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Two-point statistics in non-homogeneous
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Time-resolved two-dimensional two-component particle image velocimetry measurements
with high spatial resolution are carried out in a water tank agitated by four blades
rotating at constant speed. Different blade geometries and rotation speeds are tested for
the purpose of modifying turbulent flow conditions. In all cases where no baffles are used
to break the rotation, the Zeman length is an order of magnitude smaller than the Taylor
length. Compared with the cases with baffles which break the rotation, in the unbaffled
cases turbulence production and/or mean advection are significant and the turbulence
nonlinearity is dramatically reduced for the horizontal (i.e. normal to the axis of rotation)
two-point turbulence fluctuating velocities. This nonlinearity reduction is manifest not
only in the interscale turbulent energy transfer but also in the interspace turbulent energy
transfer, which nearly vanishes. However, the nonlinearity is not reduced for the vertical
two-point turbulence fluctuating velocities: the corresponding interscale turbulent transfer
rate is in fact intensified, and its dependence on the two-point separation distance, as well
as that of the corresponding interspace turbulent transfer rate, which does not vanish, is
significantly modified. Even though non-homogeneities are very different for different
blades and rotation speeds in the unbaffled cases, the horizontal fluctuating velocity’s
second-order structure function collapses with scalings which resemble predictions for
homogeneous turbulence subject to strong rotation. The vertical fluctuating velocity’s
second-order structure function does not collapse for different blade geometries by neither
these nor the Kolmogorov predictions.

Key words: rotating turbulence, turbulence theory

1. Introduction

Rotating turbulent flows are present in many natural and industrial contexts, including
cyclones, tornadoes, industrial mixers and rotor wakes, to name but a few. The turbulence
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in these flows is typically non-homogeneous so that the Kolmogorov theory of equilibrium
cascades (see Kolmogorov 1941a,b; Batchelor 1953; Frisch 1995; Sagaut & Cambon 2018;
Chen & Vassilicos 2022; Galtier 2022) may not apply to them on either or both accounts
of absence of homogeneity and presence of rotation (see Sagaut & Cambon (2018) and
Galtier (2022) for rotating homogeneous turbulence).

Under assumptions of local equilibrium (local homogeneity and stationarity of
turbulence) and two similarity hypotheses, the Kolmogorov theory implies that the energy
spectrum E(k) scales with the turbulence dissipation rate ε as E(k) ∼ ε2/3k−5/3 in an
inertial range of wavenumbers k (Obukhov 1941; Batchelor 1953; Frisch 1995). However,
when the homogeneous turbulence is subjected to rotation with constant angular velocity
Ω , one expects a depletion of nonlinearity when the rotation time scale Ω−1 is much
smaller than the turbulence time scale

√
K/L, i.e. RoL ≡ √

K/(ΩL) � 1, where K is
the turbulence kinetic energy and L is an integral length scale (see Sagaut & Cambon
2018; Galtier 2022). Furthermore, wavenumbers k for which Ω−1 is smaller than the local
turbulence time scale (εk2)−1/3 are expected to be significantly affected by the rotation so
that the energy spectrum’s scaling changes to

E(k) ∼
√

εΩk−2 (1.1)

for k � l−1
Ω , where

l−1
Ω ≡

√
Ω3/ε, (1.2)

as has been claimed for both stationary (e.g. Zhou 1995; Canuto & Dubovikov 1997) and
decaying (Zeman 1994; Canuto & Dubovikov 1997) homogeneous turbulence. (The length
scale lΩ is sometimes referred to as the Zeman length and serves to identify the length
scales larger than lΩ where energy accumulates towards the plane normal to the rotation
axis; see Delache, Cambon & Godeferd (2014).) A Rossby number RoL much smaller
than 1 is equivalent to lΩ � L; see for example Canuto & Dubovikov (1997), which also
introduced the parameter N ≡ K/(νΩ) to discriminate between complete suppression
of nonlinear energy transfer (N < 1) and depletion without complete suppression of
nonlinear energy transfer (N > 1).

Some support for (1.1) has been provided by direct numerical simulations of
non-decaying rotating periodic turbulence forced at the large scales in the work
of Yeung & Zhou (1998). Experiments in decaying grid-generated (i.e. nominally
homogeneous) rotating turbulence by Morize, Moisy & Rabaud (2005) have returned
spectra E(k) ∼ k−n(t) with time-dependent exponents n(t) that vary from approximately
5/3 to approximately 2.3 as the time-dependent Rossby number decreases below 1 during
decay. However, in a laboratory experiment of quasi-two-dimensional turbulent flow in a
rapidly rotating annulus, Baroud et al. (2002) reported a second-order structure function
that is proportional to the distance between the two points defining the structure function,
in agreement with a k−2 spectrum, but they did not check whether the structure function
was proportional to

√
εΩ as per (1.1). Such a check would matter because k−2 spectra

with different prefactors have also been proposed, such as E(k) ∼ δS−1k−2 for non-local
helicity cascades in homogeneous turbulence, where δ is a constant helicity transfer rate
and S is a large-scale shear rate (see Nazarenko & Laval 2000; Herbert et al. 2012).

Most theoretical works on rotating turbulence have been concerned with homogeneous
turbulence (see Galtier 2009; Sagaut & Cambon 2018; Galtier 2022), examples of
theoretical prediction for rotating homogeneous turbulence being (1.1) and depletion
of nonlinearity. In particular, wave turbulence theory, which describes rapidly rotating
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Figure 1. Mixing tank: (a) without baffles; (b) with baffles.

turbulence with very small Rossby numbers (see Godeferd & Moisy 2015; Sagaut &
Cambon 2018; Galtier 2022), assumes statistical homogeneity. However, the turbulence
in the rotating annulus of Baroud et al. (2002) was probably not homogeneous and a
scaling with some indirect agreement with (1.1) was nevertheless found in this flow. The
question arises as to whether well-defined scalings and laws exist for non-homogeneous
rotating turbulence and how they compare with their analogues in homogeneous rotating
turbulence. This is a definite step beyond current theoretical limits.

To address this question, and also to assess whether and how rotation affects
nonlinearity, we use an unsophisticated and rather common flow configuration where
turbulence is both non-homogeneous and subjected to rotation: a mixer tank where
the flow is driven by a rotating impeller. We address the question experimentally with
particle image velocimetry (PIV) measurements of the turbulent flow in a region under the
impellers. We repeat the experiments with different rotation frequencies and/or different
impeller blades and obtain measurements for a wide range of turbulence dissipation rates
so as to be able to test scalings similar to those of (1.1).

This paper is structured as follows. First, we describe the PIV experiments in § 2.
Then, we assess mean flow non-homogeneity and rotation effects in terms of the Corrsin
and Zeman lengths in § 3. Second-order structure functions are analysed in § 4, and
we quantify turbulence non-homogeneity as well as nonlinear turbulent energy transfers
across scales and across space in § 5 on the basis of a Kármán–Howarth–Monin–Hill
(KHMH) two-point energy equation. We draw some conclusions in § 6.

2. Experimental measurements

The experimental set-up and measurement technique are identical to those of Beaumard
et al. (2024) and associated supplementary material where they are presented in detail. In
this section we summarise the main features.

Experiments are carried out with water in the same octagonal acrylic tank originally
used by Steiros et al. (2017a,b). The impeller has a radial four-bladed flat-blade turbine,
mounted on a stainless steel shaft at the mid-height of the tank; see figure 1(a) where the
mixer dimensions are also presented: DT is the tank diameter (45 cm), H is the tank height
(H = DT ), C is the rotor height (H/2) and D is the rotor diameter (about DT/2). Beaumard
et al. (2024) focused on the turbulence in the baffled tank (four vertical bars on the sides of
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F (Hz) 〈ε′〉 (m2 s−3) η (m) λ (m) Reλ

Rectangular blades 2 6.0 × 10−4 2.0 × 10−4 6.6 × 10−3 4.1 × 102

Rectangular blades 3 2.1 × 10−3 1.4 × 10−4 5.3 × 10−3 5.2 × 102

Fractal blades 2 1.3 × 10−3 1.6 × 10−4 5.8 × 10−3 4.6 × 102

Fractal blades 2.5 2.3 × 10−3 1.5 × 10−4 5.5 × 10−3 5.3 × 102

Rectangular blades with baffles 1 3.6 × 10−3 1.1 × 10−4 4.1 × 10−3 5.1 × 102

Rectangular blades with baffles 1.5 1.2 × 10−2 8.8 × 10−5 3.7 × 10−3 6.5 × 102

Fractal blades with baffles 1 2.4 × 10−3 1.3 × 10−4 4.9 × 10−3 4.8 × 102

Fractal blades with baffles 1.5 8.2 × 10−3 1.0 × 10−4 4.1 × 10−3 5.8 × 102

Table 1. Main turbulence parameters.

the tank; see figure 1b) because well-designed baffles break the rotation (baffles of width
around 0.12DT designed following Nagata (1975) for close to fully baffled conditions
which maximise power consumption and minimise rotation). Here we concentrate on
the unbaffled tank (see figure 1a) and use results from the baffled tank only for
comparison.

To test the robustness of our results and identify scalings, we run experiments with two
different types of blade geometry which stimulate the turbulence differently: rectangular
blades of 44 mm × 99 mm size and fractal-like/multiscale blades of the exact same frontal
area but much longer perimeter (see more details in Beaumard et al. (2024)). This change
affects significantly the turbulence properties as the turbulence dissipation rate varies by a
factor of 2 at iso-rotation speed in the absence of baffles and by nearly a factor of 4 across
the four different unbaffled configurations (different blades, different rotation frequencies
F) considered here (see table 1). We use the two-iteration ‘fractal2’ blade described in
Steiros et al. (2017b). Each of the two types of blade is tested with two different rotor
speeds (with and without baffles).

We use two-dimensional two-component (2D2C) PIV in the vertical (x, z) plane (H is
along z and D is along x in figure 1a). The field of view is aligned with the vertical plane
and the impeller’s vertical shaft and has its centre offset by 3 ± 1 mm in the y direction
(normal to both x and z directions) from the horizontal position of the shaft at the centre
of the tank. Its size is 27 mm × 28 mm and it is placed under the impeller with its centre
at a distance of 0.118 m from the bottom of the tank. All details about these experiments
are presented in Beaumard et al. (2024).

The PIV resolution (interrogation window size) is between 3.4η and 5.1η depending
on the configuration, where the Kolmogorov length η ≡ (ν3/〈ε′〉)1/4 is calculated by
averaging the turbulence dissipation rate ε′ over the PIV field of view (angular brackets)
and over time (overbar). To be precise, ε′ is the pseudo-dissipation (see Pope 2000)
estimated from our 2D2C PIV data using its axisymmetric formulation (see Beaumard
et al. 2024). Time-resolved measurements were carried out in order to denoise the
dissipation from the PIV measurement noise, as explained in the supplementary material
of Beaumard et al. (2024).

For each configuration, 150 000 velocity fields are recorded in time, including 50 000
fully uncorrelated velocity field samples for convergence. This corresponds to a time
interval of around 139 min. Averaging over time is not sufficient for convergence and we
therefore also apply averaging over space, which greatly improves it. More details about
convergence are available in Beaumard et al. (2024).

997 A53-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

81
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.818


Two-point statistics in non-homogeneous rotating turbulence

z

(a) (b)

x

Figure 2. Schematic of mean flow in a mixer with and without baffles (Nagata 1975). The measurement plane
is shown as a green square. (a) Flow without baffles. (b) Flow with baffles.

The rotation frequency F varies between 1 and 3 Hz (see table 1). The Reynolds number
is Re = 2πFL2/ν, where L = R = D/2 ≈ 11.25 cm is an estimate of the rotor radius. The
value of Re is large, higher than 8 × 104, and the flow is turbulent. The Rossby number
is estimated as RL

O = K1/2/(ΩL), where K is estimated as 〈u′2
x 〉 + 〈u′2

z 〉, R is used as an
estimate of the integral length scale L of the turbulence and Ω = 2πF. Our values of RL

O
are around 0.02 for unbaffled configurations and around 0.06 for baffled configurations.
The smaller Rossby number for the unbaffled cases reflects the fact that the rotation affects
the turbulence more for these configurations than for the baffled configurations. However,
the rotor angular velocity Ω is not representative of the flow rotation in the case of the
baffled configurations because the baffles break the flow rotation as explained in Nagata
(1975) (see figure 2). Therefore, the Rossby number is severely underestimated for these
configurations and the difference between baffled and unbaffled configurations is much
greater than the Rossby number values suggest.

The main turbulent parameters are presented in table 1. They include the turbulence
dissipation rate 〈ε′〉 and the Kolmogorov and Taylor length scales η and λ, respectively.
Details concerning the calculation of the parameters can be found in Beaumard et al.
(2024).

The Taylor-length-based Reynolds number Reλ is larger than 410 in all configurations.
Values of Reλ are broadly comparable between all configurations, so no significant
Reynolds number effect is expected when comparing one with the other.

In figure 3(a), we plot the mean flow velocity for one of our four non-baffled
configurations, but the plot is representative of the four configurations. The mean flow
velocity is oriented horizontally from right to left and is very small in magnitude. These
observations evidence the solid-body rotation identified in Nagata (1975) and shown
schematically in figure 2(a). The solid-body rotation appears in the measurement domain
because of the small measurement offset in the y direction. In figure 3(b), we plot the
mean flow velocity of one representative baffled configuration. The mean flow velocity
is oriented vertically from bottom to top and is significant. This observation is consistent
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Figure 3. Mean flow measurement within the measurement planes shown in figure 2. (a) Rectangular blade
without baffles (F = 3 Hz). (b) Rectangular blade with baffles (F = 1.5 Hz).

with absence of rotation in the field of view and with the mean flow structure described in
Nagata (1975) and shown in figure 2(b).

3. Mean flow non-homogeneity and rotation at small scales

The Corrsin length lC (Corrsin 1958) was introduced to distinguish between length scales
above lC where mean shear S dominates because its time scale S−1 is smaller than the
time scale of nonlinear evolution of eddies at such scales and length scales below lC where
the mean flow may be considered locally homogeneous because the nonlinear evolution
time scale at such scales is smaller than S−1. The Corrsin length aims to assess mean flow
non-homogeneity rather than turbulence non-homogeneity, which we evaluate in § 5.

We define an estimate of the Corrsin length as l̃C = 〈ε′〉1/2/〈S〉3/2, where

S =
√

2
(

∂ux

∂x

)2

+ 2
(

∂ux

∂z

)2

+ 2
(

∂uz

∂x

)2

+
(

∂uz

∂z

)2

, (3.1)

with ux, uy and uz being fluid velocity components in directions x, y and z, respectively.
In practice only the mean flow gradients which we can access either directly or via the
assumptions (∂ux/∂x)2 ≈ (∂uy/∂y)2, (∂ux/∂z)2 ≈ (∂uy/∂z)2 and (∂uz/∂x)2 ≈ (∂uz/∂y)2

are taken into account. The terms (∂ux/∂y)2 and (∂uy/∂x)2 are not accessible with our
PIV and are therefore not taken into account.

The values of l̃C are presented normalised by λ in table 2; they are much smaller for the
unbaffled than for the baffled configurations, suggesting that mean shear non-homogeneity
affects much smaller scales in the absence than in the presence of baffles. The actual values
of l̃C are between 3λ and 6λ in the unbaffled configurations, even though § 5 suggests
that there can be significant turbulence production at scales smaller than that for these
configurations. The exact values of the Corrsin length estimates depend on the choice of
formula used to calculate S. We should, therefore, be very careful about the interpretation
of the actual values of the Corrsin length and focus mainly on its variation between baffled
and non-baffled configurations, which should be less dependent on the choice of S. The
Corrsin length is a very rough and sometimes misleading indicator (see also Chen &
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F (Hz) l̃C/λ l̃Ω/λ RL
O L/l̃Ω N

Rectangular blades 2 3.5 0.1 0.02 408 297
Rectangular blades 3 5.1 0.1 0.02 397 474
Fractal blades 2 5.2 0.1 0.03 274 493
Fractal blades 2.5 5.5 0.1 0.03 294 581
Rectangular blades with baffles 1 26.4 0.9 0.07 59 1956
Rectangular blades with baffles 1.5 39.5 1.0 0.07 59 2917
Fractal blades with baffles 1 25.8 0.6 0.06 72 1430
Fractal blades with baffles 1.5 38.6 0.8 0.06 72 2083

Table 2. Corrsin length estimate l̃C = 〈ε′〉1/2/〈S〉3/2 with S defined in (3.1), Zeman scale estimate
l̃Ω = 〈ε′〉1/2/Ω3/2, RL

O = K1/2/(ΩL), L/l̃Ω and N = K/(νΩ) > 1, where L is estimated as R and K is
estimated as 〈u′2

x 〉 + 〈u′2
z 〉.

Vassilicos 2022) but is nevertheless reliable enough to detect that there is much less mean
shear in baffled than in unbaffled flows.

To identify the length scales affected by rotation, we estimate the Zeman length as
l̃Ω = 〈ε′〉1/2/Ω3/2. The results normalised by λ are presented in table 2. As rotation
impacts scales larger than l̃Ω , these results suggest that all scales larger than approximately
0.1λ are affected by rotation in the unbaffled cases.

Our values of l̃Ω in the baffled cases suggest an impact of rotation at scales larger than
in the unbaffled cases but still at relatively small scales. However, the actual values of l̃Ω
for the baffled configurations are misleading as the angular velocity Ω of the rotor is not
representative of the actual rotation in the flow, which is negligible because of the baffles.
For the baffled configurations, the rotation is therefore expected to affect only scales much
larger than our estimate of l̃Ω in table 2 and is in fact likely to be negligible at all scales.

Table 2 also shows that the Rossby number RL
O is smaller than 1 (though underestimated

in the baffled cases) and that L/l̃Ω with the integral scale L ≈ R is much larger than 1
(though overestimated in the baffled cases) in all configurations and that N ≡ K/(νΩ) is
much larger than 1. We might therefore expect a depletion but not a complete suppression
of nonlinearity (see § 5) and a non-Kolmogorov scaling in a range of scales larger than
l̃Ω ≈ λ/10 (see § 4) in the unbaffled configurations which are the main subject of this
paper.

4. Second-order structure functions

We now compute and analyse second-order structure functions. For this, we introduce
the notation δu′

i = (u′
i(X + r) − u′

i(X − r))/2 where u′
i are the fluctuating velocity

components in directions i = 1, 2, 3, i.e. directions x, y, z, respectively, X is the centroid
and 2r is the two-point separation vector. We compute the normalised structure functions

〈(δu′
j)

2/
√

ε′F〉 for j = 1 (velocity fluctuations along the x axis) and j = 3 (velocity
fluctuations along the z axis) by averaging over time, i.e. over our 150 000 samples (which
correspond to 50 000 uncorrelated samples), and also averaging over X , i.e. over the
planar space of our field of view. The additional averaging over space is necessary for
good convergence of our statistics. Note that the structure functions so normalised have
dimensions of length.

The normalised structure function 〈(δu′
x)

2/
√

ε′F〉 is plotted versus rx and rz in
figure 4(a,b), respectively, for the four unbaffled configurations. We evaluate the spatial
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Figure 4. Normalised structure function 〈(δu′
x)

2/
√

ε′F〉 space-averaged over the field of view versus (a) rx (for
rz = 0) and (b) rz (for rx = 0). The units on the vertical axes are metres (m). The Taylor length scales of the
different configurations are plotted as vertical dashed lines and the Zeman length scales (l̃Ω = 〈ε′〉1/2/Ω3/2)
as vertical dotted lines.

F (Hz) a b R2

Rectangular blades 2 0.653 −2.5 × 10−3 1.0000
Rectangular blades 3 0.648 −8.8 × 10−4 0.9999
Fractal blades 2 0.659 −8.3 × 10−4 1.0000
Fractal blades 2.5 0.673 −8.3 × 10−4 1.0000

Table 3. Linear interpolation results of 〈δu′2
x 〉 in the rx direction in the form arx + b for the configurations

without baffles. The interpolation is done between the Taylor scale λ and the largest scale measured. Here R2

is the coefficient of determination.

average of the ratio (δu′
x)

2/
√

ε′F instead of the ratio of the spatially averaged terms,

〈(δu′
x)

2〉/
√

〈ε′〉F, in order to take into account the possible non-homogeneous variation
of the dissipation over the field of view. This is consistent with the theoretical approach to
non-homogeneous turbulence of Chen & Vassilicos (2022) and Beaumard et al. (2024)
(e.g. see (7.7) in Beaumard et al. (2024)). A good collapse across configurations and
a dimensionally correct linear dependence on both rx and rz are observed (hence the
normalisation of rx and rz with D, which is the same in all configurations). The linear
interpolation results for 〈δu′2

x 〉 in the forms arx + b and arz + b are presented in tables 3
and 4. These linear interpolations are of very good quality given that the R2 coefficient
is larger than 0.9990 for all configurations. The relative variation of the proportionality
coefficient a is relatively small: less than 4 % in the rx direction and less than 7 % in the rz
direction.

This differs from the baffled configurations studied in Beaumard et al. (2024), where
power-law behaviours r2/3

x and r2/3
y were found and justified theoretically with a theory

initially introduced by Chen & Vassilicos (2022). However, our finding concerning
〈(δu′

x)
2/
√

ε′F〉 in rotating non-homogeneous turbulence is very similar to the scaling (1.1)
for rotating homogeneous turbulence both because it has the same dependence on Ω and
the turbulence dissipation rate and because k−2 is equivalent to a linear dependence on the
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F (Hz) a b R2

Rectangular blades 2 0.591 −2.6 × 10−3 0.9996
Rectangular blades 3 0.570 −9.0 × 10−4 0.9990
Fractal blades 2 0.553 1.3 × 10−3 0.9998
Fractal blades 2.5 0.581 1.3 × 10−3 0.9996

Table 4. Linear interpolation results of 〈δu′2
x 〉 in the rz direction in the form arz + b for the configurations

without baffles. The interpolation is done between the Taylor scale λ and the largest scale measured. Here R2

is the coefficient of determination.
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0
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0.05

0.06

0.07

0.08
(a) (b)
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0.08

Rect. blades F = 2 Hz

Rect. blades F = 3 Hz

Fract. blades F = 2 Hz

Fract. blades F = 2.5 Hz

〈(δ
u′ z

)2
/�

ε�′ F
〉(

m
)

Figure 5. Normalised structure function 〈(δu′
z)

2/
√

ε′F〉 space-averaged over the field of view versus (a) rx (for
rz = 0) and (b) rz (for rx = 0). The units on the vertical axes are metres (m). The Taylor length scales of the
different configurations are plotted as vertical dashed lines and the Zeman length scales (l̃Ω = 〈ε′〉1/2/Ω3/2)
as vertical dotted lines.

two-point separation distance. In agreement with the expectation at the end of the previous
section, this is a non-Kolmogorov scaling evidencing a strong and well-defined impact
of rotation on the second-order structure function of the horizontal fluctuating velocity
component as a function of both rx and rz. This is also a scaling that is clearly different
from helicity cascade scalings such as the one mentioned in the introduction (see Brissaud
et al. 1973; Nazarenko & Laval 2000; Herbert et al. 2012) because it depends on F and the
turbulence dissipation rate.

The plots of 〈(δu′
z)

2/ε′1/2〉F−1/2 in figure 5 do not show good collapse of the fractal
and the rectangular blade results. Moreover, the dependencies on rx and rz deviate from
linear (particularly for the rectangular blades), in agreement with the lack of collapse.
Either one or both of F and the turbulence dissipation rate are not involved in the actual
scaling of the vertical fluctuating velocity component’s second-order structure function
or they both are and one additional parameter is needed in the scaling which somehow
takes into account differences in the flows generated by fractal and rectangular blade
impellers. This is a problem which may require more experiments and which we leave for
future research. We did check, however, that the vertical fluctuating velocity component’s
second-order structure function does not collapse with Kolmogorov scaling and that
non-dimensionalisation with D2F2 as in Herbert et al. (2012) rather than with the square
roots of the turbulence dissipation and F does not collapse the rectangular and fractal
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blade results for both 〈(δu′
x)

2〉 and 〈(δu′
z)

2〉. This observation suggests that the turbulence
dissipation rate depends not only on F and D but also on the geometry of the impeller
blades. This is visible in our experiments because of our ability to modify the turbulence
dissipation rate by changing the blade geometry without changing the rotation speed and
the blade frontal area.

Predictions and observations of anisotropic scalings of energy spectra have been made
for rapidly rotating homogeneous turbulence (e.g. Galtier 2003; Bellet et al. 2006; Thiele
& Müller 2009). However, even though the scalings of the horizontal fluctuating velocity’s
structure function are similar in our rotating non-homogeneous turbulence to scalings
claimed for rotating homogeneous turbulence (i.e. proportional to

√
Ω , the square root

of turbulence dissipation and the two-point separation distance), the anisotropy between
the scalings of the horizontal and the vertical fluctuating velocity structure functions in our
rotating non-homogeneous turbulence bears little resemblance to the spectral anisotropies
in rotating homogeneous turbulence. This is an issue which merits future research.

5. Quantification of the different terms of the energy equation

In this section we address the question of the depletion of nonlinearity in rotating
non-homogeneous turbulence.

5.1. Kármán–Howarth–Monin–Hill equation
Nonlinearity is responsible for interscale turbulent energy transfers. In the presence of
all other coexisting turbulence transfer/transport mechanisms, interscale transfers can
be studied in terms of two-point equations derived exactly from the incompressible
Navier–Stokes equations (see Hill 2001, 2002) without any hypotheses or assumptions,
in particular no assumptions of homogeneity.

The incompressible Navier–Stokes equation is written at two points ζ− = X − r and
ζ+ = X + r in physical space, where X is the centroid and 2r is the two-point separation
vector already introduced in the previous section. One defines the two-point velocity
half-difference δu(X , r, t) ≡ (u+ − u−)/2 and half-sum uX (X , r, t) ≡ (u+ + u−)/2,
where u+ ≡ u(ζ+) and u− ≡ u(ζ−) are the fluid velocities at each of the two points, and
the two-point pressure half-difference δp(X , r, t) ≡ (p+ − p−)/2, where p+ ≡ p(ζ+) and
p− ≡ p(ζ−) are the pressure-to-density ratios at each of the two points. With a Reynolds
decomposition into average plus fluctuating quantities, δu = δ̄u + δu′, uX = uX + uX

′
and δp = δp̄ + δp′, where the overline signifies an average over time, the Navier–Stokes
equation implies the following KHMH equation (Hill 2001, 2002; Alves Portela, Papadakis
& Vassilicos 2017; Beaumard et al. 2024) under the assumption of statistical stationarity,
which applies to our constantly agitated turbulent flow:

(uX · ∇X + δū · ∇r)
1
2
|δu′|2 − Pr − Ps

Xr + ∇X ·
(

uX ′ 1
2
|δu′|2

)
+ ∇r ·

(
δu′ 1

2
|δu′|2

)

= −∇X · (δu′δp′) + ν

2
∇X

2 1
2
|δu′|2 + ν

2
∇r

2 1
2
|δu′|2 − ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

, (5.1)
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Figure 6. Normalised truncation estimate of the total two-point turbulence production rate 2〈P̃r + P̃s
Xr〉/〈ε′〉

versus (a) rx/λ (for rz = 0) and (b) rz/λ (for rx = 0).

where Pr = −δu′
jδu′

i(∂δui/∂rj) and Ps
Xr = −u′

Xjδu′
i(∂δui/∂Xj) are small-scale two-point

turbulence production rates (see Beaumard et al. 2024).

5.2. Two-point turbulence production rates
We start our data analysis with an assessment of the two-point turbulence production rates.
The sums defining Pr = −δu′

jδu′
i(∂δui/∂rj) and Ps

Xr = −u′
Xjδu′

i(∂δui/∂Xj) are sums of
nine terms, of which our 2D2C PIV has access to only four. Our data therefore allow
only truncations to be calculated directly. The accessible truncation of Pr is

P̃r = −δu′
xδu′

x
∂δux

∂rx
− δu′

xδu′
z
∂δuz

∂rx
− δu′

zδu′
x
∂δux

∂rz
− δu′

zδu′
z
∂δuz

∂rz
, (5.2)

with

δu′
yδu′

y
∂δuy

∂ry
+ δu′

xδu′
y
∂δuy

∂rx
+ δu′

xδu′
y
∂δux

∂ry
+ δu′

zδu′
y
∂δuy

∂rz
+ δu′

zδu′
y
∂δuz

∂ry
(5.3)

being the difference between P̃r and Pr. Similarly, we have the following truncation
estimate of Ps

Xr:

P̃s
Xr = −u′

Xxδu′
x
∂δux

∂Xx
− u′

Xxδu′
z
∂δuz

∂Xx
− u′

Xzδu′
x
∂δux

∂Xz
− u′

Xzδu′
z
∂δuz

∂Xz
. (5.4)

Our conclusions for the full two-point turbulence production rates are of course contingent
on how closely the truncation estimates capture their behaviour. Even so, our results
provide definite insights into the non-homogeneity of the flow and the resulting production
physics. We calculate space averages over the field of view of the two truncated two-point
production rates (〈P̃r〉 and 〈P̃s

Xr〉) and we plot their sum, normalised by 〈ε′〉/2, in figure 6
versus rx and rz.

For all four baffled configurations, the values of (〈P̃r〉 + 〈P̃s
Xr〉)/〈ε′〉 collapse and are

relatively small for most values of rx and rz to which our field of view allows access.
Whilst 〈P̃r〉 + 〈P̃s

Xr〉 is negligible at all accessible scales for the unbaffled fractal blade
configurations, it is definitely very significant as a fraction of the turbulence dissipation
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Figure 7. Normalised truncation estimate of the linear spatial transport rate 2〈 ˜uX ·∇X
1
2 |δu′|2〉/〈ε′〉 versus (a)

rx/D (for rz = 0) and (b) rz/D (for rx = 0).

rate for the unbaffled rectangular blade configurations at all scales larger than λ. This stark
non-homogeneity difference between rectangular and fractal blades, perhaps resulting
from the fractal blades’ breaking of large-scale coherent structures (Başbuğ, Papadakis
& Vassilicos 2018), makes the collapse of the horizontal fluctuating velocity structure
functions in figure 4 for all unbaffled configurations all the more remarkable. Even if
small-scale turbulence production is negligible in the unbaffled fractal configurations,
the turbulence in these configurations is nevertheless non-homogeneous as seen in the
remainder of § 5.

5.3. Small-scale linear transport
We now focus on another term of the KHMH equation: the linear spatial transport rate
uX ·∇X

1
2 |δu′|2, which is also a term reflecting turbulence non-homogeneity. A non-zero

linear spatial transport rate means that two-point turbulent energy (1
2 |δu′|2) enters or

leaves the domain with the mean flow. Our 2D2C PIV data allow us to calculate

the following truncated estimate of this term: 〈 ˜uX ·∇X
1
2 |δu′|2〉 ≡ 〈(uXx(∂/∂Xx) +

uXz(∂/∂Xz))
1
2 (δu′2

x + δu′2
z )〉. In figure 7, we plot this estimate normalised by 〈ε′〉/2 versus

rx and rz. It appears small compared with 〈ε′〉/2 for all accessible rx and rz in all baffled
configurations. However, it is not so small compared with 〈ε′〉/2 for most accessible rx
and rz above λ in all unbaffled configurations except the one with rectangular blades and
F = 3 Hz.

All in all, the non-homogeneity generated by rectangular blades is characterised by
a significant two-point turbulence production rate and, depending on F, a significant or
small two-point linear spatial transport rate. By contrast, the non-homogeneity generated
by fractal blades is characterised by a significant two-point linear spatial transport rate
but a negligible two-point turbulent production rate. The non-homogeneities generated by
these two different types of blade are qualitatively different.

5.4. Energy transfer rate measurements

Given the differences between the structure functions 〈δu′2
x 〉 and 〈δu′2

z 〉 reported in § 4,
we now look at energy transfer rates separately for each of these two structure functions.
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Figure 8. Space- and time-averaged truncation estimates of the small-scale interscale transfer of the energy

contributions δu′2
x and δu′2

z normalised by dissipation and along the rx direction: (a) −〈 ˜∇r·(δu′ 1
2 δu′2

x )〉/〈 1
2 ε′〉;

(b) −〈 ˜∇r·(δu′ 1
2 δu′2

z )〉/〈 1
2 ε′〉. Here rz = 0.

The KHMH equation (5.1) is the sum over index i of the following three equations (one
equation per index i = 1, 2, 3):

(uX · ∇X + δū · ∇r)
1
2
δu′2

i + δu′
jδu′

i
∂δui

∂rj
+ u′

Xjδu′
i
∂δui

∂Xj

+ ∇X ·
(

uX ′ 1
2
δu′2

i

)
+ ∇r ·

(
δu′ 1

2
δu′2

i

)

= −δu′
i
∂δp′

∂Xi
+ ν

2
∇X

2 1
2
δu′2

i + ν

2
∇r

2 1
2
δu′2

i − ν

4
∂u′+

i

∂ζ+
k

∂u′+
i

∂ζ+
k

− ν

4
∂u′−

i

∂ζ−
k

∂u′−
i

∂ζ−
k

, (5.5)

with implicit summations over j and over k but not over i. These three equations, one per
index i, hold in them the interscale and interspace transfer rates of two-point turbulent
energy in the fluctuating velocity component indexed by i. We concentrate on i = 1 for
δu′2

x and i = 3 for δu′2
z .

The limitations of our 2D2C PIV allow us to access truncated estimates of the interscale
and interspace transfer rates. In figures 8 and 9, we plot the normalised truncated interscale
transfer rates〈

˜

∇r ·
(

δu′ 1
2
δu′2

x

)〉/〈
1
2
ε′
〉

≡
〈
δu′

x
∂

∂rx

1
2
δu′2

x

〉/〈
1
2
ε′
〉
+
〈
δu′

z
∂

∂rz

1
2
δu′2

x

〉/〈
1
2
ε′
〉

(5.6)

and〈
˜

∇r ·
(

δu′ 1
2
δu′2

z

)〉/〈
1
2
ε′
〉

≡
〈
δu′

x
∂

∂rx

1
2
δu′2

z

〉/〈
1
2
ε′
〉
+
〈
δu′

z
∂

∂rz

1
2
δu′2

z

〉/〈
1
2
ε′
〉
.

(5.7)
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Figure 9. Space- and time-averaged truncation estimates of the small-scale interscale transfer of the energy

contributions δu′2
x and δu′2

z normalised by dissipation and along the rz direction: (a) −〈 ˜∇r·(δu′ 1
2 δu′2

x )〉/〈 1
2 ε′〉;

(b) −〈 ˜∇r·(δu′ 1
2 δu′2

z )〉/〈 1
2 ε′〉. Here rx = 0.

Similarly, we plot in figures 10 and 11 the normalised truncated interspace transfer rates〈
˜

∇X ·
(

uX ′ 1
2
δu′2

x

)〉/〈
1
2
ε′
〉

≡
〈

u′
Xx

∂

∂Xx

1
2
δu′2

x

〉/〈
1
2
ε′
〉
+
〈

u′
Xz

∂

∂Xz

1
2
δu′2

x

〉/〈
1
2
ε′
〉

(5.8)

and〈
˜

∇X ·
(

uX ′ 1
2
δu′2

z

)〉/〈
1
2
ε′
〉

≡
〈

u′
Xx

∂

∂Xx

1
2
δu′2

z

〉/〈
1
2
ε′
〉
+
〈

u′
Xz

∂

∂Xz

1
2
δu′2

z

〉/〈
1
2
ε′
〉
.

(5.9)

We first comment on figures 8 and 9. Our δu′2
x interscale transfer rate estimates

(see figures 8a and 9a) suggest that rotation in the unbaffled configurations causes
a depletion in the rx direction and a near-suppression in the rz direction of
interscale transfer nonlinearity (note that depletion of the interscale energy transfer
rate does not necessarily indicate depletion of nonlinearity as in the enstrophy
transfer range of periodic/homogeneous two-dimensional turbulence, where average
interscale energy transfers vanish). With the exception of this near-suppression where

〈 ˜∇r·(δu′ 1
2δu′2

x )〉/〈1
2ε′〉 is close to zero for all accessible values of rz when rx = 0, all

our truncation estimates of interscale transfer rates in figures 8 and 9 are negative,
suggesting interscale turbulent energy transfers from large to small scales irrespective of
configuration. However, whereas the results for the baffled configurations seem to collapse
with the normalisation by the turbulence dissipation rate as functions of both rx/λ and
rz/λ and even be approximately constant for rx and rz larger than λ or a fraction of λ (see
also Beaumard et al. 2024), for the unbaffled configurations this is only the case for the
δu′2

x and not the δu′2
z interscale transfer rates. In fact, the δu′2

z interscale transfer rate (see
figures 8b and 9b) not only loses its collapsing scaling with turbulence dissipation rate in
the presence of rotation (unbaffled configurations) but also appears intensified by rotation
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Figure 10. Space- and time-averaged truncation estimates of the small-scale interspace transfer of the energy

contributions δu′2
x and δu′2

z normalised by dissipation and along the rx direction: (a) 〈 ˜∇X ·(uX ′ 1
2 δu′2

x )〉/〈 1
2 ε′〉;

(b) 〈 ˜∇X ·(uX ′ 1
2 δu′2

z )〉/〈 1
2 ε′〉. Here rz = 0.

rz/λ

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b)

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7

rz/λ
0 1 2 3 4 5 6 7

Rect. blades F = 2 Hz

Rect. blades F = 3 Hz

Fract. blades F = 2 Hz

Fract. blades F = 2.5 Hz

Rect. blades with baffles F = 1 Hz

Rect. blades with baffles F = 1.5 Hz

Fract. blades with baffles F = 1 Hz

Fract. blades with baffles F = 1.5 Hz

Figure 11. Space- and time-averaged truncation estimates of the small-scale interspace transfer of the energy

contributions δu′2
x and δu′2

z normalised by dissipation and along the rz direction: (a) 〈 ˜∇X ·(uX ′ 1
2 δu′2

x )〉/〈 1
2 ε′〉;

(b) 〈 ˜∇X ·(uX ′ 1
2 δu′2

z )〉/〈 1
2 ε′〉. Here rx = 0.

over a range of rx and rz scales, particularly around λ, and decreases with increasing
rz above λ. In other words, rotation intensifies interscale transfer nonlinearity as far as
δu′2

z is concerned and also makes it dependent on rx and rz. Our results are based on
the measured contributions and may not represent the full energy transfers. However, the
observed qualitative differences in these contributions between baffled and non-baffled
contributions are significant in themselves and demonstrate a clear impact of the flow
rotation on interscale turbulent energy transfer rates.

These qualitative differences between 〈 ˜∇r·(δu′ 1
2δu′2

x )〉/〈1
2ε′〉 and 〈 ˜∇r·(δu′ 1

2δu′2
z )〉/

〈1
2ε′〉 in the unbaffled configurations echo the fact that there are also differences

between the scalings of δu′2
x and δu′2

z in these configurations as reported in § 4.
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Interestingly, if the arguments of Kraichnan (1965) and Zhou (1995) could be translated
to low-Rossby-number rotating non-homogeneous turbulence (unbaffled configurations),
even though they were developed for low-Rossby-number rotating homogeneous

turbulence, it might be possible to claim that 〈 ˜∇r·(δu′ 1
2δu′2

x )〉 is a function of only the
time scale Ω−1 and a turbulent energy density (d/drx)〈δu′2

x 〉. Such a claim would act as
a bridge between the results in figure 4(a) and the unbaffled results in figure 8(a) because

〈δu′2
x 〉 ∼ rx

√
〈ε′〉Ω (effectively figure 4a) would then imply that 〈 ˜∇r·(δu′ 1

2δu′2
x )〉/〈1

2ε′〉 is
a constant independent of Ω , rx and impeller blade as figure 8(a) might indeed suggest.
It is not clear, though, if and why such an argument might work for the rx dependence of

〈 ˜∇r·(δu′ 1
2δu′2

x )〉 and perhaps not for its rz dependence.
We now comment on figures 10 and 11. Firstly, our truncation estimates of the interspace

transport rates of δu′2
x for rz = 0 and rx 
= 0 and of δu′2

z for rx = 0 and rz 
= 0 appear
small for all configurations, both baffled and unbaffled. The comparison of baffled and
unbaffled results in figure 11(a) suggests a severe depletion by rotation of the nonlinearity
that controls the interspace transport of δu′2

x for rx = 0 and any accessible rz. In fact,
the rotation seems to lead to near-suppression of the interspace transport of δu′2

x in the
fractal blade configurations but may be forcing the interspace transport of δu′2

x to change
sign in the rectangular blade configurations at the larger values of rz (see figure 11a). As
already documented earlier in this paper, the non-homogeneity structures of rectangular
and fractal blade configurations are different, and this seems to be another difference in
their non-homogeneities.

The interspace transport rates in figures 10(b) and 11(a) for the baffled configurations
are positive and seem to more or less collapse with turbulence dissipation rate within a
range of scales larger than 0.5λ where the interspace transport rates are about constant.
This behaviour has been explained by Beaumard et al. (2024) on the basis of the theory
of Chen & Vassilicos (2022) and is not the focus of the present work. Here we note that
rotation severely modifies this interspace transport behaviour by effectively suppressing
the measured contributions to the interspace transport of δu′2

x , as already mentioned in the
previous paragraph, and by changing the dependence on rx of the measured contributions
to the interspace transport rate of δu′2

z (see figure 10b). The change of behaviour of
the measured interspace transport contributions may or may not reflect the behaviour
of the full interspace transport rate. However, a clear change compared with the baffled
configuration is evidently clear.

6. Conclusion

Time-resolved PIV measurements have been carried out in a mixing tank stirred by
a rotating impeller without baffles generating a rotating turbulent flow in the field of
view under the impeller. This flow has been compared with the flow generated at the
same position in the presence of baffles which break the rotation. The Zeman length is
much smaller than the Taylor length in the unbaffled experiments, suggesting a strong
impact of rotation over all accessible length scales. The horizontal fluctuating velocity’s
second-order structure function is found to be proportional to the two-point separation
distance and to the square root of the rotation speed and of the turbulence dissipation
rate, similarly to expectations for rapidly rotating homogeneous turbulence, even though
the rotating turbulence in the present unbaffled experiments is not homogeneous. In fact,
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this scaling of the structure function holds with the same non-dimensional coefficient
for different rotation speeds and different impeller blades, even though the turbulent
flows generated by fractal and rectangular rotating blades have qualitatively very different
non-homogeneities (see §§ 5.2 and 5.3, in particular the last paragraph of § 5.3).

The nonlinearity associated with the measured terms of both the interscale and the
interspace transfer rates of horizontal turbulence fluctuating energy is found to be severely
depleted if not suppressed by the rotation. However, the nonlinearity associated with the
measured terms of the interscale and the interspace transfer rates of vertical turbulence
fluctuating energy (in the direction of the axis of rotation) is, to the contrary, enhanced
and/or modified by rotation as a function of the two-point separation distance and in terms
of scalings (see § 5.4).

This difference between horizontal and vertical nonlinearities is accompanied by a
difference between the horizontal and the vertical fluctuating velocity’s second-order
structure functions. The vertical fluctuating velocity’s second-order structure function
does not scale like the horizontal one and does not follow Kolmogorov scalings either.
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Appendix. Turbulent kinetic energy spatial distribution

Distributions of the measured turbulent kinetic energy in space are presented for one
non-baffled and one baffled configuration in figure 12(a,b). The statistics are converged
with 50 000 velocity fields (one velocity field per packet as opposed to the other results
of the publication; see more details in § 2). The spatial variation is only around 3 %
for the non-baffled configuration and around 4 % for the baffled configuration. For both
configurations, the shapes of the non-homogeneous distributions of the turbulent kinetic
energy are consistent with the spatial variations of the mean flow identified in figure 3(a,b)
with a non-homogeneity mainly in the vertical direction. For the non-baffled configuration,
the minor variation observed in figure 3(a) for the mean flow in the horizontal direction
is also visible and even more pronounced for the turbulent kinetic energy in figure 12(a).
For the baffled configuration, the variation of turbulent kinetic energy in figure 12(b) is
inverted compared with the mean flow variation in figure 3(b).
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Figure 12. Standard deviation of both velocity components measured within the measurement plane shown in
figure 2 of a configuration with rectangular blades and without baffles. (a) Rectangular blade without baffles
(F = 3 Hz). (b) Rectangular blade with baffles (F = 1.5 Hz).
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