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DISTRIBUTIONAL PROPERTIES OF SOLUTIONS
OF dVT = VT − dUT + dLT WITH LÉVY NOISE
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Abstract

For a given bivariate Lévy process (Ut , Lt )t≥0, distributional properties of the stationary
solutions of the stochastic differential equation dVt = Vt− dUt + dLt are analysed.
In particular, the expectation and autocorrelation function are obtained in terms of the
process (U,L) and in several cases of interest the tail behavior is described. In the case
where U has jumps of size −1, necessary and sufficient conditions for the law of the
solutions to be (absolutely) continuous are given.
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1. Introduction

For a bivariate Lévy process (ξt , ηt )t≥0, the generalized Ornstein–Uhlenbeck process driven
by (ξ, η) with starting random variable V0 is defined via the integral equation

Vt = e−ξt
(
V0 +

∫
(0,t]

eξs− dηs

)
, t ≥ 0.

The associated stochastic differential equation (SDE) is given by

dVt = Vt− dUt + dLt , t ≥ 0, (1.1)

where (Ut , Lt )t≥0 is again a bivariate Lévy process which is completely determined by
(ξt , ηt )t≥0. In particular, it holds that e−ξt = E(U)t , t ≥ 0, where E(U)t denotes the Doléans-
Dade exponential of U (see, e.g. [15, pp. 84–86]). This relation forces the process U to admit
no jumps which are smaller than or equal to −1, i.e. it holds that �U((−∞,−1]) = 0, where
�U denotes the Lévy measure of U . Having many applications in physics, insurance, and risk
theory, as well as in financial settings, generalized Ornstein–Uhlenbeck processes have been
studied in various papers; see, e.g. Maller et al. [13] for general properties of the processes and
Lindner and Maller [12], who stated necessary and sufficient conditions for the existence of
stationary solutions.
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Distributional properties of generalized Ornstein–Uhlenbeck processes 689

For a general bivariate Lévy process (Ut , Lt )t≥0, the unique solution of the SDE (1.1) is
given by (see [2, Proposition 3.2] or [15, Exercise V.27])

Vt = E(U)t

(
V0 +

∫
(0,t]

[
E(U)s−

]−1

dηs

)
1{K(t)=0}

+ E(U)(T (t),t]
(
�LT (t) +

∫
(T (t),t]

[
E(U)(T (t),s)

]−1

dηs

)
1{K(t)≥1}, t ≥ 0, (1.2)

where

ηt = Lt −
∑

0<s≤t
�Us �=−1

�Us�Ls

1 +�Us
− t cov(BU1 , BL1), (1.3)

�Mt = Mt − Mt− denotes the jump height at time t of a càdlàg process (Mt)t≥0, BU1 and
BL1 denote the Brownian motion parts of U1 and L1, respectively, and, consistently with the
notation introduced in [2],

K(t) := number of jumps of size −1 of U in [0,t]

and

T (t) := sup{s ≤ t : �Us = −1} for t ≥ 0.

The generalization of the Doléans-Dade exponential E(U)t for 0 ≤ s < t is given by

E(U)(s,t] := exp

(
(Ut − Us)− σ 2

U(t − s)

2

) ∏
s<u≤t

(1 +�Uu)e
−�Uu

and

E(U)(s,t) := exp

(
(Ut− − Us)− σ 2

U(t − s)

2

) ∏
s<u<t

(1 +�Uu)e
−�Uu,

while, for s ≥ t , we set E(U)(s,t] := 1. Here σ 2
U is the quadratic variation of the Brownian

motion part of U . If the starting random variable V0 is independent of (Ut , Lt )t≥0, the process
Vt in (1.2) is called causal, otherwise it is called non-causal.

Since every jump of U of size −1 restarts the process (Vt )t≥0 defined in (1.2), as already
remarked in [2], in applications these jumps can be interpreted as occurrence of default. Jumps
of U of size less than −1 have an interpretation, e.g. in financial settings when positive values
of a contract described by U turn into obligations that have to be paid.

Necessary and sufficient conditions for the existence of stationary solutions of (1.2) have been
given in [2]. In this paper we study the distributional properties of these stationary solutions. In
particular, in Section 3 we give the moment conditions and quote first and second moments as
well as the autocorrelation function of the stationary solutions in terms of (U,L). In Section 4
we investigate the tail behavior of the stationary solutions by applying the results of [5], [6],
and [11]. Our results show that, depending on the properties ofU andL, the resulting solutions
can have a different tail behavior, heavy tailed or exponentially decreasing.

As observed by Watanabe, one can conclude from Theorem 1.3 of [1] that the law of the
stationary processes in the case�U({−1}) = 0 is a pure-type measure, i.e. it is either absolutely
continuous, continuous singular, or a Dirac measure. In the case of generalized Ornstein–
Uhlenbeck processes conditions for continuity of the stationary solutions have already been
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established in [3]. In Section 5 of this paper we will study the case�U({−1}) > 0. It turns out
that the distributions of the stationary solutions do not fulfill a pure-type theorem in this case.
We then give necessary and sufficient conditions for them to be (absolutely) continuous. Some
examples are given for illustration. Note that the results given in Section 5 hold for any solution
X of a random fixed-point equationX

d= AX′ + B withX
d= X′ and (A,B) independent ofX′

such that P(A = 0) > 0. Here ‘
d=’ denotes equality in distribution.

Finally, in Section 6, we provide the proofs of our results.

2. Preliminaries

For any Lévy process (Xt )t≥0, we write its Lévy–Khintchine triplet as (σ 2
X, γX,�X) and,

to avoid trivial cases, throughout this paper we will assume that the processes U and L are not
equal to 0 constants. For a random variable X, its distribution will be denoted by L(X).

In this section we briefly recall some results about the solutions (Vt )t≥0 of the SDE (1.1)
which we will require throughout this paper. All of these results are proved in [2].

First note that it is easy to see from the formula of the general solutions (1.2) that the process
(Vt )t≥0 fulfills the random recurrence equation

Vt = As,t 1{K(t)=K(s)} Vs + Bs,t 1{K(t)=K(s)} +[AT (t),t�LT (t) + BT (t),t ] 1{K(t)>K(s)} (2.1)

for 0 ≤ s < t , where

As,t := E(Ũ)(s,t] and Bs,t := E(Ũ)(s,t]
∫
(s,t]

[E(Ũ)(s,u)]−1 dη̃u, (2.2)

with the processes Ũ and η̃ given by

Ũt = Ut −
∑

0<s≤t
�Us=−1

�Us and η̃t = ηt −
∑

0<s≤t
�Us=−1

�ηs, t ≥ 0. (2.3)

Hence, under the assumption that it is causal, i.e. V0 is independent of (Ut , Lt )t≥0, (Vt )t≥0 is
a time-homogeneous Markov process.

The use of Ũ and η̃ instead of U and η is not necessary for the above formulae, but it allows
the definition of Bs,t for arbitrary 0 < s ≤ t . This will be of benefit later in Section 6. Also,
observe that (Ũt , η̃t )t≥0 is independent of (K(t), T (t))t≥0.

Since in this paper we concentrate on the stationary solutions of (1.1), our research is based
on the following theorem [2, Theorems 2.1 and 2.2].

Theorem 2.1. Let (U,L) be a bivariate Lévy process, and let V = (Vt )t≥0 and (ηt )t≥0 be
defined by (1.2) and (1.3). Then a finite random variable V0 can be chosen such that V is
strictly stationary if and only if one of the following conditions hold.

(i) There exists a k �= 0 such that U = −L/k.

(ii) The integral
∫ t

0 E(U)s− dLs converges almost surely (a.s.) to a finite random variable as
t → ∞.

(iii) �U({−1}) = 0 and the integral
∫ t

0 [E(U)s−]−1 dηs converges a.s. to a finite random
variable as t → ∞.
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If one of these conditions is satisfied then the distributions of V0 and the corresponding
strictly stationary process V are uniquely determined. In particular, for the three cases above,
the following statements respectively hold.

(i) The strictly stationary solution is indistinguishable from the constant process t �→ k.

(ii) If λ := �U({−1}) = 0, the distribution of V0 is given by the distribution of the integral∫
(0,∞)

E(U)s− dLs . Otherwise, if λ �= 0, it holds that V0
d= Zτ for the process

Zt = E(Ũ)t

(
Y +

∫
(0,t]

[E(Ũ)s−]−1 dη̃s

)
, t ≥ 0, (2.4)

evaluated at an exponentially distributed time τ with parameter λ, independent of (U,L)
and Y . Here Y is a random variable, independent of (U,L), with the same distribution
as �LT1 , where T1 denotes the time of the first jump of U of size −1, i.e. PY (dy) =
�U,L({−1}, dy)/�U({−1}).

(iii) The strictly stationary solution is given by Vt = −E(U)t
∫
(t,∞)

[E(U)s−]−1 dηs a.s., t ≥
0, and, hence, it is strictly non-causal in the sense thatVt is independent of (Us, Ls)0<s<t .

Owing to the required convergence of the integral
∫
(0,∞)

E(U)s− dLs , Theorem 2.1(ii)
for λ = 0 can only occur if limt→∞ E(U)t = 0 a.s., as shown in [2]. In the same way
limt→∞[E(U)t ]−1 = 0 is a necessary condition for the convergence of

∫
(0,∞)

[E(U)s−]−1 dηs
and, hence, for the existence of a stationary solution as described in Theorem 2.1(iii).

3. Moment conditions and the autocorrelation function

Recall that, by [17, Theorem 25.17], for a Lévy process (Xt )t≥0 and a constant κ ≥ 0, we
have E e−κX1 < ∞ if and only if E e−κXt < ∞ for all t ≥ 0. In particular, if we define

ψX(κ) := log E[e−κX1 ],
it holds that E e−κXt = etψX(κ) for all t ≥ 0.

In order to deal with negative moments of the stochastic exponential in the case�U({−1}) =
0, we define the auxiliary Lévy process

Wt := −Ut + σ 2
U t +

∑
0<s≤t

(�Us)
2

1 +�Us
, (3.1)

which fulfills [E(U)t ]−1 = E(W)t , t ≥ 0. See [2] or [10] for details.
The following result on moments of the Doléans-Dade exponential will be needed later.

Although we expect it might be known, we were unable to find a ready reference and so we
provide a proof in Section 6.1.

Proposition 3.1. Let (Ut )t≥0 be a Lévy process, and let κ ≥ 1.

(i) |E(U)t |κ is integrable if and only if E |U1|κ < ∞. In particular, for κ = 1 and κ = 2, it
respectively holds that

E[E(U)t ] = eE[U1]t (3.2)

and

var(E(U)t ) = e2t E[U1](et var(U1) − 1). (3.3)
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(ii) Additionally, suppose that �U({−1}) = 0. Then |E(U)t |−κ = |E(W)t |κ is integrable if
and only if ∫

(−1−e−1,−1+e−1)

|1 + x|−κ�U(dx) < ∞. (3.4)

In particular, for κ = 1 and κ = 2, (3.2) and (3.3) respectively hold with U replaced
by W , where E[W1] and var(W1) are given by

E[W1] = −γU + σ 2
U +

∫
[−1,1]

x2

1 + x
�U(dx)−

∫
|x|>1

x

1 + x
�U(dx)

and

var(W1) = σ 2
U +

∫
R

x2

(1 + x)2
�U(dx) = var(U1)−

∫
R

x3(2 + x)

(1 + x)2
�U(dx).

In the following we will examine second-order properties of the stationary process (Vt )t≥0.
We start with a short lemma characterizing the constant solutions.

Lemma 3.1. The process (Vt )t≥0 as in (1.2) is a.s. constant, equal to k ∈ R if and only if
kUt = −Lt a.s. and V0 = k a.s.

The next theorem gives us the moment conditions, the expectation and variance, of the
nonconstant stationary solutions of (1.2). For κ ≥ 1, the moment conditions could have been
deduced from [18, Theorem 5.1]. We extend to κ > 0 and give a proof in Section 6.1 which
is based on the proof of Proposition 4.1 of [12]. Compared to the special case treated there,
we obtain sharper conditions for the existence of the moments by omitting the use of Hölder’s
inequality. Indeed, a comparison with Theorems 4.1 and 4.2 below shows that the moment
conditions in the following theorem are sharp.

Theorem 3.1. Let (Vt )t≥0 be a nonconstant strictly stationary solution of (1.2).

(i) Suppose that limt→∞ E(U)t = 0 a.s. and that, for fixed κ > 0,

E |Ũ1|max{1,κ} < ∞, E |L1|max{1,κ} < ∞, and E |E(Ũ)1|κ < eλ, (3.5)

for λ = �U({−1}) ≥ 0. Then E |V0|κ < ∞. In particular, for κ = 1 and κ = 2, it
respectively holds that

E[V0] = −E[L1]
E[U1] (3.6)

and

var(V0) = − E[(U1 E[L1] − E[U1]L1)
2]

(E[U1])2(2 E[U1] + var(U1))
. (3.7)

Note that, for κ = 1, E[U1] is negative by (3.2) and (3.5) while, for κ = 2, by (3.3)
and (3.5), it holds that 2 E[U1] + var(U1) < 0.

(ii) Suppose that�U({−1}) = 0 and limt→∞[E(U)t ]−1 = 0 a.s., and that, for fixed κ > 0,

E |W1|max{1,κ} < ∞, E |η1|max{1,κ} < ∞, and E |E(W)1|κ < 1. (3.8)

Then it holds that E |V0|κ < ∞. In particular, for κ = 1 and κ = 2, (3.6) and (3.7) hold
for U and L replaced by W and η, respectively.
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Finally, we give the autocorrelation function of the stationary processes (Vt )t≥0 in the
following theorem.

Theorem 3.2. Let (Vt )t≥0 be a nonconstant strictly stationary solution of (1.2).

(i) Suppose that limt→∞ E(U)t = 0 a.s. and that (3.5) holds for κ = 2. Then

cov(Vs, Vt ) = −eE[U1](t−s) E[(U1 E[L1] − E[U1]L1)
2]

(E[U1])2(2 E[U1] + var(U1))
. (3.9)

(ii) Suppose that�U({−1}) = 0 and limt→∞[E(U)t ]−1 = 0. Then if (3.8) holds for κ = 2,
(3.9) is true with U and L replaced by W and η, respectively.

It should be mentioned here that the proof of Theorem 3.2 does not make use of the
stationarity assumption. In fact, every solution (Vt )t≥0 of (1.1) such that Vu is independent
of (Uu+v − Uu,Lu+v − Lu)v≥0 fulfills cov(Vs, Vt ) = eE[U1](t−s) var Vs given that var Vs and
E |U1| are finite. In the same way, given �U({−1}) = 0, every (Vt )t≥0 with Vu independent
of (Uv, Lv)0≤v<u satisfies cov(Vs, Vt ) = eE[W1](t−s) var Vt if var Vt and E |W1| are finite.

4. Tail behavior

In this section we study the tail behavior of the stationary solutions of (1.2) which were
given in Theorem 2.1. To analyse the nonconstant stationary solutions, we start with a result
corresponding to Theorem 2.1(ii) which is based on classical results of [5] and [11] on the tails
of solutions of random recurrence equations. For the special case of generalized Ornstein–
Uhlenbeck processes, this result is also given in [12, Theorem 4.5] with slightly stronger
conditions.

Theorem 4.1. Let (Ut , Lt )t≥0 be a bivariate Lévy process, and suppose that there exists κ > 0
such that

E |Ũ1|max{1,κ+ε} < ∞, E |L1|max{1,κ} < ∞, and E |E(Ũ)1|κ = eλ, (4.1)

for some ε > 0 and λ = �U({−1}) ≥ 0. If U is of finite variation, additionally assume that
the drift of U is nonzero or that there is no r > 0 such that supp(�U) ⊂ {−1 ± erz, z ∈ Z}.
Then limt→∞ E(U)t = 0 a.s. and there exist a strictly stationary solution (Vt )t≥0 of (1.2) and
constants C+, C− ≥ 0 such that

lim
x→∞ x

κ P(V0 > x) = C+ and lim
x→∞ x

κ P(V0 < −x) = C−. (4.2)

If (Vt )t≥0 is not constant, it holds thatC++C− > 0, and in the case in which�U((−∞,−1)) >
0 we obtain C+ = C−.

In the analogue statement for the non-causal stationary solution corresponding to Theo-
rem 2.1(iii) we have to ensure that λ = 0 holds, since otherwise such a solution does not exist.
Apart from that the result is similar to the one before and can be stated as follows.

Theorem 4.2. Let (Ut , Lt )t≥0 be a bivariate Lévy process with �U({−1}) = 0, and suppose
that there exists κ > 0 such that

E |W1|max{1,κ} < ∞, E |η1|max{1,κ} < ∞, and E |E(W)1|κ = 1.
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If U is of finite variation, additionally assume that the drift of U is nonzero or that there is no
r > 0 such that supp(�U) ⊂ {−1 ± erz, z ∈ Z}. Then limt→∞ E(U)−1

t = 0 a.s. and there
exist a strictly stationary solution (Vt )t≥0 of (1.2) and constants C+, C− ≥ 0 such that

lim
x→∞ x

κ P(V0 > x) = C+ and lim
x→∞ x

κ P(V0 < −x) = C−.

If (Vt )t≥0 is not constant, it holds thatC++C− > 0, and in the case in which�U((−∞,−1)) >
0 we obtain C+ = C−.

Since in the following we want to apply the results on tails of perpetuities given by Goldie
and Grübel [6], we first reveal that the process V as defined in (1.2) can be interpreted as a
perpetuity. This formulation will then also be used in Section 5.

In fact, it is known that the fixed-point random equation

X
d= AX′ + B, (4.3)

where X and X′ are equally distributed random variables and X′ is independent of the random
vector (A,B), is related to the almost-sure absolute convergence of the perpetuity

X∞ :=
∞∑
k=0

(k−1∏
i=0

Ai

)
Bk, (4.4)

where (Ak, Bk)k∈N0 is an independent and identically distributed (i.i.d.) sequence with the same
distribution as (A,B).

Proposition 4.1 below is shown in greater detail in [7, Theorems 2.1 and 3.1]. One direction
of Proposition 4.1(ii) is already due to Vervaat [18].

Proposition 4.1. (i) Suppose that P(A = 0) > 0. Then the sum in (4.4) converges a.s. to X∞
and (4.3) has a unique solution which is given by L(X∞).

(ii) Suppose that P(A = 0) = 0 and P(Ac + B = c) < 1 for all c ∈ R. Then (4.3) has a
solution if and only if the sum in (4.4) converges a.s. absolutely in which case L(X∞) is the
unique solution of the random fixed-point equation (4.3).

From (2.1) we know that the stationary solutions (Vt )t≥0 of the SDE (1.1) satisfy the
distributional fixed-point equation

V0
d= Vt = AtV0 + Bt (4.5)

for any t ≥ 0, where

At = E(Ũ)t 1{K(t)=0}, (4.6)

Bt = E(Ũ)t

∫
(0,t]

[E(Ũ)s−]−1 dη̃s 1{K(t)=0}

+ E(Ũ)(T (t),t]
(
�LT (t) +

∫
(T (t),t]

[E(Ũ)(T (t),s)]−1 dη̃s

)
1{K(t)>0}, (4.7)

which are independent of V0, if the solution is causal as in Theorem 2.1(ii). In the case of
strictly non-causal solutions, as in Theorem 2.1(iii), we may rearrange (4.5) to obtain

Vt
d= V0 = A−1

t Vt − A−1
t Bt (4.8)
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with (A−1
t ,−A−1

t Bt ) = (E(W)t ,−
∫
(0,t] E(W)s− dηs) independent of Vt . Hence, in our app-

lications the case P(A = 0) = 0 coincides with the case λ = �U({−1}) = 0, while P(A =
0) > 0 holds if and only if λ > 0 and, therefore, only occurs in the causal case. If there exists
no k ∈ R such that kU = −L, the resulting process is nondegenerate by Lemma 3.1. Hence,
convergence of the perpetuity is given in both cases under the conditions given in Theorem 2.1,
since then a nondegenerate stationary solution exists, as has been shown in [2].

Now that we can interpret our stationary solutions as perpetuities, we can apply the results
on the tail behavior of perpetuities in [6]. We start with the following proposition, which is
a direct consequence of [6, Theorem 4.1]. Note that we do not need any assumptions on the
process L here.

Proposition 4.2. Let (Ut , Lt )t≥0 be a bivariate Lévy process, and let (Vt )t≥0 be a nonconstant
strictly stationary solution of (1.2).

(i) Assume that limt→∞ E(U)t = 0. If U is of finite variation, suppose that it has strictly
positive drift or that �U(R \ [−2, 0]) > 0. Then the law of V0 has at least a power-law
tail, i.e.

lim inf
x→∞

log(P(|V0| ≥ x))

log x
> −∞. (4.9)

(ii) Assume that λ = �U({−1}) = 0 and that limt→∞[E(U)t ]−1 = 0. If U is of finite
variation, suppose that it has strictly negative drift or that�U([−2, 0]) > 0. Then (4.9)
holds.

The conditions onU formulated in Proposition 4.2(i) ensure that we have P(|E(Ũ)t | > 1) >0
for all t ≥ 0. If, by contrast, |E(Ũ)t | is bounded by 1 and not constant, then the tails of V0
decrease at least exponentially fast under some additional condition on L as formulated in the
following theorem.

Theorem 4.3. Let (Ut , Lt )t≥0 be a bivariate Lévy process, and let (Vt )t≥0 be a strictly sta-
tionary, nonconstant solution of (1.2).

(i) Assume that limt→∞ E(U)t = 0. Suppose thatU is of finite variation and has nonpositive
drift, and that �U(R \ [−2, 0]) = 0. Assume that either the drift is nonzero or that
�U(R \ {−1}) > 0. Then, given that there exists κ > 0 such that E eκ|L1| < ∞, the tails
of L(V0) decrease at least exponentially fast, i.e.

lim sup
x→∞

x−1 log(P(|V0| ≥ x)) < 0. (4.10)

(ii) Assume that λ = �U({−1}) = 0 and that limt→∞[E(U)t ]−1 = 0. Suppose that U is
of finite variation and has nonnegative drift, and that �U([−2, 0]) = 0. Assume that
either the drift is nonzero or that�U(R \ {−1}) > 0. Then, given that there exists κ > 0
such that E eκ|η1| < ∞, (4.10) holds.

5. Absolute continuity

In this section we determine necessary and sufficient conditions for the stationary solutions
of (1.2) in the case that λ = �U(−1) > 0 is (absolutely) continuous. By the above exposition,
this corresponds to studying the law of the perpetuity (4.4). In the case that P(A = 0) = 0
this problem was first treated by Grincevičius [8], [9] and later on by Alsmeyer et al. [1]. An
application of Grincevičius’ results to generalized Ornstein–Uhlenbeck processes was given
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in [3]. Here we concentrate on the case P(A = 0) > 0, and give necessary and sufficient
conditions for the law of a perpetuity to be (absolutely) continuous as follows.

Theorem 5.1. Let (A,B) be a pair of real-valued random variables with P(A = 0) > 0, and
let X∞ be the unique solution of the fixed-point random equation (4.3).

(i) The distribution ofX∞ is continuous if and only if the conditional distribution ofB given
A = 0 is continuous.

(ii) The distribution ofX∞ is absolutely continuous if and only if the conditional distribution
of B given A = 0 is absolutely continuous.

If we apply Theorem 5.1 to the stationary solutions of (1.2), using (4.6), and (4.7), we find
that the distribution of V0 is (absolutely) continuous if and only if the distribution of

Rt := E(Ũ)(T (t),t]�LT (t) + E(Ũ)t

∫
(T (t),t]

[E(Ũ)s−]−1 dη̃s

given K(t) > 0 is (absolutely) continuous, and, by the proof of Theorem 2.2 of [2], it holds
that, for all B ∈ B1,

P(Rt ∈ B | K(t) > 0) = λ

∫
(0,t]

P(Zy ∈ B)e−λy dy,

with Zt as in (2.4). Hence, we can formulate the following corollary.

Corollary 5.1. Suppose that (Vt )t≥0 is a strictly stationary solution of (1.2) with λ :=
�U({−1}) > 0.

(i) L(V0) is continuous if and only if∫
(0,1]

P(Zy = a)e−λy dy = 0 for all a ∈ R.

(ii) L(V0) is absolutely continuous if and only if∫
(0,1]

P(Zy ∈ B)e−λy dy = 0 for all B ∈ B1 with Lebesgue measure 0.

In particular, we can conclude that if L(Zt ) is (absolutely) continuous for Lebesgue-almost
every t > 0, then so is L(V0). In the following we will discuss some examples for the behavior
of the distributions of Zt and, hence, of L(V0).

Example 5.1. Suppose that the processes U and L are independent. Then, by (2.4), it holds
almost surely that Zt = E(Ũ)t

∫
(0,t][E(Ũ)s−]−1 dη̃s , t ≥ 0, so that, by Lemma 3.1 of [2],

Zt
d=

∫
(0,t]

E(Ũ)s− dL̃s,

with the process (L̃t )t≥0 defined by

L̃t = Lt −
∑

0<s≤t
�Us=−1

�Ls, t ≥ 0, (5.1)

which in this setting is almost surely equal to (Lt )t≥0.
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Assume additionally that Lt is a standard Brownian motion. Then, for all t > 0, the
conditional distribution of Zt given (E(Ũ)s)0≤s<t is normally distributed with mean 0 and
variance

∫
(0,t] |E(Ũ)s−|2 ds > 0 a.s. Hence, P(Zt ∈ B | (E(Ũ)s)0≤s<t ) = 0 for all B ∈ B1

with Lebesgue measure 0 and it follows that P(Zt ∈ B) = E[P(Zt ∈ B | (E(Ũ)s)0≤s<t )] = 0
for all B ∈ B1 with Lebesgue measure 0. Hence, L(V0) is absolutely continuous.

Example 5.2. Suppose that U and L are independent, and let Lt be a compound Poisson
process. Then L(V0) has an atom, since L(Zt ) has an atom at a = 0 for t ≥ 0.

If additionally the jump distribution of L is continuous then the distribution of Zt given
Lt �= 0 is also continuous, so that P(Zt = a) = 0 for all t ≥ 0 and a �= 0. Thus, L(V0) has a
continuous part and an atom at 0; hence, it is not a pure-type measure.

Example 5.3. Suppose that the distribution of Y is (absolutely) continuous. Then L(V0) is
(absolutely) continuous too.

Indeed, from (2.4) for B ∈ B1 with Lebesgue measure 0 in the absolutely continuous case
or for a single point set B = {b} in the continuous case, we obtain

P(Zt ∈ B) = P

(
Y ∈ [E(Ũ)t ]−1B −

∫
(0,t]

[E(Ũ)s−]−1 dη̃s

)

=
∫

R2
P

(
Y ∈ xB − y

∣∣∣∣ [E(Ũ)t ]−1 = x,

∫
(0,t]

[E(Ũ)s−]−1 dη̃s = y

)
ν(dx, dy)

=
∫

R2
0ν(dx, dy)

= 0,

where ν is the distribution of ([E(Ũ)t ]−1,
∫
(0,t][E(Ũ)s−]−1 dη̃s). It follows that Zt is (abso-

lutely) continuous for all t > 0. Hence, L(V0) is (absolutely) continuous by Corollary 5.1.

6. Proofs

For the proofs of the preceding results, we need to define some auxiliary Lévy processes. In
the case that λ = �U({−1}) = 0 we will often make use of the formulation

E(U)t = (−1)Nt e−Ût , (6.1)

where the processes N = (Nt )t≥0 and Û = (Ût )t≥0 are defined by

Nt := number of jumps of size less than −1 of U in [0, t],

Ût := −Ut + σ 2
U t

2
+

∑
0<s≤t

[�Us − log |1 +�Us |].

See [2] for details on N = (Nt )t≥0 and Û = (Ût )t≥0.
On the other hand, if λ = �U({−1}) > 0, we will use the processes Ũ , η̃, L̃, and W̃ defined

by (2.3), (5.1), and

W̃t = Wt −
∑

0<s≤t
�Us=−1

�Ws, t ≥ 0. (6.2)
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6.1. Proofs for Section 3

For the following calculations, we need a short lemma on stochastic integrals with respect
to Lévy processes which can be deduced from [4, Proposition 4.6.16]. Since the proof in
that reference is not carried out completely, we present an alternative proof here. Note that the
following lemma allows us to circumvent Hölder’s inequality in the proof of Theorem 3.1 so that
we get slightly sharper results than the corresponding results obtained in [12] for generalized
Ornstein–Uhlenbeck processes.

Lemma 6.1. Let (Ls)s≥0 be a Lévy process, and let (Hs)s≥0 be an adapted, càdlàg process.
Suppose that there exists κ ≥ 1 such that E |L1|κ < ∞ and E sup0<s≤1 |Hs |κ < ∞. Then

E sup
0<t≤1

∣∣∣∣
∫
(0,t]

Hs− dLs

∣∣∣∣
κ

< ∞. (6.3)

In particular, if E |L1| < ∞ and E sup0<s≤t |Hs | < ∞ for t > 0, it holds that

E
∫
(0,t]

Hs− dLs = E[L1]
∫
(0,t]

EHs− ds. (6.4)

Proof. Define the processes L+ and L− such that L = L+ + L− and EL1 = EL+
1 with

L− having only jumps of size in (− 1
2 ,

1
2 ) and L+

s = ∑Ns
i=1 Yi + γ s being a compound Poisson

process with parameter a, jump times Ti, i = 1, 2, . . . , and jump heightsYi, i = 1, 2, . . . , such
that |Yi | ≥ 1

2 for all i ∈ N. Then we can derive, by a standard calculation using Minkowski’s
inequality,

(
E sup

0<t≤1

∣∣∣∣
∫
(0,t]

Hs− dL+
s

∣∣∣∣
κ)1/κ

≤
(

E

( N1∑
i=1

|HTi−||Yi |
)κ)1/κ

+
(

E

(
|γ | sup

0<t≤1

∣∣∣∣
∫
(0,t]

Hs− ds

∣∣∣∣
)κ)1/κ

≤
( ∞∑
j=0

P(N1 = j)j E |Y1|κ E sup
0<s≤1

|Hs |κ
)1/κ

+ |γ |
(

E sup
0<s≤1

|Hs |κ
)1/κ

=
(

E[N1] E |Y1|κ E sup
0<s≤1

|Hs |κ
)1/κ + |γ |

(
E sup

0<s≤1
|Hs |κ

)1/κ

< ∞.

On the other hand, using the notation of [15, Theorem V.2] for some constant c1,

E sup
0<t≤1

∣∣∣∣
∫
(0,t]

Hs− dL−
s

∣∣∣∣
κ

=
∥∥∥∥

∫
(0,·]

1(0,1](s)Hs− dL−
s

∥∥∥∥
κ

Sκ
≤ c1

∥∥∥∥
∫
(0,·]

1(0,1](s)Hs− dL−
s

∥∥∥∥
κ

Hκ

and by Equation (14) of [14] we know that, for some constant c2,∥∥∥∥
∫
(0,·]

1(0,1](s)Hs− dL−
s

∥∥∥∥
κ

Hκ

≤ c2 E sup
0<s≤1

|Hs |κ‖(L−
s∧1)s≥0‖κBMO,

where s ∧ 1 := min{s, 1} and || · ||BMO denotes the BMO norm as defined, e.g. in [15, p. 197].
Since L− is a zero-mean Lévy process with bounded jumps, (L−

s∧1)s≥0 is a BMO process.
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Hence, in the above inequality, the right-hand side is finite and so is E sup0<t≤1 | ∫
(0,t]Hs−dL−

s |κ,
which completes the proof of (6.3).

For the second assertion, note that since Ls − s EL1 is a local martingale, the same
holds for Mt := ∫

(0,t]Hs− d(Ls − s E[L1]). By calculations similar to the above, it holds
that E sup0<s≤t |Mt | < ∞ and, hence, by [15, Theorem I.51], Mt is a martingale. Thus, we
have E

∫
(0,t]Hs− dLs = E[L1] E

∫
(0,t]Hs− ds, and using Fubini’s theorem, the second assertion

follows.

Proof of Proposition 3.1. (i) First note that |E(U)t |κ = |E(Ũ)t |κ 1{K(t)=0} is integrable if
and only if |E(Ũ)t |κ is. Thus, it is sufficient to show the integrability condition under the
assumption that �U({−1}) = 0.

Because of (6.1) we have E[|E(U)t |κ ] = E[e−κÛt ] and, hence, by [17, Theorem 25.17], it
holds that E[|E(U)t |κ ] < ∞ if and only if

∫
|x|>1 e−κx�

Û
(dx) < ∞. Using�

Û
= X(�U) for

the transformation

X : R \ {−1} → R, x �→ X(x) = − log |1 + x|, (6.5)

as introduced in [2, Lemma 3.4], this is equivalent to
∫

R\([−1−e,−1−e−1]∪[−1+e−1,−1+e])
|1 + x|κ�U(dx) < ∞,

which is fulfilled if and only if
∫
|x|>1 |x|κ�U(dx) < ∞, viz. |U1|κ is integrable.

To compute E[E(U)t ] for U with�U({−1}) ≥ 0, recall that the Doléans-Dade exponential
fulfills the integral equation

E(U)t = 1 +
∫ t

0
E(U)s− dUs. (6.6)

Under the given assumptions, we have E sup0<s≤t |E(U)s | < ∞ by [17, Theorem 25.18] and,
hence, using Lemma 6.1, it holds that

E[E(U)t ] = 1 + E[U1]
∫ t

0
E[E(U)s] ds.

Thus, by differentiation, dE[E(U)t ]/dt = E[U1] E[E(U)t ] so that E[E(U)t ] = ceE[U1]t for
some constant c �= 0. But since E(U)0 = 1 a.s., we easily see that c = 1, which gives (3.2).

To show (3.3) using integration by parts and [15, Theorems II.19 and II.29], we obtain,
from (6.6),

E[(E(U)t )2] = 1 + 2 E

[∫ t

0
E(U)s− dUs

]
+ E

[[∫ •

0
E(U)s− dUs,

∫ •

0
E(U)s− dUs

]
t

]

+ 2 E

[∫ t

0

(∫ s

0
E(U)u− dUu

)
d

(∫ s

0
E(U)u− dUu

)]

= 1 + 2(E[E(U)t ] − 1)+ E

[∫ t

0
(E(U)s−)2 d[U,U ]s

]

+ 2 E

[∫ t

0
(E(U)s− − 1)E(U)s− dUs

]
,
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which, by a standard calculation using (3.2), (6.3), and (6.4), leads to

d(E[(E(U)t )2])
dt

= (E[[U,U ]1] + 2 E[U1])E[(E(U)t )2],

so that
E[(E(U)t )2] = et (E[[U,U ]1]+2 E[U1])

since E(U)0 = 1 a.s. Finally, note that E[[U,U ]1] = E[U2
1 ] − 2 E[U1]

∫ 1
0 s E[U1] ds =

var(U1), which gives
E[(E(U)t )2] = et (2 E[U1]+var(U1)), (6.7)

and, hence, (3.3).
(ii) Recall that E |E(U)t |−κ < ∞ if and only if

∫
|x|>1 e−κx�

Ŵ
(dx) < ∞, where Ŵ is the

process corresponding to W via (6.1). Since �
Ŵ

= X(�W) = X(Y(�U)) with

Y : R \ {−1} → R \ {−1}, x �→ Y (x) = −x
1 + x

, (6.8)

as defined in [2, Lemma 3.4], this is equivalent to

∫
R\([−1−e,−1−e−1]∪[−1+e−1,−1+e])

|1 + x|−κ�U(dx) < ∞,

and, hence, to (3.4). Equations (3.2) and (3.3) can then be shown by similar calculations as
above while the formula for E[W1] is given in [2, Lemma 3.4]. The variance of W1 is given
by var(W1) = σ 2

W + ∫
R
x2�W(dx) (see [17, Example 25.12]). Using the transformation Y in

(6.8), this directly leads to the given formula.

Proof of Lemma 3.1. Suppose that Vt = k a.s. By (1.1) we know that Vt = V0 +∫
(0,t] Vs− dUs + Lt , which gives k = k + kUt + Lt and, hence, the desired result.

For the converse, note that kUt = −Lt , t ≥ 0, implies that η̃t = kW̃t by (1.3), (2.3), (3.1),
and (6.2), and also �LT (t) = k for all t ≥ 0 so that we obtain, from (1.2),

Vt = E(U)t

(
k + k

∫
(0,t]

E(W̃ )s− dW̃s

)
1{K(t)=0}

+ E(U)(T (t),t]
(
k + k

∫
(T (t),t]

E(W̃ )(T (t),s) dW̃s

)
1{K(t)≥1} .

From (6.6), it follows that the Doléans-Dade exponential fulfills the integral equation
E(W̃ )(T (t),t] = 1 + ∫

(T (t),t] E(W̃ )(T (t),s) dW̃s for all t > 0 with K(t) > 0, and this together
with (6.6) directly gives Vt = k a.s.

Proof of Theorem 3.1. (i) Using Proposition 3.1(i), it follows from (3.5) for k := max{1, κ}
that we have E |E(Ũ)s |k <∞. By [17, Theorem 25.18], this is equivalent to E sup0<s≤1|E(Ũ)s |k
= E sup0<s≤1 e− k ˆ̃

Us < ∞ and, hence, from Lemma 6.1, it follows that

E sup
0<t≤1

∣∣∣∣
∫
(0,t]

E(Ũ)s− dL̃s

∣∣∣∣
k

< ∞. (6.9)
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Set α := �κ�, the integer part of κ . Then it can be shown exactly as in the proof of [12,
Proposition 4.1] that, for any m, n ∈ N0, m < n,

E

∣∣∣∣
∫
(m,n]

E(Ũ)s− dL̃s

∣∣∣∣
κ

≤ E

∣∣∣∣
∫
(0,1]

E(Ũ)s− dL̃s

∣∣∣∣
κ(n−1∑

j=m
exp

(
j

κ
ψ ˆ̃
U
(κ)

))α

×
(n−1∑
j=m

exp

(
j (κ − α)

κ
ψ ˆ̃
U
(κ)

))
, (6.10)

which is Equation (8.4) of [12], where the last factor can be omitted if κ = α.
(a) Assume first that λ = �U({−1}) = 0, i.e. by Theorem 2.1(ii), it holds that V0

d=∫
(0,∞)

E(U)s− dLs . Since we have E |E(U)1|κ < 1, which is equivalent to ψ
Û
(κ) < 0,

the sums in (6.10) converge absolutely when n → ∞ so that, with (6.9), it follows that∫
(0,t] E(U)s− dLs is a Cauchy sequence inLκ and, thus, converges inLκ to

∫
(0,∞)

E(U)s− dLs
as t → ∞ so that we have E |V0|κ < ∞.

For the expectation, we obtain, using (6.4) and (3.2),

E[V0] = E

[∫
(0,∞)

E(U)s− dLs

]
= E[L1]

∫
(0,∞)

eE[U1]s ds = −E[L1]
E[U1] .

To compute the variance, using integration by parts and Lemma 6.1, we obtain

E[V 2
0 ] = E

[[∫ •

0
E(U)s− dLs,

∫ •

0
E(U)s− dLs

]
∞

]

+ 2 E

[∫ ∞

0

(∫ t

0
E(U)s− dLs

)
d

(∫ t

0
E(U)s− dLs

)]

= E[[L,L]1]
∫ ∞

0
E[(E(U)s−)2] ds

+ 2 E[L1]
∫ ∞

0
E

[
E(U)t−

(∫ t

0
E(U)s− dLs

)]
dt.

By (6.7), it holds that
∫ ∞

0
E[(E(U)s−)2] ds = −(2 E[U1] + var(U1))

−1,

which is strictly positive and finite since E[E(U)21] < 1 holds by assumption. For the calculation
of ∫ ∞

0
E

[
E(U)t−

(∫ t

0
E(U)s− dLs

)]
dt =:

∫ ∞

0
Xt dt,

again, by integration by parts, the use of Lemma 6.1, (3.2), (6.6), and (6.7), we obtain

Xt = E[[U,L]1] + E[L1]
2 E[U1] + var(U1)

(et (2 E[U1]+var(U1)) − 1)+ E[U1]
∫ t

0
Xs ds.

Solving this integral equation leads to

E[V 2
0 ] = 1

2 E[U1] + var(U1)

(
2 E[L1](cov(U1, L1)+ E[L1])

E[U1] − var(L1)

)
, (6.11)

https://doi.org/10.1239/aap/1316792666 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792666


702 A. D. BEHME

where we replaced

E[[U,L]1] = E[U1L1] − E[L1]
∫ 1

0
s E[U1] ds − E[U1]

∫ 1

0
s E[L1] ds = cov(U1, L1).

Using the results above, the variance can now be derived by standard algebra.
(b) Suppose that λ = �U({−1}) > 0, and deduce from Theorem 2.1(ii) that

E |V0|κ = E |Zτ |κ =
∫
(0,∞)

λe−λt E |Zt |κ dt,

where (Zt )t≥0 is defined in (2.4).
Let λ′ := ψ ˆ̃

U
(κ) = log E |E(Ũ)1|κ . Then we have λ′ < λ by assumption. Choose λ′′ such

that λ′ ≤ λ′′ < λ. First observe that we have

E |Zt |κ = E

∣∣∣∣E(Ũ)tY + E(Ũ)t

∫
(0,t]

[E(Ũ)s−]−1 dη̃s

∣∣∣∣
κ

≤ 2κ
(

E |E(Ũ)tY |κ + E

∣∣∣∣
∫
(0,t]

E(Ũ)s− dL̃s

∣∣∣∣
κ)
,

where we have used [2, Lemma 3.1].
Since E |L1|κ < ∞ implies that E |Y |κ < ∞, and since Ũ and Y are independent, we

conclude, using (3.2), that
∫ ∞

0
e−tλ2κ E |E(Ũ)tY |κ dt ≤ 2κ

∫ ∞

0
e−tλetλ

′′
E |Y |κ dt < ∞.

For the second term, observe that, from (6.9) and (6.10), it follows that

E

∣∣∣∣
∫
(0,n]

E(Ũ)s− dL̃s

∣∣∣∣
κ

≤ E

∣∣∣∣
∫
(0,1]

E(Ũ) dL̃s

∣∣∣∣
κ(n−1∑

j=0

exp

(
j

κ
λ′

))α

×
(n−1∑
j=0

exp

(
j (κ − α)

κ
λ′

))

≤ C exp

(
nα

κ
λ′′

)
exp

(
n(κ − α)

κ
λ′′

)

≤ Cenλ
′′

for any n ∈ N and a suitable constant C. Finally, for arbitrary t > 0, we obtain

E

∣∣∣∣
∫
(0,t]

E(Ũ)s− dL̃s

∣∣∣∣
κ

= E

∣∣∣∣
∫
(0,�t�]

E(Ũ)s− dL̃s + E(Ũ)�t�
∫
(�t�,t]

E(Ũ)(�t�,s) dL̃s

∣∣∣∣
κ

≤ 2κ
(
Ce�t�λ′′ + e�t�λ′′

E sup
0<t≤1

∣∣∣∣
∫
(0,t]

E(Ũ) dL̃s

∣∣∣∣
κ)

≤ C′etλ′′
,

by (6.9) for some constant C′.
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We conclude that ∫ ∞

0
e−tλ2κ E

∣∣∣∣
∫
(0,t]

E(Ũ)s− dL̃s

∣∣∣∣
κ

dt < ∞,

and altogether
∫ ∞

0 e−tλ|Zt |κ dt < ∞, giving the finiteness of E |V0|κ .
To compute the expectation, we use result (3.2) and carry out calculations as in part (a) to

derive, under the assumption that E[Ũ1] �= 0,

E[Zt ] = eE[Ũ1]t E Y + E[L̃1]
E[Ũ1]

(eE[Ũ1]t − 1),

so that, by integration and using E[U1] = E[Ũ1] − λ,

E[V0] = −E[L̃1] + λE Y

E[U1] .

If, on the other hand, E[Ũ1] = 0, it follows that E[Zt ] = E Y + t E[L̃1] and then E[V0] =
E Y + λ−1 E[L̃1], which is a special case of the formula derived above. Hence, since E[L1] =
E[L̃1] + λE Y , we have shown the formula for E[V0], provided that E |V0| < ∞.

Because

E[V 2
0 ] = E[Z2

τ ] =
∫
(0,∞)

λe−λt E[Z2
t ] dt,

to prove the formula for var(V0), we first have to derive E[Z2
t ], for which, by a long calculation

starting from (2.4), we obtain

E[Z2
t ] = et (2 E[Ũ1]+var(Ũ1))

(
E[Y 2] + cov(Ũ1, L̃1)+ E[L̃1]

E[Ũ1] + var(Ũ1)

(
2 E Y + 2 E[L̃1]

2 E[Ũ1] + var(Ũ1)

)

+ var(L̃1)

2 E[Ũ1] + var(Ũ1)

)

− et E[Ũ1]
(

cov(Ũ1, L̃1)+ E[L̃1]
E[Ũ1] + var(Ũ1)

(
2 E Y + 2 E[L̃1]

E[Ũ ]
))

+ 2 E[L̃1](cov(Ũ1, L̃1)+ E[L̃1])− E[Ũ1] var(L̃1)

E[Ũ1](2 E[Ũ1] + var(Ũ1))
.

By integration and standard algebra, this leads to (6.11) and, hence, to the given formula for
var(V0) where we used the following relationships (all sums are meant over the jumps of U of
size −1 during the time interval [0, 1]):

E[U2
1 ] = E[Ũ2

1 ] + 2 E[Ũ1] E[��U ] + E[(��U)2] = E[Ũ2
1 ] − 2λE[Ũ1] + λ+ λ2,

since ��U is Poisson distributed, so that

var(Ũ1) = var(U1)− λ.

On the other hand, for L and L̃, we have

E[L2
1] = E[L̃2

1] + 2λE Y E[L̃1] + var(��L)+ (E[��L])2,
and, since ��L is compound Poisson distributed, this gives

E[L2
1] = E[L̃2

1] + 2λE Y E[L̃1] + λE[Y 2] + λ2(E Y )2
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and, hence,
var(L̃1) = var(L1)− λE[Y 2],

while, for the covariance, we deduce that cov(Ũ1, L̃1) = cov(U1, L1)+ λE Y .
(ii) The proof of this part is the same as that of part (i) in the λ = 0 case. We leave the details

to the reader.

Proof of Theorem 3.2. (i) For s < t , take As,t and Bs,t as defined in (2.2), and recall (2.1).
Since, by Theorem 2.1, the stationary solution (Vt )t≥0 is unique in law, we may and will assume
that V0 is independent of (Ut , Lt )t≥0. Observe that, due to the independence, it follows from
Proposition 3.1 and Theorem 3.1 that As,t 1{K(s)=K(t)} Vs has finite expectation. Hence, if
F = (Ft )t≥0 denotes the natural filtration induced by (Ut , Lt )t≥0, we obtain

E[Vt | Fs] = E[(As,tVs + Bs,t ) 1{K(s)=K(t)} +(AT (t),t�ηT (t) + BT (t),t ) 1{K(s)<K(t)} | Fs]
= Vs E[As,t 1{K(s)=K(t)}]

+ E[AT (t),t�ηT (t) 1{K(s)<K(t)} +Bs,t 1{K(s)=K(t)} +BT (t),t 1{K(s)<K(t)}].
On the other hand, since Vs is independent of As,t 1{K(s)=K(t)}, it holds that

E[Vt ] = E[Vs] E[As,t 1{K(s)=K(t)}]
+ E[AT (t),t�ηT (t) 1{K(s)<K(t)} +Bs,t 1{K(s)=K(t)} +BT (t),t 1{K(s)<K(t)}],

so that
E[Vt | Fs] = E[Vt ] + E[As,t 1{K(s)=K(t)}](Vs − E[Vs]).

Finally, since

E[As,t 1{K(s)=K(t)}] = E[E(Ũ)(s,t]] E[1{K(s)=K(t)}] = eE[Ũ1](t−s)e−λ(t−s) = eE[U1](t−s),

we obtain

cov(Vs, Vt ) = E[Vs E[Vt | Fs]] − E[Vs] E[Vt ] = eE[U1](t−s) var Vs,

as had to be shown.
(ii) By Theorem 2.1(iii), the stationary solution is non-causal and from (2.1) we obtain

Vs = A−1
s,t Vt − A−1

s,t Bs,t for s < t . Defining Gt = σ((Uu+t −Ut, Lu+t −Lt)u≥0) we can then
compute E[Vs | Gt ] for s < t and, finally, cov(Vs, Vt ) similarly as in (i).

6.2. Proofs for Section 4

Proof of Theorem 4.1. In the case that λ = 0 we first conclude from E |E(U)1|κ = 1,
which is then equivalent to ψ

Û
(κ) = 0, that limt→∞ E(U)t = 0, as in the proof of [12,

Proposition 4.1]. Note here that E |U1|max{1,κ} < ∞ implies that E |E(U)1|max{1,κ} < ∞ by
Proposition 3.1(i). Furthermore, since E log+ |L1| < ∞ by (4.1), it follows from Theorem 3.6
of [2] that

∫
(0,∞)

E(U)s− dLs converges a.s. Hence, a strictly stationary solution Vt exists by
Theorem 2.1(ii).

If λ > 0, it is clear that limt→∞ E(U)t = 0 holds and the existence of a stationary solution
is again guaranteed by Theorem 2.1(ii).

We know from (4.5) that, for all t ≥ 0, the stationary solution fulfills V0
d= AtV0 + Bt for

At and Bt defined by (4.6) and (4.7), respectively. Thus, we have, for any fixed t > 0,

E |At |κ = E |E(Ũ)t 1{K(t)=0} |κ = E |E(Ũ)t |κ P(K(t) = 0) = etλe−tλ = 1
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by assumption, and with E(Ũ)t = (−1)Nt e− ˆ̃
Ut , it holds that

E |At |κ log+ |At | = E[1{K(t)=0} e−κ ˆ̃
Ut log+(e−κ ˆ̃

Ut )] = e−tλ E[e−κ ˆ̃
Ut log+(e−κ ˆ̃

Ut )] < ∞,

since E[e−(κ+ε) ˆ̃
Ut ] < ∞ by (4.1) and Proposition 3.1. Additionally, for k := max{1, κ}, by

Minkowski’s inequality, it holds that

0 < (E |Bt |k)1/k
≤ (E |E(Ũ)(T (t),t] 1{K(t)>0}�LT (t)|k)1/k

+
(

E

∣∣∣∣E(Ũ)(T (t),t]
∫
(T (t),t]

[E(Ũ)(T (t),s)]−1 dη̃s

∣∣∣∣
k)1/k

, (6.12)

where we set T (t) := 0 if K(t) = 0. The first term in the above sum vanishes if λ = 0 and in
any case is less than or equal to

(E[|E(Ũ)(T (t),t]|k|�LT (t)|k])1/k = (E |E(Ũ)(T (t),t]|k E |�LT (t)|k)1/k

= (E e−k( ˆ̃
Ut− ˆ̃

UT (t)) E |�LT (t)|k)1/k,
which is finite by assumption.

On the other hand, observe that, by conditioning onT (t), which is independent of (Ũt ,L̃t )t≥0,
it follows from [2, Lemma 3.1] that

E(Ũ)(T (t),t]
∫
(T (t),t]

[E(Ũ)(T (t),s)]−1 dη̃s
d=

∫
(T (t),t]

E(Ũ)(T (t),s) dL̃t .

Hence, the second term of (6.12) is finite by Lemma 6.1 since E sup0<s≤1 |E(Ũ)s |k < ∞ by [17,
Theorem 25.18] is equivalent to E |E(Ũ)1|k < ∞, which is given by assumption. Altogether,
we obtain 0 < E |Bt |κ ≤ E |Bt |k < ∞.

From (6.1), it is clear that ˆ̃
U has infinite variation if and only if Ũ has and, thus, if and only if

U has infinite variation. Hence, by [17, Corollary 24.6], in this case ˆ̃
Ut has a nonarithmetic law

for each t > 0. Otherwise, if we assume that ˆ̃
U is deterministic then, from (4.1), it follows that

κ
ˆ̃
U1 = λ > 0, which contradicts limt→∞ E(U)t = 0, so this case cannot occur. Thus, ifU (and,

hence, ˆ̃
U ) is of finite variation, by [17, Corollary 24.6], it suffices to ensure that either the drift

γ 0
ˆ̃
U

of ˆ̃
U is nonzero or that there is no r > 0 with supp(� ˆ̃

U
) ⊂ supp(�

Û
) ⊂ rZ, to guarantee

that ˆ̃
Ut has a nonarithmetic law for t from a dense subset of (0,∞). Via the relations betweenU

and Û known from [2, Lemma 3.4], we have γ 0
ˆ̃
U

= −γ 0
U and supp(�

Û
) = X(supp(�U)) with

X as defined in (6.5), so that this holds by assumption. Hence, L(log |At | | At �= 0) = L( ˆ̃
Ut)

is nonarithmetic for t from a dense subset of (0,∞).
Now, by [5, Theorem 4.1], it follows that there exists a unique law ofV0 fulfillingV0

d=AtV0+
Bt and, by uniqueness in law of the stationary solution, this law is equal to L(Vt ) for all t ≥ 0.
Hence, [5, Theorem 4.1] shows the existence of C+, C− ≥ 0, so (4.2) holds as well as the fact
that C+ = C− if �U((−∞,−1)) > 0.

Finally, fix a sequence tn tending to ∞ so that L( ˆ̃
Utn) is nonarithmetic for all n ∈ N.

Now, from [5, Theorem 4.1], it follows additionally that if C+ + C− = 0, it holds that
Btn = (1 − Atn)cn for some real constants cn. But letting n tend to ∞ we observe thatAtn → 0
a.s. as n → ∞, and, hence, Btn

d−→ V0 by (4.5). This implies that cn
d−→ V0 as n → ∞, so V0

and, hence, Vt , t ≥ 0, is constant.
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The proof of Theorem 4.2 can be carried out analogously to that of Theorem 4.1 simplified
to the case λ = 0. Observe that by defining a process Ŵ similar to Û , it holds that Ŵ = −Û ,
so Ŵ has a nonarithmetic law if and only if Û has.

Proof of Proposition 4.2. Part (i) follows from [6, Theorem 4.1] once it is shown that

P(|At | > 1) > 0 holds for At, t > 0, defined in (4.6). This is equivalent to P( ˆ̃
Ut < 0) > 0, so

we have to ensure that ˆ̃
U is not a subordinator, which is equivalent to the assumptions stated in

Proposition 4.2(i) using the relations between the processes U and ˆ̃
U .

Owing to (4.8) and the arguments above, we have to ensure that Ŵ is not a subordinator to
prove (ii). Since Ŵ = −Û and �

Û
= X(�U), this is equivalent to the given assumptions.

Proof of Theorem 4.3. (i) We know that Vt fulfills (4.5) for all t ≥ 0. Note that, owing

to the relations between the processes U and ˆ̃
U , the assumptions on U given in the theorem are

equivalent to stating that ˆ̃
U is a subordinator with P( ˆ̃

Ut > 0) = 1 for all t > 0. By (4.6), this
implies that P(|At | ≤ 1) = P(|E(Ũ)t | 1{K(t)=0} ≤ 1) = 1 and P(|At | < 1) > 0 for all t > 0.
It remains to show that the moment generating function (MGF) of |Bt | for t > 0 fixed is finite
in some neighborhood (−ε, ε) of 0; then the result follows directly from Theorem 2.1 of [6].

By (4.7), for t > 0 fixed and ε > 0, it holds that

exp(ε|Bt |) = exp

(
ε

∣∣∣∣E(Ũ)(T (t),t]
∫
(T (t),t]

[E(Ũ)(T (t),s)]−1 dη̃s

+ E(Ũ)(T (t),t]�LT (t) 1{K(t)>0}
∣∣∣∣
)

≤ exp

(
ε

∣∣∣∣E(Ũ)(T (t),t]
∫
(T (t),t]

[E(Ũ)(T (t),s)]−1 dη̃s

∣∣∣∣
)

exp(ε|�LT (t)| 1{K(t)>0}),

where we set T (t) = 0 if K(t) = 0 and, hence, by Hölder’s inequality, it is enough to show
that both factors have finite expectation in some neighborhood of 0. Owing to our assumption
on L, this holds for the second factor, while for the first factor we obtain, with [2, Lemma 3.1],

E exp

(
ε

∣∣∣∣E(Ũ)(T (t),t]
∫
(T (t),t]

[E(Ũ)(T (t),s)]−1 dη̃s

∣∣∣∣
)

= E

[
E

[
exp

(
ε

∣∣∣∣E(Ũ)t−T (t)
∫
(0,t−T (t)]

[E(Ũ)s−]−1 dη̃s

∣∣∣∣
) ∣∣∣∣ T (t)

]]

=
∫

[0,t]
E

[
exp

(
ε

∣∣∣∣
∫
(0,t−w]

E(Ũ)s− dL̃s

∣∣∣∣
)]

dPT (t)(w).

Recall the process L̃, and define L̃+ and L̃− similarly toL+ andL− in the proof of Lemma 6.1.
Then

E

[
exp

(
ε

∣∣∣∣
∫
(0,t−w]

E(Ũ)s− dL̃s

∣∣∣∣
)]

≤
(

E

[
exp

(
2ε

∣∣∣∣
∫
(0,t−w]

E(Ũ)s− dL̃+
s

∣∣∣∣
)])1/2

×
(

E

[
exp

(
2ε

∣∣∣∣
∫
(0,t−w]

E(Ũ)s− dL̃−
s

∣∣∣∣
)])1/2

(6.13)
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by Hölders inequality. Denoting the total variation of L̃+ on (0, t] by ||L̃+||t we obtain∣∣∣∣
∫
(0,t−w]

E(Ũ)s− dL̃+
s

∣∣∣∣ ≤
∫
(0,t−w]

sup
0<u≤t−w

|E(Ũ)u−||dL̃+
s | ≤

∫
(0,t−w]

|dL̃+
s | ≤ ||L̃+||t−w.

Since L̃+ is by definition a finite variation process andL has finite MGF in some neighborhood
of 0, so has ||L̃+||. Thus, the first term on the right-hand side of (6.13) is finite for small
enough ε.

For fixed t > 0, set Mt := ∫
(0,t] E(Ũ)s− dL̃−

s . Then (Ms)0<s≤t is a square integrable
martingale by the lemma to Theorem IV.27 of [15], since E[∫

(0,t) E(Ũ)
2
s− d[L̃−, L̃−]s] ≤

E[σ 2
Lt +

∑
0<s≤t (�L̃−

s )
2] < ∞. Additionally, it holds that |�Mt | = |E(Ũ)t−�L̃−

t | ≤ 1
2 and

[M,M]t ≤σ 2
Lt +

∑
0<s≤t (�L̃−

s )
2, where the latter is a Lévy process with bounded jumps

having finite exponential moments by [17, Theorem 25.17]. Hence, by [16, Theorem 6.1],
(E(M)s)0<s≤t is a martingale.

By the definition of the Doléans-Dade exponential we have

exp(εMs) = E(M)εs exp

(
1

2
εσ 2
Ms

)( ∏
0<u≤s

(1 +�Mu)
−1e�Mu

)ε
,

where the first two factors on the right-hand side have bounded expectation uniformly in s ∈
[0, t] and sufficiently small ε > 0. For the last factor, observe that∑

0<u≤s
(�Mu − log(1 +�Mu)) ≤

∑
0<u≤s

(�Mu)
2 ≤

∑
0<u≤s

(�L̃−
u )

2,

since |�Mu| < 1
2 , so sup0≤s≤t E(

∏
0<u≤s(1 +�Mu)

−1e�Mu)ε is finite for sufficiently small ε.
An application of Hölder’s inequality therefore gives E[exp(εMs)] ≤ C1 for all s ≤ t , some
constant C1 = C1(t), and sufficiently small ε > 0.

Note that

E[eε|Mt |] = E[eεMt 1{Mt>0}] + E[e−εMt 1{Mt<0}] ≤ E[eεMt ] + E[e−εMt ],
so E[exp(ε|Mt |)] ≤ 2C1 since the above calculations also hold for

−Mt =
∫
(0,t]E(Ũ)s−s

(−L̃−)s .

Hence, the second term on the right-hand side of (6.13) is bounded and we conclude that

E

[
exp

(
ε

∣∣∣∣
∫
(0,t−w]

E(Ũ)s− dL̃s

∣∣∣∣
)]

≤ C2

for some constant C2 = C2(t) and sufficiently small ε > 0 uniformly in w ∈ [0, t]. Thus,∫
[0,t]

E

[
exp

(
ε

∣∣∣∣
∫
(0,t−w]

E(Ũ)s− dL̃s

∣∣∣∣
)]

dPT (t)(w) < ∞,

so |Bt | is shown to have finite MGF in some neighborhood of 0.
To prove (ii), owing to (4.8), we have to show for t > 0 that P(|A−1

t | ≤ 1) = P(|E(W)t | ≤
1) = 1, P(|At | < 1) > 0, and that the MGF of |A−1

t Bt | = | ∫[0,t) E(W)s− dηs |, t > 0, is finite
in some neighborhood (−ε, ε) of 0. This can be done as in (i) and the result follows again from
Theorem 2.1 of [6].
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6.3. Proofs for Section 5

The following lemma will be needed to prove our main theorem on absolute continuity. An
analogous result for a.s. nonzero Mt has been shown in [3, Lemma 2.1].

Lemma 6.2. For t ∈ N0, let ψt , Qt , and Mt be random variables such that it holds that
P(Mt = 0) > 0, ψt is independent of (Qt ,Mt), and, for large enough t ∈ N, the conditional
distribution ofQt givenMt = 0 is continuous. Suppose that ψ is a random variable satisfying
ψ = Qt +Mtψt and ψ

d= ψt for all t ≥ 0 and such that Qt
p−→ ψ as t → ∞. Then ψ has an

atom if and only if it is a constant random variable.

Proof. Suppose that ψ has an atom at a ∈ R, i.e. P(ψ = a) =: β > 0. Then, for all
ε ∈ (0, β), there exists δ > 0 such that P(|ψ − a| < 2δ) < β + ε. Additionally, Qt

p−→ ψ

implies the existence of some t ′ = t ′(ε) such that P(|ψ −Qt | ≥ δ) = P(|Mtψt | ≥ δ) < ε for
all t ≥ t ′.

Following the lines of the proof of [3, Lemma 2.1], we can now show that, for all t ≥ t ′,
there exists st ∈ R such that βt := P(Qt +Mtst = a, |Mtst | < δ) ≥ β − ε, and it holds that

P(|ψ −Qt | ≥ δ)+ P(|Qt − a| < δ) ≥ P(ψ = a)+ P(Qt +Mtst = a, |Mtst | < δ)

− P(Qt +Mtst = a, |Mtst | < δ, ψ = a). (6.14)

Since P(Mt = 0) > 0, we have

{Qt +Mtst = a, |Mtst | < δ, ψ = a}
= {Qt +Mtst = a, |Mtst | < δ, ψ = a, Mt = 0}

∪ {Qt +Mtst = a, |Mtst | < δ, ψ = a, Mt �= 0}
⊂ {Qt = a, Mt = 0} ∪ {Qt +Mtst = a, |Mtst | < δ, Mt �= 0, ψt = st }
⊂ {Qt = a, Mt = 0} ∪ ({Qt +Mtst = a, |Mtst | < δ} ∩ {ψt = st }),

and, by the continuity assumption on Qt given Mt = 0, we obtain

P(Qt +Mtst = a, |Mtst | < δ, ψ = a) ≤ 0 + βt P(ψt = st ),

so we can conclude from (6.14) that

P(|ψ −Qt | ≥ δ)+ P(|Qt − a| < δ) ≥ β + βt − βt P(ψt = st ).

From here, again following directly the proof of [3, Lemma 2.1], we obtain the assumption that
P(ψ = a) = 1.

Now we can prove the conditions for the distribution of the perpetuityX∞ to be (absolutely)
continuous in the case P(A = 0) > 0 as stated in Theorem 5.1.

Proof of Theorem 5.1. To show (i), first suppose that the conditional distribution of B given
A = 0 is continuous. Let (Ak, Bk)k∈N0 be an i.i.d. sequence of random variables such that
(A0, B0) has the same distribution as (A,B). Define

ψ := X∞ =
∞∑
k=0

(k−1∏
i=0

Ai

)
Bk, Mt =

t−1∏
i=0

Ai,

ψt =
∞∑
k=t

(k−1∏
i=t

Ai

)
Bk, Qt =

t−1∑
k=0

(k−1∏
i=0

Ai

)
Bk.
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Then it follows from Lemma 6.2 that ψ is continuous or a Dirac measure if we can show that
the conditional distribution of Qt given Mt = 0 is continuous for all t ∈ N. We do this by
induction.

For t = 1, the claim is true by assumption. Now suppose that the conditional distribution
of Qt given Mt = 0 is continuous, so P(Qt = a, Mt = 0) = 0 for each a ∈ R. We then have,
since Qt+1 = Qt +MtBt , for each a ∈ R,

P(Qt+1 = a,Mt+1 = 0)

= P(Qt +MtBt = a, MtAt = 0)

= P(Qt = a, Mt = 0)+ P(Qt +MtBt = a, Mt �= 0, At = 0)

= P(Bt = M−1
t (a −Qt), Mt �= 0, At = 0)

by the induction hypothesis. Now, using regular conditional probabilities, we further obtain

P(Bt = M−1
t (a −Qt), Mt �= 0, At = 0)

=
∫
(R\{0})×R

P(Bt = u−1(a − v), At = 0 | Mt = u, Qt = v) dP(Mt ,Qt )(u, v)

=
∫
(R\{0})×R

P(Bt = u−1(a − v), At = 0) dP(Mt ,Qt )(u, v)

(since (At , Bt ) is independent of (Mt ,Qt ))

=
∫
(R\{0})×R

0 dP(Mt ,Qt )(u, v)

= 0,

the latter following from the fact that the conditional distribution of Bt given At = 0 is
continuous. Hence, we see that the conditional distribution of Qt+1 given Mt+1 = 0 is
continuous too, completing the induction step. Lemma 6.2 hence shows thatX∞ is continuous
or degenerate to a Dirac measure. But X∞ cannot be degenerate to a Dirac measure, since
X∞

d= B + AX′ = B on A = 0, where P(A = 0) > 0 and L(B | A = 0) is continuous.
To see the converse, suppose that the conditional distribution of B given A = 0 is not

continuous. Then there exists an a ∈ R such that P(B = a | A = 0) = β > 0. Since L(X∞)
satisfies the fixed-point equation (4.3), we have

P(X∞ = a) = P(AX′ + B = a) ≥ P(B = a, A = 0) > 0.

Hence, L(X∞) has an atom.
For (ii), we will first show that L(X∞) is either absolutely continuous or a Dirac measure,

given that the conditional distribution ofB givenA = 0 is absolutely continuous. Then it follows
from part (i) that L(X∞) is absolutely continuous. In doing so we follow the arguments of
Grincevičius [8], who considered the case P(A = 0) = 0.

Assume that L(X∞) is not singular and denote its characteristic function by

f (x) = E eixX∞ = E[E[eiBxeiAxX
′ | A,B]] = E[eiBxf (Ax)].

Then by the Lebesgue decomposition theorem we may write f (x) = α1f1(x) + α2f2(x),
where α1 > 0, α2 ≥ 0, α1 + α2 = 1, and f1(x) and f2(x) are the characteristic functions of an
absolutely continuous and a singular probability distribution, respectively. Hence,

α1f1(x)+ α2f2(x) = α1 E[eiBxf1(Ax)] + α2 E[eiBxf2(Ax)].
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Let Y be a random variable independent of (A,B), having characteristic function f1, and set
Z := AY + B. Then, for C ∈ B1 with Lebesgue measure 0, it holds that

P(Z ∈ C) = P(AY + B ∈ C)
= P(B ∈ C, A = 0)+ P(AY + B ∈ C, A �= 0)

= 0 +
∫
(R\{0})×R

P(Y ∈ u−1(C − v)) dPA,B(u, v)

= 0.

It follows that Z is absolutely continuous and its characteristic function x �→ E(eiBxf1(Ax))

is the characteristic function of an absolutely continuous function.
Applying the Lebesgue decomposition to the distribution having characteristic function

x �→ E eiBxf2(Ax), we can write E eiBxf2(Ax) = α3f3(x) + α4f4(x) with α3, α4 ≥ 0,
α3 + α4 = 1, and f3 and f4 the characteristic functions of an absolutely continuous and
a singular distribution, respectively. By the uniqueness of the Lebesgue decomposition, it
follows that

α1f1(x) = α1 E[eiBxf1(Ax)] + α2α3f3(x),

which, for x = 0, yields α2α3 = 0. Hence, f1(x) = E[eiBxf1(Ax)]. Since f (x) =
E[eiBxf (Ax)] also, it follows that f (x) = f1(x) by an easy extension of Proposition 1 of [8].
Hence, we conclude that L(X∞) is absolutely continuous.

It remains to show that if the conditional distribution of B given A = 0 is not absolutely
continuous then L(X∞) cannot be absolutely continuous. For in that case there exists C ∈ B1
with Lebesgue measure 0 but P(B ∈ C | A = 0) > 0. We conclude that P(B ∈ C, A = 0) > 0
and, hence (for X′ d= X∞ being independent of (A,B)),

P(X∞ ∈ C) = P(AX′ + B ∈ C) ≥ P(B ∈ C, A = 0) > 0,

so L(X∞) cannot be absolutely continuous.
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