
dome, := |J,.sdom(p;). and & :=sup,s&;. If 6 = A, we additionally assume
Weoo = dOMy.

Then there is a limit qoo with dom(ge) = domye such that qog <u,¢, pi for all
i<o.

If 6 < 4, then g fits (Woo, Eoo)-

(If weo = dom,, then the limit g is “canonical”.)

PrOOF. We define ¢g..(a) by induction on dom,,. We assume that we already
have ¢’ := ¢oo | a which satisfies ¢’ <, na¢ pi foralli <o.

Case 1: a ¢ wo, (this can only happen if 6 < A): We know that ¢’ forces that
(pi(a))ics is a decreasing sequence, and we just pick some ¢, () stronger then all
of them.

Case 2: o € woo: Let i* be minimal such that a € w;«. We know that ¢’ forces
for all i* <i< j <o that p;(a) <¢, pi(e). so according to Lemma 5.6(2) there is
a limit g (@) <, pi(@) (so in particular ¢’ IF {; € C%(® for all i > i*).

9 An example: dom(p) = dom(g) = w = {0.1}. min(C?©) = min(C4©) = ¢, and both p(0) and
¢(0) have trunk a € POSS2(&). p(0) forces that p(1) = ¢(1), that min(CP() = ¢ and that the trunk
of p(1) is either b or ¢ (elements of POSSZ(¢)); both are possible with p(0). Now ¢(0) g:{ p(0) decides

that the trunk of p(1) is 5. Then ¢ < . p, and (a, ¢) is in poss(p, w, &) \ poss(g, w, ¢). In particular

—w,¢

(a.c) € poss(p.w, &) but p does not force that a C , implies ¢ € poss(p(1).¢).
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Now assume d < 4. If a € wqo, then it is in w; for coboundedly many i < 6. In
other words, p; [a IF {; € C?i® for coboundedly many i € § and all j > i, which

implies g | a0 IF Eo € Clo0(@), .

PRELIMINARY LEMMA 5.20. Let p fit (w.{). x € poss(p.w. + 1), and let r < p
extend x,i.e.,r - x < G. Then there is a q §1’,§ p forcing that x < G impliesr € G.

ProoF. Set dom(g) := dom(r). We define ¢(«) by induction on @ € dom(g) and
show inductively:

eqlas<i, . pla

—wNa,(

eglalr(xa<Gy —r|acGy).
For notational convenience, we assume dom(p) = dom(r) (by setting p(a) = 1o
for any « outside the original domain of p).

Assume we already have constructed gy = ¢ [ a. Work in the P,-extension V[G,]
with ¢o € G.

Case l:r | a ¢ G,. Set g(a) := p(a).

Case2:r | a € G,. Then r(a) < p(a). If a ¢ w, we set ¢(a) := r(a); otherwise
we set g(a) tobe r(a) V (p(a) [ { + 1) as in Lemma 5.8.

If @ € w, then in both cases we get ¢ [ o F g(a) <! p(a). Also, if Gy selects
x | (a4 1), then at stage a we used, by induction, Case 2; so then r(a) € G(«) as
x(a) C 7 - =

We can iterate the construction for all elements of poss(w, { + 1), which gives us:

Lemma 5.21. If p fits (w. () and z is a name for an ordinal, then there isa q <. . p
which (w.{ + 1)-decides t.

PrOOF. We enumerate poss(p,w.( +1) as (x;);cs. We start with py:= p.
Inductively we construct p,: If at step £, if x, is not in poss(p,. w.{ + 1) any more,
then we set p,. := p,. Otherwise, pick an r < p, that decides 7 to be some 7*¢ and
extends x,. Then apply 5.20 to get pyyi gju_{ p¢ which forces that x, < G implies
7 = t*. At limits use Lemma 5.18. .

For the proof of Lemma 5.23 we will need a variant where the “height” { is not
the same for all elements of w, more specifically:

PRELIMINARY LEMMA 5.22. Assume that p fits (w.() and p | a* I+ (* € CP@),
and that T is a name for an ordinal. Then there is a q S;C p such that q | o* IF

q(a*) </. p(a*) and there is a (ground model ) set A of size <J.such that q |- ¢ € A.

Proor. This is just a notational variation of the previous proof. For notational
simplicity we assume a* ¢ w.

First we have to modify Preliminary Lemma 5.20: A candidate is a pair (x, a)
where x € POSS(w. {) and a* € POSS?({*). Assume that (x, a) is a candidate, that
p € P fits (w.{). and that p [ o* I- {* € C?@"), and assume that r < p extends
(x,a),ie.rlF (x<1G&a* C na*). Then there is a ¢ such that

qS:ZCp, gla*lFgla®) SZ; pla®), and ¢k ((x<G&a™ Cy L) - reaG).
) > ~Q
(%)
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The same proof works, with the obvious modifications:
When deﬁning g(a), we inductively show:

oqla<i ;plaandifa>a*theng [ a* I g(a )g; pla™).
eqlal((x [aQGa&a*gn ) —rlacG,). unless o < a* in which
~a
case we omit the clause about a*.

Again, in the P,-extension we have:

Case l:r | @ ¢ G,. Set g(a) == p(a).

Case 2: r | @ € G,. Then r(a) < pla). If a ¢ w U {a*}, we set g(a) = r(a);
otherwise we set ¢(a) to be r(a) V (p(a) | { + 1) as in Lemma 5.8.

Then we can show (x) as before.

We then enumerate all candidates (there are </ many) as (x,, a¢). and at step £,
if (x¢. ag) is compatible with p, use (x) to decide 7 to be some z*. -

We will now show that P is A*-bounding and proper. We first give two preliminary
lemmas that assume this is already the case for all Pg with ' < .

PRELIMINARY LEMMA 5.23. Let f < u. and assume that Py is J*-bounding for all
< p.

Assume p € Py fits (w. (), C C Lisclub, and o™ < .

Then thereisaq <), panda & € C such that q fits (w U{a*}, &).

If additionally a* € dom( Yand p | o* IF {* € CP) for some C* € A, then we
can additionally get q | o* IF q(a*) <[. p(a®).

ProoF. For notational simplicity assume o* ¢ w and min(C) > max(¢.(*). B
induction on a < f§ we show that the result holds for all w, a* with w U {a*} C a.

Successor case o + 1: Set wp := w N a.

By our assumption P, is A*-bounding, so every club-set in the P,-extension
contains a ground-model club (see Fact 5.11). In particular, C?® contains some
ground-model C*. By Lemma 5.21 (or Preliminary Lemma 5.22, if a* < «) there is
ap g;oic p | a (also dealing with o*, if a* < «) leaving only </ many possibilities
for C*. So we can intersect them all, resulting in C’. Set C” := C' N C. Apply the
induction hypothesis in P, to get ¢’ <' , ;P and &in C” such that ¢’ fits (wq. &)

—wg

(andalso ({a*}. &), ifa* < ). Setq —q U{(a p(a))}, so trivially ¢ g;c p (and,
ifa=a*thenqg | alFg¢(a) < 70 pla)), and ¢ fits (w U {a}, &).

Limit case: If w is bounded in « there is nothing to do. So assume w is cofinal.
Set ap := min(w \ @*) and wp := (w N ag) U {a*}. Use the induction hypothesis

in Py, using (p [ ag. wo. (. a*.(*) as (p.w. (. o*, {*). This gives us some p; gjmaoi

P | ay fitting (wy. {y) and dealing with a*. for some ¢y € C. Set py := p’ A p.

Enumerate w \ wy increasingly as («;);<s. and set w; := wo U {a; : i< j} for
Jj<o.

We will construct p; in P,, and ({;);<s a strictly increasing sequence in C, and we
set pj := p; A p and will get: py fits (wy. {¢).and pe g:;i’ii piforalli< € < j.

For successors £ = i + 1, we use the induction hypothesis in P, ,, using (pi |
o, wi. Gy () as (p.w.C.a*.(*). This gives us p/_ | ggili pi | ai11 and some

(iv1 > ¢ in C such that Di+1 fits (le,CiH) and Piv1 | o IF p,-+1(ozi) <2— pi(ozi).
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For j limit, we set {; := sup,_; {; (which is in C). and let p; be a limit of the
(Pi)i<j- That is, dom(p;) = U, dom(p;). and for § € dom(p;) let p;(f) be as
follows: If § ¢ w. fix some condition p;(f3) stronger than all p; (). Otherwise, there
is a minimal iy < j such that f € w;,. and p,(p) <Z~ pi(B) forall iy <i< €< j.
In that case let p; () be the (canonical) limit of the (p;(f}));,<i<;. and note that
¢echih, -

PRELIMINARY LEMMA 5.24. Let f < u. and assume that Py is J*-bounding for all

p<p.
Assume that p € Py fits (w.{). and g is a Pg-name for a A-sequence of ordinals.
Then there is a ¢ S;_ 4 continuously reading g.

PRrROOF. Set pg := p. (o := {, wy := w. We construct by induction on i < Ap;, p;.
{i, a;, and w; as follows:

e Given p;. wj. and (. pick @; € dom(p;) \ w; by bookkeeping (so that in the
end the domains of all conditions will be covered).

e Successor j =i + 1: Set w; | := w; U{e;}. Find pl’.Jrl g;a piand (i > (G
such that p!_, fits (w;y1.(i11) (using the previous preliminary lemma).

e Limit j: Let p;. be the canonical limit of the (p;)i<;. {; = sup,;({;). and
w; = U<, wi. Note that p; fits (w;. ().

e In any case, given p; we pick some p; g;__g,‘ p} which (w;.(; + 1)-decides

J5)

a(()).

Then the limit ¢ of the p; continuously reads g. -
LeMMA 5.25. P has continuous reading (and in particular is 2*-bounding).

PrOOF. Assume by induction that Py is /*-bounding for all g < f’. Then the
previous lemma gives us that Py has continuous reading of names, and thus is
J*-bounding. =

The same construction shows A-properness:

DEFINITION 5.26. Let y > u be sufficiently large and regular. An “elementary
model” is an M =< H(y) of size A which is <A-closed and contains 4 and u (and
thus P).

Lemma 5.27. If M is an elementary model containing p € P, then thereisaq < p
which is strongly M-generic in the following sense: For each P-name t in M for an
ordinal, q(w. {)-decides t via a decision function in M (so in particular g \F T € M).

(The decision function being in M is equivalent to w C M, as M is </ closed.)

Proor. Let g be a sequence of all P-names for ordinals that are in M. Starting
with py € M, perform the successor step of the previous construction within M: as
M is closed the limits at steps </ are in M as well. Then the /-limit is M-generic.

5.5. Canonical conditions. We will use conditions that “continuously read
themselves.”
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DEFINITION 5.28. p € P is (w, {)-canonical if p fits (w.{) and p(a) | ({ + 1) is
(wNa,l +1)-decided by p | a forall o € w.

FacTs 5.29. Let p be canonical for (w, ().

(1) If q<}!.p. then q is canonical for (w.() and poss(p.w.(+1)=
poss(q, w, + 1).

(2) Let x € poss(p,w,{ + 1). There is a naturally defined p A x < p such that
plF(pAX€EG+x<G). {pAx: xeposs(p.w.(+1)} is a maximal
antichain below p.

(3) Let x € poss(p,w,{ + 1). In an intermediate P,-extension V[Gy] with x |
a < G, the rest of x, i.e., x | [a, 1], is compatible with p/G, in the quotient
forcing.

Or equivalently: If ro < p | a in P, extends x | «, then there is an r < ry
extending x.
DEFINITION 5.30. Assume p € P, and g is a P-name for a A-sequence of ordinals.
Let E C A be a club-set and w = (w¢);cr an increasing sequence in [u]<*.

p canonically reads g as witnessed by w if the following holds:

e dom(p) = Urep we-

e pis (wg. {)-canonical for all { € E.

eplal Pl =E\ () for some (ground model) ¢/

e g [ I*(<C+1)is (wy. + 1)-decided by p forall { € E.

If ¢ is the constant 0 sequence (or any sequence in V), we just say “p is canonical”

(as witnessed by w).

LemMA 5.31. For p. g as above, there is a ¢ < p canonically reading g.

If p € P, and g is a P,-name for some oo < u, then q € P,,.

PrOOF. We just have to slightly modify the proof of Lemma 5.24.

We will construct p;, ¢;, and a; by induction on j € A, settingw; := {a; : i < j}.

such that for 0 < j < k the following holds:

® Di S;/.,grf Dj-

e pjis (wj. &;)-canonical.

e pi(w;.&; + 1)-decides g | I*(<&; +1).

e In p;. for a; € wy. {{;: j<i<k} is (forced to be) an initial segment of

Cprla)),
e The «; are chosen (by some book-keeping) so that {a;: i€ i} =
Uie dom(pi).
Then the limit of the p; is as required, with £ = {&; : i € A} and. for { = ¢&; in E,
Wwe use w; as we.
Set po < p such that |dom(py)| = 4. and set &, := 0. Assume we already have
pi.a; for i < j (so we also have w;).
e For j limit, let 5 be a limit of (p;);<;. and set &; := sup,; &;. Note that s fits
(w,&).
e Successor case j = i + 1: Find s Sznéi piand &; > ¢&; such that s fits (w_,-, &)
(As in Lemma 5.23. Recall that w; = w; U {a;}.)Strengthen s to s S;Zifi SO
that:
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— s still fits (w‘,-, fj),
— the trunk at o; has length &;.i.e.. s [ a; IF min(C5<ai>) =¢;).
— for s, i’ < i, there are no elements in Cs'@r) between ¢iand &,

e Construct s* [ a by recursion on o € w;, such that s* [ « gjv [ @ and

jnag;
s* 1 a(w; Na.&; + 1)-decides s(a) | (¢; + 1) (which is the same as s*(a) |
(& 4 1)). This gives s* <7 : S

ALY

o Find p; < . s* which (w;.&; + 1) decides g [ I*(<& +1).

e Choose a; € dom(p;) \ w; by bookkeeping. B

Facts 5.32.

(1) If a Pg-name x C Ais continuously read (by some Pg-condition p). and cf(ff) >
A, then there is an o < f such that: p € P,, and x is already a P,-name
(formally: there is a Po-name y such that p b x = y).

(2) There are at most |a|* < A* many pairs'® (p, x) such that p canonically reads
X in Pg,.

5.6. A systems. In this section we define A-systems and show that such systems
exist, which we will in the indirect proofs of Lemmas 5.39 and 5.54.

In Section 5.10 we will then fix a specific A-system for the rest of the paper.

From now on, we assume that p, forces

7 : P(4) — P(4) represents the automorphism ¢ : P? — P7, (5.33)
and we set, for f € u,
ap =zl ).

where, as usual, we identify n, € 2* with ;7;;1{1} C A
Note that, other than i’]ﬂ, ap is a priori not a P -name (but see Section 5.9).

We also fix a P-name for a representation of the inverse automorphism ¢!

Abusing notation, we call it 1.

With Sf - we denote the stationary subset of u consisting of ordinals with cofinality
AT

DErFINITION 5.34. LetS C Sf . bestationary, y > u sufficiently large, and regular,
and z € H(y). “An elementary S-system” (using parameter z) is a sequence
(Mjg. pg)pes such that, for each f € S. My is an elementary model (as in Definition
5.26) and contains z, f. p.. ¢. w and ', and py € PN My canonically reads az

witnessed by some (wf/})ceEp/;, which E?# C J, club (cf. Definition 5.30).

By a simple A-system argument we can make an S-system homogeneous:

10Depending on the formal definition, we could/should add “modulo equivalence.” i.e., there is a
<|a|*-sized set Z of such pairs such that whenever p canonically reads y in P, then there is a x such

that (p.x) € Zand p IF x = .
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DEFINITION 5.35. (Mp. pg)pes forms a “A-system.” if M. p is an elementary
S-system with parameter z, and is homogeneous in the following sense: For f8
and f; < > in S, we get:

(1) My, N Mg, N wisconstant. We call this set the “heart” and. abusing notation,

denote it with A. Obviously A D /., A D dom(p,). it € A, etc.

(2) Mg p=A. So in particular f is the minimal element of M above A.
All the non-heart elements of My, are above all elements of My, . That is,
sup(Mp, N u) < fa.

(3) There is an e-isomorphism hg g, * Mg — Mp,. mapping B to f2. pg, to pp,.
ag to ag, and fixing 4, u, gﬁ r as well as each o in A.

Note that this implies that the continuous reading of gg works the same way for all
p. In particular the E?# are that same FE for all §; and if F Cﬁ is the function mapping

POSS(w,”.{ +1) to the value of gy | I*(<{ +1) (for { € E). then hy, , (F/") =

I3 : : * oy _ ) Pha
F; andmpartlcularhﬂlﬂz(wé ) =w, "

coordinates above A.

i.e., they are the same apart from shifting

LEMMA 5.36. Assume S C Sﬁ‘ . Is stationary.

o For every z € H(y) and (P/ﬁ)/fes there are My and pp < p?}, such that M. p is
an S-system with parameter z.

o If M, p is an S-system then there isan S’ C S stationary such that (Mﬂ, pﬂ)ﬁesz
is a A-system on S’.

Proor. The first item is trivial, using the fact that everything can be read
canonically.

Using 2* = 1%, a standard A-system argument (or: Fodor’s Lemma argument)
lets us thin out S to some S so that (Mg N i) se 2 satisfies (1-3). For § € S? let
151 My U{Mp} — H(A") be the transitive collapse, and assign to f the tuple of the
15-images of the following objects:

® My. pp.ag. u. ¢. 7. and EPF.

e For { € E?#5, the object wé’ﬁ.

eFor{ e EPfandy € wé)/}, the object prﬁ.

Again, there are |[H (A")|* < u many possibilities, so the objects are constant on a
stationary S’ C S2.

For a < 8 in S’, we define hs 5 = IB; o1 . (Note that 15 () = 15, () for o €
A.) .

So in particular if we have a A-system on S, then pg [ sup(A) = pg | f € My is
the same for all § € S, and outside of A the domains of the p; are disjoint for f € S.
In particular we get:

Fact 5.37. For a A-system with domain S, and A C S of size <A, the union of the
(pg)pea is a condition in P (and stronger than each pg).

Whenever r € Pg N My (as is the case for r = py | f). we know that r € P, for
a € A (as My knows that f has cofinality A7).
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Instead of “r € P, for some o € A” we will sometimes just state the weaker but
shorter r € Pgyp(a)

REMARK. This is an important effect also for some names. Generally, a Pg-name
in Mp is of course not a Po-name for any o < f (just take the Py-generic filter Gg).
However, as we will explicitly state in Lemma 5.42, such names for subsets of A are,
modulo some condition, P,-names for some « € A and independent of f. In the
specific case of the Pg-name py(ff) we do not have to increase the condition:

DEFINITION AND LEMMA 5.38. p := pg(f)isa Py,,(a)-nameindependentof § € S.

PROOFE. pg(f) | { + lis (wfﬁ ,{ 4 1)-determined for cofinally many { € E, where
€ [fI<isa subset of Mp. So wpﬁ C A, and the isomorphisms between the My
guarantee that each w " is the same, and that pz(f) | ¢ + 1is decided the same way.

So pis a P,-name for y = sup(w? w, ")¢ek. This y is independent of § € S, and is in
A. So p is actually a P,-name for some a € A; and certainly a Pg,,(»)-name. o

For later reference we note:
LeMMA 5.39. For all but non-stationary many 5, p. forces ag ¢ V.
(Here, V5 denotes the Pg-extension of the ground model.)

Proor. Assume that pg < p, forces that agy = xp fora Pg-name xg forall f € §*
stationary. We can also assume that p; canonically reads a,. Pick M containing pg
and S C S* such that (Mp. pg)ses is a A-system, where we can assume (or get from
homogeneity) that &5 , (x4,) = xp,. So the xj are Pg-names in My and therefore
Pgyp(a)-names, and are the same for all §. Choose 1 > fyin S.So pg, A pp, force that

ag, = X = ag,. which contradicts the injectivity of ¢ and the fact that ;7 ;é 77/; o
~P1

5.7. Preservation of cofinalities, catching canonical names.
COROLLARY 5.40. P is AT "-cc and preserves all cofinalities.

Proor. Cofinalities </ are preserved as P is <A-closed.

Cofinality A* is preserved by properness: Assume that it is forced by p that x has a
cofinal A-sequence & := (gi )ic,.- Then there is an elementary model M containing p
and ¢. If ¢ < p is M-generic., and G a P-generic filter containing ¢. then o;;[G] € M
forall i < 4, so M Nk is a cofinal subset of k of size /4 in the ground model.

Cofinality > A*™ is preserved as P has the 2™ -cc, which we have shown in a very
roundabout way with the fact about A-systems: If (p/,)oc, are arbitrary conditions,
then (Mp, pg) form a A-system from some py < pj, and stationary S. and any two

(in fact, <1 many) py are compatible for € S. -

REMARK 5.41. This shows that P is (u. 4)-Knaster, i.e., for every A € [P]* there
is a B € [A]* which is A-linked.

The 2" -cc also implies: For every name x for a subset of A (or of A1) there is a
p < pand a Pg-name y such that the empty  condition forces that X=y.

Given a < u, there are <u many pairs (p. x) where p canonically reads x Clin
P, (see Fact 5.32(2)). So thereis a g(a) < u such that for each such p, x, both z(x)
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and 7!(x) are equivalent (modulo the empty condition) to some Py (o) -name. Let
C* C ube the clubset with (( € C* & a < () — gla) <.

Given a A-system on S we can restrict it to a A-system on S N C*; so we will
assume from now on that each A-system we consider satisfies S C C*.

To summarize:

LEMMA 5.42.

(1) If B S. p € Pp. and x a Pg-name for a subset of A. then there is an oo < f§
and a q < p canonically reading x, t(x). 7' (x) as Po-names.
More explicitly: There is a Po-name y which is canonically read by q such
that g b y = x. (And analogouslyforg(zc) and 7' (x) instead of x.)
(2) Ifadditio%ally p < pg !l pinPgand(p.x) € Mg, then we can additionally get:
X. 7t(x) and ' (x) are Po-names in My independent of f € S.
More explicitly: Let y be as above (for x). Then o € A, g and y are in My,
and if ' € S and h ::thiﬂ,, then h acts as identity on a, ¢, and}N/, and (Mg
knows that) q |- y = h(x). (And analogously for t(x) and t' (x) instead of x.)

ProoF. (1): Use Lemma 5.31 to get a ¢; € Py canonically reading x. And if
B € S thencf(B) = AT, sodom(p) is bounded by some o’ < f and, by Fact 5.32(1).
q1 € Py, forsomea’ < o) < f.Asf € C*.zn(x)andz !(x) are Pg-names. So repeat
the same argument to get ¢ < ¢ in P, canonically reading all three subsets of 4.

(2): Apply (1) inside My. As o € N M. we get o € A. As ¢ canonically reads
itself as well as y, we know that /2 does not change ¢ and y. As /& is an isomorphism,

we know that /1(¢q) = ¢ forces that (x) = h(y) = y. -

5.8. Majority decisions. For any (a1, az, a3) with a; € {0, 1} thereisa b € {0, 1}
such that b = a; for at least two i € {1.2,3}. We write b = major,_, ,3(a;).

Similarly, if f1. f2. f3 are functions 4 — 2 we write major,_, ,;(f;) for the
function 4 — 2 that maps £ to major;_, 5 3(f(£)).

The following is a central point of the whole construction:

LeEMMA 5.43. Let (M. po)acs be a A-system. Pick By < 1 < B < B3 in S.

(1) ps forces: Ify, = majori:1.2‘3(ﬂﬂ_)= then ag, =" major,_ 5 3(ag,).

(2) Let s = \;4 pp;- Recall that s(;) is the same Py, z -name called p for all i.
We can strengthen s by strengthening. for i =1,2.3, the condition s(B)=p
to some Pg 1-names r; < p (without changing CP?) such that the resulting

condition forces = major,_; 53(7 ).

i

(We do not have to strengthen s(By) for this, i.e., we can use rq := p.)

We describe this by “(r;);<s honors majority.”
Recall that v; =* v, denotes that v{(¢) = v,(£) for all but </ many £ € A.

ProoF. (1) Identifying 2* with P(4). we have major;_; 55 /7 = (f1 N f2) U (f2N
f3) U (f1 N f3) for any tuple (f;);=123. As & represents an automorphism, we get
r(major;_; 53(f7)) =" major,_y »5(z (/). Apply this to f; =1 .
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(2) Work in the Pg, . -extension. Recall p := pg, (o). So both p and 7, are
~P0o
already determined, and 77 extends #”. Set ry := p.
Set 51 :=(0,0), 5 (0 1), s3:=(1.0). For { € C? and i = 1,2, 3. we define
ri (&) D p() as follows.

Extend sf by s;.i.e., 5, = (sf)"si; and set r; ({)(4) = "

5] (€) for € € [s/1\ [s/'].

(5.44)

B

So #'i agrees on its domain with ;7 .,and each £ € 1isin dom(y') for at least two
0

i € {1,2,3}. Accordingly, an extension by a generic filter G with r; € G(f;) for all
i < 4 will satisfy = majori:1_2.3(77/f ). (We do not even have to assume that any
~Po ' ~Pi

pp € G.) .

REMARK 5.45. Let p’ﬁ1 be the condition where we strengthen pg, (1) to ri. Note
that p;f isnotin My, . as iy ¢ Mp and ry is defined using 77 . Similarly (basically the

same): r1[Gp, ] ¢ Mg, [ Gp,]. even if we assume that G, is Mﬂ1 -generic. But generally
we will not be interested in M -generic conditions or extensions (we needed generic
conditions only in Lemma 5.27, which in turn is needed for Corollary 5.40). And
while usually most conditions we consider can be constructed within (and therefore
will be elements of) some My, this is generally not required (an example are the s;’s
in the following lemma).

The same proof works if we do not start with the pz but with any stronger
conditions, as long as they still “cohere” in the way that the pg cohere:

LEMMA 5.46. Let (M. po)acs be a A-system. By < 1 < o < B3 in S, and s; <
pp, fori =0.1,2.3 such that:

e dom(s;) C Mp,.
o s* :=; | B is the same for all i.
o s* forces that the s;(B;) are the same for all i.
(In the usual sense: The s;(B;) are continuously read from generics below By in
the same way for each i < 4.)

Then there is condition stronger than all s; forcing that ’;Z/)’() = majori:ms(rfzﬁ‘) and

thus ag, =" major;_; 5(ag,).

5.9. ap is in the S + lextension. We now show that a5 can be assumed to be a
Pg-name.

The following definitions, in particular everything concerning the notion of
coherence, is used only in this section. In the rest of the paper, we will use from
this section only Lemma 5.54, i.e., the fact that ag € Vg, .

REMARK. Why do we introduce this (rather annoying) notion of coherence? Well,
we would like to simultaneously construct something like s; < pg. where each s; ends
up in Mpg,. We cannot directly do this in My,. as Mg, does not know about. e.g.. f;.
So instead, we construct four different 5] < pg, in My, in such a way (a “coherent”

way) and use s; := L (s]).
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Let us for now (until Lemma 5.54) fix an arbitrary A-system (Mp. pg)ges as well
as fly < f1 < f» < P in S. For notational convenience, set

B = Po.
DEFINITION 5.47.
©§=1(¢i)icsin M p is called coherent, if each ¢; is stronger than pg and ¢; |
(B + 1) is the same for all i < 4.
e If g is coherent. then /\;_4 h; 5 (¢:) is a valid condition in P, and we call it ¢*.

Le., ¢* is the union of the copies of ¢; in Mpg,; and the copy for ¢y is just go.
r € P is called coherent, if r = ¢* for some coherent g € Mpg.

Facrs.

o The pg, are coherent, more correctly:
The condition /\;c4 pp, is coherent; equivalently: The tuple (h;’ﬂll (p/;l.))
coherent.
e Any coherent r is stronger than /\;_, pp,.
o If g is coherent, r; < q; in My for i < 4.andr; | B; is the same for all i < 4, then
Ni<a h;_ﬂi (r;) is (a valid condition and) compatible with q*.
o r € Piscoherent iff: dom(r) C \J;.q Mp,.7 | (uN Mp) € Mp, is stronger than
pp,- and each r(f;) is forced to be the same condition.
In that case, r = q* for q; := h;:[}l_(r,-) andri =r | (uNMg).

<4 B8

LEMMA 5.48. If r is coherent. then it can be strengthened' to force” ap =
mMajor;_; »3 dg;-
ProOE. This follows from Lemma 5.46, using s; :=r | (u N My,). —
DEFINITION 5.49.
o @ = (w;);<4 is coherent.if w; € [u]<*isin My andw; N (B + 1) isindependent
of i.
In the following we always assume that ¢ and w are coherent.
o g fits (w, {). if each ¢; fits (w;, ).
e ¢ is (w, {)-canonical, if each ¢; is (w;. {)-canonical.
e i <I g means: 7 is coherent, and r; <" , ¢, foralli < 4.
w.l w;.¢
o X = (x;);<4 is defined to be in poss(g. w, {) if x; € poss(g;, w;,¢) and x; | B is
independent of i. Such a x will be called coherent possibility.

(Note that the x;(f) in a coherent possibility can be different for different
i < 4. Also note that such an X is automatically in Mg, which is <A-closed.)

Note thatif 7 <% . g and gis (@. {)-canonical. then 7 and 7 have the same coherent
(w,{ + 1)-possibilities (see Fact 5.29(1)).

Several of the previous constructions result in coherent 4-tuples when applied to
coherent 4-tuples. In particular:

1I'To a condition that will generally not be coherent.
12Here we write ffy instead of f to stress the interaction with £y, ..., f3, but recall that f := f.
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LemMma 5.50.

(1) Assume (q7) jes is a sequence of coherent 4-tuples such that. for each i < 4, the
i-part (q}) jes satisfies the assumptions of Lemma 5.18.

Then for each i, the lemma (in M) gives us a limit r, which we call q?.
We can choose the ¢° so that they form a coherent 4-tuple.

(2) The same applies to Lemma 5.19. That is, we can get a coherent fusion limit
from a A-sequence of coherent tuples.

(3) Assume p fits (w.(), and o; € p such that w! := w; U {e;} is coherent. Then
thereisa &> { and a q <} . p which fits (0'. &) and is (W', &)-canonical.

(4) Assume q is coherent and (for simplicity) (w, {)-canonical with B € w; (which
is independent of i < 4), and t; are names of ordinals. Then there is an ¥ ggl q
such that T is (w, { + 1)-decided by F.

By this we mean that t; is (w;. { + 1)-decided by r; for all i < 4.

Proor. For the first items, we just have to look at the proofs of the according
lemmas (For (3) this is Preliminary Lemmas 5.23 and 5.24) and note that coherent
input gives us coherent output. In the following we will prove (4). We work in Mj.

Enumerate all coherent possibilities as (X )recx. Set #° := g. We now construct
7 t1 from 7 := 7% where we assume ¥ <i:d

e Find sy stronger than ry and extending x¢. deciding tp.

e s* := (50 | B) Ary is stronger than r{, as 7 is coherent. Strengthen s*(8) =
r1(B) = ro(B) to so(B). but replace the trunk with x; (8). Then s* | f forces that
s*(B) <ri(B).as x; | B=x¢ | B and as x1(f) is guaranteed to be possible,
because 7| is canonical. Further strengthen s* (above f) to extend (the rest of)
x1: and then strengthen the whole condition once more to decide ;. Call the
result sy.

e Do the same for i = 2, starting with s, resulting in s,, and then for i = 3,
starting with s,, resulting in some s3.50 5; < r; extends x; and decides 7;, and
s3 [ B <s; | Band s3(B) is stronger than s; (B) “above { + 1.”

e We define ] < r; as follows: dom(r}) = (dom(s3) N ) U dom(s;). We define
r/(a) inductively such that r/ | a S;,ﬂaﬁ r; forces that x; [ & <t G implies
silaeqG. '

— Fora < f:

If 53 [ @ ¢ Gq.setr(a) = ri(a). Assume otherwise. So s3(e) is defined
and stronger than r;(a) = r3(a). If a ¢ w; (which implies o < f8), set
ri(a) = s3(a). Otherwise, use s3(a) V (r3(a) | { + 1), as in Lemma 5.8.

— For a > f, we do the same but we use s; instead of s3. In more detail:

If 5; | @ ¢ Gq. set ri(a) =ri(a). Assume otherwise. If o ¢ w;. set
ri(a) = si(a). Otherwise, use s; (o) V (ri(a) [ { +1).

We can use this 7/ as #X+1: It is coherent, 7’ g:gg k.
assuming x; < G. ’

Coherent tuples g naturally define a P-condition ¢*. However, we have to assume
that g is canonical to guarantee that coherent g possibilities correspond to ¢*-
possibilities:

and r/ decides 7;
4

LemMa 5.51. Assume g and W coherent. We set w* =,y h; 5 (w;). Let X be in
poss(q.w.{ + 1).
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(1) qfi (ﬂ) ) iff g fits (w*.0).

Q) F<i. qiffr <i..q"

(3) 4 sume q fits (w 0). Then q is (w. {)-canonical iff g* is (w*, {)-canonical.

(4) Assume that q is (w.()-canonical. Let x* be the union of the hy g (x:). Then
x* € poss(g*.w*.{ + 1); and every element of poss(qg*,w*.{ + 1) is such an
x* for some x € poss(g, w,{ +1).

(5) Assume that q is (w.{)-canonical. Then q(w,( + 1)-decides (1;)i<a iff
g*(w*, ¢ + 1)-decides all g ().

PROOF. Assume a € w;. Seta’ := h; (o) € w* and ¢' == hj ; (g;).

(1) Assume ¢;, o satisfy ¢; |  IF { € C%®_ By absoluteness they satisfy it in
Mj. so the hy , -images q'.a’ satisfy it in My, which again is absolute: and ¢* |
o' < ¢’ | o forces that ¢*(a’) = ¢'(a’). For the other direction, assume (in M)
some s < ¢; | o forces { ¢ C%@ Then hy g, (s) is compatible with ¢* and forces

!

¢ ¢ cule) = cal),

In the same way we can show (2), as well as (5) and the trivial directions of
(3) and (4). For example, if § is (@, {)-canonical, then ¢* is (w*, {)-canonical. For
this, use the fact that every element y* € poss(¢*, w*,{ + 1) “induces” a coherent
possibility 3 (which is true whether g is canonical or not). And if additionally x €
poss(g, w, ¢ + 1), then x* € poss(g*,w*,{ + 1); and if each ¢; forces that x; < G
implies 7; = x', then ¢* forces that x* < G implies h g (z;) = h g (x7).

We omit the (also straightforward) proofs of the other directions of (3) and (4)
(which we do not need in this paper). -

In the following, whenever we mention ¢* or w*, we assume w, ¢ to be coherent
and in M. We will (and can) use x* only if g additionally is canonical (otherwise
x* will generally not be a possibility for ¢*). In this case, every P-generic filter
containing ¢* will select an x* for some coherent possibility x.

LEMMA 5.52. Assume q is coherent, g; are P-names in Mg for elements of 2%, and"
qo I a0 & V1. Then there is a coherent ¥ < q. and sequences ((/) e, and (/) ;e;
such that ¥ is (w/ . {/)-canonical for all j. and for all x € poss(F.w/.(/ + 1) there is
some £ € I*(>C7, <) and b = (b;)i<a. with b; € 2, violating majority'* such that
foralli < 4

i I+ x; < G — QZ(E) = b,’.
As the pg, are coherent, we can apply the lemma to g, := ap (for all i) and get:

COROLLARY 5.53. If pg |- ap & Vpi1.thenthereisacoherentr* < )\,_, pp, forcing
that

- (gﬁo =" majoriilez.:‘(gﬁi))‘

PROOF OF THE LEMMA. We will construct (in My), by induction on j € . {/, w/
and 7/ with ”? = ¢;, such that the following holds:

13As usual, Vp, denoted the Py -extension.
YThat is, by = 1 — major;_; 5 3(b;).
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(1) 7/ is coherent. A

(2) w/ is coherent, for each i < 4 the w/
covers | J;; dom(r; /).

(3) #/is (w/,¢/)- canomcal.

(4) 7 <z, ., 7/ for j <k.

(5) If x € poss(i/,w/.{/ + 1), then there is an £ € I*(>(/, <(/*!)anda b €2
such that for at least two i, i» in {1, 2,3}, r’ 1 forces that x; < G implies

go(l) =1-b, g;,(£)=b. g;,£)=0>. (%)

are increasing with j, and their union

Then we take the usual fusion limits, as in L,emma 5.50(2), and are done. ,
For limits /. let 7 be a (coherent) limit of (#/") ;r ;. and set {* := sup,_;({/) and

w! =, wl] for each i < 4. Note that 7’ fits (w*, {*). Then we can find coherent

1
F* <t .. ¥ whichis (w*,{*)-canonical, as in Lemma 5.50(3).

o o+
In successor cases j = j' + 1 set (F*, @*.¢*) == (7. @/ . 0").
In any case we want to construct 7/, @/, and {/.
Enumerate poss(i*, w*.* + 1) as (X¥) ek
We define 5% for k < K, with 5° := 7* and. as usual, taking (coherent) limits at
limits, such that:

e 5¥ is coherent.
o5t Sg* o 5% for k < £ < K. (This implies that 5% is (@*, {*)-canonical.)
e Thereisa ¢ andan ¢ € I*(>(*, <&%) and a b € 2 such that

sethFxf <G 5 5(0) =1-b and (32% € {1.2.3}) s/ - xf
QG — 7€) =b. (%)

Assume we can construct these 5%, &% for all k € K, then let 55 be again a
(coherent) limit. We set w! := w} U {«a 7} such that w/ is coherent (and such that,
by bookkeeping, all elements of dom( /) will be eventually covered), and find some
o> supkeK(f ) and 7/ S@*,C* r* Wthh is (w/, {/)-canonical, again as in Lemma
5.50(3). Then 7/, w/ and ¢/ are as required.

So it remains to construct, for k € K, 5t and &*, which we will do in the rest
of the proof. Set 5 := 5%, X := ¥, @ := w*. and { := {*. Recall that 5 is (w.{)-
canonical, X € poss(s, w, ), and we are looking for gk+1 ggg 5 which satisfies (xx)
for x. A

Set s/ :=s; A x;. It is enough to construct #; < s/ such that:

e Both¢; [ fand 7;(B) | (A\ { + 1) are independent of i.

efglF7o(6) =1-b and (322 €{1.2.3}) t; IF 7;(£) = b.
Then we can define 5% in the usual way: dom(s* ') = dom(z;) (and we can assume
dom(s;) = dom(z;), by using trivial conditions). For a € dom(¢;), if ; | o ¢ G,
then set 5! (a) to be s;(a), otherwise #;(a) V (s;(a) [ { + 1) if @ € w; and #;(e)
otherwise. The resulting 5%*! §E’ ¢ 5 is coherent and s{‘“ forces that x; < G implies
ti €G. )

We have to introduce more notation: Fix j # i,and a < s_;. andb <s/ | f+1(in
Ppyi)suchthat b | f < aandb | f forces that b(f) is stronger than a(f3) above {
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(ie.b [ BIF (VE> ) b(B)(E) D a(B)(E)). Then we define bU/T A a by

).
b(a)(&), ifa<§,
; ) xi(B)E), fa=pand <(,
(BUT A a)(@)(&) = BA)E). ifo=fandi>C.
a(a)(&), otherwise.

Note that b1 A a is stronger than a, but generally not stronger than b.

By our assumption, ¢o and therefore s; forces gy ¢ V1. So in an intermediate
model V[Gg.]. there is some £ € I*(>() such that s;/ G does not decide go(£).
Back in V. fix some by < s; | (B + 1) in P,y which determines this £.

Find r{ < bl A s/ which determines g (¢) to be j; for some j; € 2. Find r} <
(r] 1 B+ DB A 55 which determines g>(£) to be j»: analogously find 7§ < (r} | S +
1)BI A s§ which determines a(£) to be some j3. Let j € 2 be equal to at least two of
Ji. 2. J3

Set p:=(r} I B+ 1% A ). In any Py -extension honoring p | f + 1. go(€) is
not determined by p/Gpg,. i.e.. thereis a tg < p forcing that g(¢) =1 — ;.

We now set and #; := (1o | B+ DI Ar/ for i =1,2,3. Note that ; <r/ <!
extends x; and forces g;(£) to be 1 — j if i =0 and to be j for at least two i in
{1,2,3}. B

We can now easily show:

LEMMA 5.54. For all but non-stationary many f§ € S /’1‘ N

D« I+ ap € V/;+1.

ProOOF. We started in this section with an arbitrary A-system and showed that
Corollary 5.53 and Lemma 5.48 hold for this system.

We now use a specific A-system:

Assume towards a contradiction that on a non-stationary set S’ there are pg < p,
forcing ag ¢ Vp,1. By strengthening we can assume that pg canonically reads ag.
Let My contain py and let S C S’ be such that (Mg, pg)pes is a A-system. Fix
Po < f1 < f» < Pf3in S. By Corollary 5.53 we get a coherent 7 stronger than p such
that r* I+ — (a5, =" major;_, ,5(ag,)). This contradicts Lemma 5.48. 8

5.10. Fixing the A-system. We now know that there is a stationary set S° C Sf n

such that for all g € S°, ag is forced (by p.) to bein Vg, butnotin V4 (see Lemmas
5.39 and 5.54).
For each f € S° there is a p;j, < p« in P forcing that gz is equal to some Pg, -
name, call it g; and we choose pg < p,’g (we only have to strengthen the part below
* 15

S + 1) which canonically reads g 5

We now fix, as usual, foreach f € S 0 some elementary model My containing pg.
and fix S C S such that (Mg. pp)pes is a A-system.

1550 pp | B+ 1reads g/jA, but generally the whole pg may be required to force ag = g;.
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S0 p.i == pp | fp < p.isindependent of § € S (itisa P,-condition for some o €
A.independent of 8 € S): and aj isread continuously by py | f + 1 via (w!)¢epr for
some E’ C Aclub, withw, C f + 1. As usual, due to homogeneity E’ is independent
of €S, and the wg’ are independent of f apart from the shifting of the final
coordinate f§ via the mapping h;(» PE the same holds for the decision functions that
map poss(pg,wé,é +1)toap | I*(<C+1).

Let E be the limit points of E’, and set w; := |, , w;. Then ag | I*(<¢) is
(we. &)-determined by pg forall & € E.

In the Pg-extension, only # remains undetermined, i.e., there are f: for { € E

such that py/Gp forces ap [ I*(<&) = fé(ﬂﬁ | I*(<¢&)). The f: are canonically

read from py [ f in a way independent of  (due to homogeneity).

Recall that x € poss(p. &) isequivalent to: x € 2/7(<9) and x extends 5? | I*(<¢).
So the domain of f: is poss(p. &).
To summarize:

FACT 5.55. (M. pp)pes satisfies:

® pp | B =t pux < pxis a Py (a)-condition independent of 5 € S.

. pﬂ(ﬁ) =: p is a Py,,p)-name independent of § € S.

o There is a club-set E C A and. for & € E. Py n)-names f¢: poss(p. &) —
21°(<E) guch that for all f € S and & € E

pplk a1 17(<8) = fely, 1 17(<E)).

o Ifpe S, x CAisaPg-name, q < p.x in Pg, and q, x are in Mg, then we can
find a € A and pl,, < q in Py which continuously reads x. t(x). and 7'(x)
independently'® of B.

The last item follows from Lemma 5.42; and we will use it several times: Before
Corollary 5.59 we find p2, < p.. to get names for U, F; etc. that are independent of
B: before Lemma 5.63 we get p3, < p2, to get independent names for some unions,
intersections, and z-images; and finally after Corollary 5.70 we choose g < p3, to
get an independent name for the generator f gen.

5.11. Local reading. So we know that we can determine initial segments of gy
from initial segments of nﬁ, more specifically, we can determine ’7/; [ 1 fromag [ I
for I := I*(<¢&).

In this section we show that on unboundedly many disjoint intervals of the form
A:=1*(>¢ <v). wecanread ag | 4 from just 1, I A (without having to use the

ﬂﬁ—values below A4).

The following definition (the notion of candidate) is only used in this section. In
the rest of the paper we only need Corollary 5.59.

16This means: p, € M, for all y € S, and there is a way (independent of y € S) to continuously
read yji. y2. y3 modulo p/, from the generics below a. and for all y € S we have that p/,, A p, forces

y1=x"yr=1(x')and y3 = ' (x'). where x" == h ().
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In the following, we work in V., the Pg-extension V'[G4] where we assume f§ € S
and p.. € Gp.

DEFINITION 5.56. (In Vp)
e For 4 C Jand X = (x;);<4. X; : A — 2, we say X honors majority above {, if

xo(£) = major;_; 53 x;(£) forall £ € ANT*(>().

We say x honors p, if each x; is compatible with #7 (as partial functions).
o X = (x;)icaisa ({o.{1)-candidate, (for {y < {; bothin E) if the x; € poss(p.(;)
honor majority above (.
(As elements of poss(p. (1) they automatically honor p.)
o If X is a ({y.(;)-candidate, we say “y extends x” if y is a ({;, {,)-candidate'”
for some ¢, > {; and each y; extends x;.
Equivalently, y = X7™b for some b, with b; : I*(>{y, <{3) — 2. which
honors both majority and p.
e A ({y.{1)-candidate y is “good.” if for every candidate Z of height & > {; that
extends y we have:

fe(z0)(€) = major;_ 53 fe(z:)(€) forall € € I7*(>(,. <€), (%)

PRELIMINARY LEMMA 5.57. (In Vj.) Every candidate can be extended to a good
candidate.

PrROOF. Assume otherwise, i.e., there is a ({’,{y)-candidate X which is a
counterexample, which means:

Whenever j is a ({o. {1)-candidate extending X then there is a
&> ¢ and a (¢, ¢)-candidate Z extending y which violates (*1).

We now construct ry < p and, for i =1,2,3, Qg-names r; < p. All these
conditions live on the same C* C E with min(C*) = {y. The trunk of r; is x;.

We now construct inductively C* [ {and r; | (.

Assume we have determined that { € C* and we have constructed each r; below
C.Setrg(¢) := p(¢) and pick r;(¢) as in (5.44), i.e., they have majority 1, and leave

enough freedom to form a valid condition.

We will now construct the C*-successor & of {, together with r; on I*(>{, <¢).

Enumerate all ({o.{ + 1)-candidates extending X as (7¥)icx.

Let @° be the empty 4-tuple and set & := ¢ + 1. We will construct, for k € K. &,
and some a* that honors majority and p. where a* has domain I*(>{ + 1. <¢)
and extends a/ if j < k.

If k is a limit, let @~ be the (pointwise) union of @/ with j < k, and set & :=
Supj<k (él)

Assume we already have a/. Extend 3/ a/ to some candidate 3/~ a/*! of some
height ;| in E such that

7/ a’*! violates (x)) for some £ € I*(>&;, <&j41). (*3)

We can do this due to (*,).

170r equivalently, a ({y. {»)-candidate.
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So in the end we get some & > ( in E and b with domain 7*(>(, <¢) honoring
majority and p such that
for every ({o. + 1) — candidate 7 extending X. 7~ is a ({o. &) — candidate
violating (x;) for some £ € I*(>¢, <&). (*3)
We then define C* below & 4 1 by adding only &, i.e., ¢ is the C*-successor of {. We
extend the conditions r; by b¢ for i < 4. That is, we have 7" (£) = b; (£). This ends
the construction of r; < p.
Back in V. assume that () is forced by some ¢’ < pg | f. Pick an increasing

sequence f3; (i < 4) in S. We take the union of ¢’ and the py, . call it 5, and strengthen
s(B;) = p to r;. The resulting condition s’ forces the following:

e ap | I*(<&) = ff(ﬂﬁ. [ 1*(<&)) for all & € C*. This is because 5" < pg, (cf.

Fact 5.55).
e The i honor majority above {y. This is because for all { € C*, the r;({) are

chosen as in (5.44) and therefore honor majority; and for { € 2\ (C* U {y) we
use values » which honor majority.

e Accordingly. the a3 honor majority above some y < 4 (cf. Lemma 5.43(1)).
Pick ¢ such that sup(/*(<y)) >y

e Soforall & > {; the fé( 1, I I*(<&)) honor majority above (.

e Pick some { > {j, {; in C* with C*-successor &. By construction of the r;, 7 n, [
I*(>C+1,<&)is bc As r; extends x;, y := ;7/3 PI*(<C+1)isa (§o.¢ + ll)-
candidate extending X. So by (*;), the i I I*(<&) violate (*|) at some £ €
I'*(> {, < &), a contradiction. 5

Let U C 2 be club. Set U°® to be the odd elements'® of U. For & € U° with
U-successor v, set

AV =17 (>¢ <v)
LEMMA 5.58. (InVy.) Thereisanry < p.aclub U C C" C E, and. for & € U,
an F; : 244 5 248 such thar:
e 1o A pp/Gp forces that Fg(n 1, [AU) = ap [A
e I is not constant: There are, for k = 0.1, zé‘ in poss(ro,l (<v)) and Le € Agy
such that F«(Z, I AU)(Z ) = k. (Again, v is the U-successor of &.)

U
(Note: Only those elements of 24¢ that are compatible with ry are relevant as
arguments for F;.)

Proor. We construct r; for i < 4 and U iteratively; C'' will be independent of i,
call it C.

8That is, if (1o )< is the canonical enumeration of U, then { € U isin U if { = us 5,4 ford a
limit (or 0) and n € .
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All r; have the same trunk as p: i.e.. min(C) = min(C?) =:{pand r; [ {o:=p |
Co. We also set min(U) = (.

Forall { € C. we choose some r;({) asin (5.44), i.e.. r5({) = p({). and the r}({)
fori = 1.2, 3 are such that the majority of their generics would be the r; ({)-generic.

Assume that we already know that some ( is in U (which is a subset of C), and
that we know r; | { fori < 4.

We now construct the U-successor ¢ of {, C | [{. €], and r;(v) for i <4 and
v e L&)

e Even case: If { is an even element of U, we start with r;({) := r}({). but then
add a “shield.” or “isolator” above {: As in the previous proof, we iterate over
all { + 1-candidates 3/, but but in (*3), instead of violating (*|) for some £, we
demand that 3/ z/*1 is good. (We already know that every candidate can be
extended to a good one.) Accordingly. we get some & >  and b¢ with domain
I*(>¢. <&) (and honoring majority and p) such that y~5¢ is good for every
candidate y of height { + 1;1i.e.

If Zisa (¢ + 1, v)-candidate whose restriction to I*(>¢, <&) is b°, then the

fv(z;) honor majority above ¢. ()

We now let this & be the successor of ¢ in both C and U (and extend each p;({)
by b,‘ ) -

e Odd case: Now assume { is odd in U. Then we choose some & > { in C? large
enough such that there are, for k =0, 1, zéf in poss(p, &) compatible with all
the r( constructed so far, such that the fc(zf)(ﬂ) = k for some £ > I*(<().
(Such ¢ and £ have to exist as ag is not in V4.)

We let C restricted to [¢.¢] be the same as C?, and set r;(v) := r}(v) for
veCnNI[LE). (For €L &)\ C there is no freedom left, i.e., p({) is already
completely determined, so the only choice for any r < pisr({) = p({).)

This ends the construction of U and of r; (fori < 4).
Pick & € U°PP, let { be the U-predecessor and v the U-successor. We have to show
that we can determine (modulo pg) ag | I*(> £ < v) from 1, [ 1*(> &, < v) alone.

(We already know that we can determine it from P [T (< v).)

Fix any z¢ € poss(ro. + 1). Let xo € poss(ro. v). In particular x, extends bg . For
i = 1.2, 3, let x; be the copy of x( with the initial segment x, | & replaced by zg“bf.
Note that X is a candidate extending 5°. Accordingly the f,(x;) honor majority

above &. So we can define
Fe(xo [ A7) == major,_ ,5 f1(x;) 1 AY = f(x0) 1 AZ.
This is well-defined." and ry A py/Gy forces that Fx(xo | Ag) =apl Al -

We now summarize this lemma, which was shown in Vg for some ff € S, from the
point of view of the ground model. The lemma only uses the parameters nﬁ and ag

19 Assume y and x in poss(ro, v) are the identical restricted to 4Y. Then y defines the same (x;);—12.3
and thus the same F. )
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(and p, which is just 1, (f)). so by absoluteness My knows that the Lemma is forced
by p.«. Accordingly, we can find Pg-names for U, F, etc. in M. Using the last item
of Fact 5.55, we can strengthen p,, to p2, to canonically read these names:

COROLLARY 5.59. There is an o € A, a p2, < p.. in P, and P,-names for: A
conditionry < p,aset U, and a sequence (Ff zg, zg,ég, fé)éey, such that the following
holds for all B € S, where we set

p; to be the condition p*, A pp where we strengthen pg(p) to ro.

(1) «. the condition p?, and all the names are in Mg.

(3) For k= 0.1: 2, I ¢ € U (zg & poss(ro, I*(<v)) &£; € AY & Fe(zh |

AY)(¢:) _k).

(4) p; I- (V& € UODD)Fg«(gﬁ I AY) = ap | Ae. where we define

<

Ag to be I*(>E, <v) with v the U-successor of &.

5.12. Finding the generator. In this section we use these p,. ro. (F:.z0. 2}, €2,

eél)éeU.
We start working in ¥V = V[Gj]. where we assume p?, € Gy.
Let & € U°PP and v its U-successor. Set

A:’ = I*(Zé. <V), AZ» = A{f \dom(rl"O)’
ODD = U Ae, opD’ 1= U A% = opp \ dom(y"0). (5.60)
Eeyonp Ecyopp

For F; it is enough to use ;Nyﬂ i AZ as input (the part in A \ AZr is determined

anyway by rq). and every element of 2A% is compatible with ry (and thus a possible
input for F). Identifying 2% and P(B) as usual, we get

F::P(4}) — P(A4:)
is such that p; /Gy forces
Fi(gﬁ NAL) =apn Ae.
We now define

F :P(opp’) — P(opD) by X — U F:(xnA4l).

So in particular p; /G forces that

F(;yﬂ N obb’) = ag N oDD. (5.61)
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Note that for every z C opD’ (in ¥y that is) there is an r’ < ry forcing that
'7/3 nobp’ =z. (C’:= U\ U is club, so it is enough to leave freedom at C’ and

we may assign arbitrary values everywhere else.)
Back in the ground model V, using the last item of Fact 5.55 again, we can
strengthen p2_ to p3, so that®

p>. canonically reads each of the following (countably many) sets: (5.62)

?
¢
o The closure of these sets under 7, g’l, finite unions, and finite intersections.

o (Ag)eeyom, ODD, rg, (A%)ze yoov. 0D (actually, these are already read by r2, ).

In particular, the (names for) all these sets are independent of f € S, modulo
P
LEMMA 5.63. (In V) p3, I |z(opD’) NoODD| = 4.

PrOOF. Let g < p3, in Py be arbitrary. We have to show that ¢ does not force (in
Pg) |z(opD’) NODD| < 4.

For £ € U and k =0, 1, use ry, p;, zéf and ¢z as in Corollary 5.59 and set
bé‘ = zéf N AZ

For k = 0.1, set B* := J.yow (b). Note that F(B')\ F(B") contains {¢: :
& e U}, asetof size .

Pick increasing (f;)i<s in S with fy = f. Set s := g A \,4 p;i e P.

Now for each i < 4, strengthen s(8;) (i.e.. ro) as follows: At the even intervals in
some way that together they honor majority: and at the odd intervals (where we do
not have to leave freedom) to the value B2 (where sgn(k) =0 for k = 0 and 1
fork =1,2,3).

Accordingly, we have

zlp )Nopp=F(y N opp’) = F(B*W),

or, when we split E(”ﬁ ) into the parts in and out of z(oDD?):

<(7~1(17 )\ z(opp)) N ODD) U <7Nr(17 ) N z(opp?) N ODD) _+ p(peen(d),

~Pi ~Pi

Now assume towards a contradiction that z(opp’) N opp =* (). Then we get
(g(nﬁ_) \ z(opD’)) Nopp =* F(B*#)), (5.64)

But on the other hand we have
7, \ opp’ = majori:m(gﬂ_ \ opD?), so

*

~

~P0o
z(n, )\ zlopp’) =" x(y 1\ opD’) = 7(major;_; 5507, \ opD)) =

20We can do this for 2 many sets, of course; but we cannot assume, e.g., that n(z) € Vgtorall z € Vg,
let alone that each such z(z) is canonically read by p3,.
21But we need p; to force that these names have anything to do with ag.
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=" major;_, , (g(gﬂ_ \ opD’)) =* major,_, , 5 (g(flﬁ_) \ z(opD?), and

(g(gﬁo) \ z(0bD’)) N ODD =* major;_, 53 <(E(’~7,6’,-) \ z(obD")) N ODD).

Applying (5.64) to both sides of the last line. we get F(B°) =* major;_, , ; F (B*"(1))
= F(B'), a contradiction. -

Set
X :=opp’ Nz '(opD). (5.65)

By choice of p3,, X and r(X) are canonically read by p3, (and independent of j).
We now show that F(z) Nz(X) = z(z) for z C X. Again, here we are talking
about z € V5. To make that more explicit, let us formulate in the ground model V:

LEMMA 5.66. For BeS. pl, I-p, <|g(| =/ andforallz C X, p;/Gﬁ I+

2() =* F(2) ﬁz(z()>.

(Note that, other than F(z). z(z) will generally not be in ¥, and we have to force
with p;/Gﬁ.)

ProoF. Work in V. |X| = 4 follows from Lemma 5.63, as z(X) =* n(opp’) N
ODD.

Set y = n, nobp’. So by (5.61), pj/Gg <ry forces: F(y)= E(ﬂﬁ) M ODD.
As n(X) C*opp, we get F(y)Nz(X)="=n(y )Nn(X). Then y C* z!(opD)

~

(or equivalently, y C* X) implies y =* y Nz ! (oDD) = 1, N X and thus z(y) =*

g(nﬁ) N z(X). To summarize:

py/Ggl- <y C* X — z(y) =" F(y)nz(X), fory := n, ﬁODD?>- (%)

Now back in V" assume towards a contradiction that some ¢ < p; forces that the

lemma fails, i.e., that z C X in Vj is a counterexample (in the final extension). By
absoluteness, we can assume that ¢ and z are in My, in particular z is a Pg-name
in M. Strengthen ¢ | f to canonically read z. So for every f’ € S. h;)ﬁ, (z) will be
evaluated in Vi to the same z C Aas z in V.

Chose a ’ above supp(g). Then we can strengthen ¢ A py at index . i.e., ro. to

*

some r; that forces 1, Nnobp’ = h Y (z). (Recall that we can fix the values in the

odd intervals, as the even intervals still form a club). Let G be P-generic containing
qAn p;, A r1. Then we have:

e The evaluation of h;_ B (g) in Vp/, is the same as the evaluation of z in Vg, call
it z.
e Also the evaluation of X and F are the same f and 8’ (cf. (5.62)).
e z C X is a counterexample (as this is forced by ¢).
In particular, z C X and z(z) #* F(z) N z(X) in the final extension.
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e pp Aryforcesin Vg g thaty N opD’ = z: also we have just seen that z C X:

and so z(z) =* F(z) Nz(X) by (). a contradiction. 4
For & € U, we define the following Pg-names (independent of f):*
X, =A.NX v, =A:Nn(X).
o J x=x U ». =oppnz(x) =" z(x).
ée UODD ie UOI)I)

as well as
Fi:P(x,) —>73()N/é) by aw F:(a)Nzn(X),

~

) =F(z)nz(X).

9

and F':P(X)— P(z(X)) by zw Uscpom Filz Ty
So the p3, forces that for all z € Vs the following is forced by p} /Gg:

zCX — F'(z) =" z(z). inparticular F'(X) =" n(X),
also F'(z) C z(X) for all z. (5.67)

LEMMA 5.68. p3, forces: For almost all & € U, F! is a Boolean algebra
isomorphism from P(gé) to P(yé).

PROOF. All and nothing: We claim that for almost all {. F/(x )
that £ € v, \FZ(&) C z(X). Then ¢ € n(X). and £ is not in F’ (/NY)
there cannot be many such ¢. Similarly F/(0) = 0 for almost all { .

Unions: We claim that for almost all £, F (a) UF!(b) = F (a U b) for all subsets
a,b of X, . Let 4 C 1 be the set of counterexamples ie., for é € A thereare £: € y ,

and a; b subsets of x, such that £; € (Fiag) U F(be))AFL(as Ube). Set x :=
UfeAaC and y —UgeAb Then £ is in (F( )UF (»)AF'(xUy)="10.s0 A4
cannot be large.

Complements: We claim that for almost all &, Fi’(a) N Fé’(gé \a)=0. Let 4 be
the set of counterexamples, i.e., for £ € A4 thereis an a: C X and ¢ € . such that

¢: € Flag) NFL(x \le) Then £; is in F'(U,c ac) N F' (UceA 5\a¢) =*{, so
A cannot be large.

Injectivity: We already know that union and complements (and thus disjointness)
are preserved, so it is enough to show that a nonempty set is mapped to a nonempty
set.

Assume this fails often. then we get an x C X of size 4 such that ) = F'(x) =*
7(x). a contradiction.

Surjectivity: Assume surjectivity fails often; i.e., there are many b; C z(X) N
oDD not in the range of F’ Let y be the union of those b;. Pick x C 4 such that
z(x) ="y Cz(X).Sowe can assume x C X andso F’(x) =* y, which implies that
F(xNx,)=ynNA; = b foralmost all {, a contradiction. 8

Y, Assume
= ). so

22More concretely, canonically read by p3, . see (5.62).

https://doi.org/10.1017/js1.2024.37 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2024.37

36 JAKOB KELLNER ET AL.

LEMMA 5.69. For each f € S: p3, forces (in Pp): There is a fgn: X — n(X)
bijective such that for all z C X (in V). p;/Gﬁforces 1(z) =* fonz-

Proor. Every Boolean algebra isomorphism from P(A4) to P(B) is generated by
a bijection from A4 to B (the restriction to the atoms). So thereisa U’ C U°P° with
|UPP\ U'| < 4 such that { € U’ implies that F; is generated by some bijection
81X, =Y. So F' is generated by g := (J;cy ¢ and we can change g into a
bijection from X to z(X) by changing less than 4 many values. o

We now strengthen p3, to some g to continuously read fgen (independently of j).
again using Fact 5.55.

So to summarize, we have the following (where we start with the A-system
(Mg. pg)pes of Section 5.10):

COROLLARY 5.70. Thereisa € A, q € P, stronger than all pg | B and canonically
reading ro < p. X. fgen. and (X)), such that the following holds for all § € S:
® g A\ pg with the condition® at index B strengthened to rq is a valid condition,
called p}*.

o, p;}r+ and the names are in M.
o g forcesin Pg: | X| = A foen : X = 7(X) is a bijection. and if z C X is in V.
then p;+/G/; I 72(2) =* fgen-

5.13. Putting everything together.

COROLLARY 5.71. (Assuming 2 is inaccessible and 2* = A*.) P forces that every
automorphism of Pf is somewhere trivial.

PrOOF. Assume towards a contradiction that some p, forces that ¢ is a nowhere
trivial automorphism represented by 7.

As described in Section 5.10 we find a A-system (Mj. pg)ges with pg | f < p, for
all € S, and we find ¢g. X, fgen as in Corollary 5.70, so in particular: ¢ < pg [ f
for all S; and ¢ forces that |X| = A and that fgen : X — 7(X) is a bijection.

As 7 is nowhere trivial, f'gen cannot be a generator, i.e., there is some z C X with
7(z) #* f gen?- Fix a name for this z and let ¢* < ¢ canonically read z.

Pick 8 € S above dom(g*). So ¢* A p}* is a valid condition, which forces that in
the final extension V'[G] the following holds:

e z C X withz(z) #* fgenz. as this is forced by ¢*.

e z € Vp, as ¢* canonically reads z.
e By Corollary 5.70 and as p}* €G, we get (z) =" f gen . a contradiction.
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