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Abstract

This paper describes how statistical methods can be tested on computer-generated data from known
models. We explore bias and percentile tests in detail, illustrating these with examples based on
insurance claims and financial time series.
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1. Introduction

1.1. Testing in Controlled Conditions

Financial crises may expose weaknesses in statistical models on which financial reporting or decision-
making rely. For example, several banks and insurers sustained multi-billion dollar losses in the
2007-2009 crisis. At the time of writing, the UK pension protection fund is reporting aggregate
scheme deficits in excess of £300,000,000,000 (Pension Protection Fund, 2006-2016). Many of
these institutions boast of complex statistical models, asserting that such losses were very unlikely to
occur. The regulation of financial institutions worldwide still often relies on similar models today.

Why did these models fail? Were they adequately tested? There is limited detail in the public domain
for pension funds, but we can learn from bank and insurer disclosures. For example, American
International Group “initiated engagements with ... external experts to perform independent reviews
and certifications of the economic capital model”, before sustaining a loss five times bigger than
the model’s 99.95 percentile loss (2007). Many banks now shed light on their model testing, by
publishing charts of historic daily profits and losses relative to their models’ value-at-risk.

In this paper, we argue that testing models on historic data is not enough. Especially when we are
concerned with rare and severe market stress, the events that invalidate a model are often the same
events that generate large losses. The models are of little use as early warning indicators.

In addition to historic back-testing, we therefore advocate laboratory testing for statistical models. We
feed the models with artificial data, generated from a variety of processes whose properties (good or bad)
are known. Such testing enables us to map out model strengths and weaknesses safely, where no money
is at stake.

*Correspondence to: Stuart Jarvis, Blackrock, Drapers Gardens, 12 Throgmorton Avenue, London EC2N 2DL,
UK. E-mail: stuart.jarvis@blackrock.com
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1.2. Lessons from Engineering

Engineering devices, and their components, may be subject to lab testing. Test environments
could include extremes of temperature, stress, vibration, friction, sand blasting, immersion
in corrosive liquids and so on. Such testing enables engineers to determine tolerance limits
and maintenance protocols, as well as measuring the frequency and impact of any manufacturing
defects.

This is safer and cheaper in the long run than assembling untested components, for example, into a
bridge, aeroplane or prosthetic body part, and measuring the frequency and severity of harm to
humans.

A failure in a lab test is not always a bad thing. Most components wear out eventually; all com-
ponents have limits of temperature or pressure under which they will fail. The purpose of lab testing
is to determine those limits.

It is always possible that the real world produces conditions, or combinations that were not foreseen
in the lab tests. The converse is also possible, that the lab conditions are more severe than a
component encounters in practical use. While we accept there is some subjectivity in determining
what laboratory conditions best represent the stress of a component in use, we do not accept this as a
reason not to perform lab tests.

1.3. Exponential Losses Example

In this paper we are primarily assessing the process of fitting probability distributions to data.
Decisions are often associated with moments or percentiles derived from the probability distribution
and it is therefore ultimately single numbers that are important in these cases. In practice, the full
distribution is typically fitted. It is therefore important to give users a sense of the purposes for which
this fitted distribution will or will not be appropriate.

In section 5, we consider the problem of fitting a distribution to a sample of ten observations. In our
example, we have grounds to believe that these observations are independent draws from an
underlying (true, or reference) exponential distribution. Table 1 shows the result of five tools for
fitting data to the observations (26, 29,40, 48, 59, 60, 69, 98, 278, 293), with an emphasis on the

Table 1. Ersatz Distribution Percentile Claim Amounts

Probability (%) Plug-In Bayes(0) Bayes(1) Bootstrap Maximum Multiplier
0.5 0.50 0.50 0.46 0.46 0.50
1 1.01 1.01 0.91 0.91 1.01
S 5.13 5.14 4.67 4.67 515
10 10.54 10.59 9.62 9.62 10.64
25 28.77 29.19 26.50 26.53 29.53
50 69.31 71.77 65.04 65.30 73.70
75 138.63 148.70 134.31 135.19 156.22
920 230.26 258.93 232.85 234.02 279.26
95 299.57 349.28 313.03 313.24 383.31
99 460.52 584.89 519.91 510.46 663.89
99.5 529.83 698.65 618.77 600.64 802.78
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Figure 1. Exponential example: fitted distribution functions

tails of the fitted distributions. Figure 1 compares the tail behaviour of these ersatz models graphi-
cally. We call each of these fitted models an ersatz model (see section 2 for more details). The simplest
fitting process is the “plug-in” method, that is, an exponential distribution with mean equal to the
sample mean of the data (which turns out to be 100). Even though the true distribution is believed to
be exponential, the fitted distributions are not all exponential. The disagreement is clear between
these ersatz models, especially in relation to the severity of tail outcomes. This motivates a search for
a view about which is the better fit. By testing these methods against generated data we are indeed
able to compare between these methods.

Of course the assumption, that a series of observations consists of independent draws from
an unvarying distribution, is a strong one. We will often have good grounds for believing that
there is in fact some linkage between observations, but this linkage too is unknown and needs to be
fitted. In section 6 we consider an auto-regressive (AR) model, such as used for inflation in the Wilkie
model (Wilkie, 1984, 1995), and test methods for fitting such models by applying them to
generated data.

1.4. Average Fitted Models

One question to consider, motivated by the classical statistical bias concept, is the extent to which
the fitted model agrees with the true (reference) model on average. For functions of the observations,
we can calculate statistical bias, and for percentile estimators we can compare exceedance
probabilities. Which of these, or other tests, is most relevant will depend upon the purpose of the
model. We can say that the fitting method is consistent if it passes the relevant tests for a particular
application.

It is not easy to pass multiple tests for a single reference model, nor a single test for multiple reference
model. Testing across multiple distributions, however, allows the modeller to assess whether the
method is robust to model mis-specification. We test the consistency and robustness of our fitting
methods in sections 5 and 6.
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1.5. The Rest of the Paper

The remainder of this paper proceeds as follows:

o We define key testing concepts: reference models, ersatz models, consistency, robustness, inner and
outer scenarios.

o We revisit the classical notion of parameter bias and put it in the context of ersatz model testing.

o We describe percentile tests in the context of solvency capital requirements and back-testing.

e We show a numerical example based on a simple, exponential, model of insurance claims.

* We investigate a second numerical example using first-order AR models.

e We draw some conclusions from those examples.

2. Reference Models and Ersatz Models

In this section, we define the concept of an ersatz model. We describe our approach to testing, and
contrast tests on generated data with more conventional tests on historic data.

2.1. Ersatz Models
Many corporate and individual decision tools make reference to probability laws; for example:

¢ Investors may value an asset by discounting the future expected cash flows.

¢ Investment portfolio selection may involve statistical measures of risk, such as standard deviation,
adverse percentiles or expected utility of wealth.

¢ Financial firms are required to demonstrate capital resources, often determined by reference to
high percentiles of a loss distribution.

e Probability-based capital requirements also appear in assessment of the future cost of capital, and
as a denominator in performance measures such as return on capital.

In all of these applications, the true underlying probability law is unknown and, arguably, unknowable.
Instead, we use ersatz models, estimated statistically from past experience, as a substitute for the
hypothetical true model. The substitute cannot be perfect (because of irreducible parameter error) so the
question has to be whether an ersatz model is a sufficiently close substitute for the intended purpose. In
the words of Davis, “What is needed here is a shift of perspective. Instead of asking whether our model is
correct, we should ask whether our objective in building the model has been achieved” (2014).

We might ponder whether we ever encounter models that are zot ersatz? In social sciences we rarely
use a “true” model. True models, or at least very close substitutes do exist in other fields: textbook
experiments with unbiased coins, fair dice or urns full of coloured balls; laws of physical motion,
Mendelian inheritance and so on. Many of our great statisticians have a background in fields where
true models exist, which have provided context for the major statistical controversies of the
20™ century. There is, arguably, a need for clearer philosophical articulation of what statistics means
in the social science context, where ersatz models are almost universal.

2.2. Out-of-Sample Model Tests

Out-of-sample model testing is a well-established statistical discipline. It involves comparing a model
prediction (based on sample of past data) to the emerging future experience. A good model should
predict the future closely.
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Empirical data is, by definition, realistic. However, despite this obvious point in its favour, out-
of-sample testing also has some weaknesses, including the following:

o Data is limited, so the tests may have low power which means that incorrect models are not likely
to be rejected.

e [t is difficult to eliminate cherry picking, where only the best model is presented out of a large
number that were tested. This hindsight can exaggerate the reported quality of fit.

o The true process that generated the (past and future) data is unknown, which makes it difficult to
generalise about the circumstances in which a model approach may work well in future.

The philosophy of hypothesis testing is also troubling, in the context of out-of-sample testing. A successful
out-of-sample test outcome is a failure to reject the hypothesis that the out-of-sample data could have
come from the fitted model. But we know the fitted model is wrong, for example, because its parameters
are subject to estimation error. To pass the test, we are hoping to force a Type Il error, that is, failing to
reject an incorrect model. Test success becomes more difficult as more out-of-sample data becomes
available. For example, if we calibrate a model based on 5 years’ data and test it out-of-sample on the next
50 years’ data, we are likely to find a pattern in the 50 years that was not detectable in the first 5, and thus
reject the model. We need a testing philosophy that is more forgiving of inevitable estimation errors.

In the rest of this paper we consider how model tests on computer-generated data, instead of historic
data, can overcome some of the weaknesses of out-of-sample tests.

2.3. Generated Data Tests

We consider a model, in a broad sense, to comprise not only a probability description of future
outcomes, but also the methodology for constructing that description from past data. To apply
generated data tests, we must be able to determine how a given model would have been different, had
the historic data been different.

Some methodological claims cannot be tested on real historic data. Take, for example, the statistical
statement that the average of a sample is an unbiased estimate of the population mean. We could
support this statement with a mathematical proof, or we could test on simulated data from a known
population. However, a table of averages based on samples from an unknown population tell us
nothing about whether the method is biased, because that would require a comparison of the sample
averages to the (unknown) underlying mean. There are many other attributes which, like bias, are
best validated on generated data.

By focussing on the way we build models, rather than on the built model, we can test proposed
methodologies on computer-generated data. A typical test is structured as follows:

e Choose a process for generating the test data.

o Generate a long test data series, split into a past portion and a future portion.

o Take the past portion and use it to re-fit an ersatz model, without reference to the original
generating process.

o Run the ersatz model based on the past data portion, to give forecast future scenarios.

e Compare the future scenario from the fitted model, to the future from the originally
generated data.

e Repeat this many times on other generated data series.
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The test passes if, in a statistical sense we shall define, the future scenarios from the fitted model are
sufficiently representative of the future scenarios from the original generating process.

2.4. Reference Models

In a generated data test, there must be a process for generating the test data. We call this a reference
model.

We should use not one, but many, reference models in generated data tests. The ersatz model
fitting methodology applied to the generated past data, should see only the generated history and
not the details of the reference model. Using a broad collection of reference models therefore reflects
the difficulty, that when we try to interpret data, we do not know the process that originally
generated it.

2.5. Generated Ersatz Models

The model fitted to the generated past data, is an instance of an ersatz model.

Ersatz models are widely used based on historic data, but where real data are used the underlying
data-generating process is unknown. We cannot then directly measure the quality of the ersatz
approximation.

In a generated data test, the reference model is known, and so we can quantify the discrepancy
between the reference model and the ersatz model.

2.6. Inner and Outer Scenarios

We can visualise the reference and ersatz models in the context of models for generating economic
scenarios, describing quantities such as inflation, equity, bond or property indices, interest rates,
foreign exchange rates and so on.

On real data we have only one past and we will observe only one future. Generated data need not
respect that constraint. We can generate multiple past outer scenarios. For each outer scenario, it is
common to generate several alternative future (or inner) scenarios. For any given outer scenario, we
use the reference model to generate inner scenarios from the conditional probability law given that
specific outer scenario. This is sometimes called a nested stochastic or Monte Carlo squared
structure.

Figure 2 shows reference models in green and red (two different reference models). The figure shows
a collection of outer scenarios, one of which develops into a collection of inner scenarios, marked in
the same colour.

At the same time, we can generate multiple inner scenarios from an ersatz model, fitted to the outer
scenarios. This gives another nested stochastic structure, with outer scenarios generated from a
reference model and inner scenarios from an ersatz model. We will sometimes talk about hybrid
scenarios. This refers to the combination of outer reference scenarios and inner ersatz scenarios.
These are marked as blue in Figure 2. The test of the Ersatz model is that the blue ersatz scenarios
resemble the properties of the original green or red reference scenarios.
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Figure 2. Inner and outer scenarios

2.7. Stated Assumptions

Generated data tests apply to a statistical procedure, that is, any algorithm for producing ersatz
models from past data. We are not testing the stated rationale for the procedure, and indeed we can
happily apply generated data tests to procedures unclothed in justifying rhetoric.

Where there is a formal stated model underlying the ersatz construction (e.g. a probability law
estimated from a parametric family by likelihood maximisation), that fitted ersatz model may or may
not agree with the reference model.

o Where the fitted model comes from a class that contains all the reference models, our procedure
becomes a consistency test, that is, the effectiveness of a procedure when the reference model
satisfies the ersatz assumptions.

o In other cases, for example, when the reference has many more parameters than could reasonably
be estimated from the quantity of generated past data, it is still valuable to know how wrong the
ersatz model might be. This is an example of a robustness test, that explores how performance
degrades when the reference model violates the ersatz assumptions.

Consistency tests appear periodically in the actuarial literature, including the General Insurance
Reserving Oversight Committee (GIROC) (2007, 2008) who test the consistency of bootstrap
techniques used in general insurance reserving applications. The classic text by Huber & Ronchetti
(2009) develops a framework for robustness based on influence functions which capture how out-
puts respond to small perturbations in input distributions, while Hansen & Sargent (2008) advocate
a min-max approach based on finding the worst case model within a chosen ambiguity set.

Robustness tests are less common within the actuarial literature, and are usually limited to simpler
tests based on possible mis-specified models. Eshun et al. (2011) applied generated data tests to the
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fitting of generalised Pareto distributions to lognormally distributed data, to compare different
means of parameter estimation (method of moments, maximum likelihood and probability-weighted
moments). Cook & Smith (2013) test the robustness of weather catastrophe models. Locke & Smith
(2015) assess the robustness of the general insurance bootstrap.

Newer statistical techniques, including machine-learning tools based on neural nets or genetic
algorithms, may not involve a conventional model with stated assumptions. The good news is that
generated data tests apply just as well to these newer techniques as they do to classical models of
regression or time series analysis. However, without a formal list of assumptions, we lose the
distinction between consistency tests and robustness tests.

2.8. Generated Data Test Disadvantages

Tests on generated data can address questions that are unanswerable with real data. The method
does, however, have some important limitations too.

There is some arbitrariness in the choice of the set of reference models. They should be broadly
realistic and capable of generating at least the most important aspects of actual data. However, there
will always be different perspectives on the future risks facing an organisation. The need to choose
one or more reference models is a disadvantage of generated data approaches, compared to out-
of-sample tests on real data.

Generated data tests require an ability to re-create what a fitted model would have looked like under
alternative histories. This limits our ability to test certain models, when it is not completely clear how
the observed data were converted into forecasts. For example, once a quarter the Bank of England
publishes inflation forecasts for the following 8 months, using methods that incorporate the sub-
jective judgement of the bank’s monetary policy committee. We can test the out-of-sample forecasts
(e.g. see Elder et al., 2005) but we cannot easily determine what the forecasts would be if the input
data had been different.

A generated data test does not test a specific instance of a model. It tests the way we go about building
models. This can result in models being penalised for their behaviour in entirely hypothetical situations.
For example, suppose we construct an ersatz model by maximum likelihood estimation. Such
estimation sometimes fails to converge (due to difficulties in the algorithm or non-existence of a
maximum). In a generated data test, we cannot then describe the model’s statistical properties even if
on the actual historic data the estimation proceeded without any difficulty.

Finally, we note that ersatz model calibration takes time to set up as a validation process, but the
time taken to run thousands of nested simulations is reasonable in most cases.

3. Unbiased Parameters

The concept of an unbiased parameter is well-developed in statistics. A parameter estimate is
unbiased if its mean value (over outer reference scenarios) is the true value.

In our context, the parameter might be the mean or standard deviation of one of the scenario output

variables. We can regard the mean or standard deviation of the ersatz scenarios as being estimators
for the respective “true” reference mean or standard deviation.
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Although we describe the tests in terms of scenarios, it may be possible to calculate some or all of the
relevant means and standard deviations analytically, which makes the assessment of bias more
straightforward.

We now consider these bias measures in more detail.

3.1. Unbiased Mean

Let us focus on one variable whose values are simulated both in the reference and ersatz scenarios.
For a given reference model and outer scenario, the estimated mean is the conditional mean of the
ersatz scenarios. The mean of this estimated mean is the average of these conditional means, which is

the same as the unconditional mean of the relevant variable under the hybrid model consisting of
reference history and ersatz future.

The estimated mean is an unbiased estimate if the average value, across outer scenarios, is the mean
of the reference scenarios. This test is applied separately for each reference model, and the test passes
if equality holds uniformly for each reference model.

Evidently, the larger and more diverse the set of reference models, the more difficult it will be to
construct unbiased estimators.

To write the test in symbols, let us use F, to denote the information in the history. Then we are
testing whether the average of the ersatz mean is the true mean, that is whether:

IErefx ersatz (Xt+ 1) — [Eref [Fersatz (Xt+ 1 ‘ ]_—t)
=7 [E'ref[Ere)‘(}<H " |—7:t)

—E (X, 1)
. . . 7,
Here, we have used the symbol “=> for expressions that are mathematically equivalent, and “=" for

quantities that are equal if and only if the ersatz mean is unbiased.

3.2. Unbiased Variance

We can define bias for other properties of an ersatz distribution, for example, the variance.

To do this, we calculate the variance of the chosen variable, across
o the hybrid scenarios consisting of outer reference scenarios and inner ersatz scenarios;

e the original reference model.

The ersatz variance is unbiased if these two quantities are the same, uniformly across reference
models. In symbols, the criterion is:

Varrefx ersatz(Xt+1) =’ Varref(xt+1 )

3.3. Unbiased Conditional Variance

We have defined variance bias in terms of unconditional expectations. We could alternatively
investigate the conditional bias, to test whether the conditional ersatz variance is higher or lower
than the conditional reference variance, given the outer reference scenario.
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In each case, to perform the test, we take the average over the outer reference scenarios, but this time
we have taken an average of conditional variance rather than an unconditional variance. The cri-
terion for unbiased conditional variance is:

E Var= (X, , 1 | F1) = EVar® (X,. 1| F1)

We might ask why the variance bias test comes in two forms (conditional and unconditional) while
we had only one mean bias test. The answer is that the mean is a linear functional of the underlying
distribution, so we get the same answer whether we take the unconditional mean or average the
conditional means. The variance, however, is a concave functional, which is why the variance of the
whole population is higher than the average of the variances for sub-populations.

3.4. Unbiased Variance of the Mean

As well as comparing the average ersatz mean to the reference mean, we can also compare how much
the conditional mean varies between outer reference scenarios. We can do this using the variance. In
that case, the unbiased variance of the mean criterion becomes:

Varref[Eersatz(XHl |-7:t> ; Varref[Eref(XHl ‘ ]:t)
There is neat mathematical identity, that the unconditional variance of a random variable is the
variance of the conditional mean, plus the mean of the conditional variance. In symbols, this is
Var' (X,,1) = Var E (X, 1 | F,) + E/Var'™ (X,, 1| F)

Varrefx ersatz (Xt+ 1) — Varref[Eersatz (XH 1 ‘ -7:1) + [EVEfVarersatz (Xt+ 1 | -7:1)

Thus, tests of the bias of conditional and unconditional variance are also tests of bias in the variance
of the mean.

3.5. Unbiased Standard Deviation

We have described the concept of an unbiased variance. We could instead look at the bias in
standard deviation (i.e. in the square root of the variance). Bias in conditional standard deviation is
not equivalent to bias in variance, as the variance is a non-linear function (the square) of the standard
deviation.

There is a further computational complexity in testing the bias of standard deviations. While there is
a well-known unbiased estimate of variance for conditionally independent scenarios, there is no such
general expression for standard deviations. This implies that tests of conditional variance biases
using nested Monte Carlo scenarios, can be distorted by small sample biases in the standard
deviation estimate itself rather than in the ersatz model.

3.6. Unbiased Quantiles

In the same way as for standard deviations, we can assess whether ersatz quantiles are biased relative
to a reference model. As with standard deviations, we have two alternatives:

® We can measure the quantile of the hybrid outer reference and inner ersatz scenarios, and compare
this to the quantile of the reference model.

e We can compare the conditional quantile of the ersatz model against the conditional reference
quantile, and average this over the outer reference scenarios.
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As with the standard deviation, these two tests are, in general, different. However, as quantiles are in
general neither convex nor concave functionals of a probability distribution, there is no general
theorem governing whether unconditional quantiles are higher or lower than mean conditional
quantiles.

3.7. Example of Conflicting Tests

We have described a series of bias tests. We might hope to devise ersatz models that pass them all, by
ensuring the ersatz distribution resembles the reference distribution in many ways at once.

Unfortunately, as we shall see, this is unachievable. The sensible tests we have described are already
in conflict.

To see why, let us consider a series of independent identically distributed random variables. Under
different reference models, different distributions apply but the observations are always independent
and identically distributed. Under each reference model, the conditional and unconditional dis-
tributions of future observations are the same, and the variance of the conditional mean is zero.
Therefore, the unconditional standard deviation is equal to the expected conditional standard
deviation.

Under the hybrid outer reference and inner ersatz scenarios, the future distribution is not indepen-
dent of the past. If the past observations have been higher than their true mean, this will be projected
into the ersatz model; the ersatz models are different for each outer reference scenario. Thus, for the
ersatz scenarios, the unconditional standard deviation is strictly higher than the unconditional
standard deviation.

It follows that the ersatz standard deviation cannot simultaneously be unbiased in the conditional
and unconditional senses.

3.8. A Note on Terminology

In general parlance, biased is a pejorative term, implying favouritism or dishonesty. In statistics, bias
is a neutral term; it describes a mathematical inequality that may or may not hold. Unfortunately, the
use of loaded terms such as bias can make it difficulty to justify biased estimators to non-specialists
who may interpret bias in its general rather than technical sense.

To draw an analogy consider the term prime. In general parlance this has positive moral overtones;
prime cuts of meat represent the highest quality; prime loans are to borrowers with the best credit
histories. Prime also has a technical mathematical meaning; a integer >1 is prime if it has no factors
other than 1 and itself. We easily avoid the trap of considering a number to be inferior if it is not
prime. Asked to calculate 2 x 3, we are happy to calculate the answer as 6. We are not tempted to
report the answer as 7 on the grounds that 7 is prime. Unfortunately, that is precisely what we do in
statistics when we demand the use of unbiased estimators even when only biased estimators can solve
the problem posed.

A great deal of work would be needed to demonstrate that expert judgement is unbiased in the

statistical sense, because you need the expert to exercise judgement in a large number of scenarios.
Kahneman & Tversky (1979) quantify judgemental bias by asking the same question to a large
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number of subjects. However, for stochastic model tests, the supply of experts is limited. Further-
more, the impact of commercial pressure is difficult to replicate in Kahneman-Tversky experiments.

4. Percentile Tests

We now consider a series of tests based on matching percentiles. The idea is to test the definition of a
percentile; for a continuous distribution, the a-quantile should exceed the actual observation with
probability a. To turn this into an ersatz model test, we calculate the conditional ersatz a-quantile
and then count the frequency with which this exceeds the reference scenarios. As with bias tests, we
average this frequency over outer reference scenarios to construct the test.

This is the generated data equivalent of the Basel historic back-test requirement (Basel Committee on
Banking Supervision, 1996; Financial Conduct Authority, 2007) which counts the frequency of
exceptions, that is events where (hypothetical) losses exceed an ersatz 99 percentile, with an aim to
hit a 1% target. Given limited data, regulators allow firms a small margin so that the observed
exception frequency may rise some way above the 1% target without sanction. In practice, many
firms’ exception frequencies fall well below the threshold, due to deliberate caution in their ersatz
models. The Bank of England’s test of its inflation forecasts (Elder et al., 2005) also follows this
exception-based approach. In the world of general insurance, these methods have been used for
testing the over-dispersed Poisson bootstrap technique (England & Verrall, 2002), both on historic
data (Leong et al., 2014) and on generated data (GIROC, 2007, 2008). This is also the idea behind
Berkowitz’ value-at-risk test (Berkowitz, 2001). Arguably, this test is also relevant for insurer
capital adequacy, which within Europe is based on a notional 0.5% failure probability (European
Parliament, 2009).

When dealing with simulation data, there are a few variants of the test, which we now consider. In each
case, we assume that for each outer scenario, we have generated 7 inner scenarios, of which 7 are from
the reference model (conditional on the outer scenario) and 7 -7 are from the ersatz model.

4.1. Ersatz Percentile Exceedance

The percentile exceedance test requires us to choose a rank, 1< g <7 -r and extract the g™ smallest

of the ersatz scenarios, which we interpret as an estimator of the % quantile of the ersatz

distribution. We then count the number of the 7 inner reference scenarios that do not exceed the

extracted ersatz scenario. The test passes if the mean number of non-exceeding inner reference

(9)
(n7:]+ o’

scenarios, averaged over a large number of outer reference scenarios, approaches

4.2. Bucket Counts

An alternative percentile exceedance calculation involves taking the 7 inner reference scenarios and
n—r ersatz scenarios together, sorting them into increasing order. For some 1<g <, we take the
q smallest observations, and count the number of reference scenarios represented therein. The test
passes if the mean number of reference scenarios in the smallest g of the combined scenario set,
averaged over a large number of outer reference scenarios, approaches %r.

There is a special case when there is only =1 inner reference scenario for each outer scenario. The
one reference scenario being smaller than the g™ ersatz scenario is equivalent to being in the smallest
q of the combined scenario set so our two tests become equivalent.

501

https://doi.org/10.1017/51357321717000137 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321717000137

S. Jarvis et al.

4.3. Continuous Percentile Test

We have described two ways to test percentiles based on Monte Carlo generated scenarios. When the
ersatz model has an analytically tractable inverse distribution function, it may be possible to simplify
the calculation by taking the limit of the exceedance test as the number of inner ersatz scenarios tends
to infinity.

In that case, for each outer scenario, we can calculate a chosen a-quantile for the ersatz distribution.

The test then focus on the probability (calculated by Monte Carlo, or analytically) that the reference
outcome exceeds that ersatz a-quantile. In symbols, the test is that:

EFref [Fopsare(@| Fo)] = a (1)

ersatz

This is what Geisser (1993) calls a prediction interval. Gerrard & Tsanakas (2011) further consider
this concept in the concept of capital adequacy, as do Frankland ez al. (2014).

5. Exponential Losses Example

We consider an example of a series of variables Xy, X5,..., X;, X;,.1. We will assume they are
positive random variables; they could represent an insurer’s total claim payments each year. We
define Y,=X;+ X, + ... + X, to be the cumulative losses.

We will consider various processes for generating the X;. In all our reference models, the X, are
drawn from a stationary process.

The purpose of the stochastic model is to forecast the losses X, { in year ¢+ 1 based on the losses in
years 1 to ¢ inclusive.

5.1. Ersatz Models

We compare four different types of Ersatz model constructions for this generated loss example.

5.1.1. Plug-in ersatz model
Our first Ersatz model generates the next loss X, from an exponential distribution with a mean
equal to the sample average of Xy, X5, ... X;, that is, Y/z.

5.1.2. Bayesian ersatz model
For some ag and 1> 0, the Bayesian ersatz model generates X;, | from a Pareto distribution with
parameters a,=ag+t and 4,=4p+ Y.

If ap > 0 and 4o > O this is the Bayesian predictive distribution, based on the hypothesis that all the X,
are independent exponential draws from an exponential distribution with mean M and prior dis-
tribution M~! ~ T'(ag, 4o).

In our tests, we will use 4o=0 and a=0 or 1. In these cases, our Ersatz model is just a formulaic

procedure for generating distributions; the Bayesian derivation is invalid because the prior density
cannot be integrated.
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5.1.3. Bootstrap ersatz model

The bootstrap Ersatz model (Efron & Tibshirani, 1993) starts by randomly sampling the loss data X,
X5, ... X,, repeated ¢ times with replacement. There are # possible ways of doing this, which we either
weight equally or, for large ¢ where enumeration is impractical, we re-sample randomly. We then generate
X;.1 from an exponential distribution with mean equal to the average of the random re-sample. To
generate a new bootstrap forecast, we re-run both the random re-sample and also the exponential draw.

5.1.4. Maximum multiplier method
Let M,=max{X;, Xs,... X,}. Under the maximum multiplier method, the reference distribution

function is: . ;
_ _1y-1 x
g (e

=1

Table 2 describes the mean and variance of these ersatz models.

5.2. Reference Models
We consider the following reference models:

o The X, are independent exponential random variates, with mean (and standard deviation) 100.

¢ The X, are independent Pareto random variates, with mean 100 and variance 15,000 or 20,000,
corresponding to shape parameters a=6 or a=4.

o The X, are drawn from a first-order auto-regressive (AR1) process, with stationary exponential
distribution (mean 100) and auto-correlation QA =0.5, 0.7 or 0.9.

We consider a historic data period of 10 years. We attempt to forecast only the next year’s loss X, 1.

We can consider our first, independent exponential, reference model also to be a AR1 process with
QA =0. In Table 3 we list the mean and variance of the next observation according to these reference
models.

These are the “true” parameters which we seek to reproduce, or at least approximate, with an
ersatz model.

5.3. Mean Bias Results

We now consider the bias in the mean of the ersatz model. Table 4 shows the average of the ersatz
mean, for a range of different reference models and ersatz model constructions. This should be
compared to the first column of Table 3.

Table 2. Properties of Selected Ersatz Models

Ersatz Model E(Xi41|Fr) Var(Xei1|Fr)
Plug-in 1y, t2Y?

Bayes % %
Bootstrap 1y, %22;‘:1 X} +52Y?

Maximum Multiplier Z;:I(fl)ij<;>lnij, {Z;:l(fl)i_l<;>/‘21nj><M%7mean2
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Table 3. Reference Distribution Mean and Variance

Mean Variance Mean Conditional Variance Unconditional Variance
References (Section 3.1) (Section 3.4) (Section 3.3) (Section 3.3)
Exponential 100 0 10,000 10,000
Pareto (a=6) 100 0 15,000 15,000
Pareto (a=4) 100 0 20,000 20,000
QA=0.5 100 2,500 7,500 10,000
0A=0.7 100 4,900 5,100 10,000
QA=0.9 100 8,100 1,900 10,000

Table 4. Ersatz Distribution Mean for Sample Size =10 Data Points

References Plug-In Bayes(0) Bayes(1) Bootstrap Maximum Multiplier
Exponential 100 111 100 100 119
Pareto (a@=6) 100 111 100 100 135
Pareto (a=4) 100 111 100 100 146
0OA=0.5 100 111 100 100 107
0A=0.7 100 111 100 100 94
0OA=0.9 100 111 100 100 67

All of our reference models have constant mean (as they are fragments of stationary processes), which
implies that the mean of the sample past average is equal to the mean of the next observation. It is then
immediate that both the plug-in method and the bootstrap method produce unbiased means.

For the Bayesian method, the mean of the ersatz distribution is equal to 7 ;fj)l), that is, t ao(fi]). This is an
unbiased estimator of the true distribution only if ag=1. If @y < 1 then the ersatz mean is biased upwards.

Finally, we come to the maximum multiplier method. Here, the ersatz mean is a multiple of M,. To
find the mean of this, we need to know the expectation of M,, the maximum value of X;, X5, ... X,.
We have evaluated this analytically for the independent exponential and Pareto models, and have
used Monte Carlo simulation for the AR1 processes.

The pattern of the maximum multiplier method deserves some explanation. The method is upwardly
biased, even for the exponential reference method, and indeed shows a worse mean bias than the
Bayes(0). Moving from exponential to Pareto distributions increases the bias. This is because the
difference between the maximum of a set and the mean of the same set is a measure of variability,
and the chosen Pareto distributions have higher variance than the exponential distribution.

The mean bias in the AR1 case is lower than in the independent case. That is because positive auto-
correlation between observations reduces the relative dispersion, reducing the expected maximum
value compared to independent observations.

5.4. Variance Bias Results

Tables 5 and 6 show the Ersatz variance, on a conditional and unconditional basis, for a variety of
different reference models and ersatz constructions. These should be compared to the columns 3 and 4,
respectively, in Table 3.
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Table 5. Ersatz Distribution Conditional Variance for =10

References Plug-In Bayes(0) Bayes(1) Bootstrap Maximum Multiplier
Exponential 11,000 16,975 13,444 12,800 23,150
Pareto (a=6) 11,500 17,747 14,056 14,200 35,042
Pareto (a=4) 12,000 18,519 14,667 15,600 46,829
QA=0.5 12,600 19,445 15,400 14,080 20,313
QA=0.7 14,155 21,844 17,301 15,324 16,977
0A=0.9 17,276 26,661 21,115 17,821 10,477

Table 6. Ersatz Distribution Unconditional Variance for t=10

References Plug-In Bayes(0) Bayes(1) Bootstrap Maximum Multiplier
Exponential 12,000 18,210 14,444 13,800 25,696
Pareto (a=6) 13,000 19,599 15,556 15,700 41,889
Pareto (a=4) 14,000 20,988 16,667 17,600 59,215
0QA=0.5 15,201 22,655 18,001 16,681 23,359
QA=0.7 18,310 26,974 21,456 19,479 20,341
0QA=0.9 24,552 35,644 28,392 25,097 13,563

In creating these examples, we used the following result for an AR process. From the covariance
structure Cov (X;, X,)= QA" *'Var (X;), we find that:

1-0QA2)-20A(1-0A")
(1-0A)

Var® (v,)= 2 Var (X))

This expression is different to equation (3), because this equation refers to an unconditional variance,
in contrast to the conditional variance of equation (3).

Clearly none of these ersatz models produces unbiased variances, although some show worse bias
than others.

For the exponential reference model, the smallest variance bias occurs for the plug-in method. At first
sight, the bias is surprising, because the mean is unbiased and both ersatz and reference models
produce exponential variates, for which the variance is the square of the mean. The paradox is
explained because the ersatz mean it itself a random variable. The ersatz expected variance is the
mean of the squares ersatz mean, while the reference variance is square of the mean. The mean of the
square is always bigger than the square of the mean, by Jensen’s inequality, hence the upward bias in
the ersatz variance.

For the Pareto reference models, more methods, with the glaring exception of the maximum multiple,
produce downwardly biased expected variances, both conditional and unconditional. This is because
the ersatz models have been derived from exponential distributions, which (for a given mean) have
lower variance than the Pareto distribution. In other words, the downward bias is a consequence of
model mis-specification.

An upward bias in ersatz conditional variance emerges for the AR processes. The conditional
reference variance is reduced because some of the variance is explained by the AR term; it is only the
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balance which features in the conditional variance. The ersatz models fail to capture the AR effect,
and so overstate the conditional variance.

The maximum multiple method shows a bigger upward ersatz variance bias than any of the other
methods; indeed the bias is so big that we have an upward variance bias even for the Pareto reference
models. We recall that the mean of the maximum multiple method also had an upward mean bias.
The bias evidence gives us little reason to commend the maximum multiple method, nor indeed the
Bayes(0) method. These show positive bias in both the mean and variance, while the plug-in and
Bayes(1) methods have unbiased mean and smaller variance bias in the exponential reference case.
Overall, the plug-in method would be preferred on the grounds of smallest bias.

5.5. Percentile Test Results

5.5.1. Consistency

Table 7 shows the exceedance probabilities for different ersatz percentiles, for the exponential
reference model. We have calculated these, with a mixture of analytical (where possible) and Monte
Carlo methods, applying equation (1).

Surprisingly, these results show an exact pass for the Bayes(0) and maximum multiple methods.
These are the two methods which performed worst according to the bias criteria. The Bayes(0)
method is an example of a probability matching prior, as considered in Thomas et al. (2002) and
Gerrard & Tsanakas (2011).

The next best candidates in the percentile tests are the Bootstrap and Bayes(1) methods, whose
results are very close to each other despite their contrasting derivations. The worst method for
percentile test is the plug-in method, which produces too many exceptions; for example, 2.3% of
reference scenarios exceed the 99 percentile of the plug-in ersatz distribution.

Figure 3 shows the mean bias and the percentile tests for the different methods. We can see that we
can satisfy the bias tests, or the percentile tests, but not both. Furthermore, we can see that that the
percentile test is a stronger test than the bias test, in that if a method passes the percentile test then the
mean is upwardly biased.

Table 7. Percentile Tests for Sample Size #=10, Exponential Reference

Percentile (%)  Plug-In (%)  Bayes(0) (%)  Bayes(1) (%)  Bootstrap (%)  Maximum Multiplier (%)

0.5 0.5 0.5 0.5 0.5 0.5
1.0 1.0 1.0 0.9 0.9 1.0
5.0 5.0 5.0 4.6 4.6 5.0
10.0 10.0 10.0 9.1 9.2 10.0
25.0 24.7 25.0 23.0 23.2 25.0
50.0 48.8 50.0 46.7 47.1 50.1
75.0 72.7 75.0 71.6 72.0 75.0
90.0 87.4 90.0 87.7 87.8 90.0
95.0 92.7 95.0 93.4 93.4 95.0
99.0 97.7 99.0 98.5 98.3 99.0
99.5 98.6 99.5 99.2 99.0 99.5
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Figure 3. Mean bias and percentile tests: exponential example

It appears, then, that the ersatz methods that work best from a bias perspective are worst for
percentile tests, and vice versa. This is to be expected. We now explain why.

Let us suppose that Q is an ersatz g-quantile, and let us suppose Q > 0. For a random variable with
reference distribution function F(x), we consider two criteria:

e For Q to be an unbiased estimate of the true g-quantile, we want E(Q) = F~1(g), or equivalently,
FIE(Q)] =4
e For QO to exceed a proportion g of observations, we want EF(Q) =gq.

Now for the exponential, Pareto and many other distributions, the distribution function F(x) is a
strictly concave function on x > 0. Jensen’s inequality now implies:

EF(Q) < F(EQ)

Equality holds only if O is not random. In other words, if Q is an unbiased estimator for g (as is the
plug-in ersatz model) then the ersatz percentile test is too low. If, on the other hand, the percentile test
passes, then Q is an upwardly biased estimate of the reference percentile g, as occurs in the Bayes(0) test.
We simply cannot pass all the tests at once.

5.5.2. Robustness: Pareto

Table 8 shows exceedance probabilities for ersatz percentiles, when the reference model is series of
independent Pareto variates, with shape parameter a =6, corresponding to a variance of 1.5 if the
mean is 1. These are all based on ten data points, and a one-step-ahead forecast.

As we might expect, ersatz models derived from exponential distributions do not perform
brilliantly on a diet of Pareto distributed data. The Pareto has fatter tails than the exponential, so
exponential ersatz models should under-predict the upper tails, which is exactly what we see in
Table 8 and also Figure 4. It remains the case that the Bayes(1) and bootstrap method are similar to
each other.

It is not surprising that the Bayes(0) method performs better than Bayes(1) in the extreme tail,

because with ten data points, Bayes(0) produces a fatter tailed Pareto ersatz distribution (a,=10)
than the Bayes(1) ersatz distribution (a;=11).
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Table 8. Percentile Tests: Robustness to Mis-Specified Distribution: Pareto (a=6)

Percentile (%)  Plug-In (%)  Bayes(0) (%)  Bayes(1) (%)  Bootstrap (%)  Maximum Multiplier (%)

0.5 0.6 0.6 0.5 0.5 0.7
1.0 1.2 1.2 1.1 1.1 1.4
5.0 5.9 5.9 5.4 5.3 6.7
10.0 11.6 11.7 10.7 10.5 13.0
25.0 27.8 28.2 26.0 25.7 30.6
50.0 52.1 53.2 50.1 50.0 55.9
75.0 73.9 75.9 72.9 73.1 77.8
90.0 86.7 89.0 86.9 87.1 90.1
95.0 91.5 93.7 92.2 92.2 94.4
929 96.5 98.0 97.4 97.2 98.3
99.5 97.5 98.8 98.3 98.1 99.0
99.5% @ »

: O

S N
*eg\ K
99.0% |+ ¢ @
98.5%
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Figure 4. Mean bias and percentile tests: Pareto (= 6) sensitivity

The least bad method at high percentiles, from a robustness point of view, appears to be the
maximum multiple method. While the plug-in and Bayes methods focus on the historic average, the
maximum multiple method focusses on the largest observation. As we have seen, this produces a
higher variance, but, as the maximum focusses on the upper tail, we are able better to hedge our bets
against mis-specification of tail fatness.

5.5.3. Robustness: AR model

Table 9 shows exceedance probabilities for ersatz percentiles, when the underlying data are auto-
correlated, having been generated from an AR1 process. These are all based on ten data points, and a
one-step-ahead forecast.

The striking feature of Table 9 is the poor fit at low percentiles. The reason for this is that, under the
AR1 process, X;,1>QAXxX, with probability 1, so the conditional reference distribution has a
strictly positive lower bound. This contrasts with the Ersatz models all of which have a lower bound
of zero (and no higher).

At the upper end, the pattern of extreme reference percentile under-prediction persists, with the

maximum multiple method once again the most robust.
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Table 9. Percentile Tests: Robustness to Auto-Correlation (QA =0.5)

Percentile (%)  Plug-In (%)  Bayes(0) (%)  Bayes(1) (%)  Bootstrap (%)  Maximum Multiplier (%)

0.5 0.1 0.1 0.0 0.0 0.2
1.0 0.4 0.4 0.3 0.3 0.5
5.0 3.3 3.3 2.9 3.0 3.4
10.0 7.9 8.0 7.1 7.3 7.7
25.0 23.0 23.3 21.1 21.8 20.6
50.0 48.8 50.0 46.4 47.4 47.3
75.0 73.0 75.1 72.0 72.4 76.1
90.0 86.7 89.0 86.9 87.1 89.6
95.0 91.5 93.7 92.2 92.3 94.2
99.0 96.4 97.8 97.2 97.1 98.3
99.5 97.3 98.5 98.1 98.0 98.9

5.6. Conflicting Objectives

Our examples have shown how difficult it is to satisfy multiple tests at once. We can summarise the
results so far.

e From a parameter bias perspective, the best ersatz model is the plug-in, followed by Bayes(1).
o For percentile consistency tests, the best performers are Bayes(0) and maximum multiple.

¢ For robustness to model mis-specification at the upper percentiles, the maximum multiple method
performs best, with Bayes(0) coming second.

o Passing a percentile test is a stronger validation criterion than passing a bias test; a loss model must
be upwardly biased in order to pass the percentile test.

We can ask for parameters to be unbiased, or for accurate percentile tests but, apparently, not both
at once.

These conflicts have been noted in special cases before. For example, GIROC (2007, 2008),
applied percentile tests to the over-dispersed Possion bootstrap method described by Brickman
et al. (1993) and England & Verrall (2002), with mixed results. Cairns & England (2009)
reproduced the GIROC results but disputed the conclusions on the grounds that the tests were
inappropriate.

Figure 2 gives another view of why the tests conflict. An ersatz model test is a comparison of some
property of the blue ersatz scenarios, relative to the green and red inner reference scenarios. For an
ersatz model to pass all possible tests, the blue ersatz scenarios should be indistinguishable in all
respects from the green or red inner reference scenarios, for each outer scenario.

However, in this example we have two reference models. The corresponding collections of
inner reference scenarios are of course different, having arisen from different models. However,
it so happens that the two highlighted outer scenarios, one from each model, are the same.
As a result, the two collections of blue inner ersatz scenarios must be the same in each case,
as the ersatz scenarios are calibrated to the same outer scenarios. The blue scenarios cannot
at the same time be indistinguishable from the green inner scenarios and from the red inner
scenarios.
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5.7. Alternative Paths

In this section, we have tested formulaic methods of constructing ersatz models from limited data. It
is common in practice to follow a more complex decision tree, where model fit and parameter
significance are subjected to testing, with different model classes eventually used according to the
results of these tests.

Taking the example in section 1.3, before using a model based on the exponential model, we might
estimate a distribution property, for example, the standard deviation or the L-scale, and compare it
to the theoretical value. For our ten observations, the sample mean is 100, the s.d. is also 100 and the
L-scale is 50. These are exactly what we would expect for an exponential distribution. But if we had
rejected the exponential distribution we would then possibly have fitted very different ersatz models.

The use of intermediate tests in the ersatz model construction does not invalidate the idea of
generated data tests, but it does complicate them.

6. AR Growth Example

6.1. Wilkie's Inflation Model

Much of econometric analysis concerns the prices of investments or commodities. An individual
share, bond or foodstuff may fall in or out of favour, but the general level of a market is typically
captured in an index Q; representing a basket of assets, such as the Retail Prices Index or the
Financial Times Stock Exchange 100 Index.

Index starting values are often set arbitrarily to a round number such as Q¢ =100; it is only relative
changes in index values that have economic meaning, describing whether asset prices have risen or
fallen compared to previous values.

The simplest approach to modelling such indices is to use a random walk (Samuelson, 1972) but this
does not cope well with processes such as inflation where changes are typically positively correlated
from one period to the next. One approach to capture the auto-correlation is to treat the changes in
the log index as a AR1 process. For example, Wilkie (1984, 1995) proposed the following model:

In (%) =QAln (QQ;) +(1-QA)OMU+N (0, OSD?) (2)

With a little algebra, we can derive the k-step forecast, which will be the basis of our ersatz models:

1n(%) _l-oat 0A ln( O )

O 1-0A Or-1
1-QA*
+ {k— on QA]QMU
1-QAk) (2+ QA—-QAk+1) osD?
+N |0, | k- ( A 3
( { (1-04%) e (1-QA)* G)

Wilkie has published parameter estimates from time to time for UK inflation, including those in
Table 10.
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Table 10. Wilkie’s Parameters for UK Inflation

Data Period QA QMU QSD

1919-1982 0.60 0.050 0.0500
1923-1994 0.58 0.047 0.0425
1923-2009 0.58 0.043 0.0400

These parameters were estimated by treating equation (2) as a linear regression of In (%) against

In <Q%l> , with slope QA, intercept (1 - QA)OMU and residual standard deviation QSD, estimated

in the usual way. The parameter estimates were then rounded. The originally published model
(Wilkie, 1984) included a subjective upward adjustment to QMU.

Later in this paper, we consider ways of testing such AR models on generated data.

6.2. Reference Models

For our AR growth example, we construct reference models based on equation (2). We use the
following combinations:

e AR parameters QA =0, 0.5, 0.7 or 0.9.

¢ Historic periods of 10, 20 or 50 years.

o Forecast horizons of 1, 10 or 20 years.

We use QMU =0.05 and QSD =0.05, which were Wilkie’s (1984) choices for a UK inflation model.
These choices affect only relative outputs, and so is effectively without loss of generality.

In each case, we start the reference model from the stationary distribution:

(G)~ (e 1250)

6.3. What Exactly are we Testing?

This section is not a test of the Wilkie model, which describes many time series besides inflation.
Wilkie’s model has been exposed to extensive review elsewhere (Geoghan et al., 1992; Huber, 1995).

This section is also not a test of Wilkie’s inflation model; since his original model he has described
several alternative approaches to inflation modelling. Our generated data tests do not even use any
real inflation data. Readers interested in learning more about specifics of inflation may wish to
consult Engle (1982), Wilkie (1995), Speed (1997), Whitten & Thomas (1999).

We are testing an abstract method (ordinary least squares) of calibrating univariate AR1 models.
Although Wilkie used this method, it is a general statistical approach in widespread use (Hamilton,
1994). Our mechanical testing approach contravenes Wilkie’s instruction that model users “should
form their own opinions about the choice of appropriate mean values” (1995). We have used
Wilkie’s notation as this may be already familiar to actuaries.

Previous published work in this area is scant. Exley ef al. (2002) provide some tests of the AR models
on simulated data.
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6.4. Ersatz Models

Our ersatz models are also AR1 models, but with estimated parameters QA, OMU and OSD. We
estimate these by linear regression of consecutive changes in the reference log inflation index
histories.

While our reference models are all stationary (because the reference parameter IQAI < 1), this does
not automatically apply to parameter estimates QZ In particular, in a certain proportion of outer
scenarios, we will find @4 > 1. These imply a divergent series with exponentially exploding sce-
narios. For longer horizon forecasting, this small number of exploding ersatz models comes to
dominate any attempts to measure parameter bias.

Some experts, faced with an estimate QZ > 1, will reject that value, on the grounds that the implied
exploding process is an implausible model for inflation. They might constrain éz\‘X to lie in what is
]udged to be a plausible range. In our calculatlons for any outer reference scenario producing
QA > 1, we replace the ersatz model with QA 1. We then recompute the other parameter estimates
QMU and QSD from the history, but with the regression gradient forced to 1. We apply a similar
transformation in the (less frequent) cases where QZ < —1. In other words, we impose a plausible
range of —1< @ <1, with estimates outside that range mapped onto the nearest boundary.

6.5. Mean Bias

We now argue that the ersatz mean of future scenarios is an unbiased estimate of the reference mean.

We demonstrate this by a symmetry argument. Let us fix the parameters QA and QSD, and also fix
the random normal error terms. Let us consider the impact of adding some constant, ¢, to QMU.
Under this shift, we see:

o The historic reference rates of inflation all increase by c.

o Future reference rates of inflation all increase by c.

e Ersatz QA and OSD are unchanged, but QMU increases by ¢, so future ersatz scenarios increase
by c.

We can conclude that the mean bias, that is the difference between mean ersatz and reference
scenarios, is invariant under changes in QMU. But in the case QMU =0 both the reference and
ersatz distributions are symmetric about zero, so the bias is zero.

Sadly, these symmetry arguments get us nowhere when it comes to bias in variance. We can proceed
only by Monte Carlo.

6.6. Variance Bias

Table 11 shows the average variance of the ersatz scenarios, that is, the conditional variance for log
of the index In Oy, for various histories # € {10, 20, 50}. In the limit as # 1 co, the ersatz parameters
converge to the reference parameters.

The figures in Table 11 should be read as follows. Let us focus on the horizon H=10 years. Under

the reference model, if we want to forecast the log inflation index 10 years ahead, we can do so with
a variance of 42.2%?2, or equivalently, a s.d. of 42.2%.
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Table 11. Mean of Conditional Variance for Various Horizons; QA =0.7

History H=1 year H=10 years H=20 years
10 years data 4.9%* 33.9%? 62.9%2
20 years data 5.0%2 36.4%" 60.0%?
50 years data 5.0%? 39.5%2 63.5%?
Reference model 5.0%? 42.2%?2 67.3%>

Table 12. Mean of Conditional Variance for 10-Year Horizon

History 0QA=0 0OA=0.5 0A=0.7 0QA=0.9
10 years data 16.6%” 26.9%? 33.9%2 42.1%*
20 years data 16.1%2 27.3%* 36.4%* 50.2%*
50 years data 15.9%2 28.2%2 39.5%" 60.0%>
Reference model 15.8%> 28.9%? 42.2%? 71.1%*

If we calibrate an ersatz model by least squares, we obtain on average a smaller conditional variance,
for example, of 36.4%?> with 20 years’ calibration data. The absolute variances are of course
dependent on our choice of reference QSD, but the ratio of ersatz to reference variance is not. The
expected ersatz variance is systematically underestimated at around three quarters of the reference
value (with the standard deviation factor the square root of this). This bias is in the opposite
direction to the upward ersatz variance biases which we noticed in our exponential example.

The downward variance bias must be related to the small sample size. Theory tells us that the effect
disappears as the data sample size tends to infinity, in the reference limit. However, we needed Monte
Carlo simulations to quantify the effect for small samples. As we have seen, for history lengths and
forecast periods which actuaries often encounter, these small sample biases are quite problematic.

At first sight, the biases are surprising, as linear regression is known to produce unbiased parameter
estimates (Anderson, 2003). However, these results assume that the X variates are fixed, while Y are
independent random variables. Time series estimates are different, as both X and Y are random variables,
observed consecutively from (what we suppose to be) a common AR1 process. Furthermore, multi-
period forecasts are non-linear functions of the parameters, with higher powers for longer periods. This
might explain why the bias is modest with a 1-year horizon but deteriorates for 10-year projections.

Table 12 shows the impact of the QA parameter on variance bias. This shows that higher values of QA,
that is, weaker mean reversion, lead to greater downward variance bias. The shape of variance by
horizon is determined by QA; the higher the value of QA (other things being equal) the higher the multi-
period variance. One possible reason for the downward bias in ersatz variance is our cap that @ <1.If
the reference QA is close to 1, then estimated parameters may cluster around the true value, but by
pushing down those that exceed 1, we depress the average @ and hence the average ersatz variance.

6.7. Percentile Tests

Table 13 shows the result of percentile tests, with a 10-year horizon and with QA =0.7. We can see
that the ersatz median passes the test, exceeding the reference scenarios 50% of the time.
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Table 13. Percentile Exceedances; QA =0.7 and H=10 years

10 years data (%) 20 years data (%) 50 years data (%) Reference (%)
16.3 7.8 2.9 0.5
18.4 9.5 4.1 1.0
25.5 16.5 9.9 5.0
30.2 21.9 15.4 10.0
39.1 33.8 29.2 25.0
50.0 50.0 50.0 50.0
60.9 66.2 70.8 75.0
69.8 78.1 84.6 90.0
74.5 83.5 90.1 95.0
81.6 90.5 95.9 99.0
83.7 92.2 97.1 99.5

Table 14. First Percentile Exceedance for Various Horizons; QA =0.7

History H=1 year (%) H=10 years (%) H=20 years (%)
10 years data 4.4 18.4 23.5
20 years data 2.2 9.5 13.0
50 years data 1.4 4.1 5.6
Reference model 1.0 1.0 1.0

Other percentiles are captured less accurately. In each case, the extreme reference events
happen more frequently than would be implied by the ersatz distribution. For example, taking
20 years of data and a 10-year forecast horizon, we see that the reference scenarios lie below the
erstaz 1 percentile with a probability of 9.5%. In other words, if we were counting exceptions in a
value-at-risk calculation, we are seeing nearly ten times more extreme events than the ersatz model
predicts.

Table 14 shows that this percentile bias is smaller if the time horizon is shorter, or if the data sample
is larger.

6.8. Convexity Effects

We should not be surprised that ersatz AR1 models produce too many exceptions, given that we
have already noted a downward bias in ersatz variance in Table 12.

However, the percentile tests fail by a much larger margin. Table 15 compares three distributions for
log inflation over a 10-year horizon. All three have the same mean, which is equivalent to 10 years’

inflation at QMU =15%.
e The reference distribution has the conditional variance of the reference model in Table 11.

o The first ersatz distribution has the conditional variance equal to the average ersatz model
calibrated to 20 years’ data, also in Table 11.

o The second ersatz distribution shows how small the ersatz standard deviation would have to be, in
order to produce the 1 percentile test failure in Table 13.
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Table 15. First-order auto-regressive Standard Deviations and Extreme Stresses

Models Mean (%) s.d. (%) Inflation (%) Reference Probability (%)
Reference 50.0 42.2 -38.3 1.0
Ersatz 1 50.0 36.4 -29.4 2.2
Ersatz 2 50.0 23.8 -5.2 9.5

The third column, for context, shows the corresponding fall in prices over a 10-year period (without
logarithms).

Table 12 shows that the variance bias alone is insufficient to explain the percentile test failure. To
understand the effect, we must recognise that ersatz variances are not only too low on average, but
may be far smaller than the average variance for particular outer reference scenarios. If we focus on
cases where reference scenarios exceed extreme ersatz percentiles, we will see a disproportionate
number of calibration errors where the ersatz model understates deflationary scenarios. The ersatz
model may have overestimated mean inflation, that is Q/]\ZU > QOMU, underestimated the standard
deviation Q/ST) < OSD or overstated mean reversion Q\A < QA.

Such calibration errors are of course more severe when data are limited. Furthermore, the impact of a
parameter error compounds over future time horizons; the further ahead we look, the greater the
impact of uncertainty, especially in QMU and QA. We should not be surprised, therefore, that the
percentile bias is smaller if the time horizon is shorter, or if the data sample are larger, as we saw in
Table 14. This pattern is consistent with the Jensen effect we saw in the exponential example
section 5.5.1.

6.9. Allowing for Parameter Uncertainty

In our calculations for the AR1 model, we have used the simplest ersatz construction: another AR1
model, with parameters estimated by least squares and plugged in. We could consider Bayesian or
bootstrap methods for capturing parameter uncertainty. Wilkie (1985) describes some investigations of
mixture investment models where the underlying parameters are stochastic, reporting no material change
in mean investment returns but an increase in standard deviations. Percentile tests are not provided, but it
is to be hoped that these would show an improvement relative to the plug-in approach.

7. Conclusions

7.1. All Models are Wrong

All models are deliberate simplifications of the real world. Attempts to demonstrate a model’s
correctness can be expected to fail, or apparently to succeed because of test limitations, such as
insufficient data.

We can explain this using an analogy involving milk. Cows’ milk is a staple part of European diets.
For various reasons some people avoid it, preferring substitutes, or ersatz milk, for example, made
from soya. In a chemical laboratory, cows’ milk and soya milk are easily distinguished.

Despite chemical differences, soya milk physically resembles cows’ milk in many ways — colour,

density, viscosity, for example. For some purposes, soya milk is a good substitute, but other recipes
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will produce acceptable results only with cows’ milk. The acceptance criteria for soya milk should
depend on how the milk is to be used.

In the same way, with sufficient testing, we can always distinguish an ersatz model from whatever
theoretical process drives reality. We should be concerned with a more modest aim: whether the
ersatz model is good enough in the aspects that matter, that is, whether the modelling objective has
been achieved.

7.2. Testing on Empirical Data Versus Generated Data

In this paper we have considered methods for testing models using generated data.

Conventional model testing on historic data suffers from low power. This limits test sensitivity to
detect model errors. An array of green lights in a validation report can easily be misinterpreted as
proof that the models are correct. The actual achievement is more modest: a failure to demonstrate
that the models are wrong. Limited data may mean we cannot decide if a model is good or not, or we
might not have tried very hard to find model weaknesses.

Testing on generated data has the reverse problem, that even tiny discrepancies are detectable, given
sufficiently many simulations. Generated data tests reveal a multitude of weaknesses for any model.
This is a good thing if the validation objective includes a better understanding of model limitations.
As all models have limitations, a validation report where all the indicators are green may be evidence
of wishful thinking rather than a good model.

Generated data tests are not new, and there have been several applications to disparate areas of
actuarial work described in the last 10 years. Some of these are parts of larger documents, or
presentation discussions, without a detailed methodology description. This paper attempts to draw
together themes from several strands of research, clarifying the methodology, adding further
examples and arranging the various concepts and tests in a systematic fashion.

7.3. Have we Solved the Problem?

We started this paper with stories of models gone bad. Can our proposed generated data tests
prevent a recurrence?

The Model Risk Working Party et al. (2105) has explained how model risks arise not only from
quantitative model features but also social and cultural aspects relating to how a model is used.
When a model fails, a variety of narratives may be offered to describe what went wrong. There may
be disagreements between experts about the causes of any crisis, depending on who knew, or could
have known, about model limitations. Possible elements include:

o A new risk emerged from nowhere and there is nothing anyone could have done to anticipate it —
sometimes called a “black swan”.
¢ The models had unknown weaknesses, which could have been revealed by more thorough testing.

e Model users were well acquainted with model weaknesses, but these were not communicated to
senior management accountable for the business

e Everyone knew about the model weaknesses but they continued to take excessive risks
regardless.
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Ersatz testing can address some of these, as events too rare to feature in actual data may still occur in
generated data. Testing on generated data can also help to improve corporate culture towards model
risk, as:

¢ Hunches about what might go wrong are substantiated by objective analysis. While a hunch can
be dismissed, it is difficult to suppress objective evidence or persuade analysts that the findings are
irrelevant.

o Ersatz tests highlight many model weaknesses, of greater or lesser importance. Experience
with generated data testing can de-stigmatise test failure and so reduce the cultural pressure for
cover-ups.

We recognise that there is no mathematical solution to determine how extreme the reference models
should be. This is essentially a social decision. Corporate cultures may still arise where too narrow a
selection of reference models is tested, and so model weaknesses remain hidden.

7.4. Limitations of Generated Data Tests

Generated tests can tell us a great deal about a modelling approach. However, they have some
limitations.

Generated data methods do not test a particular ersatz model; they test a way of building ersatz
models. This requires us to specify how a model would have been constructed based on alternative
input data. In some cases, for example, the Bank of England’s fan charts, we can examine historic
ersatz models, but the parameter choice depends on the subjective judgement of the Bank’s Monetary
Policy Committee so we cannot readily re-create the model under generated inputs. This is an
obstacle to applying generated tests, and indeed prevents us from testing whether the model forecasts
are statistically biased or not.

For models such as Wilkie’s (1984) model, we have a precise derivation of the parameters from
historic data, so we can test how the fitted parameters would be different had the historic data been
different. However, difficult cases arise, for example, in specifying alternative courses of action when
a statistical test fails or when naive parameter estimates imply geometrically exploding future
scenarios.

7.5. Consistency and Robustness

Proposed models often come with stated lists of assumptions. Actuarial reports in the United
Kingdom are required to document assumptions used in a model’s specification, its implementation
and realisations (Board for Actuarial Standards, 2010).

One thing we know about assumptions is that they will turn out to be wrong. For model builders,
client acceptance of a set of assumptions gives a degree of legal risk protection, as subsequent model
malfunction may be blamed on inevitable assumption violations. However, this does little to satisfy
the regulator’s objective that “users for whom a piece of actuarial information was created should
be able to place a high degree of reliance on the information’s relevance” (Board for Actuarial
Standards, 2010).

We can do better than this with ersatz model tests. Consistency means that the model works well on
data generated consistently with the stated assumptions. Robustness means that the model may work
within an acceptable tolerance even if the reference process violates the stated assumptions.
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7.6. Parameter and Model Uncertainty

All stochastic investigations involve choices of models and parameters.

Many actuarial investigations involve a single model, whose chosen parameters are described as best
estimates. While such models may be accompanied with statistical tests, or statements of parameter
standard errors, there is not always an explicit allowance for the possibility that the model or
parameters may be incorrect.

On the other hand, some modelling approaches, including some Bayesian and bootstrap methods,
include explicit steps which are meant to capture parameter uncertainty. The Solvency II regulations
(European Commission, 20135) require that “Wherever possible, the probability distribution forecast
shall be adjusted to account for model and estimation errors”.

There is no universally agreed criterion determining whether an ersatz model does, or does not, take
account of model and estimation error. It is clearly not sufficient to scan the documentation
searching for a step labelled “Model error adjustment” because, for example, a step entitled “Model
Error adjustment: Add zero to all parameters” should not count.

We therefore look for an output-based criterion for capturing model error. Our results have
shown that:

o Ersatz methods which ignore parameter error, typically fare well in tests for parameter bias, but
perform poorly in percentile tests.

e Methods described as incorporating parameter error, tend to perform better, if not perfectly, in
percentile tests. However, the allowance for parameter uncertainty will tend to increase projected
outcome variance, and thus fail bias tests.

We are not suggesting that “passes percentile tests” is equivalent to “takes account of model and
parameter error”. Rather, we are saying that the manner in which parameter error is taken into
account should depend on the model purpose. If we have a true model then it is true for all purposes,
but an ersatz model may be more limited in scope.

7.7. Test Conflicts

In this paper we have outlined a large number of model tests that could be performed using generated
data. These tests all have plausible rationales, and several have been used in practice for many years,
even if not in a structured way.

All of these tests should pass, if a procedure for generating ersatz scenarios correctly identifies the
conditional distribution from an underlying reference model. However, when more than one
reference model is considered, and given the unlimited power of generated data to detect model
weaknesses, it may no longer be possible to satisfy all the tests at once. Choices and trade-offs must
be made.

Conflict between different tests is a consequence of model and parameter uncertainty, and of the
need to pick a single ersatz model. The conflicts are most acute when data are scant and so the
uncertainty is most pronounced. For example, actuaries may debate whether it is possible to estimate
a 99 percentile loss based on ten data points. We have seen that is it possible to create unbiased
estimates of this percentile, and to create estimates that pass a percentile test, but not both at once.
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Solutions to either problem are vulnerable to model mis-specification. Claims to have calculated
extreme percentiles, especially when based on small data sets, should be substantiated with details of
any tests which those estimators have satisfied.

We consider several possible validation criteria: unbiased mean, unbiased (conditional or uncondi-
tional) variance and percentile tests. For value-at-risk, the validation criteria are a separate
dimension to the confidence level. Any of these validation criteria could be combined with a 99.5%
value-at-risk. An unbiased mean criterion typically produces a smaller value-at-risk figure while
passing a percentile test produces a larger value-at-risk figure. For this reason, we might describe the
unbiased mean criterion as weak and the percentile criterion as strong.

Weak and strong validation methodologies can both have their place, just as strong and weak
actuarial valuation basis can have their place. However, it is important to understand the strength of
assumptions being used. The relevant validation strength depends on a model’s application.
Unbiased parameters are important in portfolio construction. Percentile tests are more important for
value-at-risk, for example, as required in the Basel Committee market risk model back-test (Basel
Committee on Banking Supervision, 1996). Other tests may be important for product pricing,
financial reporting or risk control. We reject the naive idea that a single model will be “best” for all
purposes. Instead, users should test each model in a way that is appropriate to its application.

Acknowledgements

The authors are grateful for many constructive comments on earlier drafts of this paper from members of
the Extreme Events Working Party, from attendees at the 2016 AFIR Colloquium in Edinburgh and at the
2016 Actuarial Teachers’ and Researchers’ conference at the University of East Anglia, where we
presented an earlier version of this paper. The authors thank Antoon Pelsser, Andreas Tsanakas and David
Wilkie for enlightening discussions. The authors are also indebted to three anonymous scrutineers for
useful comments. Views expressed, and any remaining errors, are solely the responsibility of the authors.

References

American International Group (2007). Economic capital modeling initiative and applications.
November 2007.

Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis 3rd ed. Hoboken,
New Jersey: Wiley.

Basel Committee on Banking Supervision (1996). Supervisory framework for the use of “backtesting” in
conjunction with the internal models approach to market risk capital requirements.

Berkowitz, J. (2001). Testing the accuracy of density forecasts, applications to risk management.
Journal of Business ¢& Economic Statistics, 19(4), 465-474.

Board for Actuarial Standards (2010). Technical actuarial standard M: modelling.

Brickman, S., Barlow, C., Boulter, A., English, A., Furber, L., Ibeson, D., Lowe, ]J., Pater, R. &
Tomlinson, D. (1993). Variance in claim reserving. General Insurance Convention, Institute of
Actuaries.

Cairns, M. & England, P.D. (2009). Are the upper tails of predictive distributions of outstanding
liabilities underestimated when using bootstrapping? General Insurance Convention, Institute
and Faculty of Actuaries.

Cook, .M. & Smith, A.D. (2013). Is your CAT model a dog? Presentation to the 2013 GIRO
Convention, Institute of Actuaries.

519

https://doi.org/10.1017/51357321717000137 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321717000137

S. Jarvis et al.

Davis, M.H.A. (2014). Verification of internal risk measure estimates. Working Paper. Statistics &
Risk Modeling, 33, ISSN: 2193-1402.

Efron, B. & Tibshirani, R. (1993). An Introduction to the Bootstrap. Boca Raton, FL: Chapman &
Hall/CRC.

Elder, R., Kapetanios, G., Taylor, T. & Yates, A. (2005). Assessing the MPC’s fan charts. Bank of
England Quarterly Bulletin, , 326-348.

England, P.D. & Verrall, R.J. (2002). Stochastic claims reserving in general insurance. British
Actuarial Journal, 8, 443-544.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of
United Kingdom inflation. Econometrica, 50(4), 987-1008.

Eshun, S., Machin, W., Sharpe, J. & Smith, A. (2011). Extreme value theory for a 1-in-200 event.
Life Convention, Institute and Faculty of Actuaries.

European Commission (2015). Commission Delegated Regulation (EU) 2015/35 of 10 October 2014
supplementing Directive 2009/138/EC of the European Parliament.

European Parliament (2009). DIRECTIVE 2009/138/EC on the taking-up and pursuit of the
business of Insurance and Reinsurance (Solvency II).

Exley, C.J., Smith, A.D. & Wright, T.S. (2002). Mean reversion and market predictability. Proceed-
ings of the 2002 Finance and Investment Conference, Institute and Faculty of Actuaries.

Financial Conduct Authority (2007). Banking and Insurance Prudential Source Book, section 7.10,
Financial Conduct Authority.

Frankland, R., Eshun, S., Hewitt, L., Jakhria, P., Jarvis, S., Rowe, A., Smith, A.D., Sharp, A.C.,
Sharpe, J. & Wilkins, T. (2014). Difficult risks and capital models — a report from the extreme
events working party. British Actuarial Journal, 19(3), 556-616.

Geisser, S. (1993). Predictive Inference: An Introduction. New York: CRC Press.

General Insurance Reserving Oversight Committee (GIROC) (2007). Best estimates and reserving
uncertainty. General Insurance Convention, Institute and Faculty of Actuaries.

General Insurance Reserving Oversight Committee (GIROC) (2008). Best estimates and
reserving uncertainty (part II). General Insurance Convention, Institute and Faculty of
Actuaries.

Geoghan, T.J., Clarkson, R.S., Feldman, K.S., Green, S.J., Kitts, A., Lavecky, ].P., Ross, F.]J.M.,
Smith, W.J. & Toutounchi, A. (1992). Report on the Wilkie stochastic investment model.
Journal of the Institute of Actuaries, 119, 173-228.

Gerrard, R. & Tsanakas, A. (2011). Failure probability under parameter uncertainty. Journal of
Risk Analysis, 31(5), 727-744.

Hamilton, J.D. (1994). Time Series Analysis. Princeton, New Jersey: Princeton University Press.

Hansen, L.P. & Sargent, T.J. (2008). Robustness. Princeton, NJ: Princeton University press.

Huber, P. (1995). A review of Wilkie’s stochastic investment model. Staple Inn Actuarial Society.

Huber, P.J. & Ronchetti, E.M. (2009). Robust Statistics 2nd ed. Hoboken, New Jersey: Wiley.

Kahneman, D. & Tversky, A. (1979). Prospect theory: an analysis of decision under risk.
Econometrica, 47(2), 263-291.

Leong, W.K., Wang, S.S. & Chen, H. (2014). Back-testing the ODP bootstrap of the paid
chain-ladder model with actual historical claims data. Variance, 8(2), 182-202.

Locke, M. & Smith, A.D. (2015). What does the bootstrap trap? General Insurance Convention,
Institute and Faculty of Actuaries.

Model Risk Working Party, Aggarwal, A., Beck, B., Cann, M., Ford, T., Georgescu, D., Morjaria, N.,
Smith, A., Taylor, Y., Tsanakas, A., Witts, L. & Ye, 1. (2016). Model risk — daring to open up the
black box. British Actuarial Journal, 21(2), 229-296.

Pension Protection Fund (2006-2016). The PPF 7800 index.

520

https://doi.org/10.1017/51357321717000137 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321717000137

Ersatz model tests

Samuelson, P. (1972). Proof that properly anticipated prices fluctuate randomly. Industrial
Management Review, 6(2), 41-49. (Reproduced as Chapter 198 in Samuelson, Collected
Scientific Papers, Volume III, Cambridge, MIT Press).

Speed, C. (1997). Inflation modelling. AFIR Colloquium, International Actuarial Association.

Thomas, A.S., Mukerjee, R. & Ghosh, M. (2002). On exact probability matching property of right-
invariant priors. Biometrika, 89(4), 952-957.

Whitten, S.P. & Thomas, R.G. (1999). A non-linear stochastic asset model for actuarial use. British
Actuarial Journal, 5(5), 919-953.

Wilkie, A.D. (1984). A stochastic investment model for actuarial use. Transactions of the Faculty of
Actuaries, 39, 341-403.

Wilkie, A.D. (1985). Some applications of stochastic investment models. Staple Inn Actuarial
Society.

Wilkie, A.D. (1995). More on a stochastic asset model for actuarial use. British Actuarial Journal, 1,
777-964.

521

https://doi.org/10.1017/51357321717000137 Published online by Cambridge University Press


https://doi.org/10.1017/S1357321717000137

	Ersatz model�tests
	1.Introduction
	1.1.Testing in Controlled Conditions
	1.2.Lessons from Engineering
	1.3.Exponential Losses Example

	Table 1Ersatz Distribution Percentile Claim Amounts
	1.4.Average Fitted Models

	Figure 1Exponential example: fitted distribution functions
	1.5.The Rest of the Paper

	2.Reference Models and Ersatz Models
	2.1.Ersatz Models
	2.2.Out-of-Sample Model Tests
	2.3.Generated Data Tests
	2.4.Reference Models
	2.5.Generated Ersatz Models
	2.6.Inner and Outer Scenarios
	2.7.Stated Assumptions

	Figure 2Inner and outer scenarios
	2.8.Generated Data Test Disadvantages

	3.Unbiased Parameters
	3.1.Unbiased Mean
	3.2.Unbiased Variance
	3.3.Unbiased Conditional Variance
	3.4.Unbiased Variance of the Mean
	3.5.Unbiased Standard Deviation
	3.6.Unbiased Quantiles
	3.7.Example of Conflicting Tests
	3.8.A Note on Terminology

	4.Percentile Tests
	4.1.Ersatz Percentile Exceedance
	4.2.Bucket Counts
	4.3.Continuous Percentile Test

	5.Exponential Losses Example
	5.1.Ersatz Models
	5.1.1.Plug-in ersatz model
	5.1.2.Bayesian ersatz model
	5.1.3.Bootstrap ersatz model
	5.1.4.Maximum multiplier method

	5.2.Reference Models
	5.3.Mean Bias Results

	Table 2Properties of Selected Ersatz�Models
	5.4.Variance Bias Results

	Table 3Reference Distribution Mean and Variance
	Table 4Ersatz Distribution Mean for Sample Size t�&#x003D;�10 Data�Points
	Table 5Ersatz Distribution Conditional Variance for t�&#x003D;�10
	Table 6Ersatz Distribution Unconditional Variance for t�&#x003D;�10
	5.5.Percentile Test Results
	5.5.1.Consistency


	Table 7Percentile Tests for Sample Size t�&#x003D;�10, Exponential Reference
	Outline placeholder
	5.5.2.Robustness: Pareto


	Figure 3Mean bias and percentile tests: exponential example
	Outline placeholder
	5.5.3.Robustness: AR model


	Table 8Percentile Tests: Robustness to Mis-Specified Distribution: Pareto (&#x03B1;�&#x003D;�6)
	Figure 4Mean bias and percentile tests: Pareto (&#x03B1;�&#x003D;�6) sensitivity
	5.6.Conflicting Objectives

	Table 9Percentile Tests: Robustness to Auto-Correlation (QA�&#x003D;�0.5)
	5.7.Alternative Paths

	6.AR Growth Example
	6.1.Wilkie&#x2019;s Inflation Model
	6.2.Reference Models
	6.3.What Exactly are we Testing?

	Table 10Wilkie&#x2019;s Parameters for UK Inflation
	6.4.Ersatz Models
	6.5.Mean Bias
	6.6.Variance Bias
	6.7.Percentile Tests

	Table 11Mean of Conditional Variance for Various Horizons; QA�&#x003D;�0.7
	Table 12Mean of Conditional Variance for 10-Year Horizon
	6.8.Convexity Effects

	Table 13Percentile Exceedances; QA�&#x003D;�0.7 and H�&#x003D;�10�years
	Table 14First Percentile Exceedance for Various Horizons; QA�&#x003D;�0.7
	6.9.Allowing for Parameter Uncertainty

	7.Conclusions
	7.1.All Models are Wrong

	Table 15First-order auto-regressive Standard Deviations and Extreme Stresses
	7.2.Testing on Empirical Data Versus Generated Data
	7.3.Have we Solved the Problem?
	7.4.Limitations of Generated Data Tests
	7.5.Consistency and Robustness
	7.6.Parameter and Model Uncertainty
	7.7.Test Conflicts

	ACKNOWLEDGEMENTS
	References


